
QuestBench: Can LLMs ask the right question to
acquire information in reasoning tasks?

Belinda Z. Li∗
MIT CSAIL

bzl@csail.mit.edu

Been Kim
Google DeepMind

beenkim@google.com

Zi Wang
Google DeepMind

wangzi@google.com

Abstract

Large language models (LLMs) have shown impressive performance on reasoning
benchmarks like math and logic. While many works have largely assumed well-
defined tasks, real-world queries are often underspecified and only solvable by
acquiring missing information. We formalize this information-gathering problem
as a constraint satisfaction problem (CSP) with missing variable assignments.
Using a special case where only one necessary variable assignment is missing,
we can evaluate an LLM’s ability to identify the minimal necessary question to
ask. We present QUESTBENCH, a set of underspecified reasoning tasks solvable
by asking at most one question, which includes: (1) Logic-Q: logical reasoning
tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with
partially-observed initial states, (3) GSM-Q: human-annotated grade school math
problems with one unknown variable, and (4) GSME-Q: equation-based version
of GSM-Q. The LLM must select the correct clarification question from multiple
options. While current models excel at GSM-Q and GSME-Q, they achieve only
40-50% accuracy on Logic-Q and Planning-Q. Analysis shows that the ability
to solve well-specified reasoning problems is not sufficient for success on our
benchmark: models struggle to identify the right question even when they can solve
the fully specified version. This highlights the need for specifically optimizing
models’ information acquisition capabilities.

1 Introduction GSM-Q
CSP

C

A

y

TF - F1 - F2

F3

3 * C 25

20

❓

TF=3*C
TW=6*C
F3=TF-F1-F2
W3=TW-W1-W2
F2=25
W2=40
C=20
What is F3?

Which of the following questions should be asked to
solve the problem?
(a) No questions needed.
(b) What is the total number of cups of feed that Wendi
gives her chickens in a day (TF)?
(c) What is the number of cups of feed Wendi gives
her chickens in the morning (F1)?
(d) What is the number of cups of water Wendi gives
her chickens in the morning (W1)?
...

Every day, Wendi's chickens each get three
cups of chicken feed and six cups of water.
The chickens get their feed and water in three
separate meals: in the morning, afternoon, and
evening. In the afternoon, she gives her
chickens 25 cups of feed and 40 cups of water.
How many cups of feed does she need to give
her chickens in the final meal of the day if the
size of Wendi's flock is 20 chickens?

Figure 1: A multi-choice question-asking task in
QUESTBENCH with ground truth answers for accuracy
evaluation. We construct question choices using the CSP
translated from the verbal problem.

Large language models (LLMs) are increas-
ingly being applied to reasoning tasks such as
math [15, 34, 46], logic [70, 12, 17] and plan-
ning/coding [18, 59, 63, 6, 10]. These applica-
tions typically assume all necessary information
has been provided.

However, real-world scenarios often violate this
assumption. Users may omit crucial details
in math problems, and robots might operate
in environments with partial observability. In
such cases, LLMs need the ability to proactively
gather missing information, for instance, by ask-
ing clarifying questions.

This work investigates whether LLMs can iden-
tify and acquire the missing information neces-

∗Work done as a student researcher at Google DeepMind. Code and dataset are available at https://
github.com/google-deepmind/questbench. Author contributions in §A.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/google-deepmind/questbench
https://github.com/google-deepmind/questbench

sary to solve reasoning tasks. We formalize this information-gathering problem as an underspecified
Constraint Satisfaction Problem (CSP). Our key idea is that many reasoning tasks can be modeled
as determining the value of a target variable given a set of variables and constraints. A problem
is underspecified if and only if the value of the target variable cannot be inferred from the given
information. This formalization helps pinpoint the difference between semantic ambiguity (where
multiple valid interpretations exist, but each yields a solvable answer) and underspecification (where
the problem is unsolvable without additional information). We address the latter in this work. Figure 1
shows an example of an underspecified CSP derived from a grade school math problem.

We focus on a simple special case of underspecified CSPs where we only need to acquire one
unknown variable’s value in order to solve for the target variable. We call these “1-sufficient CSPs”
and construct QUESTBENCH: a benchmark of question asking problems based on 1-sufficient CSPs.
The model is given an underspecified problem and multiple choices for which variable to ask about.
It must pick a relevant variable, one whose value isn’t already known (or derivable from the existing
assigned variables), and is sufficient for computing the target variable.

QUESTBENCH has the following multi-choice problems, along with the correct solutions for each:

• Logic-Q: Logical reasoning tasks where the truth value of a missing proposition is needed
to determine the correctness of a claim.

• Planning-Q: Blocks world planning problems in Planning Domain Definition Language
(PDDL) [28], with partially observed initial states, where one additional observation is
needed to disambiguate the shortest path to a goal.

• GSM-Q/GSME-Q: Grade-school math problems that are missing conditions needed to
derive the solution. GSM-Q consists of verbalized forms of problems, while GSME-Q
consists of equation forms of problems. Both are annotated by humans.

We benchmark state-of-the-art LLMs including GPT-4o [50], GPT-4-o1 Preview, Claude 3.5 Sonnet,
Gemini 1.5 Pro and Gemini 2.0 Flash Thinking Experimental [25, 26] on QUESTBENCH. While
these models demonstrate strong performance on GSM-Q and GSME-Q (over 80% accuracy), their
performance on Logic-Q and Planning-Q is significantly lower (under 50% accuracy).

To investigate these discrepancies, we analyze the correlation between model accuracy and four “axes
of difficulty” in QUESTBENCH (the number of variables in the problem, the number of constraints
in the problem, the search depth required by a backwards search solution to the problem, and the
expected number of guesses required by brute-force search solution to the problem), finding differing
trends between domains. We also conduct ablation studies to assess LLMs’ ability to 1) reason in the
presence of sufficient information and 2) detect whether the problem is underspecified. We find that
success on QUESTBENCH requires more than just the ability to reason with sufficient information.

Our contributions include (1) a constraint satisfaction-based problem formulation of asking clarifica-
tion questions for reasoning, (2) QUESTBENCH, a novel benchmark with multi-choice problems for
evaluating information-gathering abilities in reasoning tasks, (3) empirical evaluations and detailed
analyses of SOTA or near-SOTA LLMs2 on QUESTBENCH.

Related work. Most existing question-asking benchmarks focus on subjective or ambiguous
tasks where multiple valid clarifying questions may exist, or the “right” clarification question is
subjective [4, 20, 57, 62, 54, 8, 73, 45, 32]. This makes objective evaluation difficult. Our work
focuses on reasoning tasks with clearly defined ground truth, where exactly one question is needed,
allowing for reliable evaluation. More related work can be found in §B.

2 Problem formulation

Consider the following user request:

Example 2.1. Please solve the math problem: Janet had some eggs (variable x0) and ate one
(variable x1). How many eggs does she have now (target variable y)?

The word problem can be parsed into equations y = x0 − x1, x1 = 1. The LLM cannot compute
target variable y without knowing the value of variable x0. Other examples can be found in Figures 1

2As of 03/2025.

2

to 3. In these cases, the desired behavior is for the LLM to ask the minimal set of questions that
enables it to respond to the user query.

2.1 Distinguishing semantic ambiguity and underspecification

In this paper, we focus on problems that are semantically equivalent to CSPs,3 which allow us to
formalize underspecification. Solving a problem thus comprises of two stages:

1. A natural language query is parsed into a set of variables, a set of constraints, and a target
variable corresponding to the desired response. In Example 2.1, there are variables x0 (initial
eggs), x1 (eaten eggs), a constraint y = x0 − x1, and a target variable y (current eggs) .

2. The model solves for the target variable in the CSP.

This formulation allows us to distinguish underspecification (missing variables assignments or
constraints in the CSP at stage 2) from semantic ambiguity (multiple interpretations of a natural
language query, inducing a distribution over possible CSPs at step 1). While prior work extensively
addresses semantic ambiguity [42], this paper specifically focuses on underspecification, which is
objectively evaluable using our CSP framework.

2.2 Formalizing underspecification

We formalize underspecification as follows. First, we define a CSP as a tuple ⟨X,D,C,A, y⟩:
• X = {xi}Ni=1 is a set of N variables.
• D = {Di}Ni=1 is a set of domains, where Di is the domain of xi.
• C = {cj}Mj=1 is a set of M constraints. Each constraint cj can be viewed as a boolean

function that takes in as input a list of variables in X , denoted as [xi]i∈Ij , and outputs True
or False. We use the shorthand cj(xj) to denote cj([xi]i∈Ij).

• A = ∧i∈IA(xi = ai) is a set of variable assignments, where each assignment is a pair
(xi, vi) with vi ∈ Di.

• y is the target variable. Target y must satisfy the constraints and the variable assignments,∧
j∈[M] cj(xj) ∧A.

The Known predicate. For convenience, we use Known(x) to denote the value of variable x is
known. This can occur either if x is directly assigned a value (i.e. A =⇒ ∧i∈IAKnown(xi)), or x’s
value can be derived from the existing assignments and constraints. In Example 2.1, once x0 and x1

are known, y would also be known.

We can then formally define underspecified CSPs as follows.
Definition 2.1. A CSP is underspecified if and only if

∧
j∈[M]

cj(xj)∧A =⇒ ¬Known(y). Otherwise

it is well-specified.

We use Known(X) over a set of variables X to denote that the values of all variables in X are known,
i.e., Known(X) =

∧
x∈X Known(x).

If knowing a set of variables is sufficient to determine the value of another variable, we call the set
the “sufficient set”:
Definition 2.2. A set of variables X ⊆ X is a sufficient set (for y) if and only if∧

j∈[M]

cj(xj) ∧A ∧ Known(X) =⇒ Known(y).

For efficient question asking, we wish to find the smallest sufficient set for the target variable:

X̂ = argminX⊆X |X | s.t. X is sufficient.

In Example 2.1, a sufficient set for y is {x0} since Known({x0}) =⇒ Known(y).

Finally, we define the special case where the size of the smallest sufficient set is 1.
3This formulation encompasses queries where users have hard, deterministic preferences and expect a single

correct answer. In general, we can think of user queries as a combination of (potentially probabilistic, fuzzy, or
subjective) constraints and preferences.

3

Definition 2.3. An underspecified CSP is a 1-sufficient CSP if the size of its smallest sufficient sets is
1. The variable in a smallest sufficient set is a sufficient variable of the problem.

Remarks. There could be multiple sufficient variables for a 1-sufficient CSP (and in the general
case, there could be multiple, equivalently-sized smallest sufficient sets for any underspecified CSP).
In QuestBench, choosing any sufficient variable is treated as correct.

2.3 Why 1-sufficient CSPs?

QuestBench is comprised of 1-sufficient CSPs. 1-sufficient CSPs are a fundamental building block
towards k-sufficient CSPs. Performance on simpler 1-sufficient CSPs provides an approximate upper
bound on a model’s capacity for information acquisition, since any k-sufficient CSP can become
1-sufficient after k − 1 clarifying questions.

Another benefit of 1-sufficient CSPs is that they can be framed as multiple-choice problems which are
easy to evaluate, by simply letting the model predict one choice. In contrast, k-sufficient problems
may require questions to be asked sequentially, where the next question depends on the answer to the
current question, making evaluation more complex. More discussions can be found in §5.

Finally, QuestBench includes significant variation in problem difficulty, even within the 1-sufficient
setting, which we will describe in the next section.

2.4 Difficulty axes of 1-sufficient CSPs

Solving a 1-sufficient CSP entails identifying a sufficient variable for the target variable. In general,
1-sufficient CSPs can be solved by brute-force or backward search. Brute-force search checks the
sufficiency of every variable one at a time. Backward search builds a search tree starting from the
target variable (root node) and recursively searches all variables (child nodes) in each constraint
(edges) involving the parent node. These two methods allow us to formalize the following properties
associated with the difficulty of each 1-sufficient CSP:

• |X|: The total number of variables.
• |C|: The total number of constraints.
• d: The depth of the backward search tree.
• EBF: The expected number of random guesses until selecting a correct question.4

For example, in Example 2.1, there are |X| = 3 variables (x0, x1, y), |C| = 1 constraint (y = x0−x1),
and d = 1 search depth. Among choices (a) No questions needed., (b) What is the value of x0?, (c)
What is the value of x1?, only choice (b) is correct, so the expected number of guesses EBF = 2.

3 Dataset descriptions for QUESTBENCH

We construct 1-sufficient CSPs in logical reasoning (Logic-Q), planning (Planning-Q), and math
(GSM-Q/GSME-Q) domains. We frame all problems as multiple choice questions for rigorous
evaluation. Each problem instance is composed of a user request, the full set of question choices and
a subset including correct questions. We evaluate whether models can pick out one of the correct
questions from the question choices. See Table 5 for dataset statistics.

3.1 Logic-Q

SimpleLogic5 [70] is a propositional logic benchmark, which consists of

1. a set of rules about an imaginary person named Alice, for example: If Alice is jittery and
strange, then Alice is stubborn.

2. a set of properties that are true of Alice, for example: Alice is smart. Alice is not stubborn.
3. a question about an unknown property of Alice, for example: Is Alice pleasant?

4We assume the random guesses are made without replacement, so EBF = |X|+1
s+1

, where s is the number of
sufficient variables.

5SimpleLogic has a MIT license. https://github.com/joshuacnf/paradox-learning2reason.

4

https://github.com/joshuacnf/paradox-learning2reason

If Alice is smart, then Alice is
jittery.
If Alice is strange and jittery,
then Alice is stubborn.
If Alice is jittery and worried,
then Alice is pleasant.
If Alice is pleasant, then Alice
is worried.
Alice is smart.
Alice is not stubborn.
Is Alice pleasant?

smart⇒jittery
strange∧jittery
 ⇒stubborn
jittery∧worried
 ⇒pleasant
pleasant⇒worried

smart=True
stubborn=False

CSP

pleasant=?

jittery=True
strange=False
worried⇒pleasant
¬worried⇒¬pleasant

Logic-Q

C

A
y

Which of the following questions should be
asked to solve the problem?
(a) No questions needed.
(b) Is Alice strange?
(c) Is Alice stubborn?
(d) Is Alice worried?
...

Suppose you know the following rules about Alice:

Figure 2: An example in Logic-Q. The prompt
provided to the LM is on the left hand side. The
ground truth answer is in red. The symbolic CSP
used to construct the questions is shown on the
right hand side.

Problem Definition. We can define a CSP in this
domain as follows:

• X is a set of all the potential properties of
Alice that appears in all rules (e.g. strange,
jittery, worried).

• D = {{TRUE, FALSE} ∀x ∈ X}. Each
property in X can be either be true or false.

• A is the set of properties that we know to be
true about Alice (e.g. smart, ¬stubborn).

• C is the set of rules about Alice. C takes
the form of a conjunction of implicative con-
straints (e.g. in the above example, strange
∧ jittery =⇒ stubborn).

C =
∧

i∈[M]

ci

=
∧

i∈[M]

 ∧
j∈[Mi]

xi,j

 =⇒ xi,Mi+1


where xi,j can take any value in the set X .

• y is the property that we are being asked about, e.g. pleasant in the above example.

To create Logic-Q, we discard the original, fully-specified variable assignments in the SimpleLogic
dataset and construct new A’s such that a single additional property of Alice is sufficient to determine
whether the target property is true or false. We do this by using backwards search to obtain 1) a set of
all possible variable assignments that would imply y, and 2) another set for ¬y. We take the cross
product between the sets and identify pairs which differ on a single variable assignment, meaning
assigning that variable deterministically implies either y or ¬y. See more details in Section C.1. In
the end of this process, we get ⟨X,D,A,C, y⟩, which form a 1-sufficient CSP.

3.2 Planning-Q

Planning-Q is based on the Blocks World domain from PyperPlan6 [1], a classic planning problem
where the goal is to rearrange a set of blocks from an initial state to a goal state. Blocks World
consists of predicates (e.g. (ontable ?a)), which can be applied to blocks (e.g. c) to construct an
atom (e.g., (ontable c)). A state is a conjunction of atoms or their negations, e.g. (ontable a),
(holding b), ¬(on a b).

Not all states are valid; in a valid state, there are one or more actions that can be applied to it to
transition to another state. Each action has a precondition specifying atoms the state must satisfy
before applying the action, and an effect specifying atoms the next state must satisfy after applying
the action. For example, stack(?a, ?b) has preconditions (holding ?a), (clear ?b) and
effect ¬(holding ?a), ¬(clear ?b), (clear ?a), (handempty), (on ?a ?b).

Given an initial state and a goal state, the task is to plan the shortest action sequence to the goal state.

Problem Definition The problem can be expressed as a CSP ⟨X,D,C,A, y⟩ as follows:

• X is the set of all atoms (predicates applied to objects) in the initial state.
• D = {{TRUE, FALSE} ∀x ∈ X}. Each atom must be either true or false.
• A is the set of atoms that we know to be true or false in the initial state.

• C is the set of constraints defining the action dynamics of the Blocks World domain. More
formally, for any sequence of actions [qt]t∈[n] and their corresponding sequence of states
[st]t∈[n], each pair of current state st and next state st+1 must satisfy the precondition and
effect of action qt, i.e.,

∀p ∈ PRE(qt), st ⇒ p (preconditions of qt must hold in st)
∀e ∈ EFFECTS(qt), st+1 ⇒ e (effects of qt must hold in st+1)

6PyperPlan has a GPL-3.0 license. https://github.com/aibasel/pyperplan.

5

https://github.com/aibasel/pyperplan

• y is the shortest action sequence from the initial state to the goal state.7

Az

Planning-Q
a b c dBlocks

Actions

Pick-Up
Put-Down
Stack
Unstack

Partial goal state
b
a

(ontable a)
(clear a)
(ontable b)
not (on c b)
(clear d)
(handempty)

Partial
initial
state

What question should we
ask to disambiguate the
plan?:
(a) No questions needed.
(b) Is block d on block b?
(c) Is block d on block c?
...

(on d b) is True

Possible
Initial
States dba c

d
ba c

d
ba c

(on d b) is False

Plan to Goal
from
Initial States

Figure 3: An example in Planning-Q. The ground-truth answer is given
in red. The prompt given to the LM (left) includes the full task specifica-
tion in PDDL, which we omit for simplicity and instead display visually.
Possible initial states are constructed from the partial initial state and are
grouped based on plans to the goal. These groups of initial states are used
for constructing the questions.

The Planning-Q dataset is a mix
of 1-sufficient and well-specified
problems, where at most 1 other
atom is required to disambiguate
the shortest action sequence to
the target. In well-specified
problems, the shortest action se-
quence is the same regardless
of uncertainty about the initial
state, in which case we expect
the LLM to select the choice “No
questions needed.” We construct
Planning-Q by deriving all possi-
ble initial states from which there
is a single shortest path to the
goal through backwards search,
then removing up to one atom.
More construction details can be
found in Section C.2.

3.3 GSM-Q and GSME-Q

In general, grade-school math
problems can be parsed into sim-
ple algebra problems where a sequence of variable substitutions can fully solve the problem. We con-
struct underspecified grade-school math problems from GSM-Plus’ “distractor” setting8 [46], which
was derived from adding a single piece of distractor information to math problems in GSM8k [15]
that is irrelevant to deriving the goal variable. This allows us to isolate whether LLMs can identify
which specific variables are relevant to a goal variable. An example can be seen in Figure 1.

To construct GSM-Q/GSME-Q dataset out of GSM-Plus, we use human annotators to 1) check word
problems for semantic ambiguity, and 2) translate each word problem into a CSP. Details can be
found in Section C.3. To make these CSPs underspecified, we withhold both distractor variable
assignments {di}ni=0 that aren’t essential to computing y, as well as a single variable assignment
a ∈ A that is required for computing the goal, creating Ã = A\ ({di}ni=0 ∪ {a}). Asking about the
value of the variable corresponding to a is necessary and sufficient for deriving the value of target
variable y.

These underspecified CSPs are consolidated into GSME-Q. To convert them back into word problems
for GSM-Q, we show annotators the original word problem and the CSP form of the problem, and
ask them to remove a and the distractors {di}ni=0 from the word problem.
Annotation Details We recruited a total of 21 annotators (11 male, 10 female) from five countries
to annotate our tasks. Annotators were all fluent in English and between the ages of 25 – 45. We paid
an average of $27 – $55 per hour per annotator.

4 Results and analyses

In this section, we present experiment results on QUESTBENCH. We evaluated GPT-4o [50], GPT-
4-o1 Preview, Claude 3.5 Sonnet, Gemini 1.5 Pro, Gemini 1.5 Flash, Gemini 2.0 Flash Thinking
Experimental [25, 26], and open-sourced Gemma models [27] in zero-shot (ZS), chain-of-thought
(CoT), and four-shot settings (4S) settings. For GSM-Q and GSME-Q, we present results on a subset
of 288 and 151 representative tasks, respectively, in order to focus our evaluation budget on more
difficult domains. All results are based on publicly available APIs or models. Our experiments were
done from 06/2024 to 03/2025, and some models/APIs may have been updated during this time.

7It is not meaningful to set y to be any action sequence (not just the shortest one) to the goal, since all initial
states can get to the goal state through some path in BlocksWorld, so no information needs to be gathered.

8GSM-Plus has a CC-BY-SA 4.0 license. https://huggingface.co/datasets/qintongli/GSM-Plus

6

https://huggingface.co/datasets/qintongli/GSM-Plus

Logic-Q Planning-Q GSME-Q GSM-Q

ZS

o1-preview 49.91% 42.31% 98.01% 91.32%
Gemini Flash Thinking 2.0 Exp 01-21 37.39% 47.32% 96.69% 84.72%

Claude 3.5 Sonnet 30.09% 7.53% 94.70% 91.32%
GPT-4o 27.39% 24.49% 96.69% 86.81%

Gemini 1.5 Pro 29.13% 19.80% 48.34% 77.78%
Gemini 1.5 Flash 16.78% 8.52% 96.69% 71.88%
Gemma 2 2B IT 0.09% 10.76% 32.45% 49.65%
Gemma 2 9B IT 26.00% 14.36% 75.50% 40.97%
Gemma 2 27B IT 29.39% 7.64% 73.51% 71.18%

ZS + CoT

Gemini Flash Thinking 2.0 Exp 01-21 34.61% 46.24% 96.03% 86.11%
Claude 3.5 Sonnet 36.78% 34.03% 74.17% 90.97%

GPT-4o 31.57% 16.36% 99.34% 92.01%
Gemini 1.5 Pro 29.22% 21.27% 96.69% 79.17%

Gemini 1.5 Flash 18.70% 9.29% 98.68% 76.74%
Gemma 2 2B IT 0.26% 3.01% 56.95% 68.40%
Gemma 2 9B IT 24.61% 10.27% 56.95% 36.46%
Gemma 2 27B IT 31.22% 9.96% 80.79% 79.51%

4S

Gemini Flash Thinking 2.0 Exp 01-21 38.43% 19.32% 96.69% 92.71%
Claude 3.5 Sonnet 36.00% 34.56% 95.36% 94.10%

GPT-4o 25.57% 11.48% 96.03% 84.03%
Gemini 1.5 Pro 26.35% 18.80% 92.05% 85.42%

Gemini 1.5 Flash 15.48% 18.29% 95.36% 80.90%
Gemma 2 2B IT 25.13% 7.51% 90.73% 37.50%
Gemma 2 9B IT 21.57% 5.15% 86.75% 55.56%
Gemma 2 27B IT 26.26% 10.71% 96.69% 66.67%

BFS Depth 3 39.0% 5.75% 87.4% 86.1%
BFS Depth 5 80.6% 27.2% 100% 100%
BFS Depth 10 99.8% 93.9% 100% 100%

Table 1: Language model accuracies at predicting the right question in QUESTBENCH. As a baseline,
we include breadth-first-search (BFS) up to a fixed depth on each dataset. Results show that the best
models saturate GSME-Q and GSM-Q, but fail to perform beyond 50% on Logic-Q and Planning-Q.

4.1 Evaluation of clarification question accuracy

QUESTBENCH is a multi-choice benchmark with ground truth choices, each of which is a clarification
question. We evaluated whether the LLM generates a correct choice for each question. Table 1 shows
LLM accuracies in different setups. For reference, we also evaluated the accuracy of breadth-first-
search up to a depth n.

Generally, all models we tested struggled to perform beyond 50% on our Logic-Q and Planning-Q
domains. Neither chain of thought nor few-shot examples resulted in significant gains across all
models in either domain.9 However, LLMs were generally able to saturate performance on GSME-Q
and GSM-Q.10 We suspect that this is due to these domains having a smaller number of variables and
constraints, and requiring shallower search depth than the other two domains.11 Additionally, LLMs
may have been specifically studied and optimized for solving these sorts of math problems.

Comparing GSME-Q to GSM-Q, we found that models generally had a harder time reasoning about
verbalized versions of problems than if they were presented in raw equation forms. We hypothesize
that, at least for the problems in QUESTBENCH, identifying missing information requires building up
a search tree, which can be easier if the problem were presented symbolically than verbally.

9Qualitative examples using Gemini 2.5 Pro, Google’s newest public reasoning model as of October 2025, in
these domains can be found in Section F.

10As a sanity check that these results hold for the entire GSME-Q and GSM-Q datasets, we run GPT-4o (ZS)
on the full datasets and achieve 99.39% on GSME-Q and 84.05% on GSM-Q. Performance saturates on the full
set, consistent with our findings on the smaller subset in the paper.

11We will present results in Table 2 and Fig. 6 that demonstrate performance is negatively correlated with
number of variables, constraints, and search depth.

7

ZS ZS + CoT 4S
o1-
preview

Gemini
2.0
FTE

Claude
3.5S

GPT-
4o

Gemini
2.0
FTE

Claude
3.5S

GPT-
4o

Gemini
2.0
FTE

Claude
3.5S

GPT-
4o

Logic-Q

d -0.23 -0.20 -0.19 -0.19 -0.15 -0.18 -0.22 -0.28 -0.28 -0.20
|X| -0.27 -0.21 -0.15 -0.16 -0.11 -0.13 -0.22 -0.18 -0.27 -0.18
|C| -0.22 -0.23 -0.11 -0.11 -0.22 -0.13 -0.18 -0.18 -0.24 -0.20
EBF -0.41 -0.30 -0.26 -0.26 -0.16 -0.23 -0.35 -0.28 -0.31 -0.30

Planning-Q

d 0.01 -0.11 0.07 0.04 -0.10 0.09 -0.06 -0.08 0.10 -0.06
|X| -0.06 -0.11 -0.04 -0.07 -0.11 -0.00 -0.09 -0.14 -0.01 -0.10
b -0.06 -0.11 -0.04 -0.07 -0.11 -0.00 -0.09 -0.14 -0.01 -0.10
EBF -0.54 -0.14 -0.27 -0.28 -0.12 -0.56 -0.41 -0.35 -0.48 -0.41

GSME-Q

d -0.21 -0.26 -0.14 -0.10 -0.27 -0.06 -0.14 -0.20 -0.05 -0.10
|X| -0.24 -0.27 -0.21 -0.09 -0.31 -0.11 -0.14 -0.29 -0.25 -0.22
|C| -0.24 -0.30 -0.24 -0.25 -0.34 0.04 -0.14 -0.30 -0.26 -0.29
EBF -0.24 -0.27 -0.21 -0.09 -0.31 -0.11 -0.14 -0.29 -0.25 -0.22

GSM-Q

d -0.03 -0.01 -0.06 -0.03 -0.01 -0.09 -0.01 -0.00 -0.01 -0.03
|X| -0.02 -0.19 -0.13 -0.09 -0.18 -0.19 -0.14 -0.07 -0.05 -0.07
|C| 0.01 -0.05 -0.11 -0.03 -0.07 -0.16 -0.09 -0.01 -0.05 -0.05
EBF -0.02 -0.19 -0.13 -0.09 -0.18 -0.19 -0.14 -0.07 -0.05 -0.07

Table 2: Spearman’s rank correlation coefficient between various axes and accuracy for predicting
the right question. Bolded values indicate a statistical significance correlation between the axis and
model accuracy (p < 0.05). Colored values are moderately strong correlations. We abbreviate Claude
3.5 Sonnet to Claude 3.5S and Gemini 2.0 Flash Thinking Experiment 01-21 to Gemini 2.0 FTE.
We observe moderate to mild negative correlation between these factors and model performance in
Logic-Q and Planning-Q, and sometimes in GSME-Q.

4.2 Correlation between problem complexity and clarification question accuracy

1-sufficient CSPs can generally be solved through either brute-force (forward) search or backwards
search. We can approximately quantify the difficulty of each problem in QUESTBENCH based on the
runtime of each search algorithm on that problem. If there is a correlation between the factors that
determine search complexity and the performance of the LLM, this serves as a high-level signal for
the types of mechanisms LLMs may be using to succeed in these tasks.

Specifically, we analyze the correlation between LLM performance and factors listed in Section 2.4.
The runtime complexity of each search algorithm in the Logic-Q and Planning-Q domains can be
expressed as a function of these factors, see Table 3, where the complexity of brute-force search holds
with probability at least 1− δ.

Logic-Q Planning-Q

Brute-force Search O((|X|+ |C|)EBF/δ) O
(
4|X|b2EBF/δ

)
Backwards Search O

(
|X||C|d) O(b2d) or O

(
3|X|d)

Table 3: Runtime complexities of brute-force and backwards search in Logic-Q and Planning-Q.
Derivation details can be found in Sections E.1 and E.2.

We report Spearman’s rank correlation coefficients between accuracy and these factors in Table 2,
and plot accuracy across each factor in Figure 6. The runtime complexity derivations of each search
algorithm in each domain are in Sections E.1 and E.2.

Logic-Q Table 2 and Figure 6 show that the LLMs’ performances correlate negatively with backwards
search depth d, number of variables |X|, number of constraints |C|, and expected number of brute-
force guesses EBF . These correlations are statistically significant for most LLMs in this domain,
indicating that in Logic-Q, brute-force and backwards search are moderately good approximations
for the type of reasoning LLMs are required to perform.

8

Logic-Q Planning-Q
Acc Diff # samples Acc Diff # samples

ZS

Gemini 2.0 FTE 37.4% 0.0% 1150 53.8% 6.5% 4273
Claude 3.5 Sonnet 30.8% 0.7% 1120 11.3% 3.8% 4368

GPT-4o 27.4% 0.0% 1150 33.4% 8.9% 2275
Gemini 1.5 Pro 29.6% 0.5% 1127 28.7% 8.9% 2175

Gemini 1.5 Flash 17.1% 0.3% 1127 16.1% 7.6% 1288

Table 4: Ablation: Language model accuracies at predicting the right question to ask on only filtered
QUESTBENCH problems of which at least one well-specified version can be answered correctly by
the model + prompt method. We use Gemini 2.0 FTE as a shorthand for Gemini Flash Thinking 2.0
Exp 01-21. See Section 4.3 for the experimental setup. Acc indicates accuracy on the filtered version
of QUESTBENCH, Diff indicates increase in accuracy on the filtered vs. the original version, and #
samples indicates the number of samples in the filtered dataset, out of 1150 and 7500 examples in the
original Logic-Q and Planning-Q, respectively. We bold all accuracy differences greater than zero.

Planning-Q Results show that the LLMs’ performances have very weak or no correlations with d, |X|,
b, suggesting that LLMs may be using mechanisms other than the backwards search in planning. This
is reasonable as these search algorithms generally require exponential-time search, while Transformers
theoretically cannot perform non-polynomial-time-computation within a polynomial amount of chain-
of-thought [47]. However, some models’ accuracies have moderately strong correlation with EBF

despite nearly no correlation with |X| or b. This indicates that those LLMs’ behavior might be
analogous to randomly guessing, or verifying one choice at a time (the EBF factor in Table 3 for
brute-force search), but perhaps not using breadth-first search for verification. Note that verifying
one choice at a time is non-trivial, as it can entail rolling out entire trajectories – potentially from
multiple possible initial states.

4.3 Is asking the right question harder than solving the problem?

To better understand the relationship between question-asking and reasoning, we conducted an
ablation study filtering for examples where the LLM correctly answered the well-specified version of
a task. By doing so, we can isolate the challenge of asking the right question from that of solving
the underlying well-specified reasoning problem. This setup allows us to estimate how much more
difficult question-asking is relative to reasoning with sufficient information.

We began by constructing a well-specified variant of QUESTBENCH, in which we restored one
sufficient piece of missing information in each 1-sufficient problem. This yielded well-specified
CSPs for which the target variable y can be determined without gathering new information. We then
prompted LLMs to directly solve these CSPs:

• In Logic-Q, the task is to determine the truth value of a target property about Alice.
• In Planning-Q, the model finds a valid plan from a given start state to a goal.
• In GSM-Q, we used the original GSM-plus math problems as-is.
• In GSME-Q, we used the GSM-plus problems translated into CSPs by the human annotators.

The prompts we used for this evaluation are provided in Section D.2, and evaluations on this well-
specified variant of QUESTBENCH are reported in Table 6.

We then restricted our evaluation of question-asking to only those examples where the model correctly
answered at least one corresponding well-specified variant. Results of this filtered evaluation are
shown in Table 4, including accuracy, differences from unfiltered performance (Table 1), and the
number of retained examples. Results for GSM-Q and GSME-Q can be found in Table 8.

We observed that question-asking accuracy increased slightly in Planning-Q after filtering, but
remained effectively unchanged in Logic-Q, with neither achieving 100%. Notably, models reasoned
significantly better on the well-specified version of Logic-Q than Planning-Q (see Table 6), yet
this improvement did not translate to better question-asking performance in Logic-Q. This suggests
that while reasoning ability for well-specified problems may be a necessary component of effective
question-asking, it may not be sufficient for identifying what information is missing.

9

4.4 Detecting underspecification and recognizing uncertainty

We also investigated whether LLMs can detect underspecified problems and identify their own
uncertainty. We did this by sampling the well-specified variants of QUESTBENCH from Section 4.3
and the original examples of QUESTBENCH, creating a mix of 1-sufficient and well-specified
problems. For each problem, we asked LLMs to either 1) identify the target variable’s value if the
problem is well-specified (this is analogous to the setup in Section 4.3), or 2) say “not sure” if the
problem is 1-sufficient. The prompts for this setting can be found in Section D.3.

Table 9 shows the F1 scores for the “not sure” class and results of Random, a baseline where a random
set of examples (of the same size as ground-truth “not sure” set) are assigned “not sure”. Surprisingly,
we found that performance did not always improve substantially with model size, particularly in
the Planning-Q domain where all models performed at most 5% better than the Random baseline.
We hypothesize that Planning-Q problems are sufficiently difficult that models cannot recognize
uncertainty, and thus opt to guess randomly instead of answering (truthfully) that they are uncertain.
As further support for this hypothesis, we found that Gemini Flash Thinking, Claude 3.5, and GPT-4o
predicted “not sure” on only 1.4%, 4.6%, and 0.7% of cases in the zero-shot (no chain-of-thought)
setting on Planning-Q, when the ground-truth ratio is 41.8%.

5 Discussion and Conclusion

We introduced QUESTBENCH for identifying underspecification and asking clarification questions in
reasoning problems. We found that SoTA LLMs (as of 03/2025) are relatively good at identifying
missing information in simple algebra problems, but struggle with complex tasks involving logic and
planning. Their performance is sometimes negatively correlated with factors that increase problem
complexity, such as search depth and expected number of brute-force guesses. Our findings suggest
asking the right question requires more than the ability to reason with sufficient information.

When designing QuestBench, we made several design decisions for ease and rigor of evaluation,
some of which limit the generalizability of our benchmark. Our framework serves as a first step
towards formalizing underspecification. Below are some open problems that require future work.

Constructing k-sufficient CSPs. Our framework can be extended to problems with multiple missing
variables. This can be done by holding out k variable values, instead of just one, to construct
k-sufficient CSPs. When doing so, it is crucial to consider whether the evaluation is for selecting all
k questions simultaneously (in a batch), selecting them sequentially (one by one), or a combination
of the two: selecting batch by batch sequentially.

Simulating users that answer questions. Successfully handling complex, real-world tasks like med-
ical diagnosis and intent elicitation often necessitates an iterative dialogue with multiple clarification
questions. A major bottleneck in developing such systems is the challenge of automating the user’s
role for testing and evaluation. Building a simulator that can realistically answer the model’s queries
is a non-trivial task [31].

Metrics of question-asking. In practice, we might care about metrics beyond the correctness
of clarification questions, for example, how easy the clarification questions are for the users to
answer [32, 45, 30].

We believe the multiple-choice format for evaluating question-asking is a necessary precursor to
open-ended formats for question asking, since it is valuable for automated and rigorous evaluation.
However, once a new approach makes open-ended evaluation viable and reliable, our benchmark can
be readily used by simply omitting the multiple-choice options.

References
[1] Yusra Alkhazraji, Matthias Frorath, Markus Grützner, Malte Helmert, Thomas Liebetraut,

Robert Mattmüller, Manuela Ortlieb, Jendrik Seipp, Tobias Springenberg, Philip Stahl, and Jan
Wülfing. Pyperplan. https://doi.org/10.5281/zenodo.3700819, 2020. URL https:
//doi.org/10.5281/zenodo.3700819.

[2] Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. STaR-
GATE: Teaching language models to ask clarifying questions. In Conference on Language

10

https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819

Modeling, 2024.

[3] Dana Angluin. Queries and concept learning. Machine learning, 2:319–342, 1988.

[4] Lora Aroyo and Chris Welty. Truth is a lie: Crowd truth and the seven myths of human
annotation. AI Magazine, 36(1):15–24, 2015.

[5] Peter Auer. Using confidence bounds for exploitation-exploration tradeoffs. Journal of Machine
Learning Research (JMLR), 3:397–422, 2002.

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[7] Valerio Basile, Michael Fell, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara Plank,
Massimo Poesio, Alexandra Uma, et al. We need to consider disagreement in evaluation. In
Proceedings of the 1st workshop on benchmarking: past, present and future, pages 15–21.
Association for Computational Linguistics, 2021.

[8] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Ultes Stefan,
Ramadan Osman, and Milica Gašić. Multiwoz - a large-scale multi-domain wizard-of-oz dataset
for task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2018.

[9] Khyathi Raghavi Chandu, Linjie Li, Anas Awadalla, Ximing Lu, Jae Sung Park, Jack Hessel,
Lijuan Wang, and Yejin Choi. Certainly uncertain: A benchmark and metric for multimodal
epistemic and aleatoric awareness. arXiv preprint arXiv:2407.01942, 2024.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Sanxing Chen, Sam Wiseman, and Bhuwan Dhingra. ChatShop: Interactive information seeking
with language agents. arXiv preprint arXiv:2404.09911, 2024.

[12] Xinyun Chen, Ryan A Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reasoning
with large language models. In International Conference on Machine Learning (ICML), 2024.

[13] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’Aurelio Ranzato, Sagi Perel, and Nando
de Freitas. Towards learning universal hyperparameter optimizers with transformers. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[14] Michelle M Chouinard, Paul L Harris, and Michael P Maratsos. Children’s questions: A
mechanism for cognitive development. Monographs of the Society for Research in Child
Development, pages i–129, 2007.

[15] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[16] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of Artificial Intelligence Research (JAIR), 4:129–145, 1996.

[17] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

[18] Aidan Curtis, Nishanth Kumar, Jing Cao, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Trust the proc3s: Solving long-horizon robotics problems with llms and constraint satisfaction.
In Conference on Robot Learning, 2024.

[19] Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua Tenenbaum,
Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Partially observable task and motion planning
with uncertainty and risk awareness. arXiv preprint arXiv:2403.10454, 2024.

11

[20] Aida Mostafazadeh Davani, Mark Díaz, and Vinodkumar Prabhakaran. Dealing with dis-
agreements: Looking beyond the majority vote in subjective annotations. Transactions of the
Association for Computational Linguistics, 10:92–110, 2022.

[21] Zhou Fan, Xinran Han, and Zi Wang. Transfer learning for Bayesian optimization on heteroge-
neous search spaces. Transactions on Machine Learning Research (TMLR), 2024.

[22] Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy. Practical transfer learning
for Bayesian optimization. arXiv:1802.02219 [stat.ML], 2018.

[23] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image
data. In International Conference on Machine Learning (ICML), pages 1183–1192. PMLR,
2017.

[24] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[25] Gemini Team Google. Gemini: A family of highly capable multimodal models.
arXiv:2312.11805 [cs.CL], 2023. URL https://arxiv.org/abs/2312.11805.

[26] Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of
tokens of context. arXiv:2403.05530 [cs.CL], 2024. URL https://arxiv.org/abs/2403.
05530.

[27] Gemma Team. Gemma: Open models based on Gemini research and technology.
arXiv:2403.08295 [cs.CL], 2024. URL https://arxiv.org/abs/2403.08295.

[28] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett, Dave Christianson, et al. PDDL –
the planning domain definition language. Technical Report CVC TR98003/DCS TR1165. New
Haven, CT: Yale Center for Computational Vision and Control., 1998.

[29] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian rein-
forcement learning: A survey. Foundations and Trends in Machine Learning, 8(5–6):359–483,
2015.

[30] Gabriel Grand, Valerio Pepe, Jacob Andreas, and Joshua B. Tenenbaum. Loose lips sink
ships: Asking questions in battleship with language-informed program sampling, 2024. URL
https://arxiv.org/abs/2402.19471.

[31] George Gui and Olivier Toubia. The challenge of using LLMs to simulate human behavior: A
causal inference perspective. arXiv preprint arXiv:2312.15524, 2023.

[32] Meera Hahn, Wenjun Zeng, Nithish Kannen, Rich Galt, Kartikeya Badola, Been Kim,
and Zi Wang. Proactive agents for multi-turn text-to-image generation under uncertainty.
arXiv:2412.06771 [cs.AI], 2024.

[33] Kunal Handa, Yarin Gal, Ellie Pavlick, Noah Goodman, Jacob Andreas, Alex Tamkin, and
Belinda Z. Li. Bayesian preference elicitation with language models, 2024. URL https:
//arxiv.org/abs/2403.05534.

[34] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[35] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research (JMLR), 13:1809–1837, 2012.

[36] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

[37] Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian
He, Pang Wei Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware planning
enhances information seeking in large language models. arXiv:2402.03271 [cs.CL], 2024.

12

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2402.19471
https://arxiv.org/abs/2403.05534
https://arxiv.org/abs/2403.05534

[38] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion planning in belief
space. International Journal of Robotics Research (IJRR), 32(9-10):1194–1227, 2013.

[39] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research (JAIR), 4:237–285, 1996.

[40] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[41] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. CLAM: Selective clarification for ambiguous
questions with generative language models. arXiv:2212.07769 [cs.CL], 2023.

[42] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. In International Conference on
Learning Representations (ICLR), 2023.

[43] Harold J Kushner. A versatile stochastic model of a function of unknown and time varying form.
Journal of Mathematical Analysis and Applications, 5(1):150–167, 1962.

[44] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Fluids Engineering, 86(1):97–106, 1964.

[45] Belinda Z. Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences
with language models, 2023. URL https://arxiv.org/abs/2310.11589.

[46] Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. GSM-plus: A compre-
hensive benchmark for evaluating the robustness of LLMs as mathematical problem solvers.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
2961–2984, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.163. URL https://aclanthology.org/2024.acl-long.163.

[47] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

[48] Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. AmbigQA: Answering
ambiguous open-domain questions. In EMNLP, 2020.

[49] J. Moc̆kus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, 1974.

[50] OpenAI. Gpt-4 technical report, 2023.

[51] Jing-Cheng Pang, Heng-Bo Fan, Pengyuan Wang, Jia-Hao Xiao, Nan Tang, Si-Hang Yang,
Chengxing Jia, Sheng-Jun Huang, and Yang Yu. Empowering language models with active
inquiry for deeper understanding. arXiv preprint arXiv:2402.03719, 2024.

[52] Camille Phiquepal and Marc Toussaint. Combined task and motion planning under partial
observability: An optimization-based approach. In IEEE International Conference on Robotics
and Automation (ICRA), 2019.

[53] Wasu Top Piriyakulkij, Volodymyr Kuleshov, and Kevin Ellis. Active preference inference
using language models and probabilistic reasoning, 2024. URL https://arxiv.org/abs/
2312.12009.

[54] Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696, 2020.

[55] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54
(9):1–40, 2021.

13

https://arxiv.org/abs/2310.11589
https://aclanthology.org/2024.acl-long.163
https://openreview.net/forum?id=3EWTEy9MTM
https://arxiv.org/abs/2312.12009
https://arxiv.org/abs/2312.12009

[56] Claude Sammut and Ranan B Banerji. Learning concepts by asking questions. Machine
learning: An artificial intelligence approach, 2:167–192, 1986.

[57] Marta Sandri, Elisa Leonardelli, Sara Tonelli, and Elisabetta Ježek. Why don’t you do it right?
analysing annotators’ disagreement in subjective tasks. In Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics, pages 2428–2441,
2023.

[58] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

[59] Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in PDDL domains with pretrained large language models. In AAAI
Conference on Artificial Intelligence (AAAI), 2024.

[60] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process op-
timization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning (ICML), 2010.

[61] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

[62] Ruyuan Wan, Jaehyung Kim, and Dongyeop Kang. Everyone’s voice matters: Quantifying
annotation disagreement using demographic information. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(12):14523–14530, 2023.

[63] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar
prompting for domain-specific language generation with large language models. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

[64] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization.
In International Conference on Machine Learning (ICML), 2017.

[65] Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Focused model-
learning and planning for non-Gaussian continuous state-action systems. In IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[66] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Active model
learning and diverse action sampling for task and motion planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4107–4114. IEEE, 2018.

[67] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning
compositional models of robot skills for task and motion planning. International Journal of
Robotics Research (IJRR), 40(6-7):866–894, 2021.

[68] Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper
Snoek, and Zoubin Ghahramani. Pre-trained Gaussian processes for Bayesian optimization.
Journal of Machine Learning Research (JMLR), 25(212):1–83, 2024.

[69] Jie JW Wu. Large language models should ask clarifying questions to increase confidence in
generated code. In Annual Symposium on Machine Programming (MAPS), 2023.

[70] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On
the paradox of learning to reason from data. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/375. URL https://doi.org/10.24963/ijcai.2023/375.

[71] Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through
interaction with LMs. arXiv:2311.09469 [cs.CL], 2023.

[72] Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin,
Hongru Liang, and Tat-Seng Chua. CLAMBER: A benchmark of identifying and clarifying
ambiguous information needs in large language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (ACL), 2024.

[73] Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan:
Proactive language agents for real-world planning. arXiv:2406.12639 [cs.CL], 2024.

14

https://doi.org/10.24963/ijcai.2023/375

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly states the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Section E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

15

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: These are all included in Section 4.2. For further reproducibility, we also
included all the prompts we used in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: We have attached data and code to the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.2. We exclusively conducted prompting-based experiments, and
all prompts were revealed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because we were mainly prompting closed-source models for evaluation, we
expect performative multiple trials would’ve been low-variance and not very informative.
Furthermore, it would’ve been prohibitively expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section I.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We report the compensation of all human annotators in Section 3.3. We expect
no substantial harmful consequences from this dataset, and our dataset does not reveal any
private, personally-identifiable data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section K.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not anticipate high risk of misuse with our dataset.
Guidelines:

• The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Section 3, we cited all original datasets from which we derived our datasets,
and included their licenses and links.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: These have been attached alongside the submission. The dataset and code have
been documented with READMEs.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Detailed annotator instructions and screenshots were included in the appendix,
with a summary of in Section 3.3.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human studies were conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Did not use LLMs for any core part of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Author contributions

All authors contributed to brainstorming ideas and writing.

• Belinda Z. Li (bzl@csail.mit.edu): constructed and analyzed the dataset; implemented
dataset construction and evaluation; human data collection; ran experiments and obtained
results; analyzed empirical results.

• Been Kim (beenkim@google.com): advised project directions, dataset construction/analyses,
human data collection and empirical results analyses.

• Zi Wang (wangzi@google.com): proposed and initiated project; constructed dataset pro-
totypes; analyzed empirical results; advised dataset construction/analyses and human data
collection.

B Related work

Importance of Information Gathering. Actively gathering information is a critical skill for both
humans and autonomous systems when solving problems under uncertainty. For humans, [14]
demonstrates that asking questions plays a crucial role in cognitive development, helping children
resolve ambiguity and learn more effectively. Similarly, AI/ML researchers have extensively explored
strategies for sequential data acquisition in various domains, including concept learning [56, 3], active
learning [16, 58, 36, 23, 55], Bayesian optimization [43, 44, 49, 5, 60, 35, 64, 24, 13, 21, 68, 22],
reinforcement learning [39, 29, 61], and robot planning with partially observable states [40, 38, 52, 19]
or unknown models [65–67]. [69] emphasizes the need for AI assistants to ask questions in the face
of uncertainty, specifically in the context of code generation. Our work follows this tradition by
evaluating how well large language models (LLMs) gather information through basic reasoning tasks.

Ambiguity in user requests. Natural language queries often contain ambiguity for a variety of
reasons. Prior work has examined ambiguity in the context of semantics [42], factual question-
answering [48], task-oriented dialogue intents [54, 8, 73], personalized human preferences [45, 33,
11], and text-to-image generation [32]. [9] presents a visual question answering benchmark to identify
epistemic and aleatory uncertainty, though the distinction between the two types of uncertainties
can often be unclear. [72] introduces a taxonomy of ambiguity, categorizing it into issues like
unfamiliarity and different semantic question types (e.g., “who,” “what," “where").

In this paper, we focus on underspecification instead of ambiguity, where the user has not provided
enough information for the LM to fulfill the request. This situation can arise because users may not
know what information the model lacks, or what information is necessary to complete the task. We
evaluate LLMs’ ability to address underspecification in structured reasoning tasks.

Information gathering benchmarks for LLMs. Most existing benchmarks focus on subjective
or ambiguous tasks where there may be multiple valid clarifying questions, depending on context
and user preference [4, 20, 7, 57, 62]. Task-oriented dialogue benchmarks [54, 8, 73] and preference
elicitation tasks [45] involve inherently subjective problems where no universal “right” question
exists. This makes objective evaluation of information-gathering abilities difficult in these settings.
In contrast, our work focuses on reasoning tasks with a clearly defined ground truth. For each task,
the model needs to ask exactly one question, allowing for reliable evaluation of LLMs’ information-
gathering capabilities.

Question-asking methods for LLMs. Several methods have been proposed to enhance LLMs’
ability to ask clarifying questions. These methods primarily address ambiguous or knowledge-
based tasks, such as identifying a good recipe [2] or asking who won a sports event [71, 51].
Some approaches directly prompt LLMs to ask clarifying questions [45, 41], while others compute
information gain to prioritize informative questions [53, 30, 33, 37]. [71] breaks down question-
asking into three stages: detecting when clarification is needed, identifying the appropriate question,
and responding based on new information. While these methods are promising, they primarily focus
on subjective tasks or require substantial user simulation. Our work introduces a new setting that
emphasizes generating accurate clarifying questions for underspecified reasoning tasks, where the
correct question is objectively determinable.

21

C Dataset Construction Details

The dataset statistics can be found in Table 5.

#Tasks |X| / #Choices d |C| b EBF
min – max (mean)

Logic-Q 1150 10 – 59 (37.9) 1 – 12 (4.1) 8 – 108 (47.8) - 1.2 – 15.0 (6.1)
Planning-Q 7500 25 – 64 (46.0) 1 – 14 (6.9) - 4 – 7 (5.7) 3.0 – 33.0 (18.5)

GSM-Q 23642 2 – 27 (3.5) 1 – 7 (2.1) 1 – 9 (3.0) - 2.5 – 18.5 (5.0)
GSME-Q 6590 2 – 27 (3.5) 1 – 7 (2.1) 1 – 9 (3.1) - 2.5 – 18.5 (4.9)

Table 5: Dataset sizes and properties (Section 2.4) for each domain in QUESTBENCH. We use b to
denote the number of blocks for the Blocks World planning problems.

C.1 Logic-Q

We create 1-sufficient CSPs out of SimpleLogic problems by first discarding the A’s that are already
present in the dataset. We then identify all assignments A(y) = {A(y)

i : A
(y)
i =⇒ y}Mi=0 to (a subset

of) variables in X\y which would imply y is true, and similarly all assignments A(¬y) = {A(¬y)
i :

A
(¬y)
i =⇒ ¬y}M ′

i=0 that imply y is false. These sets are found through recursive backwards search
starting from y or ¬y, see Section C.1.1.

Once we have the full set of assignments which imply y, to make them underspecified, we examine
all pairs of assignments (A(y)

i , A
(¬y)
j) ∈ {A(y)

i }Mi=0 {A(¬y)
i }M ′

i=0 where A
(y)
i and A

(¬y)
j differ on

an assignment to a single variable xd. This means that if we remove xd’s assignment from both
A

(y)
i and A

(¬y)
j (creating A

(y)
i \xd and A

(¬y)
j \xd), then knowing

(
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd)

)
is true

means knowing xd’s value is sufficient to determine whether y or ¬y is true,

Known(xd) ∧ (A
(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ Known(y).

We conduct further checks (see Section C.1.2) to ensure that the assignments themselves do not
already imply a value for y,

(A
(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ ¬Known(y),

discarding any assignment from that doesn’t satisfy the above property. We define Ã as the set of
assignments satisfying the two properties above, and Ã as an element of this set.

Ã =
{
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd) :

∃xd ∈ X,(
Known(xd) ∧ (A

(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ Known(y)

)
∧
(
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ ¬Known(y)

)}
(1)

where the sufficient set of each Ã ∈ Ã is defined as

C(Ã) =
{
x :

(
Known(xd) ∧ Ã =⇒ Known(y)

)
∧
(
Ã =⇒ ¬Known(y)

)}
. (2)

C.1.1 Constructing all assignments that imply goal is true

We begin by doing backwards search through the constraints C to iteratively derive the set of
assignments which imply y is true. At each iteration, we keep track of a disjunction of conjunctions
of variables that must be set in order for the goal variable to be true. We start from the most trivial
assignment – just setting goal variable itself y to true.

g0 = y

22

We then find all rules which imply y is true and add the relevant variable assignments to our set. For
example, suppose we have rule a ∧ b → y and c ∧ ¬d → y, then at the first iteration, we expand our
disjunction of conjunctions to include

g1 = (a ∧ b) ∨ (c ∧ ¬d)

We then iterate through each conjunction, and apply the above procedure on each variable in the
conjunction. For example, if we have e ∧ f =⇒ b and e ∧ g ∧ h =⇒ b and e ∧ x =⇒ c in the
constraints, then we expand as:

g2 = ((a ∧ ((e ∧ f) ∨ (e ∧ g ∧ h)))) ∨ ((e ∧ x) ∧ ¬d)

Which we can then apply the distributive property to, obtaining

g2 = (a ∧ e ∧ f) ∨ (a ∧ e ∧ g ∧ h) ∨ (e ∧ x ∧ ¬d)

More formally, we decompose each constraint Ci into PREMISES(Ci) =⇒ CONCLUSION(Ci)
12,

where PREMISES(Ci) is a set of terms that participate in the conjunction, while CONCLUSION(Ci) is
a single term implied by PREMISES(Ci). Backwards search is thus formalized as follows:

g0 = y

g1 =

[N]∨
i

[Mi]∧
j

ti,j

 , ∀ti,j ∈ PREMISES(Ci), ∀Ci where CONCLUSION(Ci) = y

g2 =

[N]∨
i

[Mi]∧
j

[Nj]∨
k

[Mk]∧
ℓ

ti,j,k,ℓ

 , ∀ti,j,k,ℓ ∈ PREMISES(Ci,j,k),

∀Ci,j,k where CONCLUSION(Ci,j,k) = ti,j , · · ·

=

[N]∨
i

∨
k′,

∀(j,k′)∈((0,k′),··· ,(Mi,k
′))

∀((0,k′),··· ,(Mi,k
′))∈

{{(j,k)∀k∈[Nj]}∀j∈[Mi]}

[Mi]∧
j

[Mk]∧
ℓ

ti,(j,k′),ℓ

∀ti,(j,k′),ℓ ∈ PREMISES(Ci,(j,k′)),

∀Ci,(j,k′) ∈ j{Ci,j,k∀Ci,j,k where CONCLUSION(Ci,j,k) = ti,j}
taking all combinations of k rules that can form each j term

=
∨
i2

∧
j2

ti2,j2 re-indexing

· · ·

to infer all sets of variable assignments that implies y. Similarly, we repeat the process starting from
¬y.

This gives us the full set of variable assignments A(y) which imply y is true. We also repeat this
backwards-search procedure starting from ¬y to get the full set of variable assignments A(¬y) which
imply ¬y is true.

C.1.2 Checking 1-sufficiency

After constructing potential 1-sufficient assignments Ay,−1 = {(A(y)
i \xd) ∧ (A

(¬y)
j \xd)∀xd ∈ X},

we conduct several further checks to ensure they are 1-sufficient:

12Note that any rule of form a∧ b∧ c =⇒ d is equivalent to a∧ b∧¬d =⇒ ¬c, a∧¬b∧ c =⇒ ¬d, etc.
We consider all possible cycles by writing Ci in the form of a disjunction, ¬a ∨ ¬b ∨ ¬c ∨ d and seeking all
disjunctions that contain a particular term (e.g. d), meaning they are implied by the conjunction of the negation
of the rest of the terms (e.g. a ∧ b ∧ c).

23

1. First, we check that

∀Ay,−1
i ∈ Ay,−1,(

∀A(y)
i ∈ A(y), Ay,−1

i ≠⇒ A(y)
)
∧(

∀A(¬y)
i ∈ A(¬y), Ay,−1

i ≠⇒ A(¬y)
)

This ensures that Ay,−1
i by itself is not sufficient to determine the value of y. We throw

away any Ay,−1
i that does not satisfy these two constraints.

2. For any Ay,−1
i ∈ Ay,−1, if exists another Ay,−1

i′ ∈ Ay,−1 such that Ay,−1
i′ =⇒ Ay,−1

i ,
then all variables in the sufficiency set of Ay,−1

i′ is also in the sufficiency set of Ay,−1
i .

However, resolving Ay,−1
i′ may require shallower backwards search than resolving Ay,−1

i
(see Section E.1). To ensure that the LM conducts search to the full depth required for
resolving Ay,−1

i , we construct an “invalid set” consisting of the elements of the resolution
sets of Ay,−1

i′ . During test-time, we tell the LM that it cannot ask about the value of any x′
d

in the sufficiency set of Ay,−1
i′ .

C.2 Planning-Q

We introduce some notation to describe the dataset construction procedure for Planning-Q. The fully-
specified version of the Blocks World task with n blocks can by characterized as ⟨X,S,Q, s0, y⟩
where

• X is the full set of atoms p that can be true of a state.
• S is the set of physically-possible fully-specified states, which can be represented as a full

set of assignments from all variables in X to {TRUE, FALSE}.
• Q is a set of actions that operate on the current state and transitions it to a next state. Each

action q ∈ Q has a set of preconditions which must hold for the action to be applicable
in the state, and a set of effects which hold after the action is applied. Pre-conditions and
effects can be expressed as a conjunction of atoms x or negated atoms ¬x for any x ∈ X .
In the blocks setting, there are 4 types of actions which can be enacted on each block:
pick-up(?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x))
put-down(?x)

:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x))
stack(?x, ?y)

:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y))
unstack(?x, ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))
• s0 is the initial state, which is in S.
• y is a conjunction of goal propositions which we wish to be true at the end of a plan. There

are 6 possible y’s in this dataset, which were written manually by the authors:
{(on b a),
(and (on b a) (on c b)),
(and (on b a) (on d c)),
(and (on b a) (ontable a)),
(and (on b a) (ontable a) (on c b)),
(and (on b a) (ontable a) (on d c) (ontable c))}

Given the above, models are expected to construct an optimal action sequence τ̂ = [q0, q1, · · · , qk−1]
where qt ∈ Q for all qt in the trajectory.

24

Definition: (Optimal) Action Sequence. An action sequence τ enables the robot to go from
initial state s0 to a goal state sk where the goal conditions are satisfied (sk =⇒ y). We use
TRANSITION(s0, τ) to denote the state of the robot after taking action sequence τ from state s0. We
also use s0, · · · sk to denote the sequence of intermediate states the robot goes through when taking
the action sequence, where action ai results in state si+1. An optimal sequence τ̂ is the shortest path
that satisfy TRANSITION(s0, τ) implies y.

τ̂ = argmin
τ

|τ | s.t. TRANSITION(s0, τ) =⇒ y (3)

Definition: Planner. We use Ψy to denote an optimal planner that can map initial states s0 to an
optimal action sequence τ̂ to the goal y. The planner is implemented through breadth-first-search, on
a search graph where the nodes are the states and the edges are the actions, starting from state s0 and
terminating in a state where y is true.

In order to make the planning problem underspecified, we construct a version of it where certain
literals (a literal is an atom or its negation) in s0 are withheld, such that the initial state is only partially
observed.

Definition: Partial state. A partial state is one where a subset of atoms (variables in X) have been
assigned values.

Definition: Consistent set. We say a full state s is consistent with a partial state s̃ if s ∈ S and
s =⇒ s̃. The set of all states which are consistent with s̃ is called the consistent set for s̃, which we
denote with F (s).

We begin by inferring all partial states s̃0 where there is only a single possible optimal action sequence
from any s0 ∈ F (s̃0) to the goal. In other words, if we know s̃0, we know the optimal trajectory to
the goal. This gives us all the well-specified CSPs.

S̃0 = {s̃0 : ∃τ̂ , s0 ∈ F (s̃0) =⇒ Ψ(s0) = τ̂} = {s̃ : s̃ =⇒ Known(τ)} . (4)
The construction process for this set is given in Section C.2.1.

In order to construct 1-sufficient initial states, we withhold a single atom from each s̃0 ∈ S̃0 and
check that knowing the truth value of a single additional atom in X is necessary and sufficient in order
to disambiguate a single optimal action sequence to the goal. Details are given in Section C.2.2.

S̃0
′
=

{
s̃0

′ : ∃x ∈ X,
(
Known(x) ∧ s̃0

′ =⇒ Known(τ)
)
∧
(
s̃0

′ =⇒ ¬Known(τ)
)}

(5)

where the sufficient set of each s̃0
′ is defined as

C(s̃0′) = {x :
(
Known(x) ∧ s̃0

′ =⇒ Known(τ)
)
∧
(
s̃0

′ =⇒ ¬Known(τ)
)
}. (6)

C.2.1 Deriving all well-specified partial states with the same optimal action sequence to goal

Given goal conditions y, first, we perform backwards breadth-first-search from y to derive the full set
of optimal partial-state trajectories that end at y.

Definition: Partial-state Trajectories. A trajectory τ̃ where the intermediary states are partial states,
e.g. [s̃0, q0, s̃1, q1, · · · , s̃k], where s̃1···K are partial states. Partial-state trajectories are valid if for
any consecutive state sequence s̃t, qt, s̃t+1 ∈ τ̃ , applying qt to any full state st ∈ F (s̃t) arrives at
some st+1 ∈ F (s̃t+1). They are optimal if the trajectory is the shortest trajectory from s̃0 to s̃k.

Starting from the atoms in y, we iteratively search each action and deduce the partial states from
which applying that action result in y.

g0 = {[y]}
g1 = {[s̃, q, y] , ∀q ∈ Q∀s̃ s.t. TRANSITION(s̃, q) =⇒ y}

find all partial states s̃ that transition into y on some action q,
prepend s̃, q to the existing trajectories

· · ·
gi+1 = {[s̃, q, τ̃] , ∀q ∈ Q ∀s̃ s.t. ∃τ̃ ∈ gi where TRANSITION(s̃, q) =⇒ τ̃ [0]}

find all partial states s̃ that transitions from some action q into an initial state τ̃ [0]

of a trajectory τ̃ found in the prior iteration gi. Prepend s̃, q to that trajectory
· · ·

25

We expand a search tree where each branch of the tree is partial trajectory. We terminate search
for that branch if we arrive at a partial state s̃ that is implied by a partial state we have already
encountered (meaning we have already considered that partial state). This means in the worst case,
we exhaust the space of all possible partial states. When all branches have terminated, we have the
set of all optimal partial-state trajectories to the goal y, by taking the union g0 ∪ g1 ∪ · · · . The set of
well-specified partial states S̃0 is the initial states of all these trajectories.

C.2.2 Creating 1-sufficient partial states

To create 1-sufficient partial states from S̃0, we remove one proposition xd from each s̃0 ∈ S̃0 to
create S̃′

0 = {s̃0\xd∀xd ∈ s̃0∀s̃0 ∈ S̃0} where s̃0
′ = s̃0\xd for some s̃0, and check that each of the

following holds:

1. For all other s̃0′′ ∈ S̃0, we check whether ∃x ∈ X, s̃0
′′ = s̃0

′ ∧ x, meaning that a single
additional true atom brings us to another 1-sufficient partial state. In this case, we assign
the salient atom x where s̃0

′′ = s̃0
′ ∧ x to FALSE, to eliminate the possibility more than

one question must be asked: for example, if x is asked and turns out to be true, then we
are brought to s̃0

′′, which we know is 1-sufficient, meaning we must ask at least one other
question.

2. For all physically-valid, well-specified states s′0 ∈ F (s̃0
′) consistent with the 1-sufficient

state s̃0
′, we check that there are at most two possible distinct optimal action sequences to

the goal condition y: ∣∣{Ψy(s
′
0), ∀s′0 ∈ F (s̃0

′}
∣∣ ≤ 2

(a) If there is 1 unique action sequence, then we expect the LM response to be “No
questions needed.”

(b) If there are 2 unique action sequences τ1, τ2, then we separated out S̃0 into S̃
(1)
0 and

S̃
(2)
0 , where the optimal action sequence from all states in S̃

(1)
0 to the goal is τ1, while

the optimal action sequence from all states in S̃
(1)
0 to the goal is τ2 (S̃0 = S̃

(1)
0 ∪ S̃

(2)
0).

We find the set of differentiating attributes between S̃
(1)
0 and S̃

(2)
0 , that is to say, all

attributes of states in S̃
(1)
0 that aren’t present in any state of S̃(2)

0 , or vice versa (all
attributes of states in S̃

(2)
0 that aren’t present in any state of S̃(1)

0). If any of these
questions are asked, they would disambiguate whether the optimal action sequence is
τ1 or τ2.

This ensures that for all s̃0′, asking about the truth value of xd fully determines a unique optimal
trajectory from the state to the goal conditions. If s̃0′ passes all of the above checks, we add it to the
set of 1-sufficient partial states S̃ ′

0

C.3 GSME-Q

First, we ask annotators to try and solve the word problems on their own. If they cannot solve
the problem due to semantic ambiguity, or answer the problem in a way that doesn’t match the
original answer in GSM-Plus (due to interpreting the problem differently, or erroneous problems in
GSM-Plus), we discard the problem entirely.

Next, we ask annotators to try and parse each math word problem into a set of variables X , equations
C, assignments A, and a goal variable y. We assume domains D for each variable is the set of natural
numbers. We ask three different annotators provide CSPs for each math problem, resulting in different
CSPs (different annotators may have different interpretations of a problem). We further perform
automated checks to ensure the annotated CSPs actually result in the correct answer, discarding any
CSP which we weren’t able to parse or provided incorrect answers. We use all valid CSPs resulting
from this process, including different CSPs corresponding to the same math problem. This gives us
the set of fully-specified, high quality CSPs.

Full instructions we provided to annotators can be found below with interface screenshot in Figure 4.

You will be presented with a series of math problems. These math problems are written in words
and may be ambiguous. Your task is to try to solve the problem. The problem may be ambiguous,

26

which would make it unsolvable. However, if the problem is solvable, you will be asked to provide
the answer, and may additionally be asked to translate the problem into a set of variables and
equations given the information present in the problem. Two examples are provided below. Please
read carefully and make sure you understand before proceeding.

Math problem 1:
If there are 10 eggs in a basket. Alice buys more eggs and increases her egg quantity by 200%,
but she had also sold half of her eggs by then. How many eggs are there total?

You will be asked to try and solve the problem to check if it is ambiguous.
1. Try to solve this problem. What is the answer?: [text box]

□ Not sure. Explain why: [text box E]
What questions, when answered, could clarify this problem?: [text box Q]

In this case, the problem is ambiguous. You should check off “Not sure" and write why the problem
is ambiguous in the explanation text box E. For example, in this case, you may write: it is unclear
whether “increases by 200%" means 200% or 300% of her original amount. Furthermore, it is
unclear which came first: did she sell half her eggs before increasing by 200%, or did she buy
200% more eggs first, then sell half her eggs.

Next, you should write some questions that could be asked to clarify this problem in
text box Q. For example, you may write “does an increase by 200% mean 200% or 300% of
the original amount?", “which happened first, Alice buying more eggs or Alice selling half her eggs?"

Here are some other examples of ambiguous questions that raters have found in this dataset. Note:
there may be some subjectivity when deciding whether or not a particular problem is ambiguous.
Please base it off your own interpretation.

27

Problem Explanation
Janet buys a brooch for her daughter.
She pays $500 for the material to make
it and then another $800 for the jeweler
to construct it. After that, she pays 10%
of that to get it insured. How much did
she pay?

The antecedent of "that" in "10% of that"
is unspecified.

Josh decides to try flipping a house. He
buys a house for $80,000 and then puts
in $50,000 in repairs. This increased
the value of the house by 150%. How
much did he make?

What should be considered the initial
value of the house is unclear. It could
be taken as the initial purchase price
or the initial purchase price plus repairs.
Furthermore, it is unclear whether “in-
crease by 150%" means 150% or 250%
or the price.

Jason has a phone plan of 1000 min-
utes per month. Every day he has a
15-minute call with his boss, and he’s
had 300 extra minutes of call this month
to other people. How many minutes
does Jason have left if this month has
30 days?

The day of the month is not specified.

In a 60-item quiz, 40% of the questions
are easy, and the rest are equally di-
vided as average and difficult questions.
If Aries is sure to get 75% of the easy
questions, and half of the average and
difficult questions correctly, how many
points is she sure to get?

The number of points per question is
not specified. They could all be worth
one point or they could be weighted dif-
ferently.

Mara added 3 slices of cake to a plate
that already had 2 slices on it. She was
getting hungrier so she tripled the num-
ber of slices she currently has. She ate
2 slices and while she was distracted,
her friend stole 5 slices off her plate.
What number of cake slices remained
on the plate?

The order of events is unclear. Be-
cause of the temporal mismatch be-
tween "was getting" and "currently has"
in the same sentence, a reader cannot
know whether "the number of slices she
currently has" refers to the number of
slices before or after adding the 3.

Note 2: the problem may be ambiguous in more ways than one. Please explain all ways the
problem is ambiguous.

Math problem 2:
If there are 10 eggs and 2 in a basket, and there are twice as many eggs in a second basket, how
many eggs are there total?

1. Try to solve this problem. What is the answer?: [text box]
□ Not sure. Explain why: [text box E]

What questions, when answered, could clarify this problem?: [text box Q]
In this case, you should answer 30. This is because there are 10 eggs in the first basket + 20 in the
second basket, so 30 total. You should not check off “Not sure."

In cases where you did not check off “Not sure", you may be additionally asked to translate the
problem into a series of equations, together with the variables that appear in the equations and the
goal of the problem.

2. Please translate the above math problem into a list of variables, a list of equations, and a
goal variable. Ensure that your translation is equivalent to the variables above.

For example, in this case, the problem may be translated as follows:

Variables:
A = 10 [Number of eggs in the first basket]
B [Number of eggs in the second basket]
T [Total number of eggs]

28

Equations:
B = 2 * A [There are twice as many eggs in the second basket as the first.]
T = A + B [The total number of eggs is the sum of the eggs in the first and
second baskets.]

Goal: T. How many eggs are there total?

If the value of a variable is directly mentioned in the math problem, you should write down the value.
For example, A = 10. If the value of a variable is not directly mentioned in the math problem, you
should not write down the value, even if it can be computed. Here are some examples of incorrect
translation:
INCORRECT EXAMPLE 1

Variables:
A = 10 [Number of eggs in the first basket]
T [Total number of eggs]

Equations:
T = A + B. The total number of eggs is the sum of the eggs in the first and
second baskets.

Goal: T. How many eggs are there total?

The above example is missing a variable (the number of eggs in the second basket) and an
equation.
INCORRECT EXAMPLE 2

Variables:
A = 10 [Number of eggs in the first basket]
B = 2 [Number of eggs in the second basket]
T = Total number of eggs

Equations:
T = A + B. The total number of eggs is the sum of the eggs in the first and
second baskets.

Goal: T. How many eggs are there total?

The above example has a wrong variable value and missed an equation. “There are twice as many
eggs in the second basket as the first" should be translated into B = 2 * A instead of B = 2.

INCORRECT EXAMPLE 3

Variables:
T [Total number of eggs]

Equations:
T = 10 + 20. The total number of eggs is the sum of the 10 eggs in the first
basket and the 20 eggs in the second basket.

Goal: T. How many eggs are there total?

The above example combines too many operations into a single equation, in a way that is not
faithful to the original question. A good rule of thumb is to have one variable stand in for every
number in the problem, and have all equations be of one of two forms: (1) assigns one variable to
one constant, or (2) assigns one variable to a relation among other variables. Avoid equations that
can be simplified.

29

Figure 4: Screenshot of the annotation interface used for obtaining CSPs for each math problem in
the GSM setting.

30

C.4 GSM-Q

We ask annotators to translate problems from GSME-Q into word problems. Full instructions we
provided to annotators can be found below with interface screenshot in Figure 5.

You will be presented with a series of math problems. These math problems are written in words
and translated to equations. Your task is to first validate whether the translation is correct given the
information present in the problem. If so, you will then be prompted to answer questions for each
equation. An example is provided below. Please read carefully and make sure you understand
before proceeding.

Math problem written in words:
If there are 10 eggs and 5 ribbons in a basket, and there are twice as many eggs in the second
basket as the first basket, how many eggs are there total?

The following is the math problem translated into equations, together with the variables that appear
in the equations and the goal of the problem.

Variables:
E1 = 10 [Number of eggs in the first basket]
E2 [Number of eggs in the second basket]
R = 5 [Number of ribbons in the first basket]
T [Total number of eggs]

Equations:
E2 = 2 * E1 [There are twice as many eggs in the second basket as the first.]
T = E1 + E2 [The total number of eggs is the sum of the eggs in the first and second baskets.]

Goal:
T [How many eggs are there total?]

You will first validate that the variables, equations, and goal matches the original problem described
in words:

1. Is the above list of variables, equations, and the goal equivalent to the original math problem
written in words?:

(a) [Bubble] Yes
(b) [Bubble] No

In the example above, the answer is “yes”. Here are some examples of wrong translations, where
the answer would be “no”:
INCORRECT EXAMPLE 1

Variables:
E1 = 10 [Number of eggs in the first basket]
T [Total number of eggs]

Equations:
T = E1 + E2. The total number of eggs is the sum of the eggs in the first and
second baskets.

Goal:
T [How many eggs are there total?]

The above example is missing a variable (the number of eggs in the second basket) that is
necessary to solve for the goal

INCORRECT EXAMPLE 2
Variables:
E1 = 10 [Number of eggs in the first basket]
E2 = 2 [Number of eggs in the first basket]
T [Total number of eggs]

Equations:
T = E1 + E2 [The total number of eggs is the sum of the eggs in the first and
second baskets.]

31

Goal:
T [How many eggs are there total?]

The above example has a wrong variable assignment. “There are twice as many eggs in the
second basket as the first” should be translated into E2 = 2 * E1 instead of E2 = 2.

INCORRECT EXAMPLE 3

Variables:
T [Total number of eggs]

Equations:
T = 10 + 20 [The total number of eggs is the sum of the 10 eggs in the first
basket and the 20 eggs in the second basket.]

Goal:
T [How many eggs are there total?]

The above example combines too many operations into a single equation, in a way that is not
faithful to the original question.
A good rule of thumb is to have one variable stand in for every number in the problem, and have all
equations be of one of two forms: (1) assigns one variable to one constant, or (2) assigns one
variable to a relation among other variables. Avoid equations that can be simplified.

If you answered “yes” to the above question, you will see the following questions.

2. Please solve for the “Goal” in the above list of variables and equations. Is your answer the same
as the answer below?:
30

(a) [Bubble] Yes
(b) [Bubble] No

In the example above, the answer is yes. In incorrect example 1, the answer would be “no” (the
goal value is ambiguous in incorrect example 1). In incorrect example 2, the answer would also be
“no” (the goal value is 12 in incorrect example 2).

If you answered “no” to the above question, the questions will end here. If you answered “yes”,
then, you will answer the following questions for different sets of equation(s):

3. Try to rewrite the problem to remove all parts of the problem that states any of the above
equation(s). Please make sure the problem is still coherent English (e.g., do not simply delete the
section you copied above without fixing any grammatical errors). Please also make sure to remove
the entire premise, not just replacing numbers with “few” or “some”. If there is no way to remove
the equation (e.g., because it was not mentioned in the original problem), please leave the text box
empty and check off “cannot remove”.

[Text area]

□ Cannot remove
For example, given:

• E1 = 10 [Number of eggs in the first basket]
• R = 5 [Number of ribbons in the first basket]

you may write (a) “If there are twice as many eggs in the second basket as the first basket, how
many eggs are there total?”
Given:

• E2 = 2 * E1 [There are twice as many eggs in the second basket as the first.]
• R = 5 [Number of ribbons in the first basket]

you may write (b) “If there are 10 eggs in a basket, how many eggs are there total?”
Given:

• T = E1 + E2 [The total number of eggs is the sum of the eggs in the first and second
baskets.]

• R = 5 [Number of ribbons in the first basket]
you would check off “Cannot Remove” because “T = E1 + E2” was never mentioned in words in the
prompt, but was implied.

4. Given the above rewritten problem, is the answer to the question:

32

Figure 5: Screenshot of the annotation interface used for obtaining underspecified GSM problems
written in words.

□ the same as your answer in question 2
□ unclear
□ different from your answer in question 2. What is the new answer?: [Text box]

In the example above, the answer would likely be “unclear” for question (a). For question (b), the
answer would likely be “different”, with the new answer being 10.

33

D Prompts from each domain in QUESTBENCH

D.1 Identifying missing information and asking the right question

Logic-Q. We used the following prompt for Logic-Q:

Suppose you know the following rules about Alice:
{rules_nl}

You trying to discern whether a statement about Alice is true given some facts. You must decide
whether you have enough information to determine whether the final statement is true. You may
respond with one of the following-
If you do not have enough information yet, you may ask a question about an attribute of Alice, in
the form of "Question: Is Alice [attribute]?". Ask the best question that, regardless of how it is
answered, provides the most information about the final statement.
Once you have enough all information necessary to determine the truth value of the statement, you
can terminate with "End questioning".
Generate one of "Question: Is Alice [attribute]?" or "End questioning" and nothing else.

Planning-Q. We used the following prompt for Planning-Q:

You will be given a planning problem in the domain defined by the following PDDL:

{domain_pddl}

The current objects are present in the problem:

{problem_objects}

You will be given a set of conditions true in your initial state and a set of goal conditions, and will
need to construct a plan from your current state to the goal state. Some details of your initial state
may be missing. You must decide whether you have enough information to disambiguate a plan to
the final state. If not, you must decide what information is necessary to construct a fully unambigu-
ous plan from your initial state to the goal state. You will be presented with a set of multiple-choice
options for questions you may ask, and you must answer with one of the options. Please
reason step-by-step, then generate "Answer:" followed by the number of the option and nothing else.

Known facts about current state:
{conditions}

Goal state:
{goals}

Possible questions:
0. Is {proposition_0} true?
1. Is {proposition_1} true?
2. Is {proposition_2} true?
...

GSM-Q. We used the following prompt for GSM-Q:

You are trying to solve a math problem. You must decide whether you have enough information to
solve the math problem. Please respond with one of the following-
If you do not have enough information to solve the math problem, you may ask a question back to
the user from a set of predefined "Possible questions". Otherwise, choose "No questions needed."
Generate the number of your choice in the form "Choice: number"

Math problem: {problem}

Possible questions:
0. What is {variable_name} ({variable_symbol})?
1. What is {variable_name} ({variable_symbol})?

34

...
{n}. No questions needed.

GSME-Q. We used the following prompt for GSME-Q:

You are trying to solve a math problem. You must decide whether you have enough information to
solve the math problem. Please respond with one of the following-
If you do not have enough information to solve the math problem, you may ask a question back to
the user from a set of predefined "Possible questions". Otherwise, choose "No questions needed."
Generate the number of your choice in the form "Choice: number"

Math problem: {problem }
Possible questions:
0. What is the value of {variable_symbol}?
1. What is the value of {variable_symbol}?
{n}. No questions needed.

D.2 Reasoning in the presence of sufficient information

Logic-Q. We used the following prompt for Logic-Q:

Suppose you know the following rules about Alice:
{rules_nl}

You will presented with a binary question about an attribute of Alice. Please answer it with "Yes" or
"No".

Planning-Q. We used the following prompt for Planning-Q:

You will be given a planning problem in the domain defined by the following PDDL:

{domain_pddl}

The current objects are present in the problem:

{problem_objects}

You will be given a set of conditions true in your initial state and a set of goal conditions, and will
need to construct a plan from your current state to the goal state.
Please answer with "Answer:" followed by the plan in the form of a comma-separated list of ([action]
[args]) (e.g. (pick-up a), (stack a b), ...).

Known facts about current state:
{conditions}

Goal state:
{goals}

GSME-Q/GSM-Q. We used the following prompt for GSME-Q/GSM-Q:

You are trying to answer a math question. Please answer with "Answer:" followed by the answer to
the math question. Only include the raw numerical answer, do not include any units or thousands
separators.

Math problem: {problem}

D.3 Detecting underspecification and recognizing uncertainty

Logic-Q. We used the following prompt for Logic-Q:

35

Logic-Q Planning-Q GSME-Q GSM-Q

ZS

Gemini Flash Thinking 2.0 Exp 01-21 89.34% 53.46% 96.03% 98.26%
Claude 3.5 Sonnet 64.08% 51.26% 29.14% 60.76%

GPT-4o 51.93% 24.53% 26.49% 38.54%
Gemini 1.5 Pro 70.19% 21.33% 35.10% 17.36%

Gemini 1.5 Flash 71.34% 12.64% 17.22% 6.25%
Gemma 2 2B IT 50.76% 0.01% 4.64% 8.33%
Gemma 2 9B IT 51.06% 0.94% 9.93% 18.06%

Gemma 2 27B IT 56.18% 1.25% 16.56% 2.43%

ZS + CoT

Gemini Flash Thinking 2.0 Exp 01-21 88.64% 53.45% 96.03% 98.26%
Claude 3.5 Sonnet 78.59% 69.54% 100.00% 100.00%

GPT-4o 76.33% 14.12% 100.00% 96.18%
Gemini 1.5 Pro 74.74% 23.48% 96.03% 95.14%

Gemini 1.5 Flash 75.21% 12.84% 100.00% 92.36%
Gemma 2 2B IT 56.30% 0.00% 78.15% 54.51%
Gemma 2 9B IT 58.75% 0.62% 75.50% 77.78%

Gemma 2 27B IT 53.97% 0.49% 88.74% 77.78%

4S

Gemini Flash Thinking 2.0 Exp 01-21 81.23% 48.29% 100.00% 97.92%
Claude 3.5 Sonnet 65.80% 54.54% 58.28% 70.83%

GPT-4o 58.99% 30.61% 39.07% 65.28%
Gemini 1.5 Pro 55.41% 32.74% 40.40% 45.83%

Gemini 1.5 Flash 57.52% 38.32% 22.52% 47.57%
Gemma 2 2B IT 51.88% 0.05% 13.25% 43.40%
Gemma 2 9B IT 62.06% 6.11% 22.52% 54.51%

Gemma 2 27B IT 56.05% 4.93% 29.14% 65.97%
Table 6: Language model accuracies for answering questions correctly in a well-specified variant of
QUESTBENCH. See Section 4.3 for more information.

Suppose you know the following rules about Alice: {rules_nl}
You will presented with a binary question about an attribute of Alice. Please answer it with "Yes" or
"No" or "Not sure".

Planning-Q. We used the following prompt for Planning-Q:

You will be given a planning problem in the domain defined by the following PDDL:
{domain_pddl}
The current objects are present in the problem:
{problem_objects}
You will be given a set of conditions true in your initial state and a set of goal conditions, and will
need to construct a plan from your current state to the goal state. Please answer with "Answer:"
followed by the plan in the form of a comma-separated list of ([action] [args]) (e.g. (pick-up a),
(stack a b), ...), or "Not sure" if you are unsure what the plan should be.

GSME-Q/GSM-Q. We used the following prompt for GSME-Q/GSM-Q:

You are trying to answer a math question. Please answer with "Answer:" followed by the answer
to the math question, or "Not sure" if you are not sure what the answer is. Only include the raw
numerical answer, do not include any units or thousands separators.
Math problem: {problem}

36

E Search solutions for Logic-Q and Planning-Q

E.1 Logic-Q

Brute-force Solution. A problem in Logic-Q can be solved through brute force search as follows.
We have a subroutine infer that allows us to infer the values of all variables consistent with the
current variable assignments. For example, if A = {a, b} and we know that a∧b → c, then infer(A)
gives us {a, b, c}. At a high-level, infer is analogous to breadth-first-search, and thus has runtime
complexity O(|X|+ |C|).
To solve a Logic-Q problem, we first run infer to get values of all variables consistent with the
current assignment A, creating A′. Next, for all unassigned variables xu ∈ X\A′, we iterate through
them one at a time and check whether:

1. Including xu in A′ allows us to infer the target variable is either true or false.
2. Include ¬xu in A′ allows us to infer the target variable is the opposite assignment as it was

in case (1).

The first time 1 and 2 both hold, we have that xu is true.

The expected runtime of brute-force can thus be computed by the expected number of variables that
we need to iterate through to get to a variable in the sufficient set (upperbounded by EBF in §2.4),
multiplied by the complexity of running the infer algorithm twice. By Markov’s inequality, with
probability ≥ 1− δ, the complexity is bounded by

O((|X|+ |C|)EBF/δ).

Backwards Search Solution. A problem in Logic-Q can be solved through backwards search. The
procedure is the same as the backwards search used to construct the dataset, described in Section C.1.1.
At each iteration, we keep track of a disjunction of conjunction of variables required to prove y.

The complexity of backwards search is given by the search depth d multiplied by the number of
expansions per depth, which is bounded by O(3|X||C|) (expanding up to |C| rules for conjunction,
for which there are at most 3|X| conjunctions – each variable can be either true/false/missing from
that conjunction) Thus, the overall complexity is O(3|X||C|d).
Though comprehensive backwards search is EXP-time, we can terminate early as soon as we find a
disjunction consisting of the negation of all initial conditions, the goal variable, and an additional
term, which would mean that asking about the value of the initial term is sufficient to infer the value
of the goal variable.

If we know this disjunction is at most at depth d, then the runtime is bounded by |X||C|d, where
|X||C| is the branching factor at each node. The branching factor comes from the cross product of at
most |X| terms across at most |C| conjunctive constraints. Thus, the total runtime is given by

O(|X||C|d).

E.2 Planning-Q

Brute-force Solution. As described in §2.4, our brute-force approach randomly samples from the
choices without replacement, and checks each sampled choice until a correct one is found. The
complexity of this approach relies on the complexity of validating whether a choice is correct or not.

Given an underspecified initial state s̃0 and a selected choice of atom x, we can generate all physically-
plausible initial states s+0 ∈ F (s̃0, x) and s−0 ∈ F (s̃0,¬x), where function F maps from a partial
state to all states consistent with the partial state. We can then solve the planning problem for all
initial states in both sets, and check whether the following holds.

1. The shortest path τ̂+ remains the same for every initial s+0 ∈ F (s̃0, x).
2. The shortest path τ̂− remains the same for every initial s−0 ∈ F (s̃0,¬x).
3. τ̂+ and τ̂− are different.

Assume the planning tool we use is breadth-first search, which takes at most O(|S|+ |S||A|) time.
We perform breadth-first search at most |S| times (since |F (s̃0,¬x) ∪ F (s̃0,¬x)| < |S|), meaning

37

the overall runtime of this solution is O((|S| + |S||A|)|S|). The number of states is bounded by
|S| = 2|X|, while the number of actions is bounded by |A| = 2b+ 2b(b+ 1) = O(b2) where b is the
number of blocks in the domain, so the overall complexity of validating a choice is O(22|X|b2).

Similar to §E.1, with probability at least 1− δ, we only need to guess EBF /δ times. So the overall
complexity is

O(22|X|b2EBF /δ).

Backward Search Solution. We replace the breadth-first-search from each consistent state with
a single backwards search. Starting from the goal condition, we iterate backwards to find sets of
initial states that utilize the same path to the goal. This is the same backwards search that was used to
construct all well-specified partial states, described in Section C.2.1. We expand backwards until we
arrive at a set of partial initial states that are consistent with the given partially-observed set s̃0, and
we find the attribute that distinguishes each partial initial state from each other.

Because the number of partial states is bounded by 3|X| (each proposition can take on 3 values:
true/false/unknown), the backwards breadth-first search takes O(3|X| + 3|X||A|). However, if we
know that the longest path from any initial state consistent with s̃0 to the goal is of length d, meaning
we only need to search up to depth d, then the runtime is bounded by

O(|A|d) = O(b2d) or O(3|X|d)

(Each iteration, expand at most 3|X| states or |A| actions.)

38

F Qualitative Study of QuestBench Reasoning Traces

While the Gemini 2.0 Flash Thinking Experimental model that we used during the original set of
evaluations is no longer available at the time we conduct these analyses, we include some reasoning
traces from Gemini 2.5 Pro (Google’s newest reasoning model as of October 2025) on a Logic-Q and
Planning-Q problem, respectively.

F.1 Logic-Q

We use the first example in the Logic-Q subset of QuestBench, as follows:

[SYSTEM]
Suppose you know the following rules about Alice:

If Alice is aggressive and difficult and rational, then Alice is supportive.
If Alice is aggressive and hilarious and light, then Alice is unpleasant.
If Alice is aggressive and hurt, then Alice is calm.
If Alice is aggressive and loving, then Alice is versatile.
If Alice is aggressive, then Alice is difficult.
If Alice is aggressive, then Alice is elated.
If Alice is amused and dull and sensible, then Alice is hurt.
If Alice is amused and hypocritical, then Alice is elated.
If Alice is amused and precious, then Alice is difficult.
If Alice is amused and sleepy, then Alice is rational.
If Alice is calm and grumpy and light, then Alice is frightened.
If Alice is calm and loving, then Alice is dull.
If Alice is calm, then Alice is silly.
If Alice is different and fearless and versatile, then Alice is elated.
If Alice is different and hypocritical, then Alice is unpleasant.
If Alice is different and powerful, then Alice is messy.
If Alice is different and sensible and shiny, then Alice is rational.
If Alice is different and shiny, then Alice is tired.
If Alice is different and thoughtless, then Alice is sensible.
If Alice is different, then Alice is sensible.
If Alice is difficult and hypocritical, then Alice is versatile.
If Alice is difficult and loving and versatile, then Alice is thoughtless.
If Alice is difficult and precious, then Alice is tired.
If Alice is difficult and shiny, then Alice is elated.
If Alice is difficult and sleepy, then Alice is dull.
If Alice is dull and frightened and sensible, then Alice is elated.
If Alice is dull and light, then Alice is different.
If Alice is dull and loving and messy, then Alice is powerful.
If Alice is dull and precious and rational, then Alice is modern.
If Alice is elated and rational and tired, then Alice is sensible.
If Alice is elated and supportive and thoughtless, then Alice is aggressive.
If Alice is elated, then Alice is messy.
If Alice is fearless and grumpy and shiny, then Alice is frightened.
If Alice is fearless and messy, then Alice is frightened.
If Alice is fearless, then Alice is amused.
If Alice is fearless, then Alice is shiny.
If Alice is frightened and hurt and precious, then Alice is supportive.
If Alice is frightened and rational, then Alice is different.
If Alice is frightened and silly, then Alice is calm.
If Alice is frightened, then Alice is unpleasant.
If Alice is grumpy and hurt and powerful, then Alice is elated.
If Alice is grumpy, then Alice is shiny.
If Alice is hilarious and hurt and modern, then Alice is shiny.
If Alice is hilarious and unpleasant, then Alice is fearless.
If Alice is hilarious, then Alice is hurt.
If Alice is hurt and hypocritical, then Alice is silly.
If Alice is hurt and light and unpleasant, then Alice is amused.
If Alice is hurt and light and unpleasant, then Alice is supportive.

39

If Alice is hurt and messy and modern, then Alice is calm.
If Alice is hurt and messy and supportive, then Alice is sleepy.
If Alice is hurt and sensible and unpleasant, then Alice is shiny.
If Alice is hurt and silly, then Alice is frightened.
If Alice is hypocritical and shiny and thoughtless, then Alice is dull.
If Alice is loving, then Alice is powerful.
If Alice is loving, then Alice is silly.
If Alice is modern, then Alice is loving.
If Alice is rational and shiny, then Alice is modern.
If Alice is sensible, then Alice is rational.
If Alice is shiny and silly and unpleasant, then Alice is hurt.
If Alice is shiny, then Alice is powerful.
If Alice is sleepy and versatile, then Alice is calm.
If Alice is sleepy and versatile, then Alice is sensible.
If Alice is supportive and tired, then Alice is elated.
If Alice is tired, then Alice is sensible.
If Alice is unpleasant, then Alice is modern.

You trying to discern whether a statement about Alice is true given some facts. You must
decide whether you have enough information to determine whether the final statement is
true. You may respond with one of the following− \\

If you do not have enough information yet, you may ask a question about an attribute of Alice,
in the form of "Question: Is Alice [attribute]?". Ask the best question that, regardless of
how it is answered, provides the most information about the final statement.

Once you have enough all information necessary to determine the truth value of the statement
, you can terminate with "End questioning". \\

Generate one of "Question: Is Alice [attribute]?" or "End questioning" and nothing else.

[USER]
Alice is amused.
Alice is calm.
Alice is loving.
Alice is sleepy.

You may not ask if Alice is sensible.
Is Alice tired?

We put the above prompt into Gemini 2.5 Pro, and receive the following (summarized) reasoning
trace:

Assessing the Task

I’m currently focused on the core objective: acting as a logic engine to determine the truth of
specific statements about Alice, based on given rules and facts. I’ve broken down the
process into analyzing the goal, understanding the rules, and applying them. I’m
prioritizing accuracy and efficiency in this logical deduction.

Unfolding Deductions

I’m now iterating through the rules, attempting to deduce "Alice is tired". I’ve mapped the initial
facts and am applying rules like "If Alice is amused and dull and sensible, then Alice is
not tired". My goal is to use forward chaining from the initial facts. So far, the process
indicates I need to fill in some gaps in knowledge; hence the questions. I continue to
check if "Alice is tired" or its logical complement can be derived.

Elaborating Connections

I’m expanding my fact−checking process. I’ve incorporated the new facts "rational", "dull", "silly
", and "powerful". I’m now cross−referencing these against the rules to check for new
implications. I’m keenly aware of the constraint preventing me from asking about "

40

sensible", so I’m carefully navigating around any rules involving that attribute. My goal
remains the same: to determine if "Alice is tired" is provable or not.

Evaluating Derived Truths

I’m now conducting a second round of rule application, using the facts I derived previously −
rational, dull, silly, and powerful. I’m focusing on rules where these facts could lead to a
conclusion about whether Alice is tired. The constraint about "sensible" continues to
guide my search, ensuring I don’t follow any paths that require this attribute. My primary
task remains to determine if "Alice is tired" can be proven or disproven with the available
information.

Analyzing Implications

I’m now methodically applying the rules to the established facts, looking for further inferences.
I’ve successfully derived "rational", "dull", "silly", and "powerful" in the first pass. I’m
focusing on "tired" and the attributes that could lead to it. The "sensible" constraint is a
constant consideration, steering my focus away from any rules dependent on it. The task
is to exhaust all possible deductions within the given constraints.

Refining the Deduction

I’m now employing backward chaining, examining the rules to see how "tired" can be derived. I
’ve considered rules like "If different and shiny, then tired" and "If difficult and precious,
then tired." However, I need to evaluate if I can prove these. Since I lack the ability to
inquire about "sensible", I can’t derive some relevant facts. My task persists: to determine
if "Alice is tired" is provable.

Tracing Deductions

I’ve explored backward chaining to analyze how "tired" can be derived. Examining the rules, I
focused on implications like "If different and shiny, then tired" and "If difficult and precious
, then tired". I’ve initiated a path to find the truth values of those conditions. The "sensible
" constraint is a constant consideration. I’m actively working through each path to reach a
conclusion regarding "Alice is tired".

Reflecting on Current Path

I’m now fully immersed in the deduction process, focusing on determining whether "Alice is
tired" is provable. I’ve considered all rules, both forward and backward, and the initial
facts. I’ve systematically applied the rules and, due to the constraint regarding "sensible",
have had to adapt my strategies. My goal is to exhaustively evaluate every possible
inference path to achieve a decisive answer.

Evaluating Next Steps

I’ve explored forward and backward chaining, identifying key paths to deduce "Alice is tired." I’
m now formulating a prioritized question strategy, keeping the "sensible" constraint in
mind. My current aim is to minimize the number of questions needed to reach a definitive
conclusion.

Advancing Deduction Strategy

I’m adapting my questioning approach to focus on the most direct paths to proving "Alice is
tired." I’m prioritizing asking if Alice is "precious" as a key first step based on rule
analysis. The constraint about "sensible" continues to guide my reasoning and the
ordering of possible questions.

Optimizing Question Strategy

I’m focusing my approach on the most efficient questioning path. I’ve narrowed it down to
prioritizing queries that can directly influence the conclusion "Alice is tired." My strategy
now hinges on finding the most informative question given the rules and constraints.

41

Formulating a Strategy

I’m developing a prioritized question strategy to determine if Alice is tired. I’m focusing on
finding the quickest path to a conclusion, factoring in the constraint regarding "sensible."
The current approach targets asking about "precious".

Reflecting on Initial Strategy

I’ve been meticulously analyzing the implications of each rule, working through a logical tree
to evaluate potential paths to determine "Alice is tired." My initial strategy focuses on
forward and backward chaining. I’m now honing in on which question yields the most
information given the sensible constraint. I’m building my core question strategy.

Optimizing Deduction Path

I’m now zeroing in on an efficient questioning approach. Considering the available facts and
rules, coupled with the constraint about "sensible", I’m targeting the most direct strategy.
I’ve realized that questioning if Alice is "precious" is a crucial step for achieving the
objective.

Question: Is Alice precious?

The model answers incorrectly: the correct options are asking about Alice being “different”, “fright-
ened”, or “hurt”. Based on the reasoning trace, the model begins by pursuing forward search
(“Unfolding Deductions”, “Evaluating Derived Truths”, and “Analyzing Implications”). Next, it
switches to backwards breadth-first search (“Refining the Deduction”, and “Tracing Deductions”).
It claims to have exhausted all the rules in “Reflecting on Current Path” (though we lack the full
reasoning trace to verify this), and identified all the possible inference paths to the target attribute. It
then chooses its final question based on “quickest path to a conclusion”. It appears that while the
LM thoroughly investigates the positive direction (what is needed to establish that Alice is tired), it
never investigates the negative direction (what is needed to establish that Alice is not tired). Thus, it
did not identify the most informative question: unlike the ground truth questions, which would’ve
been sufficient to establish the target attribute regardless of whether they were answered positively or
negatively, precious is only sufficient to establish the target attribute being true if precious were true,
but is insufficient to establish the target attribute being false if precious were false.

F.2 Planning-Q

We use the following example in the Planning-Q subset of QuestBench:

[SYSTEM]
You will be given a planning problem in the domain defined by the following PDDL:

;;
;;; 4 Op−blocks world
;;

(define (domain BLOCKS)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x − block ?y − block)

(ontable ?x − block)
(clear ?x − block)
(handempty)
(holding ?x − block)
)

(:action pick−up

42

:parameters (?x − block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))

(not (clear ?x))
(not (handempty))
(holding ?x)))

(:action put−down
:parameters (?x − block)
:precondition (holding ?x)
:effect
(and (not (holding ?x))

(clear ?x)
(handempty)
(ontable ?x)))

(:action stack
:parameters (?x − block ?y − block)
:precondition (and (holding ?x) (clear ?y))
:effect
(and (not (holding ?x))

(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))

(:action unstack
:parameters (?x − block ?y − block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect
(and (holding ?x)

(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y)))))

The current objects are present in the problem:

[’a’, ’b’, ’c’, ’d’, ’e’]

You will be given a set of conditions true in your initial state and a set of goal conditions, and
will need to construct a plan from your current state to the goal state.

Some details of your initial state may be missing. You must decide whether you have enough
information to disambiguate a plan to the final state. If not, you must decide what
information is necessary to construct a fully unambiguous plan from your initial state to
the goal state.

You will be presented with a set of multiple−choice options for questions you may ask, and you
must answer with one of the options.

Please generate the number of the option and nothing else.

[USER]
Known facts about current state:
(clear a)
(handempty)
(on a e)
(on b d)
(on e b)
(ontable c)

Goal state:
(on b a)
(on c b)
(ontable a)

43

Possible questions:
0. Is (clear a) true?
1. Is (clear b) true?
2. Is (clear c) true?
3. Is (clear d) true?
4. Is (clear e) true?
5. Is (handempty) true?
6. Is (holding a) true?
7. Is (holding b) true?
8. Is (holding c) true?
9. Is (holding d) true?
10. Is (holding e) true?
11. Is (on a b) true?
12. Is (on a c) true?
13. Is (on a d) true?
14. Is (on a e) true?
15. Is (on b a) true?
16. Is (on b c) true?
17. Is (on b d) true?
18. Is (on b e) true?
19. Is (on c a) true?
20. Is (on c b) true?
21. Is (on c d) true?
22. Is (on c e) true?
23. Is (on d a) true?
24. Is (on d b) true?
25. Is (on d c) true?
26. Is (on d e) true?
27. Is (on e a) true?
28. Is (on e b) true?
29. Is (on e c) true?
30. Is (on e d) true?
31. Is (ontable a) true?
32. Is (ontable b) true?
33. Is (ontable c) true?
34. Is (ontable d) true?
35. Is (ontable e) true?
36. No questions needed.

The Gemini 2.5 Pro reasoning trace on this problem can be found below:

Understanding the Objective

I’ve been examining the target state − a neat tower of blocks. It’s clear the solution requires
arranging c atop b, which sits on a, that last block positioned on the table. The essence
of the problem is now defined.

Mapping the States

I’m now mapping the initial and goal states. The initial state is a single, unstable tower: a−e−b
−d, with c on the table. ’a’ is clear, and we have an empty hand. The goal state, the neat
tower, requires ’c’ on ’b’, ’b’ on ’a’, and ’a’ on the table. The problem is clear. I see I must
dismantle the existing towers, and reassemble them.

Disambiguating the Variables

I’m now focusing on the uncertainties, mainly whether d is on the table or if c has something
on top of it. I’ve laid out the possible scenarios, and I’m realizing that the true initial state
is actually ambiguous. The plan must work regardless of whether there’s an additional
block on c or if d is on the table.

44

Resolving Ambiguities

I’ve been working through the uncertainties in the initial state, especially the positions of
blocks ’c’ and ’d’. The analysis reveals that if ’d’ is on the table, ’c’ must be clear, and vice
versa. I’m now structuring the plan to handle either scenario effectively.

Structuring the Solution

The initial and goal states are now clarified, and I’ve created a mental model. I recognize the
essential tasks are to dismantle the initial tower and reassemble the blocks to meet the
goal condition, c on b on a. I’ve outlined the necessary moves using unstack, put−down,
and stack commands, considering the constraints of an empty hand. The challenge is in
determining the initial position of block ’d’, which is linked to whether ’c’ is clear or not.

Clarifying the Initial State

Now I’m diving deeper into the initial conditions, pinpointing the two key uncertainties: the
location of ’d’ and the clarity of ’c’. Analyzing both scenarios confirms that resolving either
uncertainty automatically resolves the other, simplifying the planning process.

Planning the Execution

I’ve streamlined the plan based on the clarified initial state analysis. The strategy focuses on
dismantling the tower, placing each block on the table, then reassembling the blocks to
fulfill the goal. I’m now testing the actions required for each scenario, and I’m ready to
move forward.

Defining the Initial States

I’m now zeroing in on the initial state’s subtleties. It’s become clear that the position of ’d’, and
consequently the clarity of ’c’, is the crux. I’m building a concise plan that seamlessly
addresses both possible scenarios − ’d’ on the table versus ’d’ atop ’c’. I’ve identified the
key uncertainties that inform the planning process.

2

In this case, the model correctly identifies a minimal piece of resolving information: Is (clear c) true?
The model appears to be using a non-search-based approach of visualizing the state of the table and
the stacks of blocks, which may explain why LLM performance only weakly correlated with search
complexity factors in this domain (see Section 4.2).

45

G Graphs of Correlation between Problem Complexity and Clarification
Question Accuracy

Full graphs of the correlation between LLM performance on QUESTBENCH and the factors listed
in Section 2.4 can be found in Figure 6.

Figure 6: LM accuracies across varying backwards search depths d, number variables |X|, number
constraints |C|, and expected number brute-force guesses EBF for each domain, model, and prompt
setting. To make the graph less noisy, we aggregate units of 5 on the x-axis for the Logic-Q setting
for |X| and |C|.

46

H Ablation: QUESTBENCH Accuracy Filtering For Perfect Reasoning

We report full accuracies on the ablation study described in Section 4.3 in Table 7, and on the
GSME-Q and GSM-Q domains in Table 8. Similar to the Logic-Q domain, we found negligible
difference between performance on the filtered version and the original QUESTBENCH for most
model setups — though note that LMs are generally already able to saturate the original version
of QUESTBENCH.

Logic-Q Planning-Q
Acc Diff # samples Acc Diff # samples

ZS

Gemini 2.0 FTE 37.4% 0.0% 1150 53.8% 6.5% 4273
Claude 3.5 Sonnet 30.8% 0.7% 1120 11.3% 3.8% 4368

GPT-4o 27.4% 0.0% 1150 33.4% 8.9% 2275
Gemini 1.5 Pro 29.6% 0.5% 1127 28.7% 8.9% 2175

Gemini 1.5 Flash 17.1% 0.3% 1127 16.1% 7.6% 1288
Gemma 2 2B IT 0.1% 0.0% 1101 0.0% -10.8% 1
Gemma 2 9B IT 26.2% 0.2% 1116 21.1% 6.7% 95

Gemma 2 27B IT 29.8% 0.4% 1111 30.8% 23.1% 117

ZS + CoT

Gemini 2.0 FTE 34.6% 0.0% 1150 52.3% 6.1% 4318
Claude 3.5 Sonnet 37.0% 0.2% 1132 43.4% 9.4% 5176

GPT-4o 32.0% 0.4% 1133 35.7% 19.3% 1339
Gemini 1.5 Pro 29.4% 0.2% 1132 28.1% 6.8% 2456

Gemini 1.5 Flash 19.0% 0.3% 1130 20.4% 11.1% 1386
Gemma 2 2B IT 0.3% 0.0% 1088 - - 0
Gemma 2 9B IT 25.4% 0.8% 1097 21.9% 11.7% 73

Gemma 2 27B IT 32.3% 1.1% 1090 28.0% 18.0% 75

4S

Gemini 2.0 FTE 38.5% 0.1% 1147 28.5% 9.2% 4016
Claude 3.5 Sonnet 36.3% 0.3% 1131 44.7% 10.1% 4264

GPT-4o 25.5% -0.1% 1143 20.1% 8.6% 2780
Gemini 1.5 Pro 26.8% 0.4% 1102 32.2% 13.4% 2935

Gemini 1.5 Flash 15.6% 0.1% 1133 24.3% 6.0% 3429
Gemma 2 2B IT 25.1% -0.0% 1148 22.2% 14.7% 9
Gemma 2 9B IT 21.4% -0.2% 1135 11.7% 6.6% 726

Gemma 2 27B IT 26.4% 0.1% 1130 22.7% 12.0% 546

Table 7: Ablation: Language model accuracies at predicting the right question to ask on only filtered
QUESTBENCH problems of which at least one well-specified version can be answered correctly by
the model + prompt method. We use Gemini 2.0 FTE as a shorthand for Gemini Flash Thinking
2.0 Exp 01-21. See Section 4.3 for the experimental setup. Acc indicates accuracy on the filtered
version of QUESTBENCH, Diff indicates difference between the accuracy in the filtered version vs.
the original QUESTBENCH dataset (Table 1), and # samples indicates the number of samples in the
filtered dataset, out of 1150 and 7500 examples in the original Logic-Q and Planning-Q, respectively.
We bold all accuracy differences greater than zero.

47

GSME-Q GSM-Q
Acc Diff # samples Acc Diff # samples

ZS

Gemini 2.0 FTE 99.3% 2.6% 145 84.5% -0.3% 283
Claude 3.5 Sonnet 86.4% -8.3% 44 92.6% 1.3% 175

GPT-4o 97.5% 0.8% 40 90.1% 3.3% 111
Gemini 1.5 Pro 58.5% 10.1% 53 84.0% 6.2% 50

Gemini 1.5 Flash 96.2% -0.5% 26 66.7% -5.2% 18
Gemma 2 2B IT 71.4% 39.0% 7 45.8% -3.8% 24
Gemma 2 9B IT 93.3% 17.8% 15 40.4% -0.6% 52

Gemma 2 27B IT 100.0% 26.5% 25 85.7% 14.5% 7

ZS + CoT

Gemini 2.0 FTE 99.3% 3.3% 145 86.2% 0.1% 283
Claude 3.5 Sonnet 74.2% 0.0% 151 91.0% 0.0% 288

GPT-4o 99.3% 0.0% 151 91.7% -0.3% 277
Gemini 1.5 Pro 99.3% 2.6% 145 79.2% 0.0% 274

Gemini 1.5 Flash 98.7% 0.0% 151 75.6% -1.2% 266
Gemma 2 2B IT 61.0% 4.1% 118 70.1% 1.7% 157
Gemma 2 9B IT 57.0% 0.1% 114 39.3% 2.8% 224

Gemma 2 27B IT 82.1% 1.3% 134 81.7% 2.2% 224

4S

Gemini 2.0 FTE 96.7% 0.0% 151 92.6% -0.2% 282
Claude 3.5 Sonnet 92.0% -3.3% 88 95.1% 1.0% 204

GPT-4o 96.6% 0.6% 59 84.0% 0.0% 188
Gemini 1.5 Pro 85.2% -6.8% 61 81.1% -4.4% 132

Gemini 1.5 Flash 94.1% -1.2% 34 78.1% -2.8% 137
Gemma 2 2B IT 95.0% 4.3% 20 37.6% 0.1% 125
Gemma 2 9B IT 76.5% -10.3% 34 63.1% 7.5% 157

Gemma 2 27B IT 97.7% 1.0% 44 64.7% -1.9% 190
Table 8: Ablation: Language model accuracies at predicting the right question to ask on only filtered
QUESTBENCH problems whose well-specified versions can be answered correctly at least once by
the model + prompt method. We use Gemini 2.0 FTE as a shorthand for Gemini Flash Thinking
2.0 Exp 01-21. See Section 4.3 for the experimental setup. Acc indicates accuracy on the filtered
version of QUESTBENCH, Diff indicates difference between the accuracy in the filtered version vs.
the original QUESTBENCH dataset, and # samples indicates the number of samples in the filtered
dataset, out of 151 representative examples in GSME-Q and 288 representative examples in GSM-Q.
We bold all accuracy differences greater than zero.

48

Logic-Q Planning-Q GSME-Q GSM-Q

ZS

Gemini Flash Thinking 2.0 Exp 01-21 60.87 0.82 22.35 36.83
Claude 3.5 Sonnet 57.09 10.77 65.22 59.85

GPT-4o 36.26 1.23 30.27 60.87
Gemini 1.5 Pro 47.44 9.88 12.42 55.28

Gemini 1.5 Flash 34.03 0.00 39.41 51.16
Gemma 2 2B IT 47.03 0.00 2.56 4.08
Gemma 2 9B IT 48.39 0.00 40.66 74.67

Gemma 2 27B IT 50.29 0.10 6.13 56.93

ZS + CoT

Gemini Flash Thinking 2.0 Exp 01-21 61.70 0.89 12.42 28.57
Claude 3.5 Sonnet 58.87 15.45 96.58 68.49

GPT-4o 45.95 0.37 83.70 62.86
Gemini 1.5 Pro 53.37 4.15 88.15 65.11

Gemini 1.5 Flash 55.71 4.53 90.59 69.09
Gemma 2 2B IT 35.96 0.05 53.40 21.67
Gemma 2 9B IT 48.98 0.00 64.91 67.12

Gemma 2 27B IT 47.87 0.74 91.37 60.19

4S

Gemini Flash Thinking 2.0 Exp 01-21 57.95 5.42 74.90 50.00
Claude 3.5 Sonnet 51.65 31.52 91.37 86.41

GPT-4o 24.49 13.39 40.21 82.69
Gemini 1.5 Pro 32.35 9.49 66.37 78.74

Gemini 1.5 Flash 27.62 20.82 75.21 75.95
Gemma 2 2B IT 37.95 46.52 15.03 61.75
Gemma 2 9B IT 43.75 2.85 16.00 70.62

Gemma 2 27B IT 36.04 9.06 15.20 75.14

Random (proportional) 41.97 41.75 42.90 50.0

Table 9: F1 scores for identifying which problems are underspecified in QUESTBENCH. We include a
random baseline where a randomly-sampled, proportional number of examples are labeled “not sure”.
We found that most LLMs have difficulty assessing when problems are underspecified, particularly in
difficult domains like Planning-Q.

49

I Computational Resources

Generating the dataset for the Logic-Q and Planning-Q mostly requires CPU resources to conduct the
backwards search. The search and filtering stages for creating each domain required a few (between
three to seven) days each. For experiments, we queried Gemini, GPT-4o, and Claude models through
the API. We launched Gemma models on either TPU v5e node pools, or 1-2 H100 GPUs, and ran
inference with them.

Evaluating each model took a few hours for Logic-Q, up to a few days for Planning-Q, and a few
minutes for GSM-Q / GSME-Q.

J Limitations

Our work includes a few key assumptions that may limit its generalizability and practicality. For
example, QUESTBENCH focuses exclusively on 1-sufficient CSPs, isolating the minimal case of
information acquisition. However, real-world problems often include multiple missing pieces of
information or more complex dependency structures. QUESTBENCH represents a first attempt at deal-
ing with underspecification, favoring formalism and ease of evaluation over generality. Furthermore,
our domains were chosen for their clear CSP formalizations, but may not capture the full range of
naturalistic language understanding and ambiguity found in everyday tasks. Finally, using multiple
choice for question selection simplifies evaluation and ensures consistency, but may overestimate
models’ performance compared to open-ended question generation.

K Broader Impacts

By highlighting gaps in current LLMs’ ability to ask clarification questions, this work could guide
the development of more interactive, trustworthy AI systems. Better information-seeking behavior is
critical for high-stakes domains such as education, healthcare, and scientific research, where clarifying
underspecified inputs can reduce misunderstandings and improve decision-making. Moreover, our
benchmark offers a well-defined setting for studying model uncertainty and epistemic humility, which
are increasingly important for alignment and safety. However, improved question-asking abilities
could be misused in automated persuasion, e.g., models that dynamically elicit personal information
through carefully crafted queries. While QuestBench does not train models to ask open-ended
questions, the underlying capabilities evaluated could inform systems with stronger elicitation power.
Coupling queries with rationales for the model’s query may allow user greater control over the
information shared.

50

	Introduction
	Problem formulation
	Distinguishing semantic ambiguity and underspecification
	Formalizing underspecification
	Why 1-sufficient CSPs?
	Difficulty axes of 1-sufficient CSPs

	Dataset descriptions for QuestBench
	Logic-Q
	Planning-Q
	GSM-Q and GSME-Q

	Results and analyses
	Evaluation of clarification question accuracy
	Correlation between problem complexity and clarification question accuracy
	Is asking the right question harder than solving the problem?
	Detecting underspecification and recognizing uncertainty

	Discussion and Conclusion
	Author contributions
	Related work
	Dataset Construction Details
	Logic-Q
	Constructing all assignments that imply goal is true
	Checking 1-sufficiency

	Planning-Q
	Deriving all well-specified partial states with the same optimal action sequence to goal
	Creating 1-sufficient partial states

	GSME-Q
	GSM-Q

	Prompts from each domain in QuestBench
	Identifying missing information and asking the right question
	Reasoning in the presence of sufficient information
	Detecting underspecification and recognizing uncertainty

	Search solutions for Logic-Q and Planning-Q
	Logic-Q
	Planning-Q

	Qualitative Study of QuestBench Reasoning Traces
	Logic-Q
	Planning-Q

	Graphs of Correlation between Problem Complexity and Clarification Question Accuracy
	Ablation: QuestBench Accuracy Filtering For Perfect Reasoning
	Computational Resources
	Limitations
	Broader Impacts

