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ABSTRACT

Graphs and hypergraphs provide powerful abstractions for modeling interactions
among a set of entities of interest and have been attracting a growing interest in the
literature thanks to many successful applications in several fields, including chem-
istry. In the paper, we address the reaction classification task by introducing the
Directed Line Graph (DLG) transformation for directed hypergraphs. Building on
this representation, we propose the Directed Line Graph Network (DLGNet), the
first spectral-based Graph Neural Network (GNN) designed to perform convolu-
tions directly on the DLG. At the core of DLGNet lies a novel complex-valued
Hermitian matrix, the Directed Line Graph Laplacian (L⃗N ), which effectively en-
codes directional interactions within the hypergraph’s structure through the DLG
representation. Experimental results on three real-world chemical reaction data-
sets demonstrate that DLGNet consistently outperforms all baseline competitors.

1 INTRODUCTION

Graph representations have recently been applied in chemistry and biology to address various tasks
such as drug discovery (Bongini et al., 2021), molecule generation (Hoogeboom et al., 2022), and
protein interaction modeling (Jha et al., 2022). Focusing on chemical reactions, several graph-
based representations have been developed and employed with applications in areas such as reac-
tion engineering, retrosynthetic pathway design, and reaction feasibility evaluations. Retrosynthetic
modeling, in particular, where a synthetic route is designed starting from the desired product and
analyzed backward, benefits greatly from accurate reaction type identification. This capability en-
ables the elimination of unfeasible pathways, thereby streamlining the discovery of efficient routes
for chemical production. This is particularly important in industries such as pharmaceutical and
material sciences, where optimizing synthetic routes can lead to significant cost savings and enable
innovation. A similar situation holds in reaction feasibility analysis, where predicting the likelihood
of a reaction’s success based on molecular inputs is essential for designing scalable and efficient
processes.

One of the most relevant techniques to model reactions relies on a directed graph (Fialkowski et al.,
2005) where molecules are represented as nodes and the chemical reactions are represented as dir-
ected edges from reactants to products. Despite its popularity, such a model suffers from a key
limitation, since modeling each reaction as a collection of individual directed edges between each
reactant-product pair fails to fully capture the complexity of multi-reactant or multi-product re-
actions, which are crucial in many applications (Restrepo, 2022; Garcia-Chung et al., 2023). To
mitigate this issue, Restrepo (2023); Chang (2024) introduced a directed hypergraph representation
which is able to model both the chemical reactions structure and their directionality, where directed
hyperedges model the directional interactions between reagents (heads) and products (tails), better
capturing the full complexity of chemical reactions, see Figure 1 left. Indeed, hypergraphs general-
ize the notion of a graph by allowing hyperedges to connect an arbitrary number of nodes, thereby
capturing both pairwise (dyadic) and group-wise (polyadic) interactions (Schaub et al., 2021).

In contrast to prior studies that address node classification or link prediction tasks (Dong et al., 2020;
Wang et al., 2023b; Zhao et al., 2024), in this work we tackle the reaction classification task—i.e.,
predicting the reaction type of a given set of reactants and products—as a hyperedge classification
task. A naive approach for a graph model would involve combining a pair of node feature vectors
and passing them to a classifier. However, in hypergraphs, this is not straightforward since each
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Figure 1: Three reactions and their corresponding directed hypergraph representation (left). The
hypergraph is then transformed into its directed line graph (right). The hyperedges of H⃗ become
the nodes of DLG(H⃗) and are connected if they overlap in H⃗ . Complex-valued edge weights in
DLG(H⃗) encode H⃗’s directionality, as detailed in Section 3.

hyperedge contains a varying number of nodes, making direct feature concatenation impractical.
To address this, undirected hyperedge classification can be reformulated as a node classification
problem by constructing a line graph, a graph in which each hyperedge in the original hypergraph
is transformed into a node. In this way, classification can be performed on the newly defined nodes,
overcoming the limitation of pairing feature vectors, effectively solving the hyperedge classification
problem.

In the paper, we address the classification problem for chemical reactions following the recent lit-
erature where such reactions are modeled via directed hyperedges. For this purpose, we formally
introduce the concept of the Directed Line Graph of a given weighted directed hypergraph H⃗ , de-
noted as DLG(H⃗). In DLG(H⃗), the vertices correspond to the hyperedges of H⃗ , and a directed
edge connects two vertices whenever the corresponding hyperedges in H⃗ share at least one vertex,
as shown in Figure 1. Since the nodes of DLG(H⃗) correspond to hyperedges of H⃗ , this model-
ing approach allows us to directly manipulate hyperedge features, which are critical for solving the
reaction-classification task. In order to carry out such manipulation with the framework of convo-
lutional neural networks of the spectral type, we define the Directed Line Graph Laplacian L⃗N , a
Laplacian matrix which is specifically designed to capture both directed and undirected adjacency
relationships between the hyperedges of H⃗ via its directed line graph DLG(H⃗). We prove that L⃗N

enjoys different key properties, among which being Hermitian (i.e., being a complex-valued matrix
with a symmetric real part and a skew-symmetric imaginary one) and being positive semidefinite.
These properties allow us to introduce a spectral convolutional operator for DLG(H⃗). We rely on
DLG(H⃗) and its Laplacian matrix as the foundations of the Directed Line Graph Network (DLGNet),
the first (to our knowledge) spectral-based GNN designed for the convolution of hyperedge features
rather than node features.

For the task of hyperedge classification in the chemical reaction domain, our experimental results
show that transitioning from directed hypergraphs to directed line graphs and performing convolu-
tions directly on the latter is beneficial. DLGNet achieves an average relative percentage difference
improvement of 2.91% over the second-best method across a collection of real-world datasets, with
a maximum improvement of 4.21%. We also carry out an extensive set of ablation studies, which
confirm the importance of the various components of DLGNet.

Main Contributions of This Work

• We address the hyperedge classification task in the chemical reaction domain by intro-
ducing the formal definition of a directed line graph associated with a weighted directed
hypergraph H⃗ , the Directed Line Graph DLG(H⃗), on which we rely to capture a set of
higher-order relationships between a set of molecules. We then propose the Directed Line
Graph Laplacian L⃗N , a Hermitian matrix that captures both directed and undirected rela-
tionships between the hyperedges of a weighted directed hypergraph via its DLG. We also
prove that L⃗N enjoys many desirable spectral properties.

• To tackle the hyperedge classification task, we introduce DLGNet, the first spectral-based
GNN specifically designed to operate on directed line graphs associated with weighted
directed hypergraphs by directly convolving hyperedge features rather than node features.
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• We perform an extensive experimental evaluation on the reaction classification task on three
real-world datasets. Our results highlight the advantages of our approach compared to other
methods presented in the literature.

2 GRAPH AND HYPERGRAPH LEARNING BACKGROUND

An undirected hypergraph is defined as an ordered pair H = (V,E), with n := |V | and m := |E|,
where V is the set of vertices (or nodes) and E ⊆ 2V \ {} is the (nonempty) set of hyperedges. The
weights of the hyperedges are stored in the diagonal matrix W ∈ Rm×m, where we is the weight of
hyperedge e ∈ E (in the unweighted case we have W = I). The vertex degree du and hyperedge
degree δe are defined as du :=

∑
e∈E:u∈e |we| for u ∈ V , and δe := |e| for e ∈ E. These degrees are

stored in two diagonal matricesDv ∈ Rn×n andDe ∈ Rm×m. In the case of 2-uniform hypergraphs
(i.e., graphs), the matrix A ∈ Rn×n is defined such that Auv = we for each e = {u, v} ∈ E
and Auv = 0 otherwise; we refer to it as the adjacency matrix of the graph. Hypergraphs where
δ(e) = k for some k ∈ N for all e ∈ E are called k-uniform. Following Gallo et al. (1993), we
define a directed hypergraph H⃗ as a hypergraph where each node in each hyperedge e ∈ E belongs
to either a head set H(e) or a tail set T (e). If T (e) is empty, e is an undirected hyperedge.

The relationship between vertices and hyperedges in a undirected hypergraph H is classically rep-
resented via an incidence matrix B of size n×m, where B is defined as:

Bve =

{
1 if v ∈ e

0 otherwise
v ∈ V, e ∈ E. (1)

From the incidence matrix B, one can derive the Signless Laplacian Matrix Q as well as its normal-
ized version QN (Chung &Graham, 1997):

Q := BWB⊤ QN := D
− 1

2
v BWD−1

e B⊤D
− 1

2
v , (2)

where W,De, Dv are the diagonal matrices defined above. Following Zhou et al. (2006), the Lapla-
cian for a general undirected hypergraph is defined as:

∆ := I −QN . (3)

The Laplacian matrix encodes the hypergraph’s connectivity and hyperedge weights.

Letting L be a generic Laplacian matrix of a given 2-uniform hypergraph H and following Kipf
&Welling (2017), we rely on the following convolution operator:

Ŷ := θ0I + θ1L. (4)

For a detailed description of how this operator is derived and its relationship to graph Fourier trans-
forms, see Appendix B

3 THE DIRECTED LINE GRAPH AND ITS LAPLACIAN

As stated in the introduction, in this paper we tackle the task of molecule-reaction classification
as a hyperedge classification problem by re-framing it as a node classification task, leveraging the
concept of the line graph. The line graph L(H) of an undirected hypergraphH is classically defined
as the undirected graph whose vertex set is the hyperedge set of H . In L(H), two vertices i, j
are adjacent—i.e., L(H) contains the edge {i, j}—if and only if their corresponding hyperedges
i, j have a nonempty intersection (Tyshkevich &Zverovich, 1998). By construction, L(H) is a 2-
uniform graph. Its adjacency matrix is defined as:

A(L(H)) := Q−WDe, (5)

where Q := B⊤B is, by construction, the Signless Laplacian of L(H). 1 The normalized version of
Q and the corresponding normalized Laplacian are defined as:

QN := D
− 1

2
e W

1
2B⊤D−1

v BW
1
2D

− 1
2

e

LN := I −QN . (6)

1This is because the incidence matrix of L(H) is B∗.
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Notice that, from equation 2, one can define the weighted version of B as BW
1
2 . The definitions in

equation 6 rely on the same matrix, but transposed.

To the best of our knowledge, the literature does not offer any formal definition for the line graph
associated with a weighted directed hypergraph H⃗2. To address this, we first define a complex-
valued incidence matrix B⃗ which preserves the inherent directionality of H⃗:

B⃗ve :=


1 if v ∈ H(e),

−i if v ∈ T (e),

0 otherwise.
v ∈ V, e ∈ E. (7)

The idea is to generalize the classical construction of Q = BTB of the Signless Laplacian of the
line graph of a 2-uniform graph to the case of a hypergraph by leveraging our proposed incidence
matrix B⃗. First, we propose the following definition:

Definition 1. The Directed Line Graph DLG(H⃗) of a weighted directed hypergraph H⃗ is a 2-
uniform hypergraph whose vertex set corresponds to the hyperedge set of H⃗ and whose adjacency
matrix is the following complex-valued skew-symmetric matrix:3

A(DLG(H⃗)) =W
1
2 B⃗∗B⃗W

1
2 −WDe. (8)

Using equation 8 of definition 1 and Equations equation 5–equation 6, we obtain the follow-
ing formulas for the normalized Signless Laplacian Q⃗N ∈ Cm×m and the normalized Laplacian
L⃗N ∈ Cm×m of DLG, which we refer to as Signless Directed Line-Graph and Directed Line
Graph Laplacian:

Q⃗N := D⃗
− 1

2
e W

1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e

L⃗N := I − Q⃗N . (9)

To the best of our knowledge, the Directed Line Graph Laplacian has not been explored in the
existing literature.

To better understand how L⃗N encodes the directionality of H⃗ , we illustrate its definition in scalar
form for a pair of hyperedges i, j ∈ E (which correspond to vertices in DLG(H⃗)):

L⃗N (ij) =


1−

∑
u∈i

wi

duδi
i = j

−

( ∑
u∈H(i)∩H(j)
∨u∈T (i)∩T (j)

w
1
2
i w

1
2
j

du
− i

∑
u∈H(i)∩T (j)

w
1
2
i w

1
2
j

du
+ i

∑
u∈T (i)∩H(j)

w
1
2
i w

1
2
j

du

)
1

δ
1
2
i

1

δ
1
2
j

i ̸= j

(10)

When i = j, we are in the self-loop part of the equation and L⃗N (ij) weights hyperedge i pro-
portionally to its weight wi and inversely proportionally to its density and the density of its nodes.
When i ̸= j, L⃗N (ij)’s value depends on the interactions between the hyperedges of H⃗ (which cor-
respond to the nodes of DLG(H⃗)). Let u ∈ V be a node and i, j ∈ E be two hyperedges in the
hypergraph H⃗ . If u belongs to the head set of both hyperedges (i.e., u ∈ H(i) ∩ H(j)) or to the
tail set of both (i.e., u ∈ T (i) ∩ T (j)), its contribution to the real part of LN (ij), ℜ(L⃗N (ij)), is
negative. For the undirected line graph associated with an undirected hypergraph, this is the only
contribution, consistent with the behavior of LN (as described in equation 6). If u takes opposite

2The line graph introduced in Bretto (2013) is defined exclusively for unweighted directed hypergraphs.
Moreover, edges in that line graph are established only between hyperedges (i.e., nodes of the line graph) that
share vertices under specific head–tail configurations. As a consequence, the construction neglects head–head
and tail–tail relationships, which are instead encompassed by our definition.

3Notice that this matrix underlies a 2-uniform graph with complex-valued edge weights; to our knowledge,
the literature offers no Laplacian matrix suitable for such a case besides the Laplacian operator we propose in
this paper.
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roles in hyperedges i and j, i.e, it belongs to the head set in i and to the tail set in j or vice versa,
it contributes to the imaginary part of LN , ℑ(L⃗N (ij), negatively when u ∈ H(i) ∩ T (j), and pos-
itively when u ∈ T (i) ∩H(j). Consequently, ℑ(L⃗N (ij)) coincides with the net contribution of all
the vertices that An example illustrating the construction of L⃗N for a directed line graph associated
with a weighted directed hypergraph is provided in Appendix I. Let us point out that the behavior
of Directed Line Graph Laplacian does not coincide (to the best of our knowledge) with any of the
Laplacian matrices previously proposed in literature (see Appendix C for more details).

With the following theorem, we show that L⃗N is a generalization of LN (defined in equation 6) from
the undirected to the directed case:
Theorem 1. If H⃗ is undirected (i.e., H⃗ = H), L⃗N = LN and Q⃗N = QN holds.

The Directed Line Graph Laplacian enjoys several properties. First, to be able to adopt our Lapla-
cian within a convolution operator in line with Kipf &Welling (2017) and other literature ap-
proaches Zhang et al. (2021); Fiorini et al. (2023), we must show that our Laplacian is positive
semidefinite. For this, we derive the expression of the 2-Dirichlet energy function associated with
it. Such a function coincides with the Euclidean norm ||x||2L⃗N

induced by L⃗N for a signal x ∈ Cm:

Theorem 2. Letting 1 be the indicator function, the Euclidean norm induced by L⃗N of a complex-
valued signal x = a+ ib ∈ Cm with a component per hyperedge in E reads:

1

2

∑
u∈V

1

du

∑
i,j∈E

[(
(ψai − ϕaj)

2
+ (ψbi − ϕbj)

2
)
1′(u)

+
(
(ψai − ϕbj)

2
+ (ϕaj + ψbi)

2
)
1′′(u) +

(
(ψai + ϕbj)

2
+ (ϕaj − ψbi)

2
)
1′′′(u)

]
, (11)

where ψ =
wj

δi

1
2 , ϕ = wi

δj

1
2 , 1

′
(u) = 1u∈H(i)∩H(j)∨u∈T (i)∩T (j), 1

′′
(u) = 1u∈H(i)∩T (j), and

1
′′′
(u) = 1u∈T (i)∩H(j). Since the function in Theorem 2 is a real-valued sum of squares, we

deduce the following spectral property for L⃗N :

Corollary 3. L⃗N is positive semidefinite.

Next, we show next that Q⃗N has a nonnegative spectrum:

Theorem 4. Q⃗N is positive semidefinite.

By applying Corollary 3 and Theorem 4, we derive upper bounds on the spectra of L⃗N and Q⃗N :

Corollary 5. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

The proofs of the theorems and corollaries of this section can be found in Appendix C.

4 DIRECTED LINE GRAPH NETWORK (DLGNET)

The properties of the proposed Laplacian make it possible to derive a well-defined spectral con-
volution operator from it. In this work, this operator is integrated into the Directed Line Graph
Network (DLGNet). Specifically, based on equation 4, by setting L = L⃗N , the convolution operator
is defined as Ŷ x = θ0I+θ1L⃗N . The advantage of adopting two parameters θ0, θ1 within DLGNet’s
localized filter is explained by the following result:

Proposition 6. The convolution operator derived from equation 4 by setting L = L⃗N with paramet-
ers θ0 and θ1 is the same as the convolution operator obtained by using L = Q⃗N with parameters
redefined as θ′0 = θ0 + θ1 and θ′1 = −θ1.

This shows that, by selecting appropriate values for θ0 and θ1, DLGNet can leverage either L⃗N or
Q⃗N as convolution operator to maximize the performance on the task at hand.

5
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We define X ∈ Cm×c0 as a c0-dimensional graph signal (a graph signal with c0 input channels),
which we compactly represent as a matrix. This matrix serves as the feature matrix of the hyperedges
of H⃗ which we construct from the feature matrix of the nodes X ′ ∈ Cn×c0 of H⃗ . Specifically,
inspired by the operation used in the reduction component for graph pooling (Grattarola et al., 2022),
we define the feature matrix for the vertices of DLG(H⃗) as X = B⃗∗X ′. This approach combines
features through summation, based on the topology defined by B⃗. See Appendix F for more details.

In our network, the scalar parameters θ0 and θ1 are subsumed by two operators Θ0,Θ1 ∈ Cc0×c

which we use to carry out a linear transformation on the feature matrixX . A similar transformation,
which can also increase or decrease the number of channels of X , is adopted in other GNNs such as
MagNet (Zhang et al., 2021). DLGNet features ℓ convolutional layers. The output Z ∈ Cm×c′ of
any such layer adheres to the following equation:

Z(X) = ϕ
(
IXΘ0 + L⃗NXΘ1

)
, (12)

where ϕ is the activation function. Following Fiorini et al. (2023; 2024), DLGNet employs a
complex-valued ReLU where ϕ(z) = z if ℜ(z) ≥ 0 and ϕ(z) = 0 otherwise, with z ∈ C.
DLGNet also utilizes a residual connection for every convolutional layer except the first one, a
choice which helps prevent oversmoothing and has been proven to be helpful in a number of
works, including He et al. (2016); Kipf &Welling (2017). After the convolutional layers, follow-
ing Zhang et al. (2021), we apply an unwind operation where we transform Z(X) ∈ Cm×c′ into
(ℜ(Z(X))||ℑ(Z(X))) ∈ Rm×2c′ , where || is the concatenation operator. To obtain the final results,
DLGNet features S linear layers, with the last one employing a Softmax activation function.

For more information on the inference complexity of DLGNet and its expressive power, see Ap-
pendix D.

5 EXPERIMENTAL RESULTS

In this section, we present three real-world datasets, the baseline models, and the results on the
reaction classification task.

Datasets. We test DLGNet on common organic chemistry reaction classes, namely various chem-
ical transformations that are fundamental to both research and industrial chemistry. Those include
molecular rearrangements, such as the interconversion (substitution) or the elimination of molecu-
lar substituents, as well as the introduction of specific functional groups (e.g., acyl, alkyl, or aryl
groups) in a chemical compound. Other important reaction classes involve the formation of cer-
tain bond-types (e.g., carbon-carbon: C–C) or structures (e.g., heterocyclic compounds). We rely
on a standard dataset (Dataset-1) and additionally construct two new ones (Dataset-2 and
Dataset-3)—see Figure 3 in Appendix E. Further details about the datasets can be found in Ap-
pendix E.

Dataset-1. As the main source of data, we use the reactions from USPTO granted patents (Lugo-
Martinez et al., 2021), which is the most widely used dataset for retrosynthesis problems and con-
tains about 480K reactions. After removing duplicates and erroneous reactions, we select a subset,
namely Dataset-1, comprising 50K atom-mapped reactions belonging to 10 different classes. An
example component from Dataset-1 is reported in Figure 3 (Appendix E), left upper panel.

Dataset-2. This dataset is the result of the merging of data from five different sources and contains
5300 reactions. It presents a smaller number of reaction types, but a larger variety of substituents
and reaction conditions, such as the presence of solvent or catalyst, hence providing additional
complexity on some specific classes for the model to predict. Figure 3, upper right panel, illustrates
an example from it. Given that some elements are shared across the data sources, we combine them
into three major classes.

Dataset-3. Since the two datasets listed so far only include single-product reactions, in order to test
the model on a highly complex task we add a third collection, Dataset-3, comprised of double-
product bimolecular nucleophilic substitution (SN2) and triple-product bimolecular elimination (E2)
reaction classes, extracted from von Rudorff et al. (2020) and totaling 649 competitive reactions. A
schematic representation of Dataset-3’s elements is reported in Figure 3, lower panel.

6
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Features. Each node in the hypergraph corresponds to a molecule. To effectively represent molecu-
lar characteristics, we assigned specific features to each node. Across the three datasets, we employ
the Morgan Fingerprints (MFs) Rogers &Hahn (2010) as features. MFs are among the most widely
used molecular descriptors, designed to encode a molecule by identifying the presence or absence
of specific substructures (fragments) within its molecular graph. The algorithm iteratively updates
the representation of each atom based on its local chemical environment, considering neighboring
atoms within a predefined radius. A radius of r indicates that structural information up to r bonds
away from each atom is incorporated into the final fingerprint representation.

Baselines. We employ baselines from two main groups: HNNs that only handle undirected hy-
pergraphs and HNNs which are specifically designed for directed hypergraphs. Similar to GNNs,
HNNs are either spatial- or spectral-based. Spatial-based HNNs treat the convolution operator as a
localized aggregation function (Dong et al., 2020). On the other hand, spectral-based HNNs define
the convolution operator (based on graph signal processing and graph Fourier transforms) as a func-
tion of the eigenvalue decomposition of the Laplacian matrix associated with the hypergraph Feng
et al. (2019).

In the spectral-based category, methods such as HGNN (Feng et al., 2019), HCHA in Dong et al.
(2020), and HGNN+ (Gao et al., 2022) are analogous to GNNs applied to clique expansions of hy-
pergraphs. For spatial-based methods, HNNs such as HNHN (Dong et al., 2020), UniGCNII (Huang
&Yang, 2021), HyperDN (Tudisco et al., 2021), LEGCN Yang et al. (2022), as well as set-based
models (Chien et al., 2021), AllDeepSets and AllSetTransformer, incorporate hyperedge features
and employ a message-passing framework, and can be interpreted as GNNs applied to the star ex-
pansion graph. Additionally, ED-HNN (Wang et al., 2023a) leverages gradient diffusion processes
to generalize across a broad class of hypergraph neural networks, while PhenomNN (Wang et al.,
2023b) introduces a framework based on hypergraph-regularized energy functions.

In the context of directed HNNs, we consider two state-of-the-art models: DHM (Zhao et al., 2024)
and DHRL (Ma et al., 2024). The first one, DHM, encodes high-order information in directed
hypergraphs and captures the directional information of directed hyperedges through an attention
mechanism and a directed hypergraph momentum encoder. The second method, DHRL, approx-
imates the Laplacian of the directed hypergraph and formulates the convolution operation on this
directed hypergraph structure. Differently from these baselines, the proposed DLGNet is a spectral-
based GCN that leverages the Directed Line Graph Laplacian and convolves on the directed line
graph derived from the directed hypergraph (see Section 3). Further details on the computational are
reported in the Appendix F.

5.1 EXPERIMENTAL DETAILS

The 13 state-of-the-art baseline methods we consider have been adapted to address the hyperedge
classification task. This adaptation is necessary to adjust the output dimensionality—specifically,
through a pooling operation—to match that of the hyperedges. This adaptation follows a stand-
ardized mechanism across all methods, which is derived from DLGNet. Specifically, it involves
inserting the linear feature transfer operator, X = B⃗∗X ′, as described in Section 3 (with further
details provided in Appendix F). This operator is applied downstream of the convolution block and
is followed by ℓ linear layers.

The hyperparameters of these baselines and of our proposed model are selected via grid search (see
Appendix F). The datasets are split into 50% for training, 25% for validation, and 25% for testing.
The experiments are conducted with 5 random data splits and the average F1-score along with the
standard deviation across the splits is reported. We choose the F1-score as evaluation metric due to
the class imbalance naturally present in the datasets. Throughout the tables contained in this section,
the best results are reported in boldface and the second best are underlined. The datasets and code
we used are available on GitHub (see Appendix A).

5.2 RESULTS

Quantitative. The F1-score along with the relative standard deviation across different methods,
datasets, and folds is presented in Table 1. The results show that, across the three datasets, DLGNet
achieves an average additive performance improvement over the best-performing competitor of
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Dataset-1 Class 1: ARYLATION

aryl group C – N bond

+ HBr

Dataset-1 Class 4: HETEROCYCLE FORMATION

cycle

open chain

+ H2O

Dataset-1 Class 9: FUNCTIONAL GROUP INTERCONVERSION

carboxyl
group

carbonyl
group

ester group
alcohol
group

Dataset-1 Class 7: REDUCTION

+ CO

reactant main product

reactant main product reactants

reactant main product

main product

Figure 2: Ball-and-stick 3D model of Dataset-1 mislabeled pairs of reaction classes. Color
code: grey for carbon, red for oxygen, blue for nitrogen, purple for iodine, green for chlorine, light
green for fluorine, brown for bromide, and white for hydrogen. (Left panel, upper): Reduction
from a ester to an alcohol substituent on a 6-carbon atoms ring. (Left panel, lower): Functional
group interconversion from carboxyl to carbonyl group in the analog hexagonal structure. (Right
panel, upper): arylation reaction between an amine compound and a aryl halide, yielding a C–N
bond in the final product. (Right panel, lower): heterocycle formation via amide intramolecular
condensation, producing a hexagonal ring containing a heteroatom (nitrogen).

approximately 2.95 percentage points. In terms of Relative Percentage Difference (RPD)4, we
have an average RPD improvement of 2.91%. DLGNet achieves the largest performance gain on
Dataset-2, with a relative percentage difference (RPD) improvement of approximately 4.21%
and an average absolute improvement of 4.31 percentage points over the second-best competitor.
HNN-based methods for undirected hypergraphs underperform on two out of three datasets com-
pared to approaches specifically designed for directed hypergraphs, such as DHM and DHRL. Not-
ably, our proposed DLGNet, which applies convolutions directly on the DLG, achieves superior
performance, outperforming all competitors.

Table 1: Mean F1-score and standard deviation obtained on the hyperedge classification task.
Topology Method Dataset-1 Dataset-2 Dataset-3

HGNN 21.86 ± 1.52 79.89 ± 3.97 55.72 ± 5.89
HCHA/HGNN+ 21.26 ± 0.69 80.22 ± 3.91 64.70 ± 4.16
HCHA w/ Attention 21.86 ± 1.52 34.91 ± 1.21 39.33 ± 3.69

Hypergraph

HNHN 14.35 ± 0.24 60.95 ± 14.8 41.49 ± 4.36
UniGCNII 14.33 ± 0.26 72.58 ± 0.96 41.64 ± 4.39
HyperND 13.96 ± 0.29 75.69 ± 0.52 36.66 ± 5.40
AllDeepSets 14.37 ± 0.24 72.15 ± 1.02 37.79 ± 6.55
AllSetTransformer 14.37 ± 0.24 72.58 ± 1.06 37.62 ± 6.50
ED-HNN 14.35 ± 0.27 72.98 ± 1.81 37.82 ± 6.49
PhenomNN 14.34 ± 0.28 75.01 ± 1.23 40.11 ± 4.73

Directed Hypergraph DHM 46.04 ± 0.58 59.31 ± 4.04 68.10 ± 3.60
DHRL 58.15 ± 1.58 79.36 ± 3.94 99.27 ± 0.79

Directed-Line Graph DLGNet 60.55 ± 0.80 83.67 ± 3.41 99.75 ± 0.34

Qualitative. To gain deeper insights into the capability of DLGNet of classifying different reaction
types, we analyze the confusion matrices for Dataset-1 and Dataset-2. The results of this ana-
lysis are presented in Figure 4 and Figure 5 in Appendix H. The confusion matrix for Dataset-1
reveals that, while most of the classes are predicted with high accuracy, e.g., Protection and Func-
tional group addition reactions (accuracy of 88% and 77%, respectively), some are predicted not as
well, e.g., Functional group interconversion (41%). To better understand this behavior, we conduc-
ted a thorough inspection of the structural features of Dataset-1’s components, selecting several

4The RPD of two values P1, P2 is the percentage ratio of their difference to their average, i.e., |P1 −
P2|/P1+P2

2
%.
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Table 2: Ablation study. Average F1-score and standard deviation are reported.
Method Dataset-1 Dataset-2 Dataset-3

DLGNet 60.55 ± 0.80 83.67 ± 3.41 99.75 ± 0.34
DLGNet w/o dir 52.07 ± 1.61 70.19 ± 0.65 81.65 ± 8.39
DLGNet w/ Signless Laplacian 60.24 ± 0.36 82.86 ± 1.96 99.75 ± 0.55
DLGNet w/ Θ0 = 0 53.82 ± 0.74 75.68 ± 3.59 91.45 ± 2.36
DLGNet w/o skip-conn 56.38 ± 3.02 80.63 ± 3.54 99.63 ± 0.34

elements from pairs of classes among which the model yields the highest uncertainty. Two example
cases are reported in Figure 2. Overall, our analysis reveals that the pair of classes that are subject
to the higher degree of confusion are, structurally, highly similar, which well explains the poorer
performance that DLGNet achieves on them, as we illustrate in the following. The left panel illus-
trates the mislabeling of Class 9 (Functional group interconversions, correctly predicted in 41% of
the cases) with Class 7 (Reductions, incorrectly predicted in 14% of the cases), while the right panel
presents an example of Class 4 (Heterocycle formations, correctly predicted in 44% of the cases)
with Class 1 (Arylations, incorrectly predicted 30% of the cases). Notably, in these examples, both
the main backbone structure of the molecules and the substituent groups (the segments affected by
the reactive process, highlighted in the figure) exhibit a high degree of similarity between the two
classes. In the left panel, the reactants of both classes present a 6-carbon ring (in grey) as well as
a iodine substituent (in purple). The atoms composing the highlighted groups are also of the same
types. On the other hand, in the right panel, the majority of the constituent parts of the products are
in common between the two classes. Specifically, despite the outcome of Class 4 is the formation of
a heterocycle, i.e., a hexagonal ring containing a heteroatom (nitrogen, in blue), such a geometrical
feature is also present in Class 1 arylation product, as the resulting molecule presents two hetero-
cycles rings. Similar considerations apply to the incorrect labeling of Dataset-2 N-arylation sub
classes, where the main difference between the reactants lies in the nature of the aryl halide that par-
ticipates in the coupling reaction. Overall, our model demonstrates strong predictive performance
across the majority of the classes, although a few, particularly those with shared elements, remain
challenging to differentiate. Nevertheless, we are confident that DLGNet will prove highly valuable
to the chemistry community, allowing for the categorization of existing data sources as well as for
planning new synthetic routes.

Ablation study. Table 2 presents the results of an ablation study carried out on DLGNet to assess
the importance of directionality in DLGNet’s line graph. To do this, we test DLGNet using an
undirected line graph (DLGNet w/o dir) and demonstrate that DLGNet consistently outperforms it
on all three data sets. This indicates that directionality is crucial in solving the chemical reaction
classification task. Focusing on equation 12, we test DLGNet under two conditions: i) using Q⃗N

instead of L⃗N (DLGNet w/ Signless Laplacian), and ii) setting Θ0 = 0 (DLGNet w/ Θ0 = 0),
thus nullifying the first term in equation 12. The first comparison shows identical results across all
datasets, thus providing a computational confirmation of the results of Proposition 6, while DLGNet
w/ Θ0 = 0 performs worse. Finally, we assess the architectural choice related to the incorporation
of skip connections. While DLGNet without skip connections (DLGNet w/out skip-conn) exhibits
a slight drop in performance, the results remain close to those of the original architecture.

6 CONCLUSIONS

In this paper, we tackled the molecular reaction classification problem as a hyperedge classification
problem by introducing the Directed Line Graph Network (DLGNet), the first spectral GNN spe-
cifically designed to operate on directed line graphs associated with directed hypergraphs. DLGNet
leverages a novel complex-valued Laplacian matrix, the Directed Line Graph Laplacian, which is
a Hermitian matrix encoding the interactions among the hyperedges of a hypergraph using com-
plex numbers. This formulation enables the natural representation of both directed and undirec-
ted relationships between the hyperedges, capturing rich structural information. Through extensive
evaluation on the chemical reaction classification problem using three real-world datasets, we have
demonstrated the consistent superiority of DLGNet. Through an ablation study, we demonstrated
the relevance of encoding directional information via the directed line graph.
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A CODE REPOSITORY AND LICENSING

The code developed for this research work is available at https://anonymous.4open.
science/r/HyperedgeClassification-2E63 and freely distributed under the Apache
2.0 license.5 code for the baselines used in the experimental analysis is available at https://
github.com/Graph-COM/ED-HNN, https://github.com/yxzwang/PhenomNN and
https://github.com/WBZhao98/DHMConv under the MIT license.6

B DERIVATION OF THE CONVOLUTION OPERATOR a là KIPF&WELLING

We assume that L admits an eigenvalue decomposition L = UΛU∗, where U ∈ Cn×n represents
(in its columns) the eigenvectors, U∗ is its conjugate transpose, and Λ ∈ Rn×n is the diagonal
matrix containing the eigenvalues. Let x ∈ Cn be a graph signal, i.e., a complex-valued function
x : V → Cn of the vertices of H . We define x̂ = F(x) = U∗x as the graph Fourier transform
of x and F−1(x̂) = Ux̂ its inverse transform. The convolution y ⊛ x between x and another
graph signal y ∈ Cn, acting as a filter, in the vertex space is defined in the frequency space as
y ⊛ x = Udiag(U∗y)U∗x. Letting Ŷ := UĜU∗ with Ĝ := diag(U∗y), we can write y ⊛ x as the
linear operator Ŷ x. See Shuman et al. (2013) for more details.

In the context of GNNs, explicitly learning y as a non-parametric filter presents two significant
limitations. Firstly, computing the eigenvalue decomposition of L can be computationally too ex-
pensive (Kipf &Welling, 2017). Secondly, explicitly learning y requires a number of parameters
proportional to the input size, which becomes inefficient for high-dimensional tasks (Defferrard
et al., 2016). To address these issues, the GNN literature commonly employs filters where the graph
Fourier transform is approximated as a degree-K polynomial of Λ, with a small K for computa-
tional efficiency. For further details, we refer the reader to Kipf &Welling (2017); Defferrard et al.
(2016); Huang et al. (2024).

This way, we obtain a so-called localized filter, thanks to which the output (i.e., filtered) signal at a
vertex u ∈ V is a linear combination of the input signals within K edges of u (Shuman et al., 2013).
By employing various polynomial filters and setting K = 1 (as virtually in the the whole of the
GCN literature Kipf &Welling (2017); Zhang et al. (2021); Fiorini et al. (2023)), such as Chebyshev
polynomials as in Hammond et al. (2011); Kipf &Welling (2017) or power monomials as used

5https://www.apache.org/licenses/LICENSE-2.0
6https://choosealicense.com/licenses/mit/
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by Singh &Chen (2022), one obtains a parametric family of linear operators with two learnable
parameters, θ0 and θ1: 7

Ŷ := θ0I + θ1L.

C PROPERTIES OF OUR PROPOSED LAPLACIAN

This section contains the proofs of the theorems and corollaries reported in the main paper.

Theorem 1. If H⃗ is undirected (i.e., H⃗ = H), L⃗N = LN and Q⃗N = QN holds.

Proof. Since H = (V,E) is an undirected hypergraph, B⃗ is binary and only takes values 0 and 1
(rather than being ternary and taking values 0, 1,−i), defining an undirected line graph L(H). In
particular, for each edge e ∈ E we have B⃗ue = 1 if either u ∈ H(e) or u ∈ T (e) and B⃗ue = 0

otherwise. Consequently, the directed incident matrix B⃗ is identical to the non-directed incidence
matrix B, i.e., B⃗ = B. Thus, by construction, L⃗N = LN and Q⃗N = QN .

Theorem 2. Letting 1 be the indicator function, the Euclidean norm induced by L⃗N of a complex-
valued signal x = a+ ib ∈ Cm with a component per hyperedge in E reads:

1

2

∑
u∈V

1

du

∑
i,j∈E

[(
(ψai − ϕaj)

2
+ (ψbi − ϕbj)

2
)
1′(u)

+
(
(ψai − ϕbj)

2
+ (ϕaj + ψbi)

2
)
1′′(u) +

(
(ψai + ϕbj)

2
+ (ϕaj − ψbi)

2
)
1′′′(u)

]
, (13)

Proof. By definition, we have

x∗L⃗Nx = x∗Ix− x∗Q⃗Nx = x∗Ix− x∗D⃗
− 1

2
e W

1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e .

Scalarly, the expression reads

∑
i∈E

x∗i xi −
∑
i,j∈E

∑
u∈V

1

du

w
1
2
i B⃗

∗
uiB⃗ujw

1
2
j

δ
1
2
i δ

1
2
j

x∗i xj ,

where
∑

i,j∈E indicates the sum over all ordered pairs i, j in E, including those where i = j.
W.l.o.g., we can swap the order of the sums in the second term, obtaining:

∑
i∈E

x∗i xi −
∑
u∈V

∑
i,j∈E

1

du

w
1
2
i B⃗

∗
uiB⃗ujw

1
2
j

δ
1
2
i δ

1
2
j

x∗i xj .

Due to QN being Hermitian, QN + Q∗
N = 2QN holds. Thus, substituting 1

2 (QN + Q∗
N ) for QN ,

we can rewrite the second term as

−1

2

∑
u∈V

1

du

∑
i,j∈E

w
1
2
i

B⃗∗
uiB⃗uj

x∗i xj

δ
1
2
i δ

1
2
j

+ B⃗∗
ujB⃗ui

x∗jxi

δ
1
2
j δ

1
2
i

w
1
2
j .

Next, we show that the following holds for the first term:∑
i∈E

x∗i xi =
∑
u∈V

1

du

∑
i,j∈E:u∈i∧u∈j

wj
x∗i xi
δi

.

7Following w.l.o.g. Singh &Chen (2022), we employ the approximation Ĝ =
∑K

k=0 θkΛ
k, from which we

deduce Y x = UĜU∗x = U(
∑K

k=0 θkΛ
k)U∗x =

∑K
k=0 θk(UΛkU∗)x =

∑K
k=0 θkL

kx.
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We show this by showing how to turn the right-hand side into the left-hand side. First, we pre-pone
the sum over i in the right-hand side, obtaining:

∑
i∈E

∑
u∈V

1

du

∑
j∈E:u∈j

wj
x∗i xi
δi

 .

Then, we bring 1
δi

and x∗i xi outside of the inner summation, which leads to the following expression

=
∑
i∈E

x∗i xi
1

δi

∑
u∈V

1

du

∑
j∈E:u∈j

wj︸ ︷︷ ︸
=1︸ ︷︷ ︸

=1

.

Following the calculations reported as underbraces, we deduce that the coefficient that multiplies
x∗i xj is equal to 1, concluding this part of the proof.

As we did for the second term, we now double the summation in the first term and compensate for
it with a factor of 1

2 , obtaining:

1

2

∑
u∈V

1

du

∑
i,j∈E:u∈i∧u∈j

(
wj
x∗i xi
δi

+ wi

x∗jxj

δj

)
.

Looking back at both terms, we have the expression:

1

2

∑
u∈V

1

du

∑
i,j∈E:u∈i∧u∈j

(
wj
x∗i xi
δi

+ wi

x∗jxj

δj

)
−1

2

∑
u∈V

1

du

∑
i,j∈E

w
1
2
i

B⃗∗
uiB⃗uj

x∗i xj

δ
1
2
i δ

1
2
j

+ B⃗∗
ujB⃗ui

x∗jxi

δ
1
2
j δ

1
2
i

w
1
2
j .

After rewriting the second summation in the second term as
∑

i,j∈E:u∈i∧∈j (this is w.l.o.g. due to
the summand being 0 if either u /∈ i or u /∈ i), we compactly rewrite the whole expression as

1

2

∑
u∈V

1

du

∑
i,j∈E:u∈i∧u∈j

(
wj
x∗i xi
δi

+ wi

x∗jxj

δj
− w

1
2
i w

1
2
j B⃗

∗
uiB⃗uj

x∗i xj

δ
1
2
i δ

1
2
j

− w
1
2
i w

1
2
j B⃗

∗
ujB⃗ui

x∗jxi

δ
1
2
j δ

1
2
i

)
.

Now, we proceed by analyzing the three possible cases for the summand.

Case 1.a: u ∈ H(i) ∩H(j)⇔ B⃗ui = 1, B⃗uj = 1. We have B⃗∗
uiB⃗uj = B⃗∗

ujB⃗ui = 1.

Case 1.b: u ∈ T (i) ∩ T (j) ⇔ B⃗ui = −i, B⃗uj = −i. We have B⃗∗
uiB⃗uj = B⃗∗

ujB⃗ui = (−i)∗(−i) =
(−i)(i) = 1.

In both cases, we have:

wj
x∗i xi
δi

+ wi

x∗jxj

δj
− w

1
2
i w

1
2
j

x∗i xj

δ
1
2
i δ

1
2
j

− w
1
2
i w

1
2
j

x∗jxi

δ
1
2
j δ

1
2
i

=

w 1
2
j xi

δ
1
2
i

− w
1
2
i xj

δ
1
2
j

∗w 1
2
j xi

δ
1
2
i

− w
1
2
i xj

δ
1
2
j

 .

Letting xi = ai + ibi and xj = aj + ibj , this expression boils down tow 1
2
j ai

δ
1
2
i

− w
1
2
i aj

δ
1
2
j

2

+

w 1
2
j bi

δ
1
2
i

− w
1
2
i bj

δ
1
2
j

2

.

Case 2.a: u ∈ H(i) ∩ T (j) ⇔ B̄(u, i) = 1, B̄(u, j) = −i. We have B̄(u, i)∗B̄(u, j) = (1)∗(−i) =
−i and B̄(u, j)∗B̄(u, i) = (−i)∗(1) = i. In this case, we have:

wj
x∗i xi
δi

+ wi

x∗jxj

δj
+ iw

1
2
i w

1
2
j

x∗i xj

δ
1
2
i δ

1
2
j

− iw
1
2
i w

1
2
j

x∗jxi

δ
1
2
j δ

1
2
i

.
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Letting xi = ai + ibi and xj = aj + ibj , this expression readsw 1
2
j ai

δ
1
2
i

− w
1
2
i bj

δ
1
2
j

2

+

w 1
2
i aj

δ
1
2
j

+
w

1
2
j bi

δ
1
2
i

2

.

Case 2.b: u ∈ T (i)∩H(j)⇔ B̄(u, i) = −i, B̄(u, j) = 1. We have B̄(u, i)∗B̄(u, j) = (−i)∗(1) = i
and B̄(u, j)∗B̄(u, i) = (1)∗(−i) = −i. In this case, we have:

wj
x∗i xi
δi

+ wi

x∗jxj

δj
− iw

1
2
i w

1
2
j

x∗i xj

δ
1
2
i δ

1
2
j

+ iw
1
2
i w

1
2
j

x∗jxi

δ
1
2
j δ

1
2
i

.

Letting xi = ai + ibi and xj = aj + ibj , this latter expression readsw 1
2
j ai

δ
1
2
i

+
w

1
2
i bj

δ
1
2
j

2

+

w 1
2
i aj

δ
1
2
j

−
w

1
2
j bi

δ
1
2
i

2

.

The final equation reported in the statement of the theorem is obtained by combining the four cases
we just analyzed.

Corollary 3. L⃗N is positive semidefinite.

Proof. Since L⃗N is Hermitian, it can be diagonalized as UΛU∗ for some U ∈ Cn×n and Λ ∈ Rn×n,
where Λ is diagonal and real. We have x∗L⃗Nx = x∗UΛU∗x = y∗Λy with y = U∗x. Since
Λ is diagonal, we have y∗Λy =

∑
u∈V λuy

2
u. Thanks to Theorem 2, the quadratic form x∗L⃗Nx

associated with L⃗N is a sum of squares of real values and, hence, nonnegative. Combined with
x∗L⃗Nx =

∑
u∈L(V ) λuy

2
u, we deduce λu ≥ 0 for all u ∈ L(V ), where L(V ) is the vertex set of

DLG(H⃗).

Theorem 4. Q⃗N is positive semidefinite.

Proof. Q⃗N is positive semidefinite by construction. Indeed, since, by definition,
Q⃗N = D⃗

− 1
2

e W
1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e , the quadratic form x∗Q⃗Nx satisfies the relationship

x∗Q⃗Nx = x∗D⃗
− 1

2
e W

1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e x = (D⃗−1
v B⃗W

1
2 D⃗

− 1
2

e x)∗(D⃗−1
v B⃗W

1
2 D⃗

− 1
2

e x) =

||(D⃗−1
v B⃗W

1
2 D⃗

− 1
2

e )x||2 ≥ 0.

Corollary 5. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

Proof. λmax(L⃗N ) ≤ 1 holds if and only if L⃗N − I ⪯ 0. Since L⃗N = I − Q⃗N holds by definition,
we need to prove −Q⃗N ⪯ 0. This is the case due to Theorem 4.

Similarly, λmax(Q⃗N ) ≤ 1 holds if and only if Q⃗N −I ⪯ 0. Since Q⃗N = I− L⃗N holds by definition,
we need to prove −L⃗N ⪯ 0. This is the case due to Theorem 3.

Proposition 6. The convolution operator derived from equation 4 by setting L = L⃗N with paramet-
ers θ0 and θ1 is the same as the convolution operator obtained by using L = Q⃗N with parameters
redefined as θ′0 = θ0 + θ1 and θ′1 = −θ1.

Proof. Consider the two operators θ0I + θ1L⃗N and θ′0I + θ′1Q⃗N . Since L⃗N = I − Q⃗N , the first
operator reads: θ0I + θ1(I − Q⃗N ). This is rewritten as (θ0+ θ1)I − θ1Q⃗N . By operating the choice
θ′0 = θ0 + θ1 and θ1 = −θ′1, the second operator is obtained.
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D COMPLEXITY AND EXPRESSIVENESS OF DLGNET

Let us assume (w.l.o.g.) that each of DLGNet’s convolutional layers has c input and output channels,
while the last layer has c input and c′ output channels (c′ is also the number of input channel to the
linear layers). Let d be number of output channel of the last linear layer (where d is the number of
classes to be predicted). With ℓ convolutional layers and S linear layers, DLGNet’s complexity is
O(mnc0) +O(ℓ(m2c+mc2) +mc+ (S − 1)(mc′2) +mc′d+md). Assuming O(c) = O(c′) =
O(d) = c̄, we have a complexity of O(ℓ(m2c̄) + (ℓ + S)(mc̄2)). This shows that DLGNet has a
quadratic complexity w.r.t. the number of hyperpedges m and the asymptotic number of channels c̄.

The detailed calculations for the (inference) complexity of DLGNet are as follows.

1. The Directed Line Graph Laplacian L⃗N is constructed in time O(m2n), where the factor
n is due to the need for computing the product between two columns of B⃗ (i.e., two rows
of B∗) to calculate each entry of L⃗N . After L⃗N has been computed, the convolution matrix
Ŷ ∈ Cm×m is constructed in time O(m2). Note that such a construction is carried out
entirely in pre-processing and is not required at inference time.

2. Constructing the feature matrix X = B⃗∗X ′ requires O(mnc0) elementary operations.

3. Each of the ℓ convolutional layers of DLGNet requires O(m2c+mc2 +mc) = O(m2c+
mc2) elementary operations across 3 steps. Let X l−1 be the input matrix to layer l =
1, . . . , ℓ. The operations that are carried out are the following ones.

(a) L⃗N is multiplied by the hyperedge-feature matrix X l−1 ∈ Cm×c, obtaining P l1 ∈
Cm×c in time O(m2c) (we assume, for simplicity, that matrix multiplications takes
cubic time);

(b) The matrices P l0 = IX l−1 = X l−1 and P l1 are multiplied by the weight matrices
Θ0,Θ1 ∈ Rc×c (respectively), obtaining the intermediate matrices P l01 , P l11 ∈ Cn×c

in time O(mc2) .
(c) The matrices P l01 and P l11 are additioned in time O(mc) to obtain P l2 .
(d) The activation function ϕ is applied component wise to P l2 in time O(mc), resulting

in the output matrix X l ∈ Cm×c of the l-th convolutional layer.

4. The unwind operator transforms Xℓ (the output of the last convolutional layer ℓ) into the
matrix U0 ∈ Rn×2c in linear time O(mc).

5. Call Us−1 the input matrix to each linear layer of index s = 1, . . . , S. The application
of the s-th linear layer to Us−1 ∈ Cm×c′ requires multiplying Us−1 by a weight matrix
Ms ∈ Cc′×c′ (where c′ is the number of channels from which and into which the feature
vector of each node is projected). This is done in time O(mc′2).

6. In the last linear layer of index S, the input matrix US−1 ∈ Rm×c′ is projected into the
output matrix O ∈ Rm×d in time O(nc′d).

7. The application of the Softmax activation function takes linear time O(md).

We deduce an overall complexity ofO(mnc0)+O(ℓ(m2c+mc2)+mc+(S−1)(mc′2)+mc′d+md).
AssumingO(c) = O(c′) = O(d) = c̄, such a complexity coincides withO(ℓ(m2c̄)+(ℓ+S)(mc̄2)).

First, notice that our proposed Directed Line Graph coincides with the standard line graph when it
is created starting from a hypergraph is 2-uniform and undirected. In such a case, it well-known
that, given two unweighted graphs G1, G2 and their line graphs L(G1), L(G2), it can either be that
G1 ≡WL G2 while L(G1) ̸≡WL L(G2) or viceversa, where ≡WL means ”equivalent under the
Weisfeiler-Leman test of the first order”. Therefore, even in the simplest case where the hypergraph
is unweighted and 2-uniform, there are graphs where the expressive power of DLGNet is higher than
that of a standard GCN as well as cases where its power is lower. Clearly, if we assume that the line
graph (and not the original graph) is the input to DLGNet, then DLGNet is at least as powerful as
the classical GCN due to the fact that their Laplacian operators, and thus their convolutional layers,
coincide.
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E FURTHER DETAILS ON THE DATASETS

Details on the datasets composition are reported in Tables 3, 4, 5. Most of the elements of
Dataset-1 belong to the first two classes, which concern the addition of functional groups to
a chemical compound: alkyl and aryl groups for Class 1 and acyl groups for Class 2, comprising
more than 17K species. Less populated classes involve specific chemical transformations, such as
Class 3 (C–C bond formation) which contains less than 1000 elements.

Dataset-2 presents solely three classes. The elements of the first class (C–C bond formation)
are extracted from two separate collections present in the Open Reaction Database (ORD) Pro-
ject (Kearnes et al., 2021). Those are the Reizman et al. (2016) data for the Pd-catalyzed Su-
zuki–Miyaura cross-coupling reactions and a vast collection of Pd-catalyzed imidazole-aryl coup-
ling reactions, via C-H arylation. The elements of Class 2 (N-arylation) includes data of Pd-
catalyzed N-arylation (Buchwald-Hartwig) reactions from the AstraZeneca ELN dataset, also gen-
erated from the ORD website. This class has been further divided in 3 sub-classes according to the
nature of the aryl halide used for the coupling. Finally, the third class contains an ORD collection of
data for amide bond formation processes. We have been able to extract sub-categories from two of
them. Those are Class 1 (C–C bond formation) and Class 2 (N-arylation processes) and contain two
and three sub-classes, respectively. The most populated class is Imidazole-aryl coupling, comprising
around 1500 elements belonging to the class of palladium-catalyzed imidazole C-H arylation. The
chemical diversity in this class is ensured by the use of 8 aryl bromides and 8 imidazole compounds.
Furthermore, in terms of reaction conditions, the collection presents 24 different monophosphine
ligands.

Unlike the previous ones, Dataset-3 has been assembled starting from competitive processes;
therefore it contains almost the same amount of elements (∼ 300) for the two classes: Bimolecular
nucleophilic substitution (SN2) and eliminations (E2). The reactants–which are in common between
SN2 and E2—are substituted alkane compounds and nucleophile agents. The substituents span
a range of electron donating and electron withdrawing effect strengths, including methyl, cyano,
amine, and nitro functional groups. The nucleophiles have been chosen either between halide or
hydrogen anions, while the molecular skeleton is ethane.

In Table 6, we present statistics on the Hypergraphs and Directed Line Graphs derived from the
three datasets. As shown in the table, it is highly unlikely that the graph convolutional layer reduces
to a linear layer due to the lack of neighboring nodes. On the contrary, each node is likely to have
neighboring connections.

Table 3: Distribution of the reactions in the Dataset-1.
Reaction class Reaction name Num Reactions

1 Heteroatom alkylation and arylation 15151
2 Acylation and related process 11896
3 C-C bond formation 909
4 Heterocycle formation 4614
5 Protections 1834
6 Deprotections 5662
7 Reductions 672
8 Oxidations 811
9 Functional group interconversion 8237
10 Functional group addition 230

F FURTHER DETAILS ON THE EXPERIMENTS

Hardware. The experiments were conducted on 2 different machines:

1. An Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with 380 GB RAM, equipped with an
NVIDIA Ampere A100 40GB.
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Table 4: Distribution of the reactions in the Dataset-2.
Reaction class Reaction name Num Reactions

1 C-C bond formation 1921
- Reizman Suzuki Cross-Coupling 385
- Imidazole-aryl coupling 1536

2 Heteroatom (N) arylation: 657
- Amine + Aryl bromide 278
- Amine + Aryl chloride 299
- Amine + Aryl iodide 80

3 Amide bond formation 960

Table 5: Distribution of reactions in the Dataset-3.
Reaction class Reaction name Num Reactions

1 Bimolecular nucleophilic substitution (SN2) 301
2 Bimolecular elimination (E2) 348

Table 6: Statistics on Hypergraphs and Directed Line Graphs
Dataset n |E| Density Vertex Degree

Dataset-1 100523 50016 0.10% 48.05
Dataset-2 956 3021 43.29% 1036.32
Dataset-3 670 649 73.03% 511.20

2. A 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz CPU with 64 GB RAM,
equipped with an NVIDIA RTX 4090 GPU.

Model Settings. We trained every learning model considered in this paper for up to 1000 epochs.
We adopted a learning rate of 5 · 10−3 and employed the optimization algorithm Adam with weight
decays equal to 5 · 10−4 (in order to avoid overfitting). We set the number of linear layers to 2, i.e.
ℓ = 2, for all the models.

We adopted a hyperparameter optimization procedure to identify the best set of parameters for each
model. In particular, the hyperparameter values are:

• For AllDeepSets and ED-HNN, the number of basic block is chosen in {1, 2, 4, 8}, the
number of MLPs per block in {1, 2}, the dimension of the hidden MLP (i.e., the number of
filters) in {64, 128, 256, 512}, and the classifier hidden dimension in {64, 128, 256}.

• For AllSetTransformer the number of basic block is chosen in {2, 4, 8}, the number of
MLPs per block in {1, 2}, the dimension of the hidden MLP in {64, 128, 256, 512}, the
classifier hidden dimension in {64, 128, 256}, and the number of heads in {1, 4, 8}.

• For UniGCNII, HGNN, HNHN, HCHA/HGNN+, LEGCN, and HCHA with the attention
mechanism, the number of basic blocks is chosen in {2, 4, 8} and the hidden dimension of
the MLP layer in {64, 128, 256, 512}.

• For HyperGCN, the number of basic blocks is chosen in {2, 4, 8}.

• For HyperND, the classifier hidden dimension is chosen in {64, 128, 256}.

• For PhenomNN, the number of basic blocks is chosen in {2, 4, 8}. We select four different
settings:

1. λ0 = 0.1, λ1 = 0.1 and prop step= 8,
2. λ0 = 0, λ1 = 50 and prop step= 16,
3. λ0 = 1, λ1 = 1 and prop step= 16,
4. λ0 = 0, λ1 = 20 and prop step= 16.
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Figure 3: (Upper panel, left): example from Dataset-1. C–C bond formation via reaction of
alkyne with alkyl halide; only bi-molecular reactant and main product are taken into account (any
byproduct is omitted). (Upper panel, right): example from Dataset-2. C–N bond formation via
Buchwald-Hartwig amination; apart from bi-molecular reactant (amine and aryl halide) and main
product, catalyst (palladium compound), solvent (dioxane) and base (sodium tert-butoxide) struc-
tures are also present. Chemical elements: carbon (C), nitrogen (N), oxygen (O), hydrogen (H),
chlorine (Cl), iodine (I), sodium (Na), phosphorus (P) and palladium (Pd). Single, double and triple
black lines: bonds between C atoms. H, T: Head and Tail of the directed hypergraph. (Lower
panel): schematic representation of Dataset-3 elements. Left side: reactants; right side: com-
petitive outcomes between bimolecular nucleophilic substitution (SN2) or bimolecular elimination
(E2). Thus, each element is composed either of a bi-molecular reactant and a bi-molecular product
(SN2 class), or a bi-molecular reactant and a tri-molecular product (E2 class). X and Y: leaving group
and nucleophile agent. Groups A-D: different substituents attached to the alkane carbon backbone
(black).

• For DHM and DHRL, the classifier hidden dimension is chosen in {64, 128, 256}.

• For DLGNet, the number of convolutional layers is chosen in {1, 2, 3}, the number of
filters in {64, 128, 256, 512}, and the classifier hidden dimension in {64, 128, 256}. We
tested DLGNet both with the input feature matrix X ∈ Cn×c where ℜ(X) = ℑ(X) ̸= 0
and with ℑ(X) = 0.

How to Transfer The Features. As mention in Section 4, a key aspect of our approach involves
transferring features from the nodes of the hypergraph to their corresponding hyperedges, i.e., the
nodes of the directed line graph. To clarify this mechanism, we provide a simple example. Consider
a directed hypergraph H⃗ = (V,E), where the vertex set is V = {u, v, c} and the hyperedge set
consists of E = {e1}. In H⃗ , we have H(e1) = {u, v} and T (e1) = {c}. Each vertex is assigned
a feature vector x′u, x

′
v, x

′
c = 1 and the hyperedge has a unit weight, i.e. we1 = 1. Recalling that

X = B∗X ′, the feature vector x1 of the hyperedge e1 is then calculated as:

x1 = B⃗∗
1u · xu + B⃗∗

1v · xv + B⃗∗
1c · xc = 2 + i.

In the case where H⃗ = H , i.e., when the hypergraph is undirected, we have B⃗∗ = B⊤. The feature
vector x1 of the hyperedge e1 is then calculated as:

x1 = B1u · xu +B1v · xv +B1c · xc = 3.

As illustrated by this example, in the specific case of a directed line graph, the feature vector can
feature both real and imaginary components, depending on the topology of the hypergraph encoded
by B⃗.
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Training times An overview of the training times for the various architectures considered in this
paper is reported in Table7.

Table 7: Comparison of the training times for various graph-based learning methods, also including
their number of parameters.

Method # Params Avg Time (s) Std Time (s) Avg Time (min:s)
HGNN 22,346 72.66 1.32 1min 12.66s
HCHA/HGNN+ 44,682 77.64 1.21 1min 17.64s
HCHA w/ Attention 179,742 141.50 0.54 2min 21.50s
HNHN 4,118,538 502.68 0.53 8min 22.68s
UniGCNII 175,754 134.49 0.50 2min 14.49s
AllDeepSets 4,200,750 436.68 0.50 7min 16.68s
AllSetTransformer 2,196,106 344.55 0.45 5min 44.55s
ED-HNN 2,052,426 263.91 0.46 4min 23.91s
Phenom 121,098 335.79 0.33 5min 35.79s

DHM 591,114 112.52 0.67 1min 52.52s
DHRL 262,218 104.99 0.64 1min 44.99s

DGLNet 3,264,330 383.54 0.50 6min 23.54s

G DIRECTED LINE GRAPH LAPLACIAN AND THE OTHER LAPLACIANS.

The Laplacian proposed in this work differs in several key aspects from existing Laplacians designed
to handle both directed and undirected edges in graphs, such as the Magnetic Laplacian (Lieb &Loss,
1993) and the Sign-Magnetic Laplacian (Fiorini et al., 2023). Specifically, our approach constructs
the Laplacian from a complex matrix A(DLG(H⃗)), as defined in Equation equation 8. The differ-
ence also extends to behavior: the Directed Line Graph Laplacian exhibits a unique characteristic,
as both its real and imaginary components can be nonzero simultaneously, as can be seen through
Equation equation 10. This is different from the case of the Sign-Magnetic Laplacian, which can
only have one of the two components different from zero at any given time, and also from the case
of the Magnetic Laplacian, which coincides with the Sign Magnetic Laplacian when q = 1

4 and the
graph has binary weights. Let us note that the Magnetic Laplacian can also have both components
different from zero, but such a behavior is influenced by both the edge weight and the value of q,
and may lead to the sign-pattern inconsistency described in Fiorini et al. (2023), which our proposed
Directed Line Graph Laplacian does not suffer from.

H CONFUSION MATRIX

We report the confusion matrices of Dataset-1 in Figure 4 and Dataset-2 in Figure 5. We can
extract some insights from these two matrices, in particular:

• Dataset-1. DLGNet achieves a maximum performance of 88% in classifying the Class
5 (Protections). However, its performance drops for Class 4 and Class 9 (Heterocycle
formations and Functional group interconversions), where it correctly predicts only 44%
and 41%, respectively.

• Dataset-2. DLGNet accurately classifies the sub-classes relative to the C–C bond
formations (Reizman Suzuki Cross-Coupling and Imidazole-aryl coupling), as well as the
Amide bond formations. On the other hand, the remaining three N-arylation sub-classes
are poorly discriminated. This behavior can likely be attributed to the fact that the former
are derived from different collections of Pd-catalyzed cross-coupling reactions, each ex-
hibiting distinct features in terms of participant molecules (e.g. imidazole compounds). In
contrast, all of the elements in the N-arylation classes share the same reaction mechanism
(Buchwald-Hartwig amination); this poses a greater challenge, which results in decreased
accuracy when predicting the correct class.
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Figure 4: Dataset-1 confusion matrix.

Figure 5: Dataset-2 confusion matrix.
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I FROM A DIRECTED HYPERGRAPH TO THE DIRECTED LINE GRAPH
LAPLACIAN

Figure 6: An example illustrating the transformation of a hypergraph (left) into its corresponding
directed line graph (right).

To illustrate the construction of the directed line graph and the associated Directed Line Graph
Laplacian, consider a directed hypergraph H⃗ = (V,E) where the vertex set is V = {a, b, c, d, e}
and the hyperedge set is E = {e1, e2, e3}. The incidence relationships are defined as follows:

• H(e1) = {b, c}, T (e1) = {a},

• H(e2) = {a, b}, T (e2) = {d},

• H(e3) = {e}, T (e3) = {d}.

Each hyperedge is assigned a unit weight (i.e., W = I). The cardinalities (densities) of the hy-
peredges are δe1 = 3, δe2 = 2, and δe3 = 2.

We construct DLG(H⃗) using the following matrices: the incidence matrix B⃗, its conjugate trans-
pose B⃗∗, the vertex degree matrix Dv , and the hyperedge degree matrix De. The incidence matrix
B⃗ and its conjugate transpose are:

B⃗ =


−i 1 0
1 1 0
1 0 0
0 −i −i
0 0 1

 B⃗∗ =

[
i 1 1 0 0
1 1 0 i 0
0 0 0 i 1

]
.

The vertex degree matrix Dv and the hyperedge degree matrix De are given by:

Dv =


2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

 De =

[
3 0 0
0 3 0
0 0 2

]
.

Using these matrices, the adjacency matrix A of the directed line graph DLG(H⃗) is:

A = B⃗∗B⃗ −De =

[
0 1 + i 0

1− i 0 1
0 1 0

]
. (14)
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By Definition 1, the directed line graph DLG(H⃗) has three vertices, corresponding to the hy-
peredges e1, e2, and e3 of the original hypergraph H⃗ . An edge exists between two vertices in
DLG(H⃗) if and only if their corresponding hyperedges in H⃗ are incident. In the specific example
(illustrated in Figure 6), DLG(H⃗) contains two edges, whose direction and weight are determined
by the adjacency matrix A (in equation 14). Without loss of generality, we consider the upper trian-
gular part of A to assign weights to the edges and define the directions: In the example considered,
one edge will be directed and have a weight equal to 1+ i (i.e., e1

1+i→ e2), while the other edge will
be undirected and have a weight equal to 1 (e2

1 e3).

Using the equation 9. We can calculate the proposed Directed Line Graph Laplacian L⃗N as follows:

L⃗N = I − Q⃗N := D⃗
− 1

2
e B⃗∗D⃗−1

v B⃗D⃗
− 1

2
e =

[
0.333 −0.167− 167i 0

−0.167 + 0.167i 0.5 −0.204
0 −0.204 0.25

]
.

By inspecting L⃗N, one can observe that it encodes the elements of the hypergraph H⃗ in the following
way:

1. The real components of off-diagonal entries in L⃗N encode the fact that, in the underlying
hypergraph H⃗ , the vertex belongs to the head set or tail set simultaneously in two different
hyperedges. For example, L⃗N(2, 3) = −0.204 indicates that H(e2) ∩ H(e3) ̸= ∅ or
T (e2) ∩ T (e3) ̸= ∅. In this specific case, T (e2) ∩ T (e3) = {d}. Similarly, ℜ(L⃗N(1, 2)) =
−0.167 arises from the fact that e1 and e2 share the vertex b in their head sets.

2. The imaginary component captures the hyperedge directionality based on the underlying
hypergraph H⃗ , where a node belongs to the head set of one hyperedge and the tail set
of another. For example, ℑ(L⃗N (1, 2)) = −ℑ(L⃗N (2, 1)) = −0.167, indicating that a ∈
T (e1) ∩H(e2).

3. The absence of any relationships between hyperedges e1 and e3 is encoded by 0 in
DGL(H⃗). Specifically, L⃗N (1, 3) = L⃗N (3, 1) = 0.

4. The self-loop information (a measure of how strongly the feature of a vertex depends on its
current value within the convolution operator) is encoded by the diagonal of L⃗N .

J OUR INCIDENT MATRIX B⃗

Utilizing our incidence matrix B⃗, where B⃗ve = −i if v ∈ T (e), with complex numbers allows
us to encode directionality and construct a Laplacian, the Directed Line Graph Laplacian, that is
Hermitian and meets the necessary properties for applying a spectral-based approach.

If, instead, we had chosen to use Bve = −1 if v ∈ T (e), we would have lost the directionality of the
hypergraph. To illustrate, consider (for simplicity—this can be observed also for more hypergraphs)
a graph with nodes 1, 2 and edges e1 = (2, 1) and e2 = (3, 2).

We have B⃗ =

( −i 0
1 −i
0 1

)
and B =

( −1 0
1 −1
0 1

)
.

The Laplacian matrix we use in DLGNet is L⃗ =

(
2 −i
i 2

)
. The Laplacian matrix using the B

the reviewer suggests reads L =

(
2 −1
1 2

)
.

Let us recall that the nodes of both matrices correspond to the edges of the graph. Therefore, L⃗12

indicates the presence of the directed line graph edge (e1, e2), which captures the topology of the
original graph where edge e2 is seen before edge e1 in a path from node 3 to node 1.

Differently, since L12 = L21, in L such a directional information is completely lost.
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Regarding the solution proposed in (Ma et al., 2024), this approach defines two separate incidence

matrices: one for tail elementsBT =

(
1 0
0 1
0 0

)
and one for head elements andBH =

(
0 0
1 0
0 1

)
.

The Laplacian matrix using BT and BH reads L =

(
0 0
1 0

)
.

This matrixL is not symmetric, which does not fit the framework in which we operate in our paper, in
which we are designing a spectral-based convolutional operator. This type of GNN does not permit
the use of a non-symmetric matrix, as it requires an eigenvalue decomposition of the Laplacian
matrix with real eigenvalues. Thanks to the adoption of a complex-valued B⃗, our proposed Laplacian
matrix is Hermitian and, therefore, admits the required eigenvalue decomposition.

LLM USAGE STATEMENT

We did not use large language models (LLMs) for deriving, checking, or producing any proofs
or theoretical results in this paper. All theorems and proofs were conceived, implemented, and
validated by the authors.

LLMs were used only as general-purpose assistants for: (i) light prose edits (clarity/grammar) and
(ii) minor LATEX refactoring (e.g., formatting environments). All such edits were manually reviewed.
No human-subject data, personally identifiable information, or proprietary datasets were provided
to any LLM, and all experimental code runs independently of LLM services.

REPRODUCIBILITY STATEMENT

We took several steps to support reproducibility. All model components, including the Directed
Line Graph Laplacian, training objectives, and update rules, are fully specified in the main text, with
additional implementation details in Appendix F. Dataset sources and preprocessing are documented
in Appendix E. We report splits, evaluation protocols, and hyperparameter search spaces in Section 5
and Appendix F, and we include hardware information and training schedules.

An anonymized repository with code and scripts to reproduce all tables (including random seeds and
configuration files) accompanies this submission (Appendix A). After publication, we will release
the non-anonymized repository under the same license. Note that exact bitwise determinism can
depend on backend/library settings (e.g., CUDA), but we fix seeds and document any sources of
nondeterminism.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This work studies the Directed Line Graph Laplacian
and does not involve human subjects, personally identifiable information, or sensitive attributes. We
release an anonymized code repository under a permissive license to facilitate verification and reuse.

As with any graph-learning technique, downstream applications to human-centered data could raise
concerns around privacy, fairness, or surveillance. Our contribution is methodological and evalu-
ated on public; nevertheless, we encourage practitioners to assess domain-specific risks, follow ap-
plicable regulations, and adopt appropriate safeguards (e.g., data minimization, bias checks) when
deploying such models.
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