Mechanistic Interpretability of Semantic Abstraction
in Biomedical Text

Abstract

We look into whether biomedical language models create register-invariant se-
mantic representations of sentences—a cognitive ability that allows consistent and
reliable clinical communication across different language styles. Using aligned
sentence pairs (technical vs. plain language abstracts that mean the same thing),
we analyze how BioBERT, SciBERT, Clinical-T5, and BioGPT react to varying
registers through similarity measures, trajectory visualization, and activation patch-
ing. The results show that models converge to shared semantic states in mid-to-late
layers, revealing the internal processes by which these models keep meaning across
stylistic variation.

1 Introduction & Motivation

Biomedical communication requires translating technical content into plain language without altering
meaning, yet how biomedical LLMs represent such semantic abstraction remains unclear, with
misrepresentation risking distortion and reduced clinical trust. Prior work shows transformer layers
progress from surface features to abstract semantics, but this shift has not been examined in biomedical
models or under stylistic variation. We ask: How do biomedical LLMs represent semantically
equivalent sentences, and which components preserve meaning across registers? Using aligned pairs
from the PLABA dataset (Attal et al., 2023), we analyze BioBERT (Lee et al., |2020), Clinical-T5 (Lu
et al.,[2022), SciBERT (Beltagy et al.,|2019) and BioGPT (Luo et al.|[2022)). Through representational
similarity, attention comparison, and causal probing, we locate depths and components where
technical and plain-language inputs converge, offering a mechanistic view of semantic preservation
in biomedical NLP.

2 Approach

2.1 Models & Dataset
We analyze four representative biomedical LLM architectures:

¢ BioBERT (encoder-based)

¢ SciBERT (encoder-based)

* Clinical-T5 (encoder—decoder)
* BioGPT (decoder-only)

The PLABA dataset provides aligned technical and plain-language biomedical sentences, serving as
a natural experiment in semantic stability under register change.

2.2 Layerwise Representation Analysis

For each model, we extract hidden states at every transformer layer and compute: Cosine simi-
larity (Manning et al., [2008)), Euclidean Distance, Centered Kernal Alignment (CKA) (Kornblith



et al., 2019), Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008]), and Canonical
Correlation— based metrics (SVCCA, PWCCA) (Raghu et al., 2017; Morcos et al., [2018)).

2.3 Trajectory & Attention Analysis

We visualize representational trajectories with PCA (Jolliffel 2011) and t-SNE (van der Maaten and
Hintonl 2008)), defining them as the layerwise evolution of sentence representations. By comparing
the shapes and endpoints of paired trajectories, we assess whether models follow similar abstraction
paths across registers. Self-attention maps (Vig and Belinkov} 2019) are analyzed with overlap
measures, with semantically analogous tokens aligned via embedding-based cosine mapping to
enable direct comparison of attention on technical and plain-language terms.

2.4 Causal Component Analysis Through Activation Patching

We implement a three-stage activation patching pipeline: (1) token alignment via embedding similarity
and Hungarian matching, (2) donor bank construction from technical-sentence activations, and (3)
patched forward passes with architecture-specific metrics. Evaluation is architecture-specific: cosine
similarity for encoder-only models, seq2seq loss for encoder-decoder, and causal LM loss for
decoder-only. Donor banks store full-layer and attention-head activations, selectively patched into
plain-language streams to reveal components essential for semantic preservation. Loss functions
mirror training objectives (MLM, seq2seq, causal LM). To address length mismatches, tokens are
aligned by cosine similarity, and activations are patched across heads, MLPs, blocks, and cross-layer
combinations to uncover distributed semantic-preservation patterns.

2.5 Experimental Controls

We implement comprehensive validation through three control categories: random activation patching
with equivalent dimensionality vectors, semantic control pairs from unaligned biomedical domains,
and architectural controls using scrambled connections. Clinical relevance is validated through
correlation with medical professional ratings on semantic equivalence.

3 Expected Outcomes

We predict CKA similarity above 0.85 in layers 8-12 for BioBERT, 6-10 for Clinical-T5 encoder,
and 12-18 for BioGPT, as prior work shows that transformer models converge to shared semantic
representations in mid-to-late layers (Kumar et al.| [2024). Trajectory visualization should show
converging paths in later layers with technical-plain pairs clustering together. We also expect MLP
components to show stronger patching effects than attention heads.

4 Results

4.1 Representation Similarity Across Registers

Across models, similarity analyses showed technical and plain inputs converge in middle-to-late
layers. Cosine, RSA, and CKA curves rose to a plateau, indicating early layers capture surface
features while deeper layers encode shared semantics.

* BioBERT and SciBERT (encoder-only): stable by layers 8—12 (CKA > 0.85), Average
Cohen’s d per-layer per-neuron of around 0.16.

* Clinical-T5: encoder convergence at layers 6—10, Average Cohen’s d per-layer per-neuron
of around 0.13.

* BioGPT (decoder-only): stabilization at layers 14—18. Average Cohen’s d per-layer per-
neuron of around 0.22; the notably higher value means that this model treats the register-
varying sentences more differently.

These results indicate that biomedical LLMs progressively eliminate stylistic variation and converge
to register-invariant semantic states in middle-to-late layers.



4.2 Trajectory and Attention Analysis

Trajectory visualizations showed that technical and plain-language pairs diverged in shallow layers but
converged later. This indicates that lexical differences are abstracted into equivalent representations.
Attention analysis (Figures 1-8) revealed mid-layer heads consistently attending to biomedical entities
across registers, with stronger alignment than in shallow or final layers. These results support the
hypothesis that convergence emerges in middle-to-late layers.
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4.3 Causal Component Analysis via Activation Patching
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Figure 14: SciBERT
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Activation patching experiments, performed on the testing split (Figures 10-25), identified components
that causally preserve semantic equivalence under register change.

e MLPs vs. Attention: Heatmaps (Figures 10, 11, 14, 15, 18, 19, 22, 25) show MLPs exert
stronger causal effects—especially mid-to-late layers—while attention heads are weaker but
still above random.

* Random baselines: Scrambled activations (Figures 12, 13, 16, 17, 20, 21, 24, 25) yield
near-zero effects, confirming sufficiency scores capture genuine register-invariant features.

¢ Cross-model trends:

— BioBERT/SciBERT: Mid-layer MLPs (LL8—12) dominated register-invariant encoding.
— Clinical-T5: Distributed sufficiency across encoder layers, without a single sharp peak.
— BioGPT: Register-sensitive MLPs concentrated in deeper layers (L14—-18).
These findings converge with similarity analysis, supporting that semantic preservation
emerges in mid-to-late layers and is disproportionately mediated by MLP blocks.

4.4 Summary of Findings

Taken together, similarity analysis, trajectory alignment, and activation patching provide convergent
evidence that biomedical LLMs develop register-invariant semantic representations. Encoder-only
models converge earlier, decoder-only models later, and MLP components play a stronger causal
role than attention heads. These insights explain how biomedical LLMs handle stylistic variation,
providing a foundation for interpretable and trustworthy clinical communication systems.

5 Conclusion

This framework identifies the model components that preserve meaning across styles in biomedical
language models. These mechanisms could be leveraged in medical question-answering systems
through targeted fine-tuning while tracking efficiency and accuracy to semantic representation. Future
work will extend these findings to patient-clinician interactions and multilingual biomedical settings,
enabling us to further characterize the internal algorithms that facilitate robust, register-independent
semantic processing.
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