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ABSTRACT

Speculative sampling reduces the latency of autoregressive decoding for target
model LLMs without sacrificing inference quality, by using a cheap draft model
to suggest a candidate token and a verification criterion to accept or resample this
token. To improve acceptance and decoding efficiency, recent work has explored
the multi-draft extension, where at each step n draft tokens are generated, and the
verification criterion is a distribution conditioned on these. When this criterion
maximizes the probability of accepting some draft token, it is called the optimal
transport (OT). However, finding the OT is difficult, as it is the solution of a linear
program (OTLP) in over V n variables, with V being the vocabulary size. Two
recent theoretical works have reframed the OTLP in terms of importance sampling
or subset selection. In this work, we prove that these formulations are equivalent to
an exponentially large relaxed OTLP, so it remains infeasible to solve. Then, we
reverse engineer subset selection to formulate the OTLP as a max-flow problem.
With a novel application of polymatroid theory, we reduce the exponentially large
OTLP to a convex optimization problem in at most V variables. This allows us to
devise an algorithm for optimal n-draft speculative sampling when the n tokens are
chosen i.i.d. from a single draft model, which can be tuned to arbitrary accuracy.
Finally, we measure acceptance rates and algorithm runtimes for various n and
top-k draft sampling settings. Our findings give the first multi-draft algorithm with
90% acceptance and under 100 ms of overhead per generated token with negligible
deviation from the target model distribution.

1 INTRODUCTION

Language models have demonstrated state-of-the-art performance over a wide variety of tasks, such as
code generation, language processing, and complex reasoning (Zhu et al., 2024; Kasneci et al., 2023;
Thirunavukarasu et al., 2023). Many transformer-based language model families, like GPT (Radford
et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023) and Llama (Touvron et al., 2023b;a), use
autoregressive decoding, where tokens are generated sequentially. However, autoregressive decoding
leads to significant computational bottlenecks. For LLMs with hundreds of billions of parameters,
these bottlenecks are generally dominated by memory bandwidth, not raw FLOPs (Fu et al., 2024).

Speculative sampling was proposed by Chen et al. (2023); Leviathan et al. (2023) to reduce the
punitive costs of autoregressive decoding for an expensive target model. Motivated by speculative
execution in compilers, this uses a light draft model to generate a draft sequence. Each token of the
draft sequence is then accepted or resampled using a criterion, which ensures that the first resampled
token and all prior accepted tokens follow the true target distribution. The greatest speedup is
obtained by maximizing the acceptance probability, as accepted tokens are generated with essentially
no inference overhead.

Recent extensions of speculative sampling have fixed the draft sequence length to one (single-step)
and focused on the theoretical properties of the multi-draft setting. In this setting, n ≥ 2 draft
tokens are generated at the single draft sequence position, for example by sampling from one or
more draft models. The n corresponding target logits are efficiently computed in parallel, adding
minimal overhead to a single target forward pass for reasonable batch sizes n. Finally, a conditional
distribution over the n draft tokens (verification criterion) generates a verified token, which must
respect the true target distribution. This conditional distribution is called the optimal transport (OT)
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when the verified token lies among the n draft tokens with maximal probability, thereby giving the
optimal acceptance probability and speedup.

The first theoretical work in the multi-draft setting was by Sun et al. (2023), who proved that the OT
is a solution to an optimal transport linear program (OTLP). This LP has a number of variables
exponential in the vocabulary size, so it is not even feasible to write down for large vocabularies.
However, Khisti et al. (2025) recently compactified this into a two-step canonical decomposition:
importance sampling and single-draft speculative sampling. When n = 2 draft tokens are sampled
from one draft model, this leads to an explicit expression for the optimal acceptance probability.
Concurrently, Hu et al. (2025) has reframed optimal acceptance as the solution to a subset selection
problem, which matches this n = 2 expression and generalizes it to n ≥ 3 draft tokens.

While these works can compute optimal acceptance for n ≥ 2, they do not solve the OTLP. There is
therefore, to the best of our knowledge, no exact and efficient method to solve the OTLP and find the
optimal verification criterion in multi-draft speculative sampling. The only known exact method is an
LP solver, which has exponential time complexity for the OTLP. Existing approximation algorithms
such as K-SEQ (Sun et al., 2023), MSS (Miao et al., 2024), RSD (Jeon et al., 2024), and LP and
vocabulary truncation (Khisti et al., 2025) cannot guarantee near-optimal speedups: K-SEQ has a
(1− 1/e)-approximation guarantee, but the others have no formal guarantees.

Our main contribution is the first efficient algorithm to compute the OT to arbitrary accuracy
when n ≥ 2 draft tokens are i.i.d. sampled from a draft model, in the single-step multi-draft
setting. Our algorithm is fast for much larger vocabularies and choices of n than previous works,
permitting higher acceptances rates. Altogether, our theoretical and experimental contributions are:

• We show how the canonical decomposition (Khisti et al., 2025) of the OTLP is exactly
equivalent to LP relaxation in the derivation of the subset selection formulation (Hu et al.,
2025), unifying the current state-of-the-art in multi-draft theoretical literature.

• We reverse the derivation in (Hu et al., 2025) to obtain a max-flow algorithm to compute the
OT for arbitrary pdraft. While the max-flow network is enormous, one can compute feasible
flows along source edges in near-linear time with a greedy polymatroid algorithm. With
these flows set, the OT can be computed to arbitrary accuracy by solving a truncated convex
minimization problem. This leads to our global resolution OT algorithm in the i.i.d. setting.

• We compute optimal acceptance rates and algorithm runtimes for various choices of n and
top-k sampling of the draft model in the i.i.d. setting. Our algorithm permits practical
choices of k and n where acceptance rates are over 90% and average runtime is under 100
ms/token, whereas generic OTLP solvers can only achieve 84% in the same limit. Thus, we
obtain a new state-of-the-art in optimal multi-draft speculative sampling.

2 RELATED WORK

To improve the number of accepted tokens, most theoretical extensions of speculative sampling have
been split into multi-step and multi-draft, which alter the verification or drafting mechanisms.

In the multi-step setting, which was outlined in the first few speculative sampling works (Chen et al.,
2023; Leviathan et al., 2023), the draft model autoregressively generates a sequence of candidate
tokens, and accepts the longest prefix of tokens that pass verification. Some work has fixed verification
as independent single-step verification, and focused on improving acceptance through smarter drafting,
such as database retrieval (He et al., 2023), cascading (Chen et al., 2024), hierarchial drafting (Sun
et al., 2024a), knowledge distillation (Zhou et al., 2023b; Liu et al., 2023), layer skipping (Zhang
et al., 2023; Elhoushi et al., 2024), or multi-token sampler heads Gloeckle et al. (2024); Samragh
et al. (2025). Other work has developed new verification protocols, such as tree Monte Carlo (Hu &
Huang, 2024) and block verification (Sun et al., 2024b), with the latter shown to be naturally optimal.

While most multi-step works are based on single-draft speculative sampling, tree-based attention
frameworks (Sun et al., 2023; Spector & Re, 2023; Cai et al., 2024; Li et al., 2024) extend to the
multi-draft setting by creating a tree of draft token sequences, our work only considers the single-step,
multi-draft setting. However, frameworks like SpecTr (Sun et al., 2023) can use any single-step,
multi-draft method, e.g. an OTLP solver like K-SEQ. Thus, it is plausible that our method also yields
improvements in such settings. We leave exploration of this direction to future work.
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3 BACKGROUND ON MULTI-DRAFT SPECULATIVE SAMPLING

For a review of multi-draft speculative sampling, see Appendix A. Here, we review the theory of
single-step multi-draft speculative sampling, which is primarily based on the OTLP (Sun et al., 2023)
and its subset selection formulation (Hu et al., 2025).

3.1 THE OPTIMAL TRANSPORT LP

Many multi-draft procedures respect the target model distribution (e.g. K-SEQ), but we are interested
in the one with greatest speedup. In the single-step setting, the parameters of this optimal sampling
procedure are solutions to an optimal transport linear program (OTLP) (Sun et al., 2023). In
terms of the number of draft models n, the target model distribution p over the vocabulary V , and
the n-token draft distribution pdraft over Vn, the OTLP has V n+1 nonnegative variables Ci,i for
i ∈ V, i ∈ Vn and is written as:

max
C⪰0

∑
i∈V

∑
i∈Ai

Ci,i s.t.
∑
i∈Vn

Ci,i = p(i) ∀i ∈ V,
∑
i∈V

Ci,i = pdraft(i) ∀i ∈ Vn. (1)

Here, Ai = {i ∈ Vn : i ∈ set(i)} is the incidence set of each i ∈ V over all drafted n-tuples. The
optimal objective value is the optimal acceptance rate α∗, and the optimal parameters C∗ give
a joint distribution π(i, i) over V × Vn with marginals p, pdraft. The optimal transport (OT) is
the induced conditional distribution π(i|i), which gives the probability of verifying i ∈ V given n
draft-sampled tokens i ∈ Vn. Solving the OTLP in this form is infeasible due to its exponential size,
even for n = 2 and V as small as 1000: see Section 7.

3.2 SUBSET SELECTION FORMULATION

Computing the optimal objective of the OTLP can be far simpler than solving it. Hu et al. (2025)
show this by reducing the optimal acceptance computation to subset selection (Equation (4)) for any
pdraft. This allows them to bypass the OTLP and quickly solve for α∗ for some choices of pdraft (see
Section 5.1). To do this, they form a relaxed OTLP in nonnegative variables Si,i for i ∈ V, i ∈ Vn:

max
S⪰0

∑
i∈V

∑
i∈Vn

Si,i s.t.
∑
i∈Vn

Si,i ≤ p(i) ∀i ∈ V,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn,

Si,i = 0 ∀i ∈ V, i ̸∈ Ai.

(2)

One can get an OTLP solution C∗ from a relaxed OTLP solution S∗ with residuals:

C∗
i,i

= S∗
i,i

+
pres(i)pres

draft(i)∑
j∈V p

res(j)
, pres(i) = p(i)−

∑
i∈Vn

S∗
i,i
, pres

draft(i) = pdraft(i)−
∑
i∈V

S∗
i,i
. (3)

They then dualize the relaxed OTLP and simplify it to the following. We defer details to Appendix E.
Theorem 3.1 (Hu et al. (2025)). The optimal acceptance rate α∗ can be computed as

α∗ = 1 + min
H⊆V

ψ(H), ψ(H) =
∑
i∈H

p(i)−
∑
i∈Hn

pdraft(i). (4)

4 CANONICAL DECOMPOSITION BY RELAXED LP

The main result of Khisti et al. (2025) is the canonical decomposition of the OT: it can be split into
importance sampling and single-draft speculative sampling. First, after sampling the n draft tokens
i ∼ pdraft, one samples a token in set(i) using an importance-weighted distribution β(i|i). Then,
one applies single-draft speculative sampling from Chen et al. (2023); Leviathan et al. (2023) on i.
Canonical decomposition thus computes the OT by solving a non-linear β-optimization problem.

In this section, we prove that solving the β-optimization problem is mathematically equivalent to
solving the relaxed OTLP from Equation (2). The optimal importance sampling parameters in the
canonical decomposition can be formed by normalizing the optimal relaxed LP parameters S∗ in
non-degenerate cases, and choosing a uniform split in degenerate cases. The proof is in Appendix B.
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Theorem 4.1. Define D ⊆ Vn to be the set of i ∈ Vn where all S∗
i,i

= 0 in Equation (2). Then

β(i|i) =


S∗
i,i∑

j∈V S
∗
j,i

, i ̸∈ D,

1[i ∈ set(i)]
|set(i)|

, i ∈ D,

(5)

solve the importance sampling optimization problem in canonical decomposition.

Thus, canonical decomposition provides no computational advantage over the relaxed OTLP.

5 OPTIMAL MULTI-DRAFT SPECULATIVE SAMPLING BY MAX-FLOW

Much of the work by Hu et al. (2025) employs subset selection (Equation (4)) to efficiently compute
the optimal acceptance α∗ = 1 + ψ(H∗) for some pdraft schemes. However, they do not have a
method for computing the OT efficiently from H∗. They only solve for the OT when pdraft is greedy
(choose the top n− 1 tokens in a draft model q and sample the last without replacement), by directly
solving the OTLP 1. Excluding this pdraft, there is no known method which computes the OT for
n ≥ 2 and is faster than directly solving the OTLP or relaxed OTLP with an LP solver; this includes
canonical decomposition, since Theorem 4.1 shows it reduces to the relaxed OTLP.

In this section, we formulate a more efficient method to solve the OT, using H∗. We first enumerate
cases where efficient computation ofH∗ is possible, building on Hu et al. (2025). Then, we show how
solving for S∗ in the relaxed OTLP is a max-flow problem. Finally, we reverse the subset selection
derivation using complementary slackness, to obtain a more compact feasibility max-flow problem
that depends on H∗. This allows simplification of Equation (3) to a sparser form.

5.1 EFFICIENT RECOVERY OF H∗

Computing α∗ reduces to minimizing the set function ψ : 2V → R defined in Equation (4). While
this is NP-hard for general ψ, there are polynomial-time approaches (Iwata, 2008; Orlin, 2009) when
ψ is submodular. In their work, Hu et al. (2025) show submodularity holds if pdraft samples i.i.d. n
times from a single draft distribution q. In Appendix C, we generalize their argument to pdraft that
samples independently from any n draft distributions. These polynomial-time algorithms are often
impractical for large V , but the use of top-p/k sampling on the draft model(s) can restrict the domain
V and make this feasible. Also, when n = 2, minimizing ψ is submodular quadratic psuedo-boolean
optimization (QBPO), where far more efficient algorithms exist: see Appendix D for more details.

When pdraft samples i.i.d. from q, Hu et al. (2025) are able to improve on standard submodular
algorithms to obtain an O(V log V ) approach. They show that it suffices to sort i ∈ V in decreasing
order of q(i)/p(i), and select the prefix of this list which minimizes ψ. We will mainly be concerned
with this setting, rather than general submodular ψ setting, which we leave to future work.

5.2 MAX-FLOW REDUCTION OF RELAXED OTLP

We now describe the relaxed OTLP (Equation (2)) as a max-flow problem. Max-flow solvers are
much faster than general LP solvers here, as we empirically demonstrate in Section 7.

Define a bipartite network Ω with source s, left vertices V , right vertices Vn, and sink t. We draw
edges s→ i with capacity p(i) for i ∈ V , edges i→ i with capacity ∞ for i ∈ V, i ∈ Ai, and edges
i→ t with capacity pdraft(i) for i ∈ Vn. Considering variables Si,i as flows along i→ i, we see the
capacity constraints exactly reduce to the inequalities in the relaxed OTLP, and the maximization
objective is the same as maximizing the flow. The zero equality constraints are handled by the fact
that we only draw edges i→ i if i ∈ Ai. Thus, S∗ can be computed by running max-flow on Ω.

1Here, only O(V ) possible draft n-tuples can be sampled, rather than V n, so the OTLP is feasible to solve.
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5.3 OPTIMIZING MAX-FLOW WITH COMPLEMENTARY SLACKNESS

While the max-flow formulation is advantageous over a general LP solver, it can still be prohibitive
for large Vn. Is there any way to use information like H∗ to reduce the size of the network Ω? We
find the answer is affirmative through complementary slackness, a method to reverse the dualization
step in Section 3.2. For background on the dualization and the proof of below, see Appendix E.
Theorem 5.1. Any nonnegative S∗ defined over V × Vn satisfies the following system,∑

i ̸∈(H∗)n

S∗
i,i

≤ p(i) ∀i ̸∈ H∗,
∑
i ̸∈H∗

S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n, (6a)

∑
i∈(H∗)n

S∗
i,i

= p(i) ∀i ∈ H∗,
∑
i∈H∗

S∗
i,i

≤ pdraft(i) ∀i ∈ (H∗)n, (6b)

S∗
i,i

= 0 ∀i ∈ H∗, i ̸∈ (H∗)n, S∗
i,i

= 0 ∀i ∈ V, i ̸∈ Ai, (6c)

if and only if it is an optimal solution to the relaxed OTLP.

Once we eliminate all zero variables in Equation (6c) from the top two lines, we call Equation (6a)
the outer system and Equation (6b) the inner system. These are independent, as the former has
terms with i ̸∈ H∗, i ̸∈ (H∗)n, i ∈ Ai and the latter has terms with i ∈ H∗, i ∈ (H∗)n, i ∈ Ai.
In the same way as the relaxed OTLP, these represent max-flow problems over a bipartite network:
see Appendix F for a proof of this equivalence. Thus, we can solve the outer and inner systems by
creating corresponding flow networks, solving for the max-flow, and then recovering the variables
along the ∞-capacity edges. To form the flow network for the outer system, we restrict Ω from
Section 5.2 to left vertices V \H∗ and right vertices V n \ (H∗)n. For the inner system, we restrict
Ω to left vertices H∗ and right vertices (H∗)n. The complexity of these networks depends on H∗.

Finally, to compute C∗ from the full S∗ given by the outer and inner system solutions, we use
Equation (3). In fact, the equality conditions in Theorem 5.1 tell us some residuals are zero:

pres(i) = 0 ∀i ∈ H∗, pres
draft(i) = 0 ∀i ̸∈ (H∗)n, (7)

Thus, when we sample the n-tuple of draft tokens ω ∈ Vn, and aim to compute the slice of the OT
π(·|ω) along this n-tuple, we only need to solve for the variables C∗

i,ω for i ∈ V , which simplify to

C∗
i,ω =


S∗
i,ω, i ∈ set(ω),

pres
draft(ω)∑

j∈V p
res(j)

· pres(i), i ̸∈ H∗, ω ∈ (H∗)n,

0, else,

(8)

by application of Equation (3). In fact, by independence of the outer and inner systems, examining
the variables above, we only need to solve the outer system if ω ̸∈ (H∗)n. When H∗ is large, this
is a significant speedup, as the outer system network is far smaller than the one in Section 5.2.

6 NEAR-LINEAR SAMPLING VIA GLOBAL RESOLUTION

Our max-flow reduction of complementary slackness shows that for arbitrary pdraft, we should not
expect to be able to compute C∗ in less time than the max-flow approach. Across all flow networks
we constructed, the capacities were p(i), pdraft(i) for i ∈ V, i ∈ Vn, which are essentially free
parameters. Thus, a faster algorithm would likely require a faster general max-flow solver.

However, when pdraft is formed by i.i.d. sampling from a draft model q, we can exploit additional
structure to solve the complementary slackness system efficiently. First, we show how to compute
feasible values of the outer residuals pres(i) for i ∈ V \H∗, using polymatroid theory. This turns
all conditions in Theorem 5.1 involving p(i) into equalities. Once these are equalities, there exists a
solution to the outer and inner systems parametrized by variables αi for i ∈ V \H∗ and i ∈ H∗, such
that each row of the solution is a softmax over a slice of variables. These variables can be computed
by minimizing associated convex functions. We call this approach global resolution. While this is
not efficient for large V , by truncating the convex functions to a smaller subset of variables, we can
solve the optimization problem with negligible accuracy loss.
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6.1 OUTER RESIDUAL LP

From Equation (7), there are two classes of nontrivial residuals: the outer residuals pres(i) for
i ∈ V \H∗, and the inner residuals pres

draft(i) for i ∈ (H∗)n. While solving for the inner residuals is
difficult2, we can compute outer residuals with the outer residual LP (Theorem 6.1, see Appendix G).
Theorem 6.1 (Outer Residuals). We have 0 ≤ pi ≤ p(i) for i ∈ V \H∗ are feasible in∑

i∈S

pi ≤
∑
i∈S

p(i) + ψ(V \ S) ∀S ⊆ V \H∗, (9)

with equality at S = V \H∗, if and only if pres(i) = p(i)− pi are feasible in the outer system.

This LP has up to 2V constraints, so it is infeasible to even write down. Fortunately, most of these
constraints are redundant when ψ is submodular. By applying polymatroid theory (see Appendix H),
we get a closed-form solution by taking consecutive differences of minimums of ψ.
Theorem 6.2. Suppose ψ is submodular. Fix any ordering {v1, . . . , vk} of V \H∗. Then

pvi = p(vi) + min
T⊇Hi+1

ψ(T )− min
T⊇Hi

ψ(T ) ∀i ∈ [k]. (10)

is a solution to Theorem 6.1, where Hi = H∗ ∪ {vi, . . . , vk} for each i ∈ [k].

Computing the minψ terms is extremely prohibitive, since there are O(V ) of them, so we could
require up to V submodular minimization calls. However, for the i.i.d. pdraft construction, each
call can be made O(V log V ) with a procedure that evaluates ψ across prefixes of a sorted list, by
following the q-convexity approach in Section 4.2 of Hu et al. (2025) verbatim.
Lemma 6.3. Suppose pdraft is formed by sampling i.i.d. from q. Fix subsets A ⊆ B ⊆ V . Then

min
A⊆S⊆B

ψ(S) = min
0≤i≤|B\A|

ψ(Li ∪A), (11)

where Li is the ith prefix of B \A when its elements x are sorted by decreasing q(x)/p(x).

We can further optimize this to a total runtime of O(V log V ) across all calls, by exploiting the fact
that the ordering of V \H∗ in Theorem 6.2 is arbitrary. By selecting v1, . . . , vk in increasing order of
q(·)/p(·), we know from Lemma 6.3 that each minT⊇Hi

ψ(T ) lies among ψ(Hi), . . . , ψ(H1). Thus,
using cumulative minimums, we can get all minψ terms in O(V log V ).

6.2 OUTER AND INNER CONVEX SOLVERS

Once we have computed feasible values for the outer system residuals pres(i) = p(i) − pi for
i ∈ V \H∗ (Theorem 6.2), we can turn all p(i) upper bounds in the outer system (Equation (6a))
into pi equality bounds. Our key observation is that as the outer system is feasible, it has some
global low-dimensional solution parametrized over V \H∗. The rows of this solution are formed by
taking the softmax of slices of the parameters, and the parameter values can be computed to arbitrary
accuracy by minimizing a truncated convex function as in Theorem 6.4 (proof in Appendix I),
Theorem 6.4 (Outer Convex Solver). Fix ϵ > 0 and T ⊆ V \H∗. Define ΦT : RV\H∗ → R by:

ΦT ((αi)i∈V\H∗) =
∑

i∈(H∗∪T )n\(H∗)n

pdraft(i) log

 ∑
i∈set(i)\H∗

eαi

−
∑
i∈T

piαi. (12)

This is constant over αi for i ̸∈ T . Then there is some (α∗
i )i∈V\H∗ such that

∥∇ΦT ((α
∗
i )i∈V\H∗)∥1 ≤ ϵ+ ϵT , ϵT = 1−

( ∑
i∈H∗∪T

q(i)

)n

. (13)

Furthermore, for any (αi)i∈V\H∗ , the following variables solve the outer system,

Si,i =
eαi∑

j∈set(i)\H∗ eαj
· pdraft(i) ∀i ∈ set(i) \H∗, i ∈ Vn \ (H∗)n, (14)

with at most ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT total L1 deviation from the p(i) equality constraints.

2This is primarily due to the exponential number of inner residuals. Even if pdraft is i.i.d., it is not guaranteed
that some pres

draft admits a similar i.i.d. structure, without additional assumptions on p and q.
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The inner system can be approached similarly, but the function now includes a slack term3, as we
have not solved for the inner residuals pres

draft(i). The proof can be found in Appendix J.

Theorem 6.5 (Inner Convex Solver). Fix ϵ > 0 and T ⊆ H∗. Define ΘT : RH∗ → R by:

ΘT ((αi)i∈H∗) =
∑
i∈Tn

pdraft(i) log

1 +
∑

i∈set(i)

eαi

−
∑
i∈T

p(i)αi. (15)

This is constant over αi for i ∈ H∗ \ T . Then there is some (α∗
i )i∈H∗ such that

∥∇ΘT ((αi)i∈H∗)∥1 ≤ ϵ+ γT , γT =

(∑
i∈H∗

q(i)

)n

−

(∑
i∈T

q(i)

)n

. (16)

Furthermore, for any (αi)i∈H∗ , the following variables solve the inner system,

Si,i =
eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) ∀i ∈ set(i), i ∈ (H∗)n, (17)

with at most ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT total L1 deviation from the p(i) equality constraints.

In essence, solving for a global softmax solution in complementary slackness reduces to minimizing
(finding a point with near-zero gradient) a convex function defined over variables in the truncated set
T : this is ΦT for the outer system and ΘT for the inner system. When minimizing ΦT and ΘT , the
total deviation from the p(i) equality constraints is guaranteed to fall under 5ϵT and 5γT , respectively,
by setting ϵ = ϵT , γT in the solvers and using the gradient existence statements from the theorems.

When we increase the size of T , the error bounds ϵT and γT (the tunable errors) approach zero. Thus,
we can approximate the true complementary slackness solution to arbitrary accuracy. To prevent
excessive runtime, we may terminate early if the size |T | of the convex minimization problem
exceeds a preset threshold, or a maximum iteration count in the minimization algorithm is reached.
Due to space constraints, we clarify these details and our minimization approach in Appendix K.

6.3 GLOBAL RESOLUTION

Once we have used the outer and inner convex solvers to compute the approximation S to the real
complementary slackness solution S∗ (all variables not in these systems are zero), we plug in the
former into Equation (3) to obtain an approximation C to the real optimal transport solution C∗:

Ci,i =



Si,i, i ∈ set(i),

p(i)− pi∑
j∈V\H∗(p(j)− pj)

·

pdraft(i)−
∑

i∈set(i)

Si,i

 , i ̸∈ H∗, i ∈ (H∗)n,

0, else,

(18)

The following lemma (proof in Appendix L) ensures that the tunable errors in Theorem 6.4 and
Theorem 6.5 translate directly to bounds on deviations in the OTLP solution and acceptance rates.
Lemma 6.6 (Approximation Guarantee). Solve for pi over i ∈ V \H∗ as in Theorem 6.2. Using
these values, let Si,i be defined as in Theorem 6.4 with L11 deviation α and Theorem 6.5 with L1
deviation β. Then Ci,i as defined in Equation (18) satisfies the OTLP, with up to α + 2β total L1
deviation in the p(i) equality constraints and α+ β total deviation in the optimal acceptance rate.

Using the guaranteed 5ϵT and 5γT deviations for the outer and inner solvers, we can therefore
choose suitable T to ensure the tunable errors ϵT , γT do not exceed a specified error threshold τ , as
Lemma 6.6 ensures that sampling from the OT induced by this approximate C will deviate by at most
15τ from the true target distribution in L1 distance, and deviate from the optimal acceptance rate by
at most 10τ . We present the full global resolution algorithm with the error threshold in Algorithm 1.

3We cannot do this for the outer system. This solver has one variable for each equality constraint. However,
the outer system has exponentially many (|Vn \ (H∗)n|) equalities before outer residual computation. Thus, the
polymatroid approach is necessary to make even a truncated convex solver practical for the outer system.
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Algorithm 1: Global Resolution
Input: V, p, q, n, error threshold τ , draft count n, drafted n-tuple ω = (ω1, . . . , ωn) ∼ q(·)
Output: Optimal transport slice π(·|ω)

1 Compute H∗ from p, q,V, n as in Section 5.1
2 Compute pi for all i ∈ V \H∗ from p, q,V, n as in Theorem 6.2
3 if ω1, . . . , ωn ∈ H∗ then
4 Choose minimal T ⊆ H∗ such that γT ≤ τ
5 Find inner system variables Si,i using Theorem 6.5, stop at ∥∇ΘT ∥1 ≤ 5τ

6 return normalized C·,ω from Si,i and pi in Lemma 6.6

7 Choose minimal T ⊆ H∗ such that ϵT ≤ τ
8 Find outer system variables Si,i using Theorem 6.4, stop at ∥∇ΦT ∥1 ≤ 5τ

9 return normalized C·,ω from Si,i in Lemma 6.6

7 EXPERIMENTS

In this section we empirically test the efficacy of our new algorithms for i.i.d. multi-draft, single-step
setting. First, we show that optimal acceptance rates can substantially increase with a higher number
of drafts n, and larger k in top-k sampling of the draft model. We then compare our algorithms’ solve
times against a standard LP solver for various k, n. Our algorithms are practical for a much wider
range of k, n, achieving state-of-the-art optimal acceptance rates in multi-draft speculative sampling.
Details on our setup for both acceptance and solve time experiments are given in Appendix M.

7.1 OPTIMAL ACCEPTANCE FOR INCREASING k AND n

For our target and draft models, we use the pairs Gemma-2 27B/2B and Llama-3 70B/8B (Touvron
et al., 2023a; Team, 2024). We test n ≤ 10 and k ∈ {10, 100, . . . , 10⌊log V ⌋, V }. Note that top-k
sampling truncates the vocabulary V to size k in the relaxed OTLP, so that compute-heavy baseline
approaches like LP and max-flow solvers remain feasible. For more detail, see Appendix N.

Our results are shown in Figure 1. We observe significant improvements in acceptance as k increases
from 10 to 1000: for example, a marginal increase from 0.8 to 0.95 means nearly 10% more tokens
are generated at no extra cost. However, there are diminishing returns for k ≥ 10000. Thus, top-k
sampling is a viable method to reduce OTLP complexity without sacrificing acceptance. There is also
a steady improvement from increasing n for larger k, demonstrating the utility of higher draft counts.

Figure 1: Optimal acceptance rates from n i.i.d drafts with top-k sampling with n with target/draft
pairs of Gemma-2 27B/2B and Llama-3 70/8B. Increasing k improves acceptance rate significantly
up to k = 1000, and increasing n also results in steady increase in optimal acceptance.

Further, in Appendix O, we compare these acceptance rates to those for the greedy construction by
Hu et al. (2025), described at the start of Section 5. For both Gemma-2 and Llama-3, we find that i.i.d.
acceptance rates are higher than greedy for k ≥ 100, with improvements near 2% for larger k and n.

8
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(k, n) General LP Max-Flow Opt. Max-Flow G.R. (τ = 10−3) G.R. (τ = 10−4)

(10, 2) 4.07 2.45 2.51 5.27 (98%) 7.62 (93%)
(10, 3) 30.14 3.80 3.88 17.35 (98%) 23.95 (87%)
(10, 4) 4000+ 74.21 74.37 40.30 (97%) 54.84 (86%)
(10, 5) 400000+ 10000+ 10000+ 70.75 (96%) 94.79 (85%)

(100, 2) 4000+ 72.28 63.03 23.92 (38%) 25.47 (23%)
(100, 3) 400000+ 200000+ 200000+ 30.52 (23%) 38.44 (14%)
(1000, 2) OOM 400000+ 400000+ 34.94 (31%) 47.46 (15%)

Table 1: Average Llama-3 solve times (ms/token) over k, n, for the five i.i.d. OTLP solvers. General
LP and max-flow are baselines, and optimized max-flow and global resolution (τ = 10−3, 10−4)
are ours. Lower numbers are better. Red numbers are lower bounds from small scale tests due to
excessive runtime. Global resolution can be 10,000+ times faster than others. Global resolution
deviates from the target distribution by at most 15τ in L1 distance, and from optimal acceptance by
at most 10τ . We include success rates for global resolution as it can terminate early sometimes.

7.2 OTLP SOLVE TIME EXPERIMENTS

Here, we compute empirical average solve times (per token) for the relaxed OTLP across 40 random
prompts from each dataset, for five methods: (1) a general LP solver, (2) a max-flow solver (Sec-
tion 5.2), (3) an optimized max-flow solver (Section 5.3, but using normal max-flow when solving
both inner and outer systems for stability), (4) global resolution (Section 6) with τ = 0.001, and (5)
global resolution with τ = 0.0001. Lemma 6.6 ensures (4) and (5) deviate from the target distribution
by at most 0.015 and 0.0015 in L1 distance, and are within 0.01 and 0.001 of optimal acceptance.

Our compared average solve times for Llama-3 are shown in Table 1. For global resolution, we also
include solve success rates, since it can terminate early. We only include (k, n) pairs where at least
one of the first three solvers finishes in under ten minutes per token. We see that the global resolution
solver is sometimes nearly ten thousand times faster than the other three methods, with runtimes
always under 100 ms/token. In Appendix P, Gemma-2 results show a similar trend.

Finally, in Table 2, we enforce average time limits of 10 and 100 ms/token, and compute the
acceptance for each solver’s best (k, n) setting that adheres to the limit. Since global resolution can
fail, we default to the best of solvers (1), (2), (3) in this case, and only keep settings whose aggregate
average runtime falls under the time limit. For Llama-3, global resolution with τ = 0.001 and
τ = 0.0001 achieve 1.03% and 0.47% higher acceptances than the other solvers for 100 ms/token,
and 1.71% and 1.16% higher acceptances for 10 ms/token. While the improvements for Gemma-2
are smaller, they are significant. Thus, global resolution is the state-of-the-art OTLP solver.

Limit Llama-3 Gemma-2

(ms/tok) Gen. LP M.F. G.R. G.R. Gen. LP M.F G.R. G.R.
τ = 10−3 τ = 10−4 τ = 10−3 τ = 10−4

10 82.53% 83.94% 85.65% 85.10% 79.03% 80.69% 81.90% 81.35%
100 83.94% 89.01% 90.04% 89.46% 80.69% 85.83% 86.60% 86.07%

Table 2: Best acceptance rates for baseline solvers (general LP) and ours (max-flow, optimized
max-flow, global resolution with τ = 10−3, 10−4) on Llama-3 and Gemma-2 under average solve
time limits of 10 and 100 ms/token. Optimized max-flow numbers are the same as max-flow.

8 CONCLUSION

Building on previous theoretical work in multi-draft speculative sampling, we derived a comple-
mentary slackness system to solve for the optimal transport (OT) parameters. We showed how this
could speed up max-flow OT solvers through an approach called global resolution. We empirically
demonstrated our algorithm achieved high acceptance rates with little overhead. Future work could
examine the efficacy of this algorithm in the multi-step setting, or extend it to non-i.i.d. draft settings.
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REPRODUCIBILITY STATEMENT

The majority of work is theoretical, and can be verified through the in-depth proofs we have provided
in Appendices B to J. While the details behind our convex minimization approach are not included
in the main body due to space constraints, we provide all necessary information to reproduce the
gradient descent approach for our convex solvers in Appendix K. This includes our simplification of
the functions to minimize, how to efficiently compute gradient values, what open-source minimizer
to use, what thresholds are set, and how many iterations to run. We also describe our precise machine
setup, dataset composition, and LP and max-flow solvers for baseline approaches in Appendix M,
and we describe our experimental approach in Section 7.
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A REVIEW OF SINGLE-STEP SPECULATIVE SAMPLING

Single-draft speculative sampling aims to accelerate the autoregressive decoding of an expensive
target model Mp with a cheaper draft model Mq, which share a common vocabulary V of size V .
In autoregressive decoding, the token context c induces target and draft distributions p(x|c), q(y|c).
Note that top-p/k and temperature sampling simply change how p, q are computed from the logits
Mp(c),Mq(c), so these can be plugged into any speculative sampling method.

Now, a joint coupling π(x, y) of p, q is any joint distribution over V × V with marginal distributions
p, q. Each coupling induces a transport π(x|y) from q to p, which is a conditional distribution where
sampling y0 ∼ q(y) and x0 ∼ π(x|y0) is equivalent to sampling x0 ∼ p(x). In speculative sampling,
one samples a candidate token from the draft distribution q and passes it through the transport induced
by some valid coupling π, to ensure the output matches the target distribution p.

The full single-step procedure is as follows. The key assumption which allows speculative sampling
to improve latency is that computing p(x|c), p(x|c, y0) in parallel is not much slower than computing
p(x|c) alone, since LLM inference is often memory-bound rather than compute-bound.

1. Given a context c, sample y0 ∼ q(y|c) from the draft model.
2. Compute target probabilities p(x|c), p(x|c, y0) in parallel.
3. Sample x0 ∼ π(x|y0) for some valid transport π, and append it to the context c.
4. If x0 = y0, sample a token from p(y|c, x0) and append it to the context c.

Thus, whenever x0 = y0 above, we generate two tokens (steps 3 and 4) at the cost of essentially
one target forward pass, obtaining nearly a 2× speedup. This means to maximize the speedup and
achieve optimal single-draft speculative sampling, one must maximize P(x0 = y0) =

∑
x∈V π(x, x),

achieved for the optimal transport π∗. This is called the acceptance rate, the probability that the
q-sampled token is not altered by the transport. In the original speculative sampling work, Chen et al.
(2023); Leviathan et al. (2023) computed a closed-form expression for π∗ based on p(x|c), q(x|c).
Sun et al. (2023) extended this procedure to single-step multi-draft, by replacing q(x|c) with a general
n-token distribution pdraft(y|c) over y ∈ Vn, which can be formed by i.i.d. sampling one draft
model, independently sampling different draft models, or a variety of other methods. Now, a joint
coupling π(x,y) of p, pdraft is a joint distribution over V ×Vn with marginals p, pdraft, which induces
a transport π(x|y) from pdraft to p. Here, the key assumption we make is slightly stronger: that
computing p(x|c), p(x|c, y0), . . . , p(x|c, yn−1) is parallel is not much slower than computing p(x|c)
alone. This is generally true as long as n is not too large. The procedure is:

1. Given a context c, sample (y0, . . . , yn−1) ∼ pdraft(y|c) from the draft scheme.
2. Compute target probabilities p(x|c), p(x|c, y0), . . . , p(x|c, yn−1) in parallel.
3. Sample x0 ∼ π(x|y0, . . . , yn−1) for some valid transport π, and append it to the context c.
4. If x0 ∈ {y0, . . . , yn−1}, sample a token from p(y|c, x0) and append it to the context c.

Similar to the single-draft case, we now get a nearly 2× speedup whenever x0 ∈ {y0, . . . , yn−1}.
Thus, we want to maximize the probability that x0 lies among the n sampled draft tokens, which is
the multi-draft acceptance rate. Combined with the conditions necessary for π to be a valid joint
coupling, this leads to the OTLP formulation.

B EQUIVALENCE OF CANONICAL DECOMPOSITION AND RELAXED LP

We first state canonical decomposition. Note that the β-optimization problem below is exponentially
large and is not an LP, so it is infeasible to solve without truncating V , as Khisti et al. (2025) do.
Theorem B.1. (Khisti et al., 2025) Define variables β(i|i) for i ∈ Vn, i ∈ V , set to zero for i ̸∈ set(i).
Then the β which solves the following gives the optimal importance sampling parameters:

max
β⪰0

∑
i∈V

min

p(i), ∑
i∈Vn

β(i|i)pdraft(i)

 s.t.
∑
i∈V

β(i|i) = 1 ∀i ∈ Vn. (19)
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In fact, the objective value achieved by this optimal β is the optimal acceptance rate α∗.

Now, we prove Theorem 4.1, by showing that our defined S∗
i,i

satisfy the constraints above.

Proof. We first show these satisfy the constraints of Theorem B.1. Indeed, these are all nonnegative.
Also, by the relaxed LP constraints, we have S∗

i,i
= 0 for all i ̸∈ Ai. Thus, by definition of the

incidence set Ai, and considering the first and second cases in the β definition, we have β(i, i) = 0 if
i ̸∈ set(i). Furthermore, for all i ∈ Vn, we see that∑

i∈V
β(i, i) =

∑
i∈V

S∗
i,i∑

j∈V S
∗
j,i

= 1 (20)

in the case that i ̸∈ D. We also see that∑
i∈V

β(i, i) =
∑

i∈set(i)

|set(i)|−1 +
∑

i ̸∈set(i)

0 = 1 (21)

if i ∈ D. Thus, all constraints are satisfied.

Now, we show that the objective value with these β in Theorem B.1 is at least the optimal objective
value with S∗ in the relaxed LP. This will complete the proof, as the optimal objective values in
Theorem B.1 and the relaxed LP are both α∗. To show this, we use the other relaxed LP constraints.
By the the second inequality constraint,∑

i∈Vn

β(i, i)pdraft(i) ≥
∑
i ̸∈D

β(i, i)pdraft(i) =
∑
i ̸∈D

S∗
i,i

pdraft(i)∑
j∈V S

∗
j,i

≥
∑
i ̸∈D

S∗
i,i

(22)

for all i ∈ V . Furthermore, for all i ∈ Vn, the first inequality constraint in the relaxed LP shows that

min

p(i),∑
i ̸∈D

S∗
i,i

 =
∑
i ̸∈D

S∗
i,i
. (23)

Therefore, the objective in Theorem B.1 is at least∑
i∈V

∑
i ̸∈D

S∗
i,i

=
∑
i ̸∈D

∑
i∈V

S∗
i,i

=
∑
i∈Vn

∑
i∈V

S∗
i,i

= α∗. (24)

This completes the proof that our defined β are optimal.

C COMPUTING H∗ FOR INDEPENDENT DRAFTS IS SUBMODULAR
MINIMIZATION

Here, we show that the subset selection problem α∗ = 1 +minH⊆V ψ(H) is an instance of submod-
ular minimization when pdraft is formed by independently sampling from q1, . . . , qn to get n tokens.
This generalizes the work of Hu et al. (2025), who proved this in the case q1 = . . . = qn.

Theorem C.1. When pdraft independently samples from q1, . . . , qn, the set function ψ in submodular.

Proof. First, we can define ψ(H) = P (H)−Q(H), where

P (H) =
∑
i∈H

p(i), Q(H) =
∑
i∈Hn

pdraft(i). (25)

Then, because pdraft(i1, . . . , in) = q1(i1) · · · qn(in), we have

Q(H) =
∑

i1,...,in∈H

n∏
j=1

qj(ij) =

n∏
j=1

(∑
i∈H

qj(i)

)
. (26)
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Note that P (H1 ∩H2) + P (H1 ∪H2) = P (H1) + P (H2) for any H1, H2 ⊆ V , so P is a modular
function. Thus, to show ψ = P −Q is submodular, it suffices to show that Q is supermodular.

To this end, take anyH1, H2 ⊆ V . We want to showQ(H1∩H2)+Q(H1∪H2) ≥ Q(H1)+Q(H2).
For each j = 1, . . . , n, denote aj =

∑
i∈H1

qj(i), bj =
∑

i∈H2
qj(i), and cj =

∑
i∈H1∩H2

qj(i).
Then, we see aj + bj − cj =

∑
i∈H1∪H2

qj(i), and aj , bj ≥ cj ≥ 0 by nonnegativity of qj . The
condition we want to show is equivalent to

n∏
j=1

(aj + bj − cj) +

n∏
j=1

cj ≥
n∏

j=1

aj +

n∏
j=1

bj . (27)

Now, define the sums B and C as

B =
∑

A⊆[n],A ̸=∅

∏
i∈A

(aj − cj)
∏

i∈[n]\A

bj

 , (28)

C =
∑

A⊆[n],A̸=∅

∏
i∈A

(aj − cj)
∏

i∈[n]\A

cj

 . (29)

We can see B ≥ C by comparing corresponding terms in the sum, since each bj ≥ cj ≥ 0 and each
aj − cj ≥ 0. Furthermore, we have the following identities by straightforward expansion of products
of terms of the form aj − cj + ⋆:

n∏
j=1

(aj − cj + bj) =

n∏
j=1

bj +B, (30)

n∏
j=1

(aj − cj + cj) =

n∏
j=1

cj + C. (31)

Subtracting these and using B ≥ C gives
n∏

j=1

(aj + bj − cj)−
n∏

j=1

aj ≥
n∏

j=1

bj −
n∏

j=1

cj , (32)

as desired, which completes the proof.

D COMPUTING H∗ FOR n = 2 INDEPENDENT DRAFTS IS SUBMODULAR
QPBO

Here, we describe the reduction of H∗ computation to submodular quadratic psuedo-boolean opti-
mization (QPBO) when pdraft samples independently from n = 2 draft models q1, q2. By writing
ψ(H) in the same form as in Appendix C, but now for the case n = 2, we see

ψ(H) =
∑
i∈H

p(i)−

(∑
i∈H

q1(i)

)(∑
i∈H

q2(i)

)
. (33)

Denote the indicator vector x with xi = 1[i ∈ H] for each i ∈ V . Then this becomes

ρ(x) =
∑
i∈V

p(i)xi +
∑
i∈V

∑
i∈V

q1(i)q2(j)xixj . (34)

Minimizing ψ(H) over all H ⊆ V is thus equivalent to minimizing ρ(x) over all binary vectors
x ∈ {0, 1}V . This is precisely the form of QPBO, and we already know ψ is submodular from
Appendix C, so it is indeed an instance of submodular QPBO.

Our submodular QPBO instance is dense, with n = V variables and m = O(V 2) pairwise terms.
By previous work, this reduces to a single s− t min-cut computation (Kolmogorov & Zabih, 2004).
Using a max-flow algorithm, the theoretical runtime is O(m

√
n) = O(V 2.5). In fact, practical

implementations like the push-relabel algorithm can achieve near-quadratic runtime (Boykov &
Kolmogorov, 2004). This is far better than the general submodular minimization algorithm (Orlin,
2009), which takes O(V 5E + V 6) = O(V 6) time, where E = O(V ) is the time complexity of
evaluating ψ.
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E COMPLEMENTARY SLACKNESS DERIVATION

We first review the details of dualization and simplification to subset selection, starting from the
relaxed OTLP (Equation (2)). These details are necessary to formulate complementary slackness.

Proof. Dualizing the relaxed OTLP gives the dual LP. The zero equality constraints correspond to
eliminating entries of x, and can be ignored. So, to transform to the dual, one introduces a variable
for each inequality constraint, say yi for constraints over i ∈ V , and zi for constraints over i ∈ Vn:

min
y,z⪰0

∑
i∈V

yip(i) +
∑
i∈Vn

zipdraft(i)

 s.t. yi + zi ≥ 1 ∀i ∈ V, i ∈ Ai. (35)

Finally, to reduce the dual LP, Hu et al. (2025) observe that the inequality constraints form a TUM
matrix. Any LP with integral inequality bounds and such constraints has an integral optimal solution
(Hoffman & Kruskal, 2009). Also, any yi ≥ 2 or zi ≥ 2 can be reduced to 1 while upholding each
constraint yi + zi ≥ 1 and not increasing the objective value: this means that some optimal solution
is binary. Then, denoting H = {i ∈ V : yi = 1}, one can compute optimal y, z given fixed H as:

yi =

{
1 i ∈ H,

0 i ̸∈ H,
zi =

{
1 i ̸∈ Hn,

0 i ∈ Hn.
(36)

Putting this back into the dual LP and simplifying gives the subset selection formulation.

Now, we provide a proof of Theorem 5.1, which makes use of the idea of complementary slackness.
Primal and dual LPs have the same optimal objective value, and complementary slackness allows one
to get from any optimal solution of the dual to some optimal solution of the primal. This asserts that
the following two conditions are equivalent for any pair of feasible solutions (α∗,β∗) to the primal
and dual LPs: (A) α∗ is optimal in the primal LP and β∗ is optimal in the dual LP, and (B) each
variable in α∗,β∗ is zero, or its corresponding inequality constraint in the other LP is an equality.

In our case, considering the primal and dual LPs as the relaxed OTLP and its dual, we already have
the optimal solution β∗ to the dual from Equation (36) and the H∗ computation. Thus, computing an
optimal primal solution α∗ is equivalent to jointly solving the complementary slackness constraints
in (B) alongside the feasibility constraints for α∗ in the primal LP.

Proof. For the relaxed OTLP and its dual LP, complementary slackness constraints become:

y∗i = 0 or
∑
i∈Vn

S∗
i,i

= p(i) ∀i ∈ V, (37a)

z∗
i
= 0 or

∑
i∈V

S∗
i,i

= pdraft(i) ∀i ∈ Vn, (37b)

S∗
i,i

= 0 or y∗i + z∗
i
= 1 ∀i ∈ V, i ∈ Vn. (37c)

Given the optimal solution y∗, z∗ to the dual LP, we only need to solve this system, alongside the
original constraints in the primal (relaxed) LP, to obtain the optimal solution S∗ to the primal LP.
This can be done by using the binary vector expressions for y∗, z∗ in terms of H∗ in Equation (36).
First, for Equation (37a), observe that y∗i ̸= 0 if and only if i ∈ H∗. Thus, it is equivalent to∑

i∈Vn

S∗
i,i

= p(i) ∀i ∈ H∗. (38)

Next, for Equation (37b), recall that z∗
i
̸= 0 if and only if i ̸∈ (H∗)n. So, this condition becomes∑

i∈V
S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n. (39)
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Finally, by observing the four joint cases for y∗i , z
∗
i

, we have

y∗i + z∗
i
=


2 i ∈ H∗, i ̸∈ (H∗)n,

1 i ∈ H∗, i ∈ (H∗)n,

1 i ̸∈ H∗, i ̸∈ (H∗)n,

0 i ̸∈ H∗, i ∈ (H∗)n,

(40)

so that Equation (37c) is equivalent to

Si,i = 0 ∀i ∈ H∗, i ̸∈ (H∗)n,

Si,i = 0 ∀i ̸∈ H∗, i ∈ (H∗)n.
(41)

The second of these can be eliminated, as it is redundant with the zero equality constraint in the
relaxed OTLP: if i ̸∈ H∗ and i ∈ (H∗)n, then i cannot lie in the incidence set Ai, so Si,i = 0 already.

Finally, combining our three new conditions with the feasibility constraints in the relaxed OTLP, any
solution to the following system is an optimal solution S∗ in the relaxed OTLP, and vice versa:∑

i∈Vn

S∗
i,i

≤ p(i) ∀i ∈ V,
∑
i∈V

S∗
i,i

≤ pdraft(i) ∀i ∈ Vn,

∑
i∈Vn

S∗
i,i

= p(i) ∀i ∈ H∗,
∑
i∈V

S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n,

S∗
i,i

= 0 ∀i ∈ V, i ̸∈ Ai, S∗
i,i

= 0 ∀i ∈ H∗, i ̸∈ (H∗)n.

(42)

Finally, note that some inequality constraints are redundant. We no longer require the p(i) inequalities
for i ∈ H∗, and we no longer require the pdraft(i) inequalities for i ̸∈ (H∗)n. This directly reduces
the above system, which is equivalent to the relaxed OTLP, to the desired system.

F MAX-FLOW TRANSFORMATION DERIVATION

Although it is a standard network reduction technique to reduce row and column sum constraints to
max-flow over a bipartite network, we provide a proof of Lemma F.1 here for completeness.
Lemma F.1 (Bipartite-Flow Equivalence). Let G = (A ∪B,E ⊆ A×B) be a bipartite graph, with
N(·) denoting neighborhoods. Let x ∈ RA,y ∈ RB , z ∈ RE be nonnegative. Define a network
Ω on nodes {s, t} ∪ A ∪ B, with capacity xa edges s → a for a ∈ A, capacity yb edges b → t for
b ∈ B, and ∞-capacity edges a→ b for (a, b) ∈ E. Then these two conditions are equivalent:

(1)
∑

b∈N(a) z(a,b) = xa for all a ∈ A and
∑

a∈N(b) z(a,b) ≤ yb for all b ∈ B,

(2) f(s→ a) = xa, f(a→ b) = z(a,b), f(b→ t) =
∑

a∈N(b) z(a,b) is a maximal flow in Ω.

Proof. Suppose condition (1) holds. Then the flow assignment f in the second condition satisfies

f(s→ a) = xa =
∑

b∈N(a)

z(a,b) =
∑

b∈N(a)

f(a→ b), (43)

f(b→ t) =
∑

a∈N(b)

z(a,b) =
∑

a∈N(b)

f(a→ b). (44)

This means flow conservation holds. Also, f(s→ a) ≤ xa for each a ∈ A, and f(b→ t) ≤ yb for
each b ∈ B from the inequality constraints, so the capacity constraints hold. Thus, the assignment
f is feasible. In fact, its value is

∑
a∈A f(s → a) =

∑
a∈A xa, and no flow assignment in Ω can

exceed this value since the total flow along edges s→ a cannot exceed the sum of the capacities xa.
This shows the f is indeed the maximal flow, so condition (2) is satisfied, as desired.

Conversely, suppose condition (2) holds. Then flow conservation at each a ∈ A shows

xa = f(s→ a) =
∑

b∈N(a)

f(a→ b) =
∑

b∈N(a)

z(a,b). (45)

Also, the capacity at b→ t shows f(s→ b) =
∑

a∈N(b) z(a,b) ≤ yb. Thus, condition (1) holds.
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G PROOFS OF RESIDUAL LPS

In this appendix, we prove the reductions to the inner and outer residual LPs. We will use the following
lemma. Note that each xa and yb must be nonnegative, as per the requirements of Lemma F.1.

Lemma G.1. From Lemma F.1, consider condition (1) as a system in nonnegative variables ze with
xa-equality constraints and yb-inequality constraints. This is feasible if and only if∑

a∈S

xa ≤
∑

b∈N(S)

yb ∀S ⊆ A. (46)

When yb constraints are equalities, feasibility is equivalent to the above and
∑

a∈A xa =
∑

y∈B yb.

Proof. The first part follows from the equivalence of conditions (1) and (2) in Lemma F.1, and Gale’s
feasibility theorem for bipartite supply-demand networks applied to condition (2) (Gale, 1957). The
second part holds as

∑
a∈A xa =

∑
b∈B yb combines with condition (1),∑

a∈A

xa =
∑
a∈A

∑
b∈N(a)

z(a,b) =
∑

(a,b)∈E

z(a,b) =
∑
b∈B

∑
a∈N(b)

z(a,b) ≤
∑
b∈B

yb, (47)

to force the equalities
∑

a∈N(b) z(a,b) = yb for b ∈ B, as required.

Now, we prove the reduced LP for outer system residuals pres(i) in Theorem 6.1.

Proof. To solve for the residuals in the outer system, we need to find 0 ≤ pi ≤ p(i) where∑
i∈Vn\(H∗)n

S∗
i,i

= pi ∀i ∈ V \H∗,
∑

i∈V\H∗

S∗
i,i

= pdraft(i) ∀i ∈ Vn \ (H∗)n, (48)

is feasible for nonnegative S∗. When this system is feasible, its solution S∗ will also be a solution
to the outer system, so we can simply recover the residuals as pres(i) = p(i)− pi. Since all pi are
nonnegative, we can use Lemma G.1, to show that the above system is feasible if and only if:∑

i∈V\H∗

pi =
∑

i∈Vn\(H∗)n

pdraft(i),
∑
i∈S

pi ≤
∑

i∈N(S)

pdraft(i) ∀S ⊆ V \H∗, (49)

where N(S) ⊆ Vn \ (H∗)n denotes the neighborhood of S ⊆ V \H∗ in the bipartite graph with
left vertices V \H∗, right vertices Vn \ (H∗)n, and edges (i, i) with i ∈ set(i). Note N(S) contains
precisely the n-tuples in Vn with at least one element in S. Therefore, we can write∑

i∈N(S)

pdraft(i)−
∑
i∈S

p(i) = 1−
∑
i∈S

p(i)−
∑

i∈(V\S)n

pdraft(i) = ψ(V \ S). (50)

Substituting this back and simplifying with ψ, our condition becomes:∑
i∈V\H∗

pi =
∑

i∈V\H∗

p(i) + ψ(H∗),
∑
i∈S

pi ≤
∑
i∈S

p(i) + ψ(V \ S) ∀S ⊆ V \H∗. (51)

Including the original constraints 0 ≤ pi ≤ p(i) completes the proof.

H GREEDY POLYMATROID ALGORITHM FOR OUTER RESIDUAL LP

Here, we prove Theorem 6.2 by using polymatroids. Polymatroids are subsets of Euclidean spaces
associated with submodular functions: they defined as the feasibility set of subset sum inequality
constraints with bounds being evaluations of the submodular function. Thus, they are directly related
to the outer residual LP. In our proof, we refer only to standard polymatroid theory from Chapter 44
in Schrijver et al. (2003).
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Proof. Because ψ(S) is submodular in S, and
∑

i∈S p(i) is modular (additive) in S, then

ϕ(S) =
∑
i∈S

p(i) + ψ(V \ S) = 1−
∑

i∈(V\S)n

pdraft(i) (52)

is submodular in S. Therefore, solving Theorem 6.1 amounts to finding x ∈ EPϕ ∩Bp with x ⪰ 0
and 1 · x = ϕ(V \H∗), where Bp is the feasibility set of all constraints pi ≤ p(i), and EPϕ is the
extended polymatroid associated with the submodular function ϕ:

EPϕ =

{
x :
∑
i∈S

xi ≤ ϕ(S) ∀S ⊆ V \H∗

}
. (53)

By Equations 44.8 and 44.9 in Schrijver et al. (2003), the box-polymatroid intersection EPϕ ∩Bp is
also an extended polymatroid EPϕ|p, associated with the following submodular function ϕ|p:

(ϕ|p)(S) = min
T⊆S

 ∑
i∈S\T

p(i) + ϕ(T )

 =
∑
i∈S

p(i) + min
V\S⊆T

ψ(T ). (54)

Since our system is feasible, and has the inequality constraint 1 · x ≤ ϕ(V \ H∗) and equality
constraint 1 · x = ϕ(V \H∗), we can replace the equality constraint with an objective max1 · x.
This turns Theorem 6.1 into the following extended polymatroid optimization problem:

max1 · x s.t x ∈ EPϕ|p, x ⪰ 0. (55)

We first ignore the nonnegativity constraint. To solve this simplified version, we can use the two-step
greedy algorithm from Theorem 44.3 in Schrijver et al. (2003). First, we reorder V \H∗ in increasing
order of the weights 1. This can be arbitrary, so we specify it as the given ordering {v1, . . . , vk}.
Then, we compute consecutive differences xvi = (ϕ|p)(Si)− (ϕ|p)(Si−1), where Si = {v1, . . . , vi}
is the ith prefix of V \H∗. We can compute this explicitly as

xvi =
∑
i∈Si

p(i) + min
V\Si⊆T

ψ(T )−
∑

i∈Si−1

p(i)− min
V\Si−1⊆T

ψ(T ) (56)

= p(vi) + min
H∗∪{vi+1,...,vk}⊆T

ψ(T )− min
H∗∪{vi,...,vk}⊆T

ψ(T ) (57)

= p(vi) + min
Hi+1⊆T

ψ(T )− min
Hi⊆T

ψ(T ). (58)

This matches the desired expression, so to complete the proof, it suffices to show x ⪰ 0, i.e. each
xvi ≥ 0. Indeed, suppose T ∗ ⊇ Hi+1 minimizes the first of the two min ψ terms above. Since
Hi = Hi+1 ∪ {vi}, we will have T ∗ ∪ {vi} ⊇ Hi, and thus

min
Hi⊆T

ψ(T ) ≤ ψ(T ∗ ∪ {vi}) (59)

=
∑

x∈(T∗∪{vi})

p(x)−
∑

i∈(T∗∪{vi})n
pdraft(i) (60)

≤ p(vi) +
∑
x∈T∗

p(x)−
∑

i∈(T∗)n

pdraft(i) (61)

= p(vi) + ψ(T ∗) = p(vi) + min
Hi+1⊆T

ψ(T ). (62)

Rearranging this exactly gives xvi ≥ 0, as required.

I GLOBAL OUTER SOLUTION

Here, we prove Theorem 6.4. We will use the following lemma, which relates the minimization of
feasibility of a transport system to the nonnegativity of an associated convex function.
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Lemma I.1 (Convex Transport Solver 1). Let G = (A ∪ B,E ⊆ A × B) be a bipartite graph
without isolated points (each neighborhood is nonempty). Suppose the following system is feasible in
nonnegative variables Sa,b for (a, b) ∈ E:∑

b∈N(a)

Sa,b = xa ∀a ∈ A,
∑

a∈N(b)

Sa,b = yb ∀b ∈ B. (63)

Then the following function Φ : R|A| → R is convex and nonnegative:

Φ((αa)a∈A) =
∑
b∈B

yb log

 ∑
a∈N(b)

eαa

−
∑
a∈A

xaαa. (64)

Furthermore, for any ϵ > 0, there exists (αa)a∈A with ∥∇Φ((αa)a∈A)∥1 ≤ ϵ.

Proof. We will use the Hall-type conditions from Lemma G.1. By feasibility of the system,∑
b∈N(S)

yb ≥
∑
a∈S

xa ∀S ⊆ A,
∑
b∈B

yb =
∑
a∈A

xa. (65)

Now, it is clear that Φ is convex in α since it is a linear combination of terms convex in α (LogSumExp
and linear). To show it is nonnegative at a particular point α, relabel A = {1, 2, . . . ,m} such that
α1 ≥ . . . ≥ αm. For each b ∈ B, we have the lower bound

log

 ∑
a∈N(b)

eαa

 ≥ max
a∈N(b)

αa. (66)

Now, let Nk = N({1, . . . , k}) \N({1, . . . , k − 1}) for each k ∈ A. We have maxa∈N(b) αa = αk

for each b ∈ Nk, because k ∈ N(b) and 1, . . . , k − 1 ̸∈ N(b). Furthermore, the sets N1, . . . , Nm

are disjoint, with union N({1, . . . ,m}) = B. Using this, we can lower bound

Φ((αa)a∈A) ≥
∑
b∈B

yb max
a∈N(b)

αa −
∑
a∈A

xaαa (67)

=

m∑
k=1

∑
b∈Nk

ybαk −
m∑

a=1

xaαa (68)

=

m∑
a=1

(∑
b∈Na

yb − xa

)
αa. (69)

Denote the coefficient of αa by ca. For any 1 ≤ k ≤ m, we see by applying the Hall conditions that
k∑

a=1

ca =
∑

b∈N1∪...∪Nk

yb −
k∑

a=1

xa (70)

=
∑

b∈N({1,...,k})

yb −
∑

a∈{1,...,k}

xa ≥ 0, (71)

with equality at k = m. Thus, as each αj ≥ αj+1, we have the desired nonnegativity:

Φ((αa)a∈A) ≥
m∑

a=1

caαa =

m∑
a=1

ca(αa − αm) (72)

=

m∑
a=1

m∑
j=a+1

ca(αj−1 − αj) (73)

=

m−1∑
j=1

j∑
a=1

ca(αj − αj+1) (74)

=

m−1∑
j=1

(
j∑

a=1

ca

)
(αj − αj+1) ≥ 0. (75)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Because Φ is convex and bounded below, by the Brøndsted–Rockafellar approximation theorem
(Brøndsted & Rockafellar, 1965), there are points on Φ with arbitrarily small subgradients. As Φ is
continuously differentiable, then for each ϵ > 0, some (αa)a∈A satisfies ∥∇Φ(α)∥1 ≤ ϵ.

For the outer system, we can apply Lemma I.1 with bipartite components A = V \H∗ and B =
Vn \ (H∗)n, edges (a, b) ∈ E if and only if a ∈ set(b), and bounds xa = pa for all a ∈ A
and yb = pdraft(b) for all b ∈ B. (Here, pa are the outer residual LP variables we solved for in
Theorem 6.1, given by pa = p(a)− pres(a).) The key idea is that the gradient norm bound from the
lemma bounds the total deviation from p(i) equality constraints in the outer system, which allows us
to prove Theorem 6.4.

Proof. We first show that ∥∇ΦT ∥1 ≤ ϵ+ ϵT is feasible. Define Φ : RV\H∗ → R as in Lemma I.1:

Φ((αi)i∈V\H∗) =
∑

i∈Vn\(H∗)n

pdraft(i) log

 ∑
i∈set(i)\H∗

eαi

−
∑

i∈V\H∗

piαi. (76)

By the lemma, there is some (α∗
i )i∈V\H∗ with ∥∇Φ((α∗

i )i∈V\H∗)∥1 ≤ ϵ. Thus,∑
i∈T

∣∣∣∣∂Φ(α∗
i )

∂αi

∣∣∣∣ ≤ ∑
i∈V\H∗

∣∣∣∣∂Φ(α∗
i )

∂αi

∣∣∣∣ ≤ ϵ. (77)

We can also compute the absolute difference in the ith partial derivatives of Φ,ΦT for any i ∈ T as∣∣∣∣∂ΦT (α
∗
i )

∂αi
− ∂Φ(α∗

i )

∂αi

∣∣∣∣ = ∑
i∈V n\(H∗∪T )n

eα
∗
i · 1[i ∈ set(i) \H∗]∑

j∈set(i)\H∗ e
α∗

j
· pdraft(i). (78)

Thus, summing the above over all i ∈ T gives∑
i∈T

∣∣∣∣∂ΦT (α
∗
i )

∂αi
− ∂Φ(α∗

i )

∂αi

∣∣∣∣ = ∑
i∈Vn\(H∗∪T )n

∑
i∈T

eα
∗
i · 1[i ∈ set(i) \H∗]∑

j∈set(i)\H∗ e
α∗

j
· pdraft(i) (79)

≤
∑

i∈Vn\(H∗∪T )n

pdraft(i) = 1−

( ∑
i∈H∗∪T

q(i)

)n

= ϵT . (80)

Because ΦT is constant over αi for i ̸∈ T , and thus has zero partial derivative at these variables, the
Triangle Inequality implies that ∥∇ΦT ∥1 falls below ϵ+ ϵT at (α∗

i )i∈V\H∗ :

∥∇ΦT ((α
∗
i )i∈V\H∗)∥1 ≤

∑
i∈T

∣∣∣∣∂Φ(α∗
i )

∂αi

∣∣∣∣+∑
i∈T

∣∣∣∣∂ΦT (α
∗
i )

∂αi
− ∂Φ(α∗

i )

∂αi

∣∣∣∣ ≤ ϵ+ ϵT . (81)

Now, we prove the second part of the theorem for arbitrary (αi)i∈V\H∗ . First, we bound the sum of
the partial derivatives of Φ over i ∈ V \ (H∗ ∪ T ):

∑
i∈V\(H∗∪T )

∣∣∣∣ ∂Φ∂αi

∣∣∣∣ = ∑
i∈V\(H∗∪T )

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i)− pi

∣∣∣∣∣∣∣∣∣ (82)

≤
∑

i∈V\(H∗∪T )

 ∑
i∈Vn\(H∗∪T )n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i) + pi

 (83)

≤
∑

i∈Vn\(H∗∪T )n

pdraft(i) +
∑

i∈V \(H∗∪T )

pi (84)

≤ 2
∑

i∈Vn\(H∗∪T )n

pdraft(i) = 2ϵT , (85)
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where the last inequality holds by Equation (49). Therefore, we have by the Triangle Inequality and
Equation (80) (holds for any point) that

∥∇Φ((αi)i∈V\H∗)∥1 =
∑
i∈T

∣∣∣∣ ∂Φ∂αi

∣∣∣∣+ ∑
i∈(V\H∗)\T

∣∣∣∣ ∂Φ∂αi

∣∣∣∣ (86)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 +
∑
i∈T

∣∣∣∣∂ΦT (α
∗
i )

∂αi
− ∂Φ(α∗

i )

∂αi

∣∣∣∣+ 2ϵT (87)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT . (88)

Finally, using the explicit representation for partial derivatives of Φ, and substituting in Si,i from
Equation (14), we get

∑
i∈V\H∗

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i)− pi

∣∣∣∣∣∣∣∣∣ =
∑

i∈V\H∗

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

Si,i − pi

∣∣∣∣∣∣∣∣∣ (89)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT , (90)

hence Si,i satisfy the pi equality constraints of the outer system with up to ∥∇ΦT ((αi)i∈V\H∗)∥1 +
3ϵT total leeway. They also satisfy the pdraft(i) equality constraints exactly, as∑

i∈set(i)\H∗

Si,i =
∑

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i) = pdraft(i). (91)

This completes the proof.

J GLOBAL INNER SOLUTION

Now, we prove Theorem 6.5. We will use the lemma below, which is quite similar to Lemma I.1 in
Appendix I, except that it contains an extra slack term in the LogSumExp to deal with a bipartite
transport system with equalities on one side and inequalities on the other side.
Lemma J.1 (Convex Transport Solver 2). Let G = (A ∪ B,E ⊆ A × B) be a bipartite graph
without isolated points (each neighborhood is nonempty). Suppose the following system is feasible in
nonnegative variables Sa,b for (a, b) ∈ E:∑

b∈N(a)

Sa,b = xa ∀a ∈ A,
∑

a∈N(b)

Sa,b ≤ yb ∀b ∈ B. (92)

Then the following function Θ : R|A| → R is convex and nonnegative:

Θ((αa)a∈A) =
∑
b∈B

yb log

1 +
∑

a∈N(b)

eαa

−
∑
a∈A

xaαa. (93)

Furthermore, for any ϵ > 0, there exists (αa)a∈A with ∥∇Θ((αa)a∈A)∥1 ≤ ϵ.

Proof. We add a vertex a0 to A ⊆ G, with edges from a0 to all b ∈ B, to form the graph G′ =
(A ∪ {a0} ∪ B,E′). Now, let Sa,b for (a, b) ∈ E satisfy the given system. We define S′

a,b for
(a, b) ∈ E′, such that S′

a,b = Sa,b for a ̸= a0 and S′
a0,b

= yb −
∑

a∈N(b) Sa,b ≥ 0. Also, define
x′a for all a ∈ A ∪ {a0} such that x′a = xa if a ̸= a0 and x′a0

=
∑

b∈B yb −
∑

a∈A xa ≥ 0, and
define y′b for all b ∈ B such that y′b = yb. Then we see the following, where N ′(·) now denotes
G′-neighborhoods:

∑
b∈N ′(a0)

S′
a0,b =

∑
b∈B

yb − ∑
a∈N(b)

Sa,b

 =
∑
b∈B

yb −
∑
a∈A

∑
b∈N(a)

Sa,b = x′a0
(94)
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and for each b ∈ B, we have∑
a∈N ′(b)

S′
a,b =

∑
a∈N(b),a ̸=a0

Sa,b + Sa0,b = yb = y′b. (95)

This shows the following system is feasible:∑
b∈N ′(a)

S′
a,b = x′a ∀a ∈ A ∪ {a0},

∑
a∈N ′(b)

S′
a,b = y′b ∀b ∈ B. (96)

Hence, we can apply Lemma I.1 to show that

Φ((αa)a∈A∪{a0}) =
∑
b∈B

y′b log

 ∑
a∈N ′(b)

eαa

−
∑

a∈A∪{a0}

x′aαa (97)

is convex and nonnegative. Restricting this to the slice αa0 = 0 gives Θ((αa)a∈A) as defined in the
theorem, as eachN ′(b) contains a0, corresponding to the +1 term in log, and the x′a0

αa0
contribution

cancels. Thus, Θ is also convex and nonnegative. The existence of arbitrarily small gradient norms
then follows from the same argument as in the proof of Lemma I.1.

For the inner system, we can apply Lemma J.1 with bipartite components A = H∗ and B = (H∗)n,
edges (a, b) ∈ E if and only if a ∈ set(b), and bounds xa = p(a) for all a ∈ A and yb = pdraft(b) for
all b ∈ B. Once more, the gradient norm bound from the lemma bounds the total deviation from p(i)
equality constraints in the inner system, proving Theorem 6.5.

Proof. We first show that ∥∇ΘT ∥1 ≤ ϵ+ γT is feasible. Define Θ : RH∗ → R as in Lemma J.1:

Θ((αi)i∈H∗) =
∑

i∈(H∗)n

pdraft(i) log

1 +
∑

i∈set(i)

eαi

−
∑
i∈H∗

p(i)αi. (98)

By the lemma, there is some (α∗
i )i∈H∗ with ∥∇Θ((α∗

i )i∈H∗)∥1 ≤ ϵ. Thus,∑
i∈T

∣∣∣∣∂Θ(α∗
i )

∂αi

∣∣∣∣ ≤ ∑
i∈H∗

∣∣∣∣∂Θ(α∗
i )

∂αi

∣∣∣∣ ≤ ϵ. (99)

We can also compute the absolute difference in the ith partial derivatives of Θ,ΘT for any i ∈ T as∣∣∣∣∂ΘT (α
∗
i )

∂αi
− ∂Θ(α∗

i )

∂αi

∣∣∣∣ = ∑
i∈(H∗)n\Tn

eα
∗
i · 1[i ∈ set(i)]

1 +
∑

j∈set(i) e
α∗

j
· pdraft(i). (100)

Thus, summing the above over all i ∈ T gives∑
i∈T

∣∣∣∣∂ΘT (α
∗
i )

∂αi
− ∂Θ(α∗

i )

∂αi

∣∣∣∣ = ∑
i∈(H∗)n\Tn

∑
i∈T

eα
∗
i · 1[i ∈ set(i)]

1 +
∑

j∈set(i) e
α∗

j
· pdraft(i). (101)

≤
∑

i∈(H∗)n\Tn

pdraft(i) =

(∑
i∈H∗

q(i)

)n

−

(∑
i∈T

q(i)

)n

= γT . (102)

Because ΘT is constant over αi for i ̸∈ T , and thus has zero partial derivative at these variables, the
Triangle Inequality implies that ∥∇ΘT ∥1 falls below ϵ+ γT at (α∗

i )i∈H∗ :

∥∇ΘT ((α
∗
i )i∈H∗)∥1 ≤

∑
i∈T

∣∣∣∣∂Θ(α∗
i )

∂αi

∣∣∣∣+∑
i∈T

∣∣∣∣∂ΘT (α
∗
i )

∂αi
− ∂Θ(α∗

i )

∂αi

∣∣∣∣ ≤ ϵ+ γT . (103)
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Now, we prove the second part of the theorem for arbitrary (αi)i∈H∗ . First, we bound the sum of the
partial derivatives of Θ over i ∈ H∗ \ T :

∑
i∈H∗\T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣ = ∑
i∈H∗\T

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i)− p(i)

∣∣∣∣∣∣∣∣∣ (104)

≤
∑

i∈H∗\T

 ∑
i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) + p(i)

 (105)

≤
∑

i∈(H∗)n\Tn

pdraft(i) +
∑

i∈H∗\T

p(i) (106)

≤ 2
∑

i∈(H∗)n\Tn

pdraft(i) = 2γT , (107)

where the last inequality using the fact that ψ is minimized at H∗:

0 ≤ ψ(T )− ψ(H∗) (108)

=
∑
i∈T

p(i)−
∑
i∈Tn

pdraft(i)−
∑
i∈H∗

p(i) +
∑

i∈(H∗)n

pdraft(i) (109)

=
∑

i∈(H∗)n\Tn

pdraft(i)−
∑

i∈H∗\T

p(i) = γT −
∑

i∈H∗\T

p(i). (110)

Therefore, we have by the Triangle Inequality and Equation (102) (holds for any point) that

∥∇Θ((αi)i∈H∗)∥1 =
∑
i∈T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣+ ∑
i∈H∗\T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣ (111)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 +
∑
i∈T

∣∣∣∣∂ΘT (α
∗
i )

∂αi
− ∂Θ(α∗

i )

∂αi

∣∣∣∣+ 2γT (112)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT . (113)

Finally, using the explicit representation for partial derivatives of Θ, and substituting in Si,i from
Equation (17), we get

∑
i∈H∗

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i)− p(i)

∣∣∣∣∣∣∣∣∣ =
∑
i∈H∗

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

Si,i − p(i)

∣∣∣∣∣∣∣∣∣ (114)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT , (115)

hence Si,i satisfy the pi equality constraints of the inner system with up to ∥∇ΘT ((αi)i∈H∗)∥1+3γT
total leeway. They also satisfy the pdraft(i) inequality constraints, as∑

i∈set(i)

Si,i =
∑

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) ≤ pdraft(i). (116)

This completes the proof.

K TRUNCATED SOLVER DETAILS

In this section, we discuss the specific implementation details for convex minimization in our inner
and outer solvers, including under what conditions our solver fails.
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The first step is to group coefficients of the same LogSumExp terms, to obtain a more compact
representation of ΦT and ΘT . For ΦT in the outer system, the coefficient of a term containing
precisely αi1 , . . . , αik is explicitly∑

i∈(H∗∪T )n\(H∗)n

set(i)={i1,...,ik}

pdraft(i) =
∑

A⊆{i1,...,ik}

(−1)k−|A|
∑

i∈(H∗∪A)n

pdraft(i) (117)

=
∑

A⊆{i1,...,ik}

(−1)k−|A|

( ∑
i∈H∗∪A

q(i)

)n

. (118)

The second expression is a consequence of the principle of inclusion and exclusion (PIE). The last
expression can be computed efficiently using dynamic programming. Similarly, for ΘT in the inner
system, the coefficient of a term containing precisely αi1 , . . . , αik is∑

i∈Tn

set(i)={i1,...,ik}

pdraft(i) =
∑

A⊆{i1,...,ik}

(−1)k−|A|
∑
i∈An

pdraft(i) (119)

=
∑

A⊆{i1,...,ik}

(−1)k−|A|

(∑
i∈A

q(i)

)n

. (120)

Again, this formula can be derived with PIE, and can be computed efficiently with dynamic program-
ming. Once we have grouped coefficients, both ΦT ,ΘT have at most

n∑
i=1

(
|T |
i

)
∼ |T |n

n!
(121)

terms. With this compact representation, one can quickly compute the gradients of ΦT and ΘT . We
manually implement a function that returns the value of each of these functions and the corresponding
gradient at an input point. Then, we use the the standard L-BFGS-B minimizer from SciPy (Virtanen
et al., 2020) to run gradient descent, to converge to a point with near-zero gradient norm. This is
an ideal algorithm for gradient descent because it converges quite fast for convex functions in few
variables, and we require execution on the order of milliseconds. The SciPy API also returns the final
gradient norm value, and allows early termination when the gradient norm falls below a threshold. To
ensure our approach remains on the order of milliseconds, we limit L-BFGS-B to 25 iterations.

Finally, we discuss the issue of early termination, i.e. solve failure. There are two situations to
consider: (a) T is too large, (b) the gradient norm does not fall below the desired threshold. For (a),
we have set the following hard limits on |T | through experimentation: 50 for n = 2, 20 for n = 3, 10
for n = 4, and 10 for n = 5. Note that these numbers are quite conservative: future work could aim
to improve runtime and reduce early terminations by using a non-fixed threshold, or an alternative
gradient descent method that works better for larger T . For (b), because the SciPy API terminates
when the threshold is reached, this can only occur if the maximum iterations are reached, and the
gradient norm is too large. In practice, we find this is rarely the case: |T | being too large is usually
the reason for failure.

L APPROXIMATION GUARANTEES

Here, we prove Lemma 6.6, which translates the inner and outer solver deviations into concrete
bounds on deviations in the approximate OTLP solution.

Proof. Define the row-wise sums p′i =
∑

i∈set(i) Si,i. Also, denote the residuals r(i) = pdraft(i)−∑
i∈set(i) Si,i. From Theorem 6.5 and Theorem 6.4, we know that

∑
i∈H∗ |p′i − p(i)| ≤ β and∑

i∈V\H∗ |p′i − pi| ≤ α. We first show that the pdraft(i) equalities in the OTLP hold. For i ∈ (H∗)n,
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we have ∑
i∈V

Ci,i =
∑

i∈set(i)

Si,i +
∑

i∈V\H∗

p(i)− pi∑
j∈V\H∗(p(j)− pj)

· r(i) (122)

=
∑

i∈set(i)

Si,i + r(i) = pdraft(i). (123)

Also, for i ̸∈ (H∗)n, using the equality guarantee of the outer solver,∑
i∈V

Ci,i =
∑

i∈set(i)

Si,i = pdraft(i). (124)

Now, we bound the deviation from the p(i) equality constraints in the OTLP. We have for all i ∈ H∗

that ∑
i∈Vn

Ci,i =
∑

i∈(H∗)n,i∈set(i)

Si,i = p′i, (125)

and we have for all i ̸∈ H∗ that∑
i∈Vn

Ci,i =
∑

i∈Vn\(H∗)n,i∈set(i)\H∗

Si,i +
∑

i∈(H∗)n

p(i)− pi∑
j∈V\H∗(p(j)− pj)

· r(i) (126)

= p′i +
p(i)− pi∑

j∈V\H∗(p(j)− pj)
·
∑

i∈(H∗)n

pdraft(i)−
∑

j∈set(i)

Sj,i

 (127)

= p′i +
p(i)− pi∑

j∈V\H∗(p(j)− pj)
·

 ∑
i∈(H∗)n

pdraft(i)−
∑
j∈H∗

p′j

 (128)

= p′i +
p(i)− pi
−ψ(H∗)

·

∑
j∈H∗

(p(j)− p′j)− ψ(H∗)

 (129)

= p(i) + (p′i − pi) +
p(i)− pi
−ψ(H∗)

·
∑
j∈H∗

(p(j)− p′j). (130)

In the fourth equality, we used the equality condition of Theorem 6.1, and the definition of ψ. Since
ψ(H∗) < 0 and pi ≤ p(i), this allows us to bound the difference to p(i) for i ̸∈ H∗ as∣∣∣∣∣∣
∑
i∈Vn

Ci,i − p(i)

∣∣∣∣∣∣ ≤ |p′i − pi|+
p(i)− pi
−ψ(H∗)

·
∑
j∈H∗

|p′j − p(j)| ≤ |p′i − pi|+
p(i)− pi
−ψ(H∗)

· β. (131)

Hence, summing over all i gives∑
i∈V

∣∣∣∣∣∣
∑
i∈Vn

Ci,i − p(i)

∣∣∣∣∣∣ ≤
∑
i∈H∗

|p′i − p(i)|+
∑

i∈V\H∗

|p′i − pi|+
∑

i∈V\H∗

p(i)− pi
−ψ(H∗)

· β (132)

≤ β + α+ β = α+ 2β. (133)

In fact, each Ci,i is nonnegative as all Si,i are nonnegative, and each r(i) ≥ 0 (by the inequality
constraint of the inner system, which is exactly satisfied even for the truncated solver) and p(i) ≥ pi.
Therefore, Ci,i represents a solution to the OTLP with total deviation at most α+ 2β from the p(i)
equality constraints. Finally, the acceptance, i.e. the objective value in the OTLP, is∑

i∈Vn

∑
i∈set(i)

Ci,i =
∑
i∈Vn

∑
i∈set(i)

Si,i =
∑
i∈V

p′i. (134)

By the Triangle Inequality, the fact that∑
i∈H∗

p(i) +
∑

i∈V\H∗

pi = 1 +
∑

i∈V\H∗

(pi − p(i)) = 1 + ψ(H∗) = α∗ (135)

is the optimal objective in the OTLP, and the fact that
∑

i∈H∗ |p′i−p(i)| ≤ β and
∑

i∈V\H∗ |p′i−pi| ≤
α, this new objective value deviates by at most α+ β from the optimal acceptance, as desired.
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M EXPERIMENTAL SETUP

We run all experiments on Paperspace machines. For Llama-3 70/8B, we use a setup with 4xA6000
and an Intel Xeon Gold 5315Y CPU (32 cores, 3.20 GHz). For Gemma-2 27/2B, we use a setup with
an A100-80GB and an Intel Xeon Gold 6342 CPU (12 cores, 2.80 GHz).

Our data consists of 500 random eval prompts from GSM8K, HumanEval (only 164 total), IfEval,
PopQA, and WildJailbreak, five diverse benchmarks spanning math reasoning, coding, instruction
following, knowledge retrieval, and safety (Chen et al., 2021; Zhou et al., 2023a; Cobbe et al.,
2021; Shen et al., 2024; Mallen et al., 2022). We take prompts only from the eval split to avoid
test set contamination. For acceptance experiments, we compute token-averaged acceptances per
dataset, and perform a simple average across datasets. For solve time experiments, as times are fairly
prompt-agnostic, we select 40 random prompts from each dataset.

For our solve time experiments, we use the HiGHS LP solver (Huangfu & Hall, 2018) in SciPy’s
optimization module (Virtanen et al., 2020). We also use graph-tools (Peixoto, 2014), a heavily
optimized Python network analysis package with a C++ backend and OpenMP support, to solve
max-flow. To solve the convex minimization problem, we use the L-BFGS-B solver from SciPy
(Virtanen et al., 2020). All solvers are only run on the CPU with numpy arrays, to minimize the
impact of GPU setup differences on solve times.

N TOP-k SAMPLING FOR THE RELAXED OTLP

Here, we formally describe how top-k sampling of the draft model q impacts the relaxed OTLP when
pdraft is formed by i.i.d. sampling q. Suppose that the top k tokens of q form V0 ⊆ V . This means
pdraft(i) = 0 whenever i ̸∈ Vn

0 . Now, recall the relaxed OTLP is

max
S⪰0

∑
i∈V

∑
i∈Vn

Si,i s.t.
∑
i∈Vn

Si,i ≤ p(i) ∀i ∈ V,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn,

Si,i = 0 ∀i ∈ V, i ̸∈ Ai.

(136)

For any i ∈ V, i ̸∈ Vn
0 , the pdraft(i) = 0 upper bound constraint and nonnegativity of variables forces

Si,i = 0. Furthermore, for any i ̸∈ V0, i ∈ Vn
0 , because i ̸∈ Ai (it cannot contain i as it has all

elements in V0), the zero equality constraint above gives Si,i = 0. This means the only nonzero
variables are those where i ∈ V0, i ∈ Vn

0 . Plugging these into the above, simplifying the objective,
and eliminating trivial constraints and variables we know to be zero, we get the following LP:

max
S⪰0

∑
i∈V0

∑
i∈Vn

0

Si,i s.t.
∑
i∈Vn

0

Si,i ≤ p(i) ∀i ∈ V0,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn
0 ,

Si,i = 0 ∀i ∈ V0, i ∈ Vn
0 , i ∈ set(i).

(137)

This is exactly the same as the original relaxed OTLP if V was replaced by V0, and p and
pdraft were replaced by their slices along V0 and Vn

0 . Thus, top-k sampling essentially reduces the
problem to a smaller version of the relaxed OTLP, with kn+1 parameters rather than V n+1.

O GREEDY VS. I.I.D. ACCEPTANCE RATES

In Figure 2 and Figure 3, we compare acceptance rates for the i.i.d. and greedy pdraft construction
across Gemma-2 and Llama-3. We find i.i.d. performs worse than greedy for k = 10, but does better
for all k ≥ 100. In particular, it is nearly 2% better for most n ≥ 4 in the latter case. Interestingly,
the i.i.d. advantage seems to decrease as n increases for higher k in Llama-3, but not in Gemma-2.
Exploring these trends is an interesting avenue for future work.
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Figure 2: Comparison of i.i.d. versus greedy acceptance rates for Gemma-2 27B/2B across various
choices of n and top-k sampling of the draft.

Figure 3: Comparison of i.i.d. versus greedy acceptance rates for Llama-3 70B/8B across various
choices of n and top-k sampling of the draft.
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P GEMMA-2 SOLVE TIME COMPARISON

Here, in Table 3, we compare the four methods’ solver times for Gemma-2. Again, global resolution
can hundreds of thousands times faster than the other methods. We also observe global resolution
solve times for Gemma-2 are generally larger than those for Llama-3 (Table 1), but it is not clear how
much of this is due to environment setup differences (CPU-only).

(k, n) General LP Max-Flow Opt. Max-Flow G.R. (τ = 10−3) G.R. (τ = 10−4)

(10, 2) 7.85 3.18 3.26 7.46 (98.87%) 10.63 (92.75%)
(10, 3) 59.43 5.05 5.10 24.64 (98.54%) 33.95 (88.06%)
(10, 4) 4000+ 95.73 94.21 57.21 (98.31%) 77.42 (86.21%)
(10, 5) 400000+ 10000+ 10000+ 98.10 (97.77%) 130.68 (85.36%)

(100, 2) 4000+ 95.13 82.94 49.58 (36.64%) 43.49 (18.58%)
(100, 3) 400000+ 200000+ 200000+ 107.65 (19.53%) 32.81 (8.18%)
(1000, 2) OOM 400000+ 400000+ 60.05 (27.5%) 141.25 (8.04%)

Table 3: Average Gemma-2 solve times (ms/token) over k, n, for the five i.i.d. OTLP solvers. General
LP and max-flow are baselines, and optimized max-flow and global resolution (τ = 10−3, 10−4)
are ours. Lower numbers are better. Red numbers are lower bounds from small scale tests due to
excessive runtime. Global resolution can be 10,000+ times faster than others. Global resolution
deviates from the target distribution by at most 15τ in L1 distance, and from optimal acceptance by
at most 10τ . We include success rates for global resolution as it can terminate early sometimes.
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