
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GLOBAL RESOLUTION: OPTIMAL MULTI-DRAFT SPEC-
ULATIVE SAMPLING VIA CONVEX MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative sampling reduces the latency of autoregressive decoding for target
model LLMs without sacrificing inference quality, by using a cheap draft model
to suggest a candidate token and a verification criterion to accept or resample this
token. To improve acceptance and decoding efficiency, recent work has explored
the multi-draft extension, where at each step n draft tokens are generated, and the
verification criterion is a distribution conditioned on these. When this criterion
maximizes the probability of accepting some draft token, it is called the optimal
transport (OT). However, finding the OT is difficult, as it is the solution of a linear
program (OTLP) in over V n variables, with V being the vocabulary size. Two
recent theoretical works have reframed the OTLP in terms of importance sampling
or subset selection. In this work, we prove that these formulations are equivalent to
an exponentially large relaxed OTLP, so it remains infeasible to solve. Then, we
reverse engineer subset selection to formulate the OTLP as a max-flow problem.
With a novel application of polymatroid theory, we reduce the exponentially large
OTLP to a convex optimization problem in at most V variables. This allows us to
devise an algorithm for optimal n-draft speculative sampling when the n tokens are
chosen i.i.d. from a single draft model, which can be tuned to arbitrary accuracy.
Finally, we measure acceptance rates and algorithm runtimes for various n and
top-k draft sampling settings. Our findings give the first multi-draft algorithm with
90% acceptance and under 100 ms of overhead per generated token with negligible
deviation from the target model distribution.

1 INTRODUCTION

Language models have demonstrated state-of-the-art performance over a wide variety of tasks, such as
code generation, language processing, and complex reasoning (Zhu et al., 2024; Kasneci et al., 2023;
Thirunavukarasu et al., 2023). Many transformer-based language model families, like GPT (Radford
et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023) and Llama (Touvron et al., 2023b;a), use
autoregressive decoding, where tokens are generated sequentially. However, autoregressive decoding
leads to significant computational bottlenecks. For LLMs with hundreds of billions of parameters,
these bottlenecks are generally dominated by memory bandwidth, not raw FLOPs (Fu et al., 2024).

Speculative sampling was proposed by Chen et al. (2023); Leviathan et al. (2023) to reduce the
punitive costs of autoregressive decoding for an expensive target model. Motivated by speculative
execution in compilers, this uses a light draft model to generate a draft sequence. Each token of the
draft sequence is then accepted or resampled using a criterion, which ensures that the first resampled
token and all prior accepted tokens follow the true target distribution. The greatest speedup is
obtained by maximizing the acceptance probability, as accepted tokens are generated with essentially
no inference overhead.

Recent extensions of speculative sampling have fixed the draft sequence length to one (single-step)
and focused on the theoretical properties of the multi-draft setting. In this setting, n ≥ 2 draft
tokens are generated at the single draft sequence position, for example by sampling from one or
more draft models. The n corresponding target logits are efficiently computed in parallel, adding
minimal overhead to a single target forward pass for reasonable batch sizes n. Finally, a conditional
distribution over the n draft tokens (verification criterion) generates a verified token, which must
respect the true target distribution. This conditional distribution is called the optimal transport (OT)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

when the verified token lies among the n draft tokens with maximal probability, thereby giving the
optimal acceptance probability and speedup.

The first theoretical work in the multi-draft setting was by Sun et al. (2023), who proved that the OT
is a solution to an optimal transport linear program (OTLP). This LP has a number of variables
exponential in the vocabulary size, so it is not even feasible to write down for large vocabularies.
However, Khisti et al. (2025) recently compactified this into a two-step canonical decomposition:
importance sampling and single-draft speculative sampling. When n = 2 draft tokens are sampled
from one draft model, this leads to an explicit expression for the optimal acceptance probability.
Concurrently, Hu et al. (2025) has reframed optimal acceptance as the solution to a subset selection
problem, which matches this n = 2 expression and generalizes it to n ≥ 3 draft tokens.

While these works can compute optimal acceptance for n ≥ 2, they do not solve the OTLP. There is
therefore, to the best of our knowledge, no exact and efficient method to solve the OTLP and find the
optimal verification criterion in multi-draft speculative sampling. The only known exact method is an
LP solver, which has exponential time complexity for the OTLP. Existing approximation algorithms
such as K-SEQ (Sun et al., 2023), MSS (Miao et al., 2024), RSD (Jeon et al., 2024), and LP and
vocabulary truncation (Khisti et al., 2025) cannot guarantee near-optimal speedups: K-SEQ has a
(1− 1/e)-approximation guarantee, but the others have no formal guarantees.

Our main contribution is the first efficient algorithm to compute the OT to arbitrary accuracy
when n ≥ 2 draft tokens are i.i.d. sampled from a draft model, in the single-step multi-draft
setting. Our algorithm is fast for much larger vocabularies and choices of n than previous works,
permitting higher acceptances rates. Altogether, our theoretical and experimental contributions are:

• We show how the canonical decomposition (Khisti et al., 2025) of the OTLP is exactly
equivalent to LP relaxation in the derivation of the subset selection formulation (Hu et al.,
2025), unifying the current state-of-the-art in multi-draft theoretical literature.

• We reverse the derivation in (Hu et al., 2025) to obtain a max-flow algorithm to compute the
OT for arbitrary pdraft. While the max-flow network is enormous, one can compute feasible
flows along source edges in near-linear time with a greedy polymatroid algorithm. With
these flows set, the OT can be computed to arbitrary accuracy by solving a truncated convex
minimization problem. This leads to our global resolution OT algorithm in the i.i.d. setting.

• We compute optimal acceptance rates and algorithm runtimes for various choices of n and
top-k sampling of the draft model in the i.i.d. setting. Our algorithm permits practical
choices of k and n where acceptance rates are over 90% and average runtime is under 100
ms/token, whereas generic OTLP solvers can only achieve 84% in the same limit. Thus, we
obtain a new state-of-the-art in optimal multi-draft speculative sampling.

2 RELATED WORK

To improve the number of accepted tokens, most theoretical extensions of speculative sampling have
been split into multi-step and multi-draft, which alter the verification or drafting mechanisms.

In the multi-step setting, which was outlined in the first few speculative sampling works (Chen et al.,
2023; Leviathan et al., 2023), the draft model autoregressively generates a sequence of candidate
tokens, and accepts the longest prefix of tokens that pass verification. Some work has fixed verification
as independent single-step verification, and focused on improving acceptance through smarter drafting,
such as database retrieval (He et al., 2023), cascading (Chen et al., 2024), hierarchial drafting (Sun
et al., 2024a), knowledge distillation (Zhou et al., 2023b; Liu et al., 2023), layer skipping (Zhang
et al., 2023; Elhoushi et al., 2024), or multi-token sampler heads Gloeckle et al. (2024); Samragh
et al. (2025). Other work has developed new verification protocols, such as tree Monte Carlo (Hu &
Huang, 2024) and block verification (Sun et al., 2024b), with the latter shown to be naturally optimal.

While most multi-step works are based on single-draft speculative sampling, tree-based attention
frameworks (Sun et al., 2023; Spector & Re, 2023; Cai et al., 2024; Li et al., 2024) extend to the
multi-draft setting by creating a tree of draft token sequences, our work only considers the single-step,
multi-draft setting. However, frameworks like SpecTr (Sun et al., 2023) can use any single-step,
multi-draft method, e.g. an OTLP solver like K-SEQ. Thus, it is plausible that our method also yields
improvements in such settings. We leave exploration of this direction to future work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND ON MULTI-DRAFT SPECULATIVE SAMPLING

For a review of multi-draft speculative sampling, see Appendix A. Here, we review the theory of
single-step multi-draft speculative sampling, which is primarily based on the OTLP (Sun et al., 2023)
and its subset selection formulation (Hu et al., 2025).

3.1 THE OPTIMAL TRANSPORT LP

Many multi-draft procedures respect the target model distribution (e.g. K-SEQ), but we are interested
in the one with greatest speedup. In the single-step setting, the parameters of this optimal sampling
procedure are solutions to an optimal transport linear program (OTLP) (Sun et al., 2023). In
terms of the number of draft models n, the target model distribution p over the vocabulary V , and
the n-token draft distribution pdraft over Vn, the OTLP has V n+1 nonnegative variables Ci,i for
i ∈ V, i ∈ Vn and is written as:

max
C⪰0

∑
i∈V

∑
i∈Ai

Ci,i s.t.
∑
i∈Vn

Ci,i = p(i) ∀i ∈ V,
∑
i∈V

Ci,i = pdraft(i) ∀i ∈ Vn. (1)

Here, Ai = {i ∈ Vn : i ∈ set(i)} is the incidence set of each i ∈ V over all drafted n-tuples. The
optimal objective value is the optimal acceptance rate α∗, and the optimal parameters C∗ give
a joint distribution π(i, i) over V × Vn with marginals p, pdraft. The optimal transport (OT) is
the induced conditional distribution π(i|i), which gives the probability of verifying i ∈ V given n
draft-sampled tokens i ∈ Vn. Solving the OTLP in this form is infeasible due to its exponential size,
even for n = 2 and V as small as 1000: see Section 7.

3.2 SUBSET SELECTION FORMULATION

Computing the optimal objective of the OTLP can be far simpler than solving it. Hu et al. (2025)
show this by reducing the optimal acceptance computation to subset selection (Equation (4)) for any
pdraft. This allows them to bypass the OTLP and quickly solve for α∗ for some choices of pdraft (see
Section 5.1). To do this, they form a relaxed OTLP in nonnegative variables Si,i for i ∈ V, i ∈ Vn:

max
S⪰0

∑
i∈V

∑
i∈Vn

Si,i s.t.
∑
i∈Vn

Si,i ≤ p(i) ∀i ∈ V,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn,

Si,i = 0 ∀i ∈ V, i ̸∈ Ai.

(2)

One can get an OTLP solution C∗ from a relaxed OTLP solution S∗ with residuals:

C∗
i,i

= S∗
i,i

+
pres(i)pres

draft(i)∑
j∈V p

res(j)
, pres(i) = p(i)−

∑
i∈Vn

S∗
i,i
, pres

draft(i) = pdraft(i)−
∑
i∈V

S∗
i,i
. (3)

They then dualize the relaxed OTLP and simplify it to the following. We defer details to Appendix E.
Theorem 3.1 (Hu et al. (2025)). The optimal acceptance rate α∗ can be computed as

α∗ = 1 + min
H⊆V

ψ(H), ψ(H) =
∑
i∈H

p(i)−
∑
i∈Hn

pdraft(i). (4)

4 CANONICAL DECOMPOSITION BY RELAXED LP

The main result of Khisti et al. (2025) is the canonical decomposition of the OT: it can be split into
importance sampling and single-draft speculative sampling. First, after sampling the n draft tokens
i ∼ pdraft, one samples a token in set(i) using an importance-weighted distribution β(i|i). Then,
one applies single-draft speculative sampling from Chen et al. (2023); Leviathan et al. (2023) on i.
Canonical decomposition thus computes the OT by solving a non-linear β-optimization problem.

In this section, we prove that solving the β-optimization problem is mathematically equivalent to
solving the relaxed OTLP from Equation (2). The optimal importance sampling parameters in the
canonical decomposition can be formed by normalizing the optimal relaxed LP parameters S∗ in
non-degenerate cases, and choosing a uniform split in degenerate cases. The proof is in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 4.1. Define D ⊆ Vn to be the set of i ∈ Vn where all S∗
i,i

= 0 in Equation (2). Then

β(i|i) =


S∗
i,i∑

j∈V S
∗
j,i

, i ̸∈ D,

1[i ∈ set(i)]
|set(i)|

, i ∈ D,

(5)

solve the importance sampling optimization problem in canonical decomposition.

Thus, canonical decomposition provides no computational advantage over the relaxed OTLP.

5 OPTIMAL MULTI-DRAFT SPECULATIVE SAMPLING BY MAX-FLOW

Much of the work by Hu et al. (2025) employs subset selection (Equation (4)) to efficiently compute
the optimal acceptance α∗ = 1 + ψ(H∗) for some pdraft schemes. However, they do not have a
method for computing the OT efficiently from H∗. They only solve for the OT when pdraft is greedy
(choose the top n− 1 tokens in a draft model q and sample the last without replacement), by directly
solving the OTLP 1. Excluding this pdraft, there is no known method which computes the OT for
n ≥ 2 and is faster than directly solving the OTLP or relaxed OTLP with an LP solver; this includes
canonical decomposition, since Theorem 4.1 shows it reduces to the relaxed OTLP.

In this section, we formulate a more efficient method to solve the OT, using H∗. We first enumerate
cases where efficient computation ofH∗ is possible, building on Hu et al. (2025). Then, we show how
solving for S∗ in the relaxed OTLP is a max-flow problem. Finally, we reverse the subset selection
derivation using complementary slackness, to obtain a more compact feasibility max-flow problem
that depends on H∗. This allows simplification of Equation (3) to a sparser form.

5.1 EFFICIENT RECOVERY OF H∗

Computing α∗ reduces to minimizing the set function ψ : 2V → R defined in Equation (4). While
this is NP-hard for general ψ, there are polynomial-time approaches (Iwata, 2008; Orlin, 2009) when
ψ is submodular. In their work, Hu et al. (2025) show submodularity holds if pdraft samples i.i.d. n
times from a single draft distribution q. In Appendix C, we generalize their argument to pdraft that
samples independently from any n draft distributions. These polynomial-time algorithms are often
impractical for large V , but the use of top-p/k sampling on the draft model(s) can restrict the domain
V and make this feasible. Also, when n = 2, minimizing ψ is submodular quadratic psuedo-boolean
optimization (QBPO), where far more efficient algorithms exist: see Appendix D for more details.

When pdraft samples i.i.d. from q, Hu et al. (2025) are able to improve on standard submodular
algorithms to obtain an O(V log V) approach. They show that it suffices to sort i ∈ V in decreasing
order of q(i)/p(i), and select the prefix of this list which minimizes ψ. We will mainly be concerned
with this setting, rather than general submodular ψ setting, which we leave to future work.

5.2 MAX-FLOW REDUCTION OF RELAXED OTLP

We now describe the relaxed OTLP (Equation (2)) as a max-flow problem. Max-flow solvers are
much faster than general LP solvers here, as we empirically demonstrate in Section 7.

Define a bipartite network Ω with source s, left vertices V , right vertices Vn, and sink t. We draw
edges s→ i with capacity p(i) for i ∈ V , edges i→ i with capacity ∞ for i ∈ V, i ∈ Ai, and edges
i→ t with capacity pdraft(i) for i ∈ Vn. Considering variables Si,i as flows along i→ i, we see the
capacity constraints exactly reduce to the inequalities in the relaxed OTLP, and the maximization
objective is the same as maximizing the flow. The zero equality constraints are handled by the fact
that we only draw edges i→ i if i ∈ Ai. Thus, S∗ can be computed by running max-flow on Ω.

1Here, only O(V) possible draft n-tuples can be sampled, rather than V n, so the OTLP is feasible to solve.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5.3 OPTIMIZING MAX-FLOW WITH COMPLEMENTARY SLACKNESS

While the max-flow formulation is advantageous over a general LP solver, it can still be prohibitive
for large Vn. Is there any way to use information like H∗ to reduce the size of the network Ω? We
find the answer is affirmative through complementary slackness, a method to reverse the dualization
step in Section 3.2. For background on the dualization and the proof of below, see Appendix E.
Theorem 5.1. Any nonnegative S∗ defined over V × Vn satisfies the following system,∑

i ̸∈(H∗)n

S∗
i,i

≤ p(i) ∀i ̸∈ H∗,
∑
i ̸∈H∗

S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n, (6a)

∑
i∈(H∗)n

S∗
i,i

= p(i) ∀i ∈ H∗,
∑
i∈H∗

S∗
i,i

≤ pdraft(i) ∀i ∈ (H∗)n, (6b)

S∗
i,i

= 0 ∀i ∈ H∗, i ̸∈ (H∗)n, S∗
i,i

= 0 ∀i ∈ V, i ̸∈ Ai, (6c)

if and only if it is an optimal solution to the relaxed OTLP.

Once we eliminate all zero variables in Equation (6c) from the top two lines, we call Equation (6a)
the outer system and Equation (6b) the inner system. These are independent, as the former has
terms with i ̸∈ H∗, i ̸∈ (H∗)n, i ∈ Ai and the latter has terms with i ∈ H∗, i ∈ (H∗)n, i ∈ Ai.
In the same way as the relaxed OTLP, these represent max-flow problems over a bipartite network:
see Appendix F for a proof of this equivalence. Thus, we can solve the outer and inner systems by
creating corresponding flow networks, solving for the max-flow, and then recovering the variables
along the ∞-capacity edges. To form the flow network for the outer system, we restrict Ω from
Section 5.2 to left vertices V \H∗ and right vertices V n \ (H∗)n. For the inner system, we restrict
Ω to left vertices H∗ and right vertices (H∗)n. The complexity of these networks depends on H∗.

Finally, to compute C∗ from the full S∗ given by the outer and inner system solutions, we use
Equation (3). In fact, the equality conditions in Theorem 5.1 tell us some residuals are zero:

pres(i) = 0 ∀i ∈ H∗, pres
draft(i) = 0 ∀i ̸∈ (H∗)n, (7)

Thus, when we sample the n-tuple of draft tokens ω ∈ Vn, and aim to compute the slice of the OT
π(·|ω) along this n-tuple, we only need to solve for the variables C∗

i,ω for i ∈ V , which simplify to

C∗
i,ω =


S∗
i,ω, i ∈ set(ω),

pres
draft(ω)∑

j∈V p
res(j)

· pres(i), i ̸∈ H∗, ω ∈ (H∗)n,

0, else,

(8)

by application of Equation (3). In fact, by independence of the outer and inner systems, examining
the variables above, we only need to solve the outer system if ω ̸∈ (H∗)n. When H∗ is large, this
is a significant speedup, as the outer system network is far smaller than the one in Section 5.2.

6 NEAR-LINEAR SAMPLING VIA GLOBAL RESOLUTION

Our max-flow reduction of complementary slackness shows that for arbitrary pdraft, we should not
expect to be able to compute C∗ in less time than the max-flow approach. Across all flow networks
we constructed, the capacities were p(i), pdraft(i) for i ∈ V, i ∈ Vn, which are essentially free
parameters. Thus, a faster algorithm would likely require a faster general max-flow solver.

However, when pdraft is formed by i.i.d. sampling from a draft model q, we can exploit additional
structure to solve the complementary slackness system efficiently. First, we show how to compute
feasible values of the outer residuals pres(i) for i ∈ V \H∗, using polymatroid theory. This turns
all conditions in Theorem 5.1 involving p(i) into equalities. Once these are equalities, there exists a
solution to the outer and inner systems parametrized by variables αi for i ∈ V \H∗ and i ∈ H∗, such
that each row of the solution is a softmax over a slice of variables. These variables can be computed
by minimizing associated convex functions. We call this approach global resolution. While this is
not efficient for large V , by truncating the convex functions to a smaller subset of variables, we can
solve the optimization problem with negligible accuracy loss.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

6.1 OUTER RESIDUAL LP

From Equation (7), there are two classes of nontrivial residuals: the outer residuals pres(i) for
i ∈ V \H∗, and the inner residuals pres

draft(i) for i ∈ (H∗)n. While solving for the inner residuals is
difficult2, we can compute outer residuals with the outer residual LP (Theorem 6.1, see Appendix G).
Theorem 6.1 (Outer Residuals). We have 0 ≤ pi ≤ p(i) for i ∈ V \H∗ are feasible in∑

i∈S

pi ≤
∑
i∈S

p(i) + ψ(V \ S) ∀S ⊆ V \H∗, (9)

with equality at S = V \H∗, if and only if pres(i) = p(i)− pi are feasible in the outer system.

This LP has up to 2V constraints, so it is infeasible to even write down. Fortunately, most of these
constraints are redundant when ψ is submodular. By applying polymatroid theory (see Appendix H),
we get a closed-form solution by taking consecutive differences of minimums of ψ.
Theorem 6.2. Suppose ψ is submodular. Fix any ordering {v1, . . . , vk} of V \H∗. Then

pvi = p(vi) + min
T⊇Hi+1

ψ(T)− min
T⊇Hi

ψ(T) ∀i ∈ [k]. (10)

is a solution to Theorem 6.1, where Hi = H∗ ∪ {vi, . . . , vk} for each i ∈ [k].

Computing the minψ terms is extremely prohibitive, since there are O(V) of them, so we could
require up to V submodular minimization calls. However, for the i.i.d. pdraft construction, each
call can be made O(V log V) with a procedure that evaluates ψ across prefixes of a sorted list, by
following the q-convexity approach in Section 4.2 of Hu et al. (2025) verbatim.
Lemma 6.3. Suppose pdraft is formed by sampling i.i.d. from q. Fix subsets A ⊆ B ⊆ V . Then

min
A⊆S⊆B

ψ(S) = min
0≤i≤|B\A|

ψ(Li ∪A), (11)

where Li is the ith prefix of B \A when its elements x are sorted by decreasing q(x)/p(x).

We can further optimize this to a total runtime of O(V log V) across all calls, by exploiting the fact
that the ordering of V \H∗ in Theorem 6.2 is arbitrary. By selecting v1, . . . , vk in increasing order of
q(·)/p(·), we know from Lemma 6.3 that each minT⊇Hi

ψ(T) lies among ψ(Hi), . . . , ψ(H1). Thus,
using cumulative minimums, we can get all minψ terms in O(V log V).

6.2 OUTER AND INNER CONVEX SOLVERS

Once we have computed feasible values for the outer system residuals pres(i) = p(i) − pi for
i ∈ V \H∗ (Theorem 6.2), we can turn all p(i) upper bounds in the outer system (Equation (6a))
into pi equality bounds. Our key observation is that as the outer system is feasible, it has some
global low-dimensional solution parametrized over V \H∗. The rows of this solution are formed by
taking the softmax of slices of the parameters, and the parameter values can be computed to arbitrary
accuracy by minimizing a truncated convex function as in Theorem 6.4 (proof in Appendix I),
Theorem 6.4 (Outer Convex Solver). Fix ϵ > 0 and T ⊆ V \H∗. Define ΦT : RV\H∗ → R by:

ΦT ((αi)i∈V\H∗) =
∑

i∈(H∗∪T)n\(H∗)n

pdraft(i) log

 ∑
i∈set(i)\H∗

eαi

−
∑
i∈T

piαi. (12)

This is constant over αi for i ̸∈ T . Then there is some (α∗
i)i∈V\H∗ such that

∥∇ΦT ((α
∗
i)i∈V\H∗)∥1 ≤ ϵ+ ϵT , ϵT = 1−

(∑
i∈H∗∪T

q(i)

)n

. (13)

Furthermore, for any (αi)i∈V\H∗ , the following variables solve the outer system,

Si,i =
eαi∑

j∈set(i)\H∗ eαj
· pdraft(i) ∀i ∈ set(i) \H∗, i ∈ Vn \ (H∗)n, (14)

with at most ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT total L1 deviation from the p(i) equality constraints.

2This is primarily due to the exponential number of inner residuals. Even if pdraft is i.i.d., it is not guaranteed
that some pres

draft admits a similar i.i.d. structure, without additional assumptions on p and q.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The inner system can be approached similarly, but the function now includes a slack term3, as we
have not solved for the inner residuals pres

draft(i). The proof can be found in Appendix J.

Theorem 6.5 (Inner Convex Solver). Fix ϵ > 0 and T ⊆ H∗. Define ΘT : RH∗ → R by:

ΘT ((αi)i∈H∗) =
∑
i∈Tn

pdraft(i) log

1 +
∑

i∈set(i)

eαi

−
∑
i∈T

p(i)αi. (15)

This is constant over αi for i ∈ H∗ \ T . Then there is some (α∗
i)i∈H∗ such that

∥∇ΘT ((αi)i∈H∗)∥1 ≤ ϵ+ γT , γT =

(∑
i∈H∗

q(i)

)n

−

(∑
i∈T

q(i)

)n

. (16)

Furthermore, for any (αi)i∈H∗ , the following variables solve the inner system,

Si,i =
eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) ∀i ∈ set(i), i ∈ (H∗)n, (17)

with at most ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT total L1 deviation from the p(i) equality constraints.

In essence, solving for a global softmax solution in complementary slackness reduces to minimizing
(finding a point with near-zero gradient) a convex function defined over variables in the truncated set
T : this is ΦT for the outer system and ΘT for the inner system. When minimizing ΦT and ΘT , the
total deviation from the p(i) equality constraints is guaranteed to fall under 5ϵT and 5γT , respectively,
by setting ϵ = ϵT , γT in the solvers and using the gradient existence statements from the theorems.

When we increase the size of T , the error bounds ϵT and γT (the tunable errors) approach zero. Thus,
we can approximate the true complementary slackness solution to arbitrary accuracy. To prevent
excessive runtime, we may terminate early if the size |T | of the convex minimization problem
exceeds a preset threshold, or a maximum iteration count in the minimization algorithm is reached.
Due to space constraints, we clarify these details and our minimization approach in Appendix K.

6.3 GLOBAL RESOLUTION

Once we have used the outer and inner convex solvers to compute the approximation S to the real
complementary slackness solution S∗ (all variables not in these systems are zero), we plug in the
former into Equation (3) to obtain an approximation C to the real optimal transport solution C∗:

Ci,i =



Si,i, i ∈ set(i),

p(i)− pi∑
j∈V\H∗(p(j)− pj)

·

pdraft(i)−
∑

i∈set(i)

Si,i

 , i ̸∈ H∗, i ∈ (H∗)n,

0, else,

(18)

The following lemma (proof in Appendix L) ensures that the tunable errors in Theorem 6.4 and
Theorem 6.5 translate directly to bounds on deviations in the OTLP solution and acceptance rates.
Lemma 6.6 (Approximation Guarantee). Solve for pi over i ∈ V \H∗ as in Theorem 6.2. Using
these values, let Si,i be defined as in Theorem 6.4 with L11 deviation α and Theorem 6.5 with L1
deviation β. Then Ci,i as defined in Equation (18) satisfies the OTLP, with up to α + 2β total L1
deviation in the p(i) equality constraints and α+ β total deviation in the optimal acceptance rate.

Using the guaranteed 5ϵT and 5γT deviations for the outer and inner solvers, we can therefore
choose suitable T to ensure the tunable errors ϵT , γT do not exceed a specified error threshold τ , as
Lemma 6.6 ensures that sampling from the OT induced by this approximate C will deviate by at most
15τ from the true target distribution in L1 distance, and deviate from the optimal acceptance rate by
at most 10τ . We present the full global resolution algorithm with the error threshold in Algorithm 1.

3We cannot do this for the outer system. This solver has one variable for each equality constraint. However,
the outer system has exponentially many (|Vn \ (H∗)n|) equalities before outer residual computation. Thus, the
polymatroid approach is necessary to make even a truncated convex solver practical for the outer system.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1: Global Resolution
Input: V, p, q, n, error threshold τ , draft count n, drafted n-tuple ω = (ω1, . . . , ωn) ∼ q(·)
Output: Optimal transport slice π(·|ω)

1 Compute H∗ from p, q,V, n as in Section 5.1
2 Compute pi for all i ∈ V \H∗ from p, q,V, n as in Theorem 6.2
3 if ω1, . . . , ωn ∈ H∗ then
4 Choose minimal T ⊆ H∗ such that γT ≤ τ
5 Find inner system variables Si,i using Theorem 6.5, stop at ∥∇ΘT ∥1 ≤ 5τ

6 return normalized C·,ω from Si,i and pi in Lemma 6.6

7 Choose minimal T ⊆ H∗ such that ϵT ≤ τ
8 Find outer system variables Si,i using Theorem 6.4, stop at ∥∇ΦT ∥1 ≤ 5τ

9 return normalized C·,ω from Si,i in Lemma 6.6

7 EXPERIMENTS

In this section we empirically test the efficacy of our new algorithms for i.i.d. multi-draft, single-step
setting. First, we show that optimal acceptance rates can substantially increase with a higher number
of drafts n, and larger k in top-k sampling of the draft model. We then compare our algorithms’ solve
times against a standard LP solver for various k, n. Our algorithms are practical for a much wider
range of k, n, achieving state-of-the-art optimal acceptance rates in multi-draft speculative sampling.
Details on our setup for both acceptance and solve time experiments are given in Appendix M.

7.1 OPTIMAL ACCEPTANCE FOR INCREASING k AND n

For our target and draft models, we use the pairs Gemma-2 27B/2B and Llama-3 70B/8B (Touvron
et al., 2023a; Team, 2024). We test n ≤ 10 and k ∈ {10, 100, . . . , 10⌊log V ⌋, V }. Note that top-k
sampling truncates the vocabulary V to size k in the relaxed OTLP, so that compute-heavy baseline
approaches like LP and max-flow solvers remain feasible. For more detail, see Appendix N.

Our results are shown in Figure 1. We observe significant improvements in acceptance as k increases
from 10 to 1000: for example, a marginal increase from 0.8 to 0.95 means nearly 10% more tokens
are generated at no extra cost. However, there are diminishing returns for k ≥ 10000. Thus, top-k
sampling is a viable method to reduce OTLP complexity without sacrificing acceptance. There is also
a steady improvement from increasing n for larger k, demonstrating the utility of higher draft counts.

Figure 1: Optimal acceptance rates from n i.i.d drafts with top-k sampling with n with target/draft
pairs of Gemma-2 27B/2B and Llama-3 70/8B. Increasing k improves acceptance rate significantly
up to k = 1000, and increasing n also results in steady increase in optimal acceptance.

Further, in Appendix O, we compare these acceptance rates to those for the greedy construction by
Hu et al. (2025), described at the start of Section 5. For both Gemma-2 and Llama-3, we find that i.i.d.
acceptance rates are higher than greedy for k ≥ 100, with improvements near 2% for larger k and n.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(k, n) General LP Max-Flow Opt. Max-Flow G.R. (τ = 10−3) G.R. (τ = 10−4)

(10, 2) 4.07 2.45 2.51 5.27 (98%) 7.62 (93%)
(10, 3) 30.14 3.80 3.88 17.35 (98%) 23.95 (87%)
(10, 4) 4000+ 74.21 74.37 40.30 (97%) 54.84 (86%)
(10, 5) 400000+ 10000+ 10000+ 70.75 (96%) 94.79 (85%)

(100, 2) 4000+ 72.28 63.03 23.92 (38%) 25.47 (23%)
(100, 3) 400000+ 200000+ 200000+ 30.52 (23%) 38.44 (14%)
(1000, 2) OOM 400000+ 400000+ 34.94 (31%) 47.46 (15%)

Table 1: Average Llama-3 solve times (ms/token) over k, n, for the five i.i.d. OTLP solvers. General
LP and max-flow are baselines, and optimized max-flow and global resolution (τ = 10−3, 10−4)
are ours. Lower numbers are better. Red numbers are lower bounds from small scale tests due to
excessive runtime. Global resolution can be 10,000+ times faster than others. Global resolution
deviates from the target distribution by at most 15τ in L1 distance, and from optimal acceptance by
at most 10τ . We include success rates for global resolution as it can terminate early sometimes.

7.2 OTLP SOLVE TIME EXPERIMENTS

Here, we compute empirical average solve times (per token) for the relaxed OTLP across 40 random
prompts from each dataset, for five methods: (1) a general LP solver, (2) a max-flow solver (Sec-
tion 5.2), (3) an optimized max-flow solver (Section 5.3, but using normal max-flow when solving
both inner and outer systems for stability), (4) global resolution (Section 6) with τ = 0.001, and (5)
global resolution with τ = 0.0001. Lemma 6.6 ensures (4) and (5) deviate from the target distribution
by at most 0.015 and 0.0015 in L1 distance, and are within 0.01 and 0.001 of optimal acceptance.

Our compared average solve times for Llama-3 are shown in Table 1. For global resolution, we also
include solve success rates, since it can terminate early. We only include (k, n) pairs where at least
one of the first three solvers finishes in under ten minutes per token. We see that the global resolution
solver is sometimes nearly ten thousand times faster than the other three methods, with runtimes
always under 100 ms/token. In Appendix P, Gemma-2 results show a similar trend.

Finally, in Table 2, we enforce average time limits of 10 and 100 ms/token, and compute the
acceptance for each solver’s best (k, n) setting that adheres to the limit. Since global resolution can
fail, we default to the best of solvers (1), (2), (3) in this case, and only keep settings whose aggregate
average runtime falls under the time limit. For Llama-3, global resolution with τ = 0.001 and
τ = 0.0001 achieve 1.03% and 0.47% higher acceptances than the other solvers for 100 ms/token,
and 1.71% and 1.16% higher acceptances for 10 ms/token. While the improvements for Gemma-2
are smaller, they are significant. Thus, global resolution is the state-of-the-art OTLP solver.

Limit Llama-3 Gemma-2

(ms/tok) Gen. LP M.F. G.R. G.R. Gen. LP M.F G.R. G.R.
τ = 10−3 τ = 10−4 τ = 10−3 τ = 10−4

10 82.53% 83.94% 85.65% 85.10% 79.03% 80.69% 81.90% 81.35%
100 83.94% 89.01% 90.04% 89.46% 80.69% 85.83% 86.60% 86.07%

Table 2: Best acceptance rates for baseline solvers (general LP) and ours (max-flow, optimized
max-flow, global resolution with τ = 10−3, 10−4) on Llama-3 and Gemma-2 under average solve
time limits of 10 and 100 ms/token. Optimized max-flow numbers are the same as max-flow.

8 CONCLUSION

Building on previous theoretical work in multi-draft speculative sampling, we derived a comple-
mentary slackness system to solve for the optimal transport (OT) parameters. We showed how this
could speed up max-flow OT solvers through an approach called global resolution. We empirically
demonstrated our algorithm achieved high acceptance rates with little overhead. Future work could
examine the efficacy of this algorithm in the multi-step setting, or extend it to non-i.i.d. draft settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The majority of work is theoretical, and can be verified through the in-depth proofs we have provided
in Appendices B to J. While the details behind our convex minimization approach are not included
in the main body due to space constraints, we provide all necessary information to reproduce the
gradient descent approach for our convex solvers in Appendix K. This includes our simplification of
the functions to minimize, how to efficiently compute gradient values, what open-source minimizer
to use, what thresholds are set, and how many iterations to run. We also describe our precise machine
setup, dataset composition, and LP and max-flow solvers for baseline approaches in Appendix M,
and we describe our experimental approach in Section 7.

REFERENCES

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(9):1124–1137, 2004. doi: 10.1109/TPAMI.2004.60.

Arne Brøndsted and Ralph Tyrrell Rockafellar. On the subdifferentiability of convex functions.
Proceedings of the American Mathematical Society, 16(4):605–611, 1965.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226–86242, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Ostendorf, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

David Gale. A theorem on flows in networks. In Classic Papers in Combinatorics, pp. 259–268.
Springer, 1957.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Alan J Hoffman and Joseph B Kruskal. Integral boundary points of convex polyhedra. In 50 Years
of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, pp. 49–76.
Springer, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhengmian Hu and Heng Huang. Accelerated speculative sampling based on tree monte carlo. In
Forty-first International Conference on Machine Learning, 2024.

Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding. arXiv preprint
arXiv:2502.18779, 2025.

Qi Huangfu and Julian AJ Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, 2018.

Satoru Iwata. Submodular function minimization. Mathematical Programming, 112:45–64, 2008.

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott.
Recursive speculative decoding: Accelerating llm inference via sampling without replacement.
arXiv preprint arXiv:2402.14160, 2024.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta
Kutyniok, Tilman Michaeli, Claudia Nerdel, Juergen Pfeffer, Oleksandra Poquet, Michael Sailer,
Albrecht Schmidt, Tina Seidel, and Gjergji Kasneci. Chatgpt for good? on opportunities and
challenges of large language models for education. Learning and Individual Differences, 103:
102274, 01 2023. doi: 10.1016/j.lindif.2023.102274.

Ashish J Khisti, MohammadReza Ebrahimi, Hassan Dbouk, Arash Behboodi, Roland Memisevic,
and Christos Louizos. Multi-draft speculative sampling: Canonical decomposition and theoretical
limits. In The Thirteenth International Conference on Learning Representations, 2025.

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004. doi:
10.1109/TPAMI.2004.1262177.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Alex Mallen, Akari Asai, Victor Zhong, et al. When not to trust language models: Investigating
effectiveness of parametric and non-parametric memories. arXiv preprint arXiv:2212.10511, 2022.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

James B Orlin. A faster strongly polynomial time algorithm for submodular function minimization.
Mathematical Programming, 118(2):237–251, 2009.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014. doi: 10.6084/m9.figshare.1164194.
URL http://figshare.com/articles/graph_tool/1164194.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. https://cdn.openai.
com/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf, 2019.

11

http://figshare.com/articles/graph_tool/1164194
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
arXiv preprint arXiv:2507.11851, 2025.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

Liwei Shen, Ruoxi Tao, Jinchang Ye, et al. Wildjailbreak: A dataset of adversarial chatbot jailbreak
prompts. arXiv preprint arXiv:2406.18510, 2024.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222–30242, 2023.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. Block verification accelerates speculative decoding. arXiv preprint
arXiv:2403.10444, 2024b.

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature Medicine, 29:
1930–1940, 2023. doi: 10.1038/s41591-023-02459-w. URL https://www.nature.com/
articles/s41591-023-02459-w. Review Article, Published: 17 July 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Naman Goyal, Eric Hambro, Haoran Azhar, Alice Rodriguez, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2310.11387, 2023a.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Haoran Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature Methods, 17(3):261–272, 2020.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, et al. Instruction-following evaluation for large language
models. arXiv preprint arXiv:2311.07911, 2023a.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023b.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis, 2024. URL https://arxiv.org/abs/2304.04675.

12

https://www.nature.com/articles/s41591-023-02459-w
https://www.nature.com/articles/s41591-023-02459-w
https://arxiv.org/abs/2304.04675

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A REVIEW OF SINGLE-STEP SPECULATIVE SAMPLING

Single-draft speculative sampling aims to accelerate the autoregressive decoding of an expensive
target model Mp with a cheaper draft model Mq, which share a common vocabulary V of size V .
In autoregressive decoding, the token context c induces target and draft distributions p(x|c), q(y|c).
Note that top-p/k and temperature sampling simply change how p, q are computed from the logits
Mp(c),Mq(c), so these can be plugged into any speculative sampling method.

Now, a joint coupling π(x, y) of p, q is any joint distribution over V × V with marginal distributions
p, q. Each coupling induces a transport π(x|y) from q to p, which is a conditional distribution where
sampling y0 ∼ q(y) and x0 ∼ π(x|y0) is equivalent to sampling x0 ∼ p(x). In speculative sampling,
one samples a candidate token from the draft distribution q and passes it through the transport induced
by some valid coupling π, to ensure the output matches the target distribution p.

The full single-step procedure is as follows. The key assumption which allows speculative sampling
to improve latency is that computing p(x|c), p(x|c, y0) in parallel is not much slower than computing
p(x|c) alone, since LLM inference is often memory-bound rather than compute-bound.

1. Given a context c, sample y0 ∼ q(y|c) from the draft model.
2. Compute target probabilities p(x|c), p(x|c, y0) in parallel.
3. Sample x0 ∼ π(x|y0) for some valid transport π, and append it to the context c.
4. If x0 = y0, sample a token from p(y|c, x0) and append it to the context c.

Thus, whenever x0 = y0 above, we generate two tokens (steps 3 and 4) at the cost of essentially
one target forward pass, obtaining nearly a 2× speedup. This means to maximize the speedup and
achieve optimal single-draft speculative sampling, one must maximize P(x0 = y0) =

∑
x∈V π(x, x),

achieved for the optimal transport π∗. This is called the acceptance rate, the probability that the
q-sampled token is not altered by the transport. In the original speculative sampling work, Chen et al.
(2023); Leviathan et al. (2023) computed a closed-form expression for π∗ based on p(x|c), q(x|c).
Sun et al. (2023) extended this procedure to single-step multi-draft, by replacing q(x|c) with a general
n-token distribution pdraft(y|c) over y ∈ Vn, which can be formed by i.i.d. sampling one draft
model, independently sampling different draft models, or a variety of other methods. Now, a joint
coupling π(x,y) of p, pdraft is a joint distribution over V ×Vn with marginals p, pdraft, which induces
a transport π(x|y) from pdraft to p. Here, the key assumption we make is slightly stronger: that
computing p(x|c), p(x|c, y0), . . . , p(x|c, yn−1) is parallel is not much slower than computing p(x|c)
alone. This is generally true as long as n is not too large. The procedure is:

1. Given a context c, sample (y0, . . . , yn−1) ∼ pdraft(y|c) from the draft scheme.
2. Compute target probabilities p(x|c), p(x|c, y0), . . . , p(x|c, yn−1) in parallel.
3. Sample x0 ∼ π(x|y0, . . . , yn−1) for some valid transport π, and append it to the context c.
4. If x0 ∈ {y0, . . . , yn−1}, sample a token from p(y|c, x0) and append it to the context c.

Similar to the single-draft case, we now get a nearly 2× speedup whenever x0 ∈ {y0, . . . , yn−1}.
Thus, we want to maximize the probability that x0 lies among the n sampled draft tokens, which is
the multi-draft acceptance rate. Combined with the conditions necessary for π to be a valid joint
coupling, this leads to the OTLP formulation.

B EQUIVALENCE OF CANONICAL DECOMPOSITION AND RELAXED LP

We first state canonical decomposition. Note that the β-optimization problem below is exponentially
large and is not an LP, so it is infeasible to solve without truncating V , as Khisti et al. (2025) do.
Theorem B.1. (Khisti et al., 2025) Define variables β(i|i) for i ∈ Vn, i ∈ V , set to zero for i ̸∈ set(i).
Then the β which solves the following gives the optimal importance sampling parameters:

max
β⪰0

∑
i∈V

min

p(i), ∑
i∈Vn

β(i|i)pdraft(i)

 s.t.
∑
i∈V

β(i|i) = 1 ∀i ∈ Vn. (19)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In fact, the objective value achieved by this optimal β is the optimal acceptance rate α∗.

Now, we prove Theorem 4.1, by showing that our defined S∗
i,i

satisfy the constraints above.

Proof. We first show these satisfy the constraints of Theorem B.1. Indeed, these are all nonnegative.
Also, by the relaxed LP constraints, we have S∗

i,i
= 0 for all i ̸∈ Ai. Thus, by definition of the

incidence set Ai, and considering the first and second cases in the β definition, we have β(i, i) = 0 if
i ̸∈ set(i). Furthermore, for all i ∈ Vn, we see that∑

i∈V
β(i, i) =

∑
i∈V

S∗
i,i∑

j∈V S
∗
j,i

= 1 (20)

in the case that i ̸∈ D. We also see that∑
i∈V

β(i, i) =
∑

i∈set(i)

|set(i)|−1 +
∑

i ̸∈set(i)

0 = 1 (21)

if i ∈ D. Thus, all constraints are satisfied.

Now, we show that the objective value with these β in Theorem B.1 is at least the optimal objective
value with S∗ in the relaxed LP. This will complete the proof, as the optimal objective values in
Theorem B.1 and the relaxed LP are both α∗. To show this, we use the other relaxed LP constraints.
By the the second inequality constraint,∑

i∈Vn

β(i, i)pdraft(i) ≥
∑
i ̸∈D

β(i, i)pdraft(i) =
∑
i ̸∈D

S∗
i,i

pdraft(i)∑
j∈V S

∗
j,i

≥
∑
i ̸∈D

S∗
i,i

(22)

for all i ∈ V . Furthermore, for all i ∈ Vn, the first inequality constraint in the relaxed LP shows that

min

p(i),∑
i ̸∈D

S∗
i,i

 =
∑
i ̸∈D

S∗
i,i
. (23)

Therefore, the objective in Theorem B.1 is at least∑
i∈V

∑
i ̸∈D

S∗
i,i

=
∑
i ̸∈D

∑
i∈V

S∗
i,i

=
∑
i∈Vn

∑
i∈V

S∗
i,i

= α∗. (24)

This completes the proof that our defined β are optimal.

C COMPUTING H∗ FOR INDEPENDENT DRAFTS IS SUBMODULAR
MINIMIZATION

Here, we show that the subset selection problem α∗ = 1 +minH⊆V ψ(H) is an instance of submod-
ular minimization when pdraft is formed by independently sampling from q1, . . . , qn to get n tokens.
This generalizes the work of Hu et al. (2025), who proved this in the case q1 = . . . = qn.

Theorem C.1. When pdraft independently samples from q1, . . . , qn, the set function ψ in submodular.

Proof. First, we can define ψ(H) = P (H)−Q(H), where

P (H) =
∑
i∈H

p(i), Q(H) =
∑
i∈Hn

pdraft(i). (25)

Then, because pdraft(i1, . . . , in) = q1(i1) · · · qn(in), we have

Q(H) =
∑

i1,...,in∈H

n∏
j=1

qj(ij) =

n∏
j=1

(∑
i∈H

qj(i)

)
. (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Note that P (H1 ∩H2) + P (H1 ∪H2) = P (H1) + P (H2) for any H1, H2 ⊆ V , so P is a modular
function. Thus, to show ψ = P −Q is submodular, it suffices to show that Q is supermodular.

To this end, take anyH1, H2 ⊆ V . We want to showQ(H1∩H2)+Q(H1∪H2) ≥ Q(H1)+Q(H2).
For each j = 1, . . . , n, denote aj =

∑
i∈H1

qj(i), bj =
∑

i∈H2
qj(i), and cj =

∑
i∈H1∩H2

qj(i).
Then, we see aj + bj − cj =

∑
i∈H1∪H2

qj(i), and aj , bj ≥ cj ≥ 0 by nonnegativity of qj . The
condition we want to show is equivalent to

n∏
j=1

(aj + bj − cj) +

n∏
j=1

cj ≥
n∏

j=1

aj +

n∏
j=1

bj . (27)

Now, define the sums B and C as

B =
∑

A⊆[n],A ̸=∅

∏
i∈A

(aj − cj)
∏

i∈[n]\A

bj

 , (28)

C =
∑

A⊆[n],A̸=∅

∏
i∈A

(aj − cj)
∏

i∈[n]\A

cj

 . (29)

We can see B ≥ C by comparing corresponding terms in the sum, since each bj ≥ cj ≥ 0 and each
aj − cj ≥ 0. Furthermore, we have the following identities by straightforward expansion of products
of terms of the form aj − cj + ⋆:

n∏
j=1

(aj − cj + bj) =

n∏
j=1

bj +B, (30)

n∏
j=1

(aj − cj + cj) =

n∏
j=1

cj + C. (31)

Subtracting these and using B ≥ C gives
n∏

j=1

(aj + bj − cj)−
n∏

j=1

aj ≥
n∏

j=1

bj −
n∏

j=1

cj , (32)

as desired, which completes the proof.

D COMPUTING H∗ FOR n = 2 INDEPENDENT DRAFTS IS SUBMODULAR
QPBO

Here, we describe the reduction of H∗ computation to submodular quadratic psuedo-boolean opti-
mization (QPBO) when pdraft samples independently from n = 2 draft models q1, q2. By writing
ψ(H) in the same form as in Appendix C, but now for the case n = 2, we see

ψ(H) =
∑
i∈H

p(i)−

(∑
i∈H

q1(i)

)(∑
i∈H

q2(i)

)
. (33)

Denote the indicator vector x with xi = 1[i ∈ H] for each i ∈ V . Then this becomes

ρ(x) =
∑
i∈V

p(i)xi +
∑
i∈V

∑
i∈V

q1(i)q2(j)xixj . (34)

Minimizing ψ(H) over all H ⊆ V is thus equivalent to minimizing ρ(x) over all binary vectors
x ∈ {0, 1}V . This is precisely the form of QPBO, and we already know ψ is submodular from
Appendix C, so it is indeed an instance of submodular QPBO.

Our submodular QPBO instance is dense, with n = V variables and m = O(V 2) pairwise terms.
By previous work, this reduces to a single s− t min-cut computation (Kolmogorov & Zabih, 2004).
Using a max-flow algorithm, the theoretical runtime is O(m

√
n) = O(V 2.5). In fact, practical

implementations like the push-relabel algorithm can achieve near-quadratic runtime (Boykov &
Kolmogorov, 2004). This is far better than the general submodular minimization algorithm (Orlin,
2009), which takes O(V 5E + V 6) = O(V 6) time, where E = O(V) is the time complexity of
evaluating ψ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E COMPLEMENTARY SLACKNESS DERIVATION

We first review the details of dualization and simplification to subset selection, starting from the
relaxed OTLP (Equation (2)). These details are necessary to formulate complementary slackness.

Proof. Dualizing the relaxed OTLP gives the dual LP. The zero equality constraints correspond to
eliminating entries of x, and can be ignored. So, to transform to the dual, one introduces a variable
for each inequality constraint, say yi for constraints over i ∈ V , and zi for constraints over i ∈ Vn:

min
y,z⪰0

∑
i∈V

yip(i) +
∑
i∈Vn

zipdraft(i)

 s.t. yi + zi ≥ 1 ∀i ∈ V, i ∈ Ai. (35)

Finally, to reduce the dual LP, Hu et al. (2025) observe that the inequality constraints form a TUM
matrix. Any LP with integral inequality bounds and such constraints has an integral optimal solution
(Hoffman & Kruskal, 2009). Also, any yi ≥ 2 or zi ≥ 2 can be reduced to 1 while upholding each
constraint yi + zi ≥ 1 and not increasing the objective value: this means that some optimal solution
is binary. Then, denoting H = {i ∈ V : yi = 1}, one can compute optimal y, z given fixed H as:

yi =

{
1 i ∈ H,

0 i ̸∈ H,
zi =

{
1 i ̸∈ Hn,

0 i ∈ Hn.
(36)

Putting this back into the dual LP and simplifying gives the subset selection formulation.

Now, we provide a proof of Theorem 5.1, which makes use of the idea of complementary slackness.
Primal and dual LPs have the same optimal objective value, and complementary slackness allows one
to get from any optimal solution of the dual to some optimal solution of the primal. This asserts that
the following two conditions are equivalent for any pair of feasible solutions (α∗,β∗) to the primal
and dual LPs: (A) α∗ is optimal in the primal LP and β∗ is optimal in the dual LP, and (B) each
variable in α∗,β∗ is zero, or its corresponding inequality constraint in the other LP is an equality.

In our case, considering the primal and dual LPs as the relaxed OTLP and its dual, we already have
the optimal solution β∗ to the dual from Equation (36) and the H∗ computation. Thus, computing an
optimal primal solution α∗ is equivalent to jointly solving the complementary slackness constraints
in (B) alongside the feasibility constraints for α∗ in the primal LP.

Proof. For the relaxed OTLP and its dual LP, complementary slackness constraints become:

y∗i = 0 or
∑
i∈Vn

S∗
i,i

= p(i) ∀i ∈ V, (37a)

z∗
i
= 0 or

∑
i∈V

S∗
i,i

= pdraft(i) ∀i ∈ Vn, (37b)

S∗
i,i

= 0 or y∗i + z∗
i
= 1 ∀i ∈ V, i ∈ Vn. (37c)

Given the optimal solution y∗, z∗ to the dual LP, we only need to solve this system, alongside the
original constraints in the primal (relaxed) LP, to obtain the optimal solution S∗ to the primal LP.
This can be done by using the binary vector expressions for y∗, z∗ in terms of H∗ in Equation (36).
First, for Equation (37a), observe that y∗i ̸= 0 if and only if i ∈ H∗. Thus, it is equivalent to∑

i∈Vn

S∗
i,i

= p(i) ∀i ∈ H∗. (38)

Next, for Equation (37b), recall that z∗
i
̸= 0 if and only if i ̸∈ (H∗)n. So, this condition becomes∑

i∈V
S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n. (39)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Finally, by observing the four joint cases for y∗i , z
∗
i

, we have

y∗i + z∗
i
=


2 i ∈ H∗, i ̸∈ (H∗)n,

1 i ∈ H∗, i ∈ (H∗)n,

1 i ̸∈ H∗, i ̸∈ (H∗)n,

0 i ̸∈ H∗, i ∈ (H∗)n,

(40)

so that Equation (37c) is equivalent to

Si,i = 0 ∀i ∈ H∗, i ̸∈ (H∗)n,

Si,i = 0 ∀i ̸∈ H∗, i ∈ (H∗)n.
(41)

The second of these can be eliminated, as it is redundant with the zero equality constraint in the
relaxed OTLP: if i ̸∈ H∗ and i ∈ (H∗)n, then i cannot lie in the incidence set Ai, so Si,i = 0 already.

Finally, combining our three new conditions with the feasibility constraints in the relaxed OTLP, any
solution to the following system is an optimal solution S∗ in the relaxed OTLP, and vice versa:∑

i∈Vn

S∗
i,i

≤ p(i) ∀i ∈ V,
∑
i∈V

S∗
i,i

≤ pdraft(i) ∀i ∈ Vn,

∑
i∈Vn

S∗
i,i

= p(i) ∀i ∈ H∗,
∑
i∈V

S∗
i,i

= pdraft(i) ∀i ̸∈ (H∗)n,

S∗
i,i

= 0 ∀i ∈ V, i ̸∈ Ai, S∗
i,i

= 0 ∀i ∈ H∗, i ̸∈ (H∗)n.

(42)

Finally, note that some inequality constraints are redundant. We no longer require the p(i) inequalities
for i ∈ H∗, and we no longer require the pdraft(i) inequalities for i ̸∈ (H∗)n. This directly reduces
the above system, which is equivalent to the relaxed OTLP, to the desired system.

F MAX-FLOW TRANSFORMATION DERIVATION

Although it is a standard network reduction technique to reduce row and column sum constraints to
max-flow over a bipartite network, we provide a proof of Lemma F.1 here for completeness.
Lemma F.1 (Bipartite-Flow Equivalence). Let G = (A ∪B,E ⊆ A×B) be a bipartite graph, with
N(·) denoting neighborhoods. Let x ∈ RA,y ∈ RB , z ∈ RE be nonnegative. Define a network
Ω on nodes {s, t} ∪ A ∪ B, with capacity xa edges s → a for a ∈ A, capacity yb edges b → t for
b ∈ B, and ∞-capacity edges a→ b for (a, b) ∈ E. Then these two conditions are equivalent:

(1)
∑

b∈N(a) z(a,b) = xa for all a ∈ A and
∑

a∈N(b) z(a,b) ≤ yb for all b ∈ B,

(2) f(s→ a) = xa, f(a→ b) = z(a,b), f(b→ t) =
∑

a∈N(b) z(a,b) is a maximal flow in Ω.

Proof. Suppose condition (1) holds. Then the flow assignment f in the second condition satisfies

f(s→ a) = xa =
∑

b∈N(a)

z(a,b) =
∑

b∈N(a)

f(a→ b), (43)

f(b→ t) =
∑

a∈N(b)

z(a,b) =
∑

a∈N(b)

f(a→ b). (44)

This means flow conservation holds. Also, f(s→ a) ≤ xa for each a ∈ A, and f(b→ t) ≤ yb for
each b ∈ B from the inequality constraints, so the capacity constraints hold. Thus, the assignment
f is feasible. In fact, its value is

∑
a∈A f(s → a) =

∑
a∈A xa, and no flow assignment in Ω can

exceed this value since the total flow along edges s→ a cannot exceed the sum of the capacities xa.
This shows the f is indeed the maximal flow, so condition (2) is satisfied, as desired.

Conversely, suppose condition (2) holds. Then flow conservation at each a ∈ A shows

xa = f(s→ a) =
∑

b∈N(a)

f(a→ b) =
∑

b∈N(a)

z(a,b). (45)

Also, the capacity at b→ t shows f(s→ b) =
∑

a∈N(b) z(a,b) ≤ yb. Thus, condition (1) holds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G PROOFS OF RESIDUAL LPS

In this appendix, we prove the reductions to the inner and outer residual LPs. We will use the following
lemma. Note that each xa and yb must be nonnegative, as per the requirements of Lemma F.1.

Lemma G.1. From Lemma F.1, consider condition (1) as a system in nonnegative variables ze with
xa-equality constraints and yb-inequality constraints. This is feasible if and only if∑

a∈S

xa ≤
∑

b∈N(S)

yb ∀S ⊆ A. (46)

When yb constraints are equalities, feasibility is equivalent to the above and
∑

a∈A xa =
∑

y∈B yb.

Proof. The first part follows from the equivalence of conditions (1) and (2) in Lemma F.1, and Gale’s
feasibility theorem for bipartite supply-demand networks applied to condition (2) (Gale, 1957). The
second part holds as

∑
a∈A xa =

∑
b∈B yb combines with condition (1),∑

a∈A

xa =
∑
a∈A

∑
b∈N(a)

z(a,b) =
∑

(a,b)∈E

z(a,b) =
∑
b∈B

∑
a∈N(b)

z(a,b) ≤
∑
b∈B

yb, (47)

to force the equalities
∑

a∈N(b) z(a,b) = yb for b ∈ B, as required.

Now, we prove the reduced LP for outer system residuals pres(i) in Theorem 6.1.

Proof. To solve for the residuals in the outer system, we need to find 0 ≤ pi ≤ p(i) where∑
i∈Vn\(H∗)n

S∗
i,i

= pi ∀i ∈ V \H∗,
∑

i∈V\H∗

S∗
i,i

= pdraft(i) ∀i ∈ Vn \ (H∗)n, (48)

is feasible for nonnegative S∗. When this system is feasible, its solution S∗ will also be a solution
to the outer system, so we can simply recover the residuals as pres(i) = p(i)− pi. Since all pi are
nonnegative, we can use Lemma G.1, to show that the above system is feasible if and only if:∑

i∈V\H∗

pi =
∑

i∈Vn\(H∗)n

pdraft(i),
∑
i∈S

pi ≤
∑

i∈N(S)

pdraft(i) ∀S ⊆ V \H∗, (49)

where N(S) ⊆ Vn \ (H∗)n denotes the neighborhood of S ⊆ V \H∗ in the bipartite graph with
left vertices V \H∗, right vertices Vn \ (H∗)n, and edges (i, i) with i ∈ set(i). Note N(S) contains
precisely the n-tuples in Vn with at least one element in S. Therefore, we can write∑

i∈N(S)

pdraft(i)−
∑
i∈S

p(i) = 1−
∑
i∈S

p(i)−
∑

i∈(V\S)n

pdraft(i) = ψ(V \ S). (50)

Substituting this back and simplifying with ψ, our condition becomes:∑
i∈V\H∗

pi =
∑

i∈V\H∗

p(i) + ψ(H∗),
∑
i∈S

pi ≤
∑
i∈S

p(i) + ψ(V \ S) ∀S ⊆ V \H∗. (51)

Including the original constraints 0 ≤ pi ≤ p(i) completes the proof.

H GREEDY POLYMATROID ALGORITHM FOR OUTER RESIDUAL LP

Here, we prove Theorem 6.2 by using polymatroids. Polymatroids are subsets of Euclidean spaces
associated with submodular functions: they defined as the feasibility set of subset sum inequality
constraints with bounds being evaluations of the submodular function. Thus, they are directly related
to the outer residual LP. In our proof, we refer only to standard polymatroid theory from Chapter 44
in Schrijver et al. (2003).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Because ψ(S) is submodular in S, and
∑

i∈S p(i) is modular (additive) in S, then

ϕ(S) =
∑
i∈S

p(i) + ψ(V \ S) = 1−
∑

i∈(V\S)n

pdraft(i) (52)

is submodular in S. Therefore, solving Theorem 6.1 amounts to finding x ∈ EPϕ ∩Bp with x ⪰ 0
and 1 · x = ϕ(V \H∗), where Bp is the feasibility set of all constraints pi ≤ p(i), and EPϕ is the
extended polymatroid associated with the submodular function ϕ:

EPϕ =

{
x :
∑
i∈S

xi ≤ ϕ(S) ∀S ⊆ V \H∗

}
. (53)

By Equations 44.8 and 44.9 in Schrijver et al. (2003), the box-polymatroid intersection EPϕ ∩Bp is
also an extended polymatroid EPϕ|p, associated with the following submodular function ϕ|p:

(ϕ|p)(S) = min
T⊆S

 ∑
i∈S\T

p(i) + ϕ(T)

 =
∑
i∈S

p(i) + min
V\S⊆T

ψ(T). (54)

Since our system is feasible, and has the inequality constraint 1 · x ≤ ϕ(V \ H∗) and equality
constraint 1 · x = ϕ(V \H∗), we can replace the equality constraint with an objective max1 · x.
This turns Theorem 6.1 into the following extended polymatroid optimization problem:

max1 · x s.t x ∈ EPϕ|p, x ⪰ 0. (55)

We first ignore the nonnegativity constraint. To solve this simplified version, we can use the two-step
greedy algorithm from Theorem 44.3 in Schrijver et al. (2003). First, we reorder V \H∗ in increasing
order of the weights 1. This can be arbitrary, so we specify it as the given ordering {v1, . . . , vk}.
Then, we compute consecutive differences xvi = (ϕ|p)(Si)− (ϕ|p)(Si−1), where Si = {v1, . . . , vi}
is the ith prefix of V \H∗. We can compute this explicitly as

xvi =
∑
i∈Si

p(i) + min
V\Si⊆T

ψ(T)−
∑

i∈Si−1

p(i)− min
V\Si−1⊆T

ψ(T) (56)

= p(vi) + min
H∗∪{vi+1,...,vk}⊆T

ψ(T)− min
H∗∪{vi,...,vk}⊆T

ψ(T) (57)

= p(vi) + min
Hi+1⊆T

ψ(T)− min
Hi⊆T

ψ(T). (58)

This matches the desired expression, so to complete the proof, it suffices to show x ⪰ 0, i.e. each
xvi ≥ 0. Indeed, suppose T ∗ ⊇ Hi+1 minimizes the first of the two min ψ terms above. Since
Hi = Hi+1 ∪ {vi}, we will have T ∗ ∪ {vi} ⊇ Hi, and thus

min
Hi⊆T

ψ(T) ≤ ψ(T ∗ ∪ {vi}) (59)

=
∑

x∈(T∗∪{vi})

p(x)−
∑

i∈(T∗∪{vi})n
pdraft(i) (60)

≤ p(vi) +
∑
x∈T∗

p(x)−
∑

i∈(T∗)n

pdraft(i) (61)

= p(vi) + ψ(T ∗) = p(vi) + min
Hi+1⊆T

ψ(T). (62)

Rearranging this exactly gives xvi ≥ 0, as required.

I GLOBAL OUTER SOLUTION

Here, we prove Theorem 6.4. We will use the following lemma, which relates the minimization of
feasibility of a transport system to the nonnegativity of an associated convex function.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma I.1 (Convex Transport Solver 1). Let G = (A ∪ B,E ⊆ A × B) be a bipartite graph
without isolated points (each neighborhood is nonempty). Suppose the following system is feasible in
nonnegative variables Sa,b for (a, b) ∈ E:∑

b∈N(a)

Sa,b = xa ∀a ∈ A,
∑

a∈N(b)

Sa,b = yb ∀b ∈ B. (63)

Then the following function Φ : R|A| → R is convex and nonnegative:

Φ((αa)a∈A) =
∑
b∈B

yb log

 ∑
a∈N(b)

eαa

−
∑
a∈A

xaαa. (64)

Furthermore, for any ϵ > 0, there exists (αa)a∈A with ∥∇Φ((αa)a∈A)∥1 ≤ ϵ.

Proof. We will use the Hall-type conditions from Lemma G.1. By feasibility of the system,∑
b∈N(S)

yb ≥
∑
a∈S

xa ∀S ⊆ A,
∑
b∈B

yb =
∑
a∈A

xa. (65)

Now, it is clear that Φ is convex in α since it is a linear combination of terms convex in α (LogSumExp
and linear). To show it is nonnegative at a particular point α, relabel A = {1, 2, . . . ,m} such that
α1 ≥ . . . ≥ αm. For each b ∈ B, we have the lower bound

log

 ∑
a∈N(b)

eαa

 ≥ max
a∈N(b)

αa. (66)

Now, let Nk = N({1, . . . , k}) \N({1, . . . , k − 1}) for each k ∈ A. We have maxa∈N(b) αa = αk

for each b ∈ Nk, because k ∈ N(b) and 1, . . . , k − 1 ̸∈ N(b). Furthermore, the sets N1, . . . , Nm

are disjoint, with union N({1, . . . ,m}) = B. Using this, we can lower bound

Φ((αa)a∈A) ≥
∑
b∈B

yb max
a∈N(b)

αa −
∑
a∈A

xaαa (67)

=

m∑
k=1

∑
b∈Nk

ybαk −
m∑

a=1

xaαa (68)

=

m∑
a=1

(∑
b∈Na

yb − xa

)
αa. (69)

Denote the coefficient of αa by ca. For any 1 ≤ k ≤ m, we see by applying the Hall conditions that
k∑

a=1

ca =
∑

b∈N1∪...∪Nk

yb −
k∑

a=1

xa (70)

=
∑

b∈N({1,...,k})

yb −
∑

a∈{1,...,k}

xa ≥ 0, (71)

with equality at k = m. Thus, as each αj ≥ αj+1, we have the desired nonnegativity:

Φ((αa)a∈A) ≥
m∑

a=1

caαa =

m∑
a=1

ca(αa − αm) (72)

=

m∑
a=1

m∑
j=a+1

ca(αj−1 − αj) (73)

=

m−1∑
j=1

j∑
a=1

ca(αj − αj+1) (74)

=

m−1∑
j=1

(
j∑

a=1

ca

)
(αj − αj+1) ≥ 0. (75)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Because Φ is convex and bounded below, by the Brøndsted–Rockafellar approximation theorem
(Brøndsted & Rockafellar, 1965), there are points on Φ with arbitrarily small subgradients. As Φ is
continuously differentiable, then for each ϵ > 0, some (αa)a∈A satisfies ∥∇Φ(α)∥1 ≤ ϵ.

For the outer system, we can apply Lemma I.1 with bipartite components A = V \H∗ and B =
Vn \ (H∗)n, edges (a, b) ∈ E if and only if a ∈ set(b), and bounds xa = pa for all a ∈ A
and yb = pdraft(b) for all b ∈ B. (Here, pa are the outer residual LP variables we solved for in
Theorem 6.1, given by pa = p(a)− pres(a).) The key idea is that the gradient norm bound from the
lemma bounds the total deviation from p(i) equality constraints in the outer system, which allows us
to prove Theorem 6.4.

Proof. We first show that ∥∇ΦT ∥1 ≤ ϵ+ ϵT is feasible. Define Φ : RV\H∗ → R as in Lemma I.1:

Φ((αi)i∈V\H∗) =
∑

i∈Vn\(H∗)n

pdraft(i) log

 ∑
i∈set(i)\H∗

eαi

−
∑

i∈V\H∗

piαi. (76)

By the lemma, there is some (α∗
i)i∈V\H∗ with ∥∇Φ((α∗

i)i∈V\H∗)∥1 ≤ ϵ. Thus,∑
i∈T

∣∣∣∣∂Φ(α∗
i)

∂αi

∣∣∣∣ ≤ ∑
i∈V\H∗

∣∣∣∣∂Φ(α∗
i)

∂αi

∣∣∣∣ ≤ ϵ. (77)

We can also compute the absolute difference in the ith partial derivatives of Φ,ΦT for any i ∈ T as∣∣∣∣∂ΦT (α
∗
i)

∂αi
− ∂Φ(α∗

i)

∂αi

∣∣∣∣ = ∑
i∈V n\(H∗∪T)n

eα
∗
i · 1[i ∈ set(i) \H∗]∑

j∈set(i)\H∗ e
α∗

j
· pdraft(i). (78)

Thus, summing the above over all i ∈ T gives∑
i∈T

∣∣∣∣∂ΦT (α
∗
i)

∂αi
− ∂Φ(α∗

i)

∂αi

∣∣∣∣ = ∑
i∈Vn\(H∗∪T)n

∑
i∈T

eα
∗
i · 1[i ∈ set(i) \H∗]∑

j∈set(i)\H∗ e
α∗

j
· pdraft(i) (79)

≤
∑

i∈Vn\(H∗∪T)n

pdraft(i) = 1−

(∑
i∈H∗∪T

q(i)

)n

= ϵT . (80)

Because ΦT is constant over αi for i ̸∈ T , and thus has zero partial derivative at these variables, the
Triangle Inequality implies that ∥∇ΦT ∥1 falls below ϵ+ ϵT at (α∗

i)i∈V\H∗ :

∥∇ΦT ((α
∗
i)i∈V\H∗)∥1 ≤

∑
i∈T

∣∣∣∣∂Φ(α∗
i)

∂αi

∣∣∣∣+∑
i∈T

∣∣∣∣∂ΦT (α
∗
i)

∂αi
− ∂Φ(α∗

i)

∂αi

∣∣∣∣ ≤ ϵ+ ϵT . (81)

Now, we prove the second part of the theorem for arbitrary (αi)i∈V\H∗ . First, we bound the sum of
the partial derivatives of Φ over i ∈ V \ (H∗ ∪ T):

∑
i∈V\(H∗∪T)

∣∣∣∣ ∂Φ∂αi

∣∣∣∣ = ∑
i∈V\(H∗∪T)

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i)− pi

∣∣∣∣∣∣∣∣∣ (82)

≤
∑

i∈V\(H∗∪T)

 ∑
i∈Vn\(H∗∪T)n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i) + pi

 (83)

≤
∑

i∈Vn\(H∗∪T)n

pdraft(i) +
∑

i∈V \(H∗∪T)

pi (84)

≤ 2
∑

i∈Vn\(H∗∪T)n

pdraft(i) = 2ϵT , (85)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where the last inequality holds by Equation (49). Therefore, we have by the Triangle Inequality and
Equation (80) (holds for any point) that

∥∇Φ((αi)i∈V\H∗)∥1 =
∑
i∈T

∣∣∣∣ ∂Φ∂αi

∣∣∣∣+ ∑
i∈(V\H∗)\T

∣∣∣∣ ∂Φ∂αi

∣∣∣∣ (86)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 +
∑
i∈T

∣∣∣∣∂ΦT (α
∗
i)

∂αi
− ∂Φ(α∗

i)

∂αi

∣∣∣∣+ 2ϵT (87)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT . (88)

Finally, using the explicit representation for partial derivatives of Φ, and substituting in Si,i from
Equation (14), we get

∑
i∈V\H∗

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i)− pi

∣∣∣∣∣∣∣∣∣ =
∑

i∈V\H∗

∣∣∣∣∣∣∣∣∣
∑

i∈Vn\(H∗)n

i∈set(i)\H∗

Si,i − pi

∣∣∣∣∣∣∣∣∣ (89)

≤ ∥∇ΦT ((αi)i∈V\H∗)∥1 + 3ϵT , (90)

hence Si,i satisfy the pi equality constraints of the outer system with up to ∥∇ΦT ((αi)i∈V\H∗)∥1 +
3ϵT total leeway. They also satisfy the pdraft(i) equality constraints exactly, as∑

i∈set(i)\H∗

Si,i =
∑

i∈set(i)\H∗

eαi∑
j∈set(i)\H∗ eαj

· pdraft(i) = pdraft(i). (91)

This completes the proof.

J GLOBAL INNER SOLUTION

Now, we prove Theorem 6.5. We will use the lemma below, which is quite similar to Lemma I.1 in
Appendix I, except that it contains an extra slack term in the LogSumExp to deal with a bipartite
transport system with equalities on one side and inequalities on the other side.
Lemma J.1 (Convex Transport Solver 2). Let G = (A ∪ B,E ⊆ A × B) be a bipartite graph
without isolated points (each neighborhood is nonempty). Suppose the following system is feasible in
nonnegative variables Sa,b for (a, b) ∈ E:∑

b∈N(a)

Sa,b = xa ∀a ∈ A,
∑

a∈N(b)

Sa,b ≤ yb ∀b ∈ B. (92)

Then the following function Θ : R|A| → R is convex and nonnegative:

Θ((αa)a∈A) =
∑
b∈B

yb log

1 +
∑

a∈N(b)

eαa

−
∑
a∈A

xaαa. (93)

Furthermore, for any ϵ > 0, there exists (αa)a∈A with ∥∇Θ((αa)a∈A)∥1 ≤ ϵ.

Proof. We add a vertex a0 to A ⊆ G, with edges from a0 to all b ∈ B, to form the graph G′ =
(A ∪ {a0} ∪ B,E′). Now, let Sa,b for (a, b) ∈ E satisfy the given system. We define S′

a,b for
(a, b) ∈ E′, such that S′

a,b = Sa,b for a ̸= a0 and S′
a0,b

= yb −
∑

a∈N(b) Sa,b ≥ 0. Also, define
x′a for all a ∈ A ∪ {a0} such that x′a = xa if a ̸= a0 and x′a0

=
∑

b∈B yb −
∑

a∈A xa ≥ 0, and
define y′b for all b ∈ B such that y′b = yb. Then we see the following, where N ′(·) now denotes
G′-neighborhoods:

∑
b∈N ′(a0)

S′
a0,b =

∑
b∈B

yb − ∑
a∈N(b)

Sa,b

 =
∑
b∈B

yb −
∑
a∈A

∑
b∈N(a)

Sa,b = x′a0
(94)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

and for each b ∈ B, we have∑
a∈N ′(b)

S′
a,b =

∑
a∈N(b),a ̸=a0

Sa,b + Sa0,b = yb = y′b. (95)

This shows the following system is feasible:∑
b∈N ′(a)

S′
a,b = x′a ∀a ∈ A ∪ {a0},

∑
a∈N ′(b)

S′
a,b = y′b ∀b ∈ B. (96)

Hence, we can apply Lemma I.1 to show that

Φ((αa)a∈A∪{a0}) =
∑
b∈B

y′b log

 ∑
a∈N ′(b)

eαa

−
∑

a∈A∪{a0}

x′aαa (97)

is convex and nonnegative. Restricting this to the slice αa0 = 0 gives Θ((αa)a∈A) as defined in the
theorem, as eachN ′(b) contains a0, corresponding to the +1 term in log, and the x′a0

αa0
contribution

cancels. Thus, Θ is also convex and nonnegative. The existence of arbitrarily small gradient norms
then follows from the same argument as in the proof of Lemma I.1.

For the inner system, we can apply Lemma J.1 with bipartite components A = H∗ and B = (H∗)n,
edges (a, b) ∈ E if and only if a ∈ set(b), and bounds xa = p(a) for all a ∈ A and yb = pdraft(b) for
all b ∈ B. Once more, the gradient norm bound from the lemma bounds the total deviation from p(i)
equality constraints in the inner system, proving Theorem 6.5.

Proof. We first show that ∥∇ΘT ∥1 ≤ ϵ+ γT is feasible. Define Θ : RH∗ → R as in Lemma J.1:

Θ((αi)i∈H∗) =
∑

i∈(H∗)n

pdraft(i) log

1 +
∑

i∈set(i)

eαi

−
∑
i∈H∗

p(i)αi. (98)

By the lemma, there is some (α∗
i)i∈H∗ with ∥∇Θ((α∗

i)i∈H∗)∥1 ≤ ϵ. Thus,∑
i∈T

∣∣∣∣∂Θ(α∗
i)

∂αi

∣∣∣∣ ≤ ∑
i∈H∗

∣∣∣∣∂Θ(α∗
i)

∂αi

∣∣∣∣ ≤ ϵ. (99)

We can also compute the absolute difference in the ith partial derivatives of Θ,ΘT for any i ∈ T as∣∣∣∣∂ΘT (α
∗
i)

∂αi
− ∂Θ(α∗

i)

∂αi

∣∣∣∣ = ∑
i∈(H∗)n\Tn

eα
∗
i · 1[i ∈ set(i)]

1 +
∑

j∈set(i) e
α∗

j
· pdraft(i). (100)

Thus, summing the above over all i ∈ T gives∑
i∈T

∣∣∣∣∂ΘT (α
∗
i)

∂αi
− ∂Θ(α∗

i)

∂αi

∣∣∣∣ = ∑
i∈(H∗)n\Tn

∑
i∈T

eα
∗
i · 1[i ∈ set(i)]

1 +
∑

j∈set(i) e
α∗

j
· pdraft(i). (101)

≤
∑

i∈(H∗)n\Tn

pdraft(i) =

(∑
i∈H∗

q(i)

)n

−

(∑
i∈T

q(i)

)n

= γT . (102)

Because ΘT is constant over αi for i ̸∈ T , and thus has zero partial derivative at these variables, the
Triangle Inequality implies that ∥∇ΘT ∥1 falls below ϵ+ γT at (α∗

i)i∈H∗ :

∥∇ΘT ((α
∗
i)i∈H∗)∥1 ≤

∑
i∈T

∣∣∣∣∂Θ(α∗
i)

∂αi

∣∣∣∣+∑
i∈T

∣∣∣∣∂ΘT (α
∗
i)

∂αi
− ∂Θ(α∗

i)

∂αi

∣∣∣∣ ≤ ϵ+ γT . (103)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, we prove the second part of the theorem for arbitrary (αi)i∈H∗ . First, we bound the sum of the
partial derivatives of Θ over i ∈ H∗ \ T :

∑
i∈H∗\T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣ = ∑
i∈H∗\T

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i)− p(i)

∣∣∣∣∣∣∣∣∣ (104)

≤
∑

i∈H∗\T

 ∑
i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) + p(i)

 (105)

≤
∑

i∈(H∗)n\Tn

pdraft(i) +
∑

i∈H∗\T

p(i) (106)

≤ 2
∑

i∈(H∗)n\Tn

pdraft(i) = 2γT , (107)

where the last inequality using the fact that ψ is minimized at H∗:

0 ≤ ψ(T)− ψ(H∗) (108)

=
∑
i∈T

p(i)−
∑
i∈Tn

pdraft(i)−
∑
i∈H∗

p(i) +
∑

i∈(H∗)n

pdraft(i) (109)

=
∑

i∈(H∗)n\Tn

pdraft(i)−
∑

i∈H∗\T

p(i) = γT −
∑

i∈H∗\T

p(i). (110)

Therefore, we have by the Triangle Inequality and Equation (102) (holds for any point) that

∥∇Θ((αi)i∈H∗)∥1 =
∑
i∈T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣+ ∑
i∈H∗\T

∣∣∣∣ ∂Θ∂αi

∣∣∣∣ (111)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 +
∑
i∈T

∣∣∣∣∂ΘT (α
∗
i)

∂αi
− ∂Θ(α∗

i)

∂αi

∣∣∣∣+ 2γT (112)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT . (113)

Finally, using the explicit representation for partial derivatives of Θ, and substituting in Si,i from
Equation (17), we get

∑
i∈H∗

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i)− p(i)

∣∣∣∣∣∣∣∣∣ =
∑
i∈H∗

∣∣∣∣∣∣∣∣∣
∑

i∈(H∗)n

i∈set(i)

Si,i − p(i)

∣∣∣∣∣∣∣∣∣ (114)

≤ ∥∇ΘT ((αi)i∈H∗)∥1 + 3γT , (115)

hence Si,i satisfy the pi equality constraints of the inner system with up to ∥∇ΘT ((αi)i∈H∗)∥1+3γT
total leeway. They also satisfy the pdraft(i) inequality constraints, as∑

i∈set(i)

Si,i =
∑

i∈set(i)

eαi

1 +
∑

j∈set(i) e
αj

· pdraft(i) ≤ pdraft(i). (116)

This completes the proof.

K TRUNCATED SOLVER DETAILS

In this section, we discuss the specific implementation details for convex minimization in our inner
and outer solvers, including under what conditions our solver fails.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The first step is to group coefficients of the same LogSumExp terms, to obtain a more compact
representation of ΦT and ΘT . For ΦT in the outer system, the coefficient of a term containing
precisely αi1 , . . . , αik is explicitly∑

i∈(H∗∪T)n\(H∗)n

set(i)={i1,...,ik}

pdraft(i) =
∑

A⊆{i1,...,ik}

(−1)k−|A|
∑

i∈(H∗∪A)n

pdraft(i) (117)

=
∑

A⊆{i1,...,ik}

(−1)k−|A|

(∑
i∈H∗∪A

q(i)

)n

. (118)

The second expression is a consequence of the principle of inclusion and exclusion (PIE). The last
expression can be computed efficiently using dynamic programming. Similarly, for ΘT in the inner
system, the coefficient of a term containing precisely αi1 , . . . , αik is∑

i∈Tn

set(i)={i1,...,ik}

pdraft(i) =
∑

A⊆{i1,...,ik}

(−1)k−|A|
∑
i∈An

pdraft(i) (119)

=
∑

A⊆{i1,...,ik}

(−1)k−|A|

(∑
i∈A

q(i)

)n

. (120)

Again, this formula can be derived with PIE, and can be computed efficiently with dynamic program-
ming. Once we have grouped coefficients, both ΦT ,ΘT have at most

n∑
i=1

(
|T |
i

)
∼ |T |n

n!
(121)

terms. With this compact representation, one can quickly compute the gradients of ΦT and ΘT . We
manually implement a function that returns the value of each of these functions and the corresponding
gradient at an input point. Then, we use the the standard L-BFGS-B minimizer from SciPy (Virtanen
et al., 2020) to run gradient descent, to converge to a point with near-zero gradient norm. This is
an ideal algorithm for gradient descent because it converges quite fast for convex functions in few
variables, and we require execution on the order of milliseconds. The SciPy API also returns the final
gradient norm value, and allows early termination when the gradient norm falls below a threshold. To
ensure our approach remains on the order of milliseconds, we limit L-BFGS-B to 25 iterations.

Finally, we discuss the issue of early termination, i.e. solve failure. There are two situations to
consider: (a) T is too large, (b) the gradient norm does not fall below the desired threshold. For (a),
we have set the following hard limits on |T | through experimentation: 50 for n = 2, 20 for n = 3, 10
for n = 4, and 10 for n = 5. Note that these numbers are quite conservative: future work could aim
to improve runtime and reduce early terminations by using a non-fixed threshold, or an alternative
gradient descent method that works better for larger T . For (b), because the SciPy API terminates
when the threshold is reached, this can only occur if the maximum iterations are reached, and the
gradient norm is too large. In practice, we find this is rarely the case: |T | being too large is usually
the reason for failure.

L APPROXIMATION GUARANTEES

Here, we prove Lemma 6.6, which translates the inner and outer solver deviations into concrete
bounds on deviations in the approximate OTLP solution.

Proof. Define the row-wise sums p′i =
∑

i∈set(i) Si,i. Also, denote the residuals r(i) = pdraft(i)−∑
i∈set(i) Si,i. From Theorem 6.5 and Theorem 6.4, we know that

∑
i∈H∗ |p′i − p(i)| ≤ β and∑

i∈V\H∗ |p′i − pi| ≤ α. We first show that the pdraft(i) equalities in the OTLP hold. For i ∈ (H∗)n,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

we have ∑
i∈V

Ci,i =
∑

i∈set(i)

Si,i +
∑

i∈V\H∗

p(i)− pi∑
j∈V\H∗(p(j)− pj)

· r(i) (122)

=
∑

i∈set(i)

Si,i + r(i) = pdraft(i). (123)

Also, for i ̸∈ (H∗)n, using the equality guarantee of the outer solver,∑
i∈V

Ci,i =
∑

i∈set(i)

Si,i = pdraft(i). (124)

Now, we bound the deviation from the p(i) equality constraints in the OTLP. We have for all i ∈ H∗

that ∑
i∈Vn

Ci,i =
∑

i∈(H∗)n,i∈set(i)

Si,i = p′i, (125)

and we have for all i ̸∈ H∗ that∑
i∈Vn

Ci,i =
∑

i∈Vn\(H∗)n,i∈set(i)\H∗

Si,i +
∑

i∈(H∗)n

p(i)− pi∑
j∈V\H∗(p(j)− pj)

· r(i) (126)

= p′i +
p(i)− pi∑

j∈V\H∗(p(j)− pj)
·
∑

i∈(H∗)n

pdraft(i)−
∑

j∈set(i)

Sj,i

 (127)

= p′i +
p(i)− pi∑

j∈V\H∗(p(j)− pj)
·

 ∑
i∈(H∗)n

pdraft(i)−
∑
j∈H∗

p′j

 (128)

= p′i +
p(i)− pi
−ψ(H∗)

·

∑
j∈H∗

(p(j)− p′j)− ψ(H∗)

 (129)

= p(i) + (p′i − pi) +
p(i)− pi
−ψ(H∗)

·
∑
j∈H∗

(p(j)− p′j). (130)

In the fourth equality, we used the equality condition of Theorem 6.1, and the definition of ψ. Since
ψ(H∗) < 0 and pi ≤ p(i), this allows us to bound the difference to p(i) for i ̸∈ H∗ as∣∣∣∣∣∣
∑
i∈Vn

Ci,i − p(i)

∣∣∣∣∣∣ ≤ |p′i − pi|+
p(i)− pi
−ψ(H∗)

·
∑
j∈H∗

|p′j − p(j)| ≤ |p′i − pi|+
p(i)− pi
−ψ(H∗)

· β. (131)

Hence, summing over all i gives∑
i∈V

∣∣∣∣∣∣
∑
i∈Vn

Ci,i − p(i)

∣∣∣∣∣∣ ≤
∑
i∈H∗

|p′i − p(i)|+
∑

i∈V\H∗

|p′i − pi|+
∑

i∈V\H∗

p(i)− pi
−ψ(H∗)

· β (132)

≤ β + α+ β = α+ 2β. (133)

In fact, each Ci,i is nonnegative as all Si,i are nonnegative, and each r(i) ≥ 0 (by the inequality
constraint of the inner system, which is exactly satisfied even for the truncated solver) and p(i) ≥ pi.
Therefore, Ci,i represents a solution to the OTLP with total deviation at most α+ 2β from the p(i)
equality constraints. Finally, the acceptance, i.e. the objective value in the OTLP, is∑

i∈Vn

∑
i∈set(i)

Ci,i =
∑
i∈Vn

∑
i∈set(i)

Si,i =
∑
i∈V

p′i. (134)

By the Triangle Inequality, the fact that∑
i∈H∗

p(i) +
∑

i∈V\H∗

pi = 1 +
∑

i∈V\H∗

(pi − p(i)) = 1 + ψ(H∗) = α∗ (135)

is the optimal objective in the OTLP, and the fact that
∑

i∈H∗ |p′i−p(i)| ≤ β and
∑

i∈V\H∗ |p′i−pi| ≤
α, this new objective value deviates by at most α+ β from the optimal acceptance, as desired.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

M EXPERIMENTAL SETUP

We run all experiments on Paperspace machines. For Llama-3 70/8B, we use a setup with 4xA6000
and an Intel Xeon Gold 5315Y CPU (32 cores, 3.20 GHz). For Gemma-2 27/2B, we use a setup with
an A100-80GB and an Intel Xeon Gold 6342 CPU (12 cores, 2.80 GHz).

Our data consists of 500 random eval prompts from GSM8K, HumanEval (only 164 total), IfEval,
PopQA, and WildJailbreak, five diverse benchmarks spanning math reasoning, coding, instruction
following, knowledge retrieval, and safety (Chen et al., 2021; Zhou et al., 2023a; Cobbe et al.,
2021; Shen et al., 2024; Mallen et al., 2022). We take prompts only from the eval split to avoid
test set contamination. For acceptance experiments, we compute token-averaged acceptances per
dataset, and perform a simple average across datasets. For solve time experiments, as times are fairly
prompt-agnostic, we select 40 random prompts from each dataset.

For our solve time experiments, we use the HiGHS LP solver (Huangfu & Hall, 2018) in SciPy’s
optimization module (Virtanen et al., 2020). We also use graph-tools (Peixoto, 2014), a heavily
optimized Python network analysis package with a C++ backend and OpenMP support, to solve
max-flow. To solve the convex minimization problem, we use the L-BFGS-B solver from SciPy
(Virtanen et al., 2020). All solvers are only run on the CPU with numpy arrays, to minimize the
impact of GPU setup differences on solve times.

N TOP-k SAMPLING FOR THE RELAXED OTLP

Here, we formally describe how top-k sampling of the draft model q impacts the relaxed OTLP when
pdraft is formed by i.i.d. sampling q. Suppose that the top k tokens of q form V0 ⊆ V . This means
pdraft(i) = 0 whenever i ̸∈ Vn

0 . Now, recall the relaxed OTLP is

max
S⪰0

∑
i∈V

∑
i∈Vn

Si,i s.t.
∑
i∈Vn

Si,i ≤ p(i) ∀i ∈ V,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn,

Si,i = 0 ∀i ∈ V, i ̸∈ Ai.

(136)

For any i ∈ V, i ̸∈ Vn
0 , the pdraft(i) = 0 upper bound constraint and nonnegativity of variables forces

Si,i = 0. Furthermore, for any i ̸∈ V0, i ∈ Vn
0 , because i ̸∈ Ai (it cannot contain i as it has all

elements in V0), the zero equality constraint above gives Si,i = 0. This means the only nonzero
variables are those where i ∈ V0, i ∈ Vn

0 . Plugging these into the above, simplifying the objective,
and eliminating trivial constraints and variables we know to be zero, we get the following LP:

max
S⪰0

∑
i∈V0

∑
i∈Vn

0

Si,i s.t.
∑
i∈Vn

0

Si,i ≤ p(i) ∀i ∈ V0,
∑
i∈V

Si,i ≤ pdraft(i) ∀i ∈ Vn
0 ,

Si,i = 0 ∀i ∈ V0, i ∈ Vn
0 , i ∈ set(i).

(137)

This is exactly the same as the original relaxed OTLP if V was replaced by V0, and p and
pdraft were replaced by their slices along V0 and Vn

0 . Thus, top-k sampling essentially reduces the
problem to a smaller version of the relaxed OTLP, with kn+1 parameters rather than V n+1.

O GREEDY VS. I.I.D. ACCEPTANCE RATES

In Figure 2 and Figure 3, we compare acceptance rates for the i.i.d. and greedy pdraft construction
across Gemma-2 and Llama-3. We find i.i.d. performs worse than greedy for k = 10, but does better
for all k ≥ 100. In particular, it is nearly 2% better for most n ≥ 4 in the latter case. Interestingly,
the i.i.d. advantage seems to decrease as n increases for higher k in Llama-3, but not in Gemma-2.
Exploring these trends is an interesting avenue for future work.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of i.i.d. versus greedy acceptance rates for Gemma-2 27B/2B across various
choices of n and top-k sampling of the draft.

Figure 3: Comparison of i.i.d. versus greedy acceptance rates for Llama-3 70B/8B across various
choices of n and top-k sampling of the draft.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

P GEMMA-2 SOLVE TIME COMPARISON

Here, in Table 3, we compare the four methods’ solver times for Gemma-2. Again, global resolution
can hundreds of thousands times faster than the other methods. We also observe global resolution
solve times for Gemma-2 are generally larger than those for Llama-3 (Table 1), but it is not clear how
much of this is due to environment setup differences (CPU-only).

(k, n) General LP Max-Flow Opt. Max-Flow G.R. (τ = 10−3) G.R. (τ = 10−4)

(10, 2) 7.85 3.18 3.26 7.46 (98.87%) 10.63 (92.75%)
(10, 3) 59.43 5.05 5.10 24.64 (98.54%) 33.95 (88.06%)
(10, 4) 4000+ 95.73 94.21 57.21 (98.31%) 77.42 (86.21%)
(10, 5) 400000+ 10000+ 10000+ 98.10 (97.77%) 130.68 (85.36%)

(100, 2) 4000+ 95.13 82.94 49.58 (36.64%) 43.49 (18.58%)
(100, 3) 400000+ 200000+ 200000+ 107.65 (19.53%) 32.81 (8.18%)
(1000, 2) OOM 400000+ 400000+ 60.05 (27.5%) 141.25 (8.04%)

Table 3: Average Gemma-2 solve times (ms/token) over k, n, for the five i.i.d. OTLP solvers. General
LP and max-flow are baselines, and optimized max-flow and global resolution (τ = 10−3, 10−4)
are ours. Lower numbers are better. Red numbers are lower bounds from small scale tests due to
excessive runtime. Global resolution can be 10,000+ times faster than others. Global resolution
deviates from the target distribution by at most 15τ in L1 distance, and from optimal acceptance by
at most 10τ . We include success rates for global resolution as it can terminate early sometimes.

29

	Introduction
	Related Work
	Background on Multi-Draft Speculative Sampling
	The Optimal Transport LP
	Subset Selection Formulation

	Canonical Decomposition By Relaxed LP
	Optimal Multi-Draft Speculative Sampling By Max-Flow
	Efficient Recovery of H*
	Max-Flow Reduction of Relaxed OTLP
	Optimizing Max-Flow with Complementary Slackness

	Near-Linear Sampling via Global Resolution
	Outer Residual LP
	Outer and Inner Convex Solvers
	Global Resolution

	Experiments
	Optimal Acceptance For Increasing k and n
	OTLP Solve Time Experiments

	Conclusion
	Review of Single-Step Speculative Sampling
	Equivalence of Canonical Decomposition and Relaxed LP
	Computing H* for Independent Drafts is Submodular Minimization
	Computing H* for n=2 Independent Drafts is Submodular QPBO
	Complementary Slackness Derivation
	Max-Flow Transformation Derivation
	Proofs of Residual LPs
	Greedy Polymatroid Algorithm for Outer Residual LP
	Global Outer Solution
	Global Inner Solution
	Truncated Solver Details
	Approximation Guarantees
	Experimental Setup
	Top-k Sampling for the Relaxed OTLP
	Greedy vs. i.i.d. Acceptance Rates
	Gemma-2 Solve Time Comparison

