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Abstract

While semidefinite programming (SDP) has tradi-
tionally been limited to moderate-sized problems,
recent algorithms augmented with matrix sketch-
ing techniques have enabled solving larger SDPs.
However, these methods achieve scalability at the
cost of an increase in the number of necessary
iterations, resulting in slower convergence as the
problem size grows. Furthermore, they require
iteration-dependent parameter schedules that pro-
hibit effective utilization of warm-start initial-
izations important in practical applications with
incrementally-arriving data or mixed-integer pro-
gramming. We present Unified Spectral Bundling
with Sketching (USBS), a provably correct, fast
and scalable algorithm for solving massive SDPs
that can leverage a warm-start initialization to fur-
ther accelerate convergence. Our proposed algo-
rithm is a spectral bundle method for solving gen-
eral SDPs containing both equality and inequal-
ity constraints. Moreover, when augmented with
an optional matrix sketching technique, our algo-
rithm achieves the dramatically improved scalabil-
ity of previous work while sustaining convergence
speed. We empirically demonstrate the effective-
ness of our method across multiple applications,
with and without warm-starting. For example,
USBS provides a 500x speed-up over the state-of-
the-art scalable SDP solver on an instance with
over 2 billion decision variables. We make our
implementation in pure JAX publicly available1.
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1. Introduction
Semidefinite programming (SDP) is a convex optimization
paradigm capable of modeling or approximating many prac-
tical problems in combinatorial optimization (Alizadeh,
1995), neural network verification (Raghunathan et al.,
2018; Dathathri et al., 2020), robotics (Rosen et al., 2019),
optimal experiment design (Vandenberghe et al., 1998b),
VLSI (Vandenberghe et al., 1998a), and systems and control
theory (Bertsimas, 1995). Despite their widespread applica-
bility, practitioners often dismiss the use of SDPs under the
presumption that optimization is intractable at real-world
scale. This assumption is grounded in the prohibitively
high computational complexity of standard SDP solvers (Al-
izadeh et al., 1998; Vandenberghe & Boyd, 1999).

The main challenge when solving SDPs with standard con-
strained optimization approaches is the high cost of pro-
jection onto the feasible region. Projecting a symmetric
matrix onto the semidefinite cone requires a full eigende-
composition, an operation that scales cubicly with the prob-
lem dimension. The high computational cost of this single
operation severely limits the applicability of projected gra-
dient and ADMM-based approaches (Boyd et al., 2011;
O’Donoghue et al., 2021). Interior point methods, the de
facto approach for solving small-to-moderate sized SDPs,
require even more computational resources.

Projection-free and conditional gradient-based methods
have been proposed to avoid the computational burden of
projecting iterates onto the semidefinite cone (Yurtsever
et al., 2019; 2015; Arora et al., 2005). These methods avoid
projection onto the feasible region with various techniques
including subgradient descent in the dual space and a con-
ditional gradient method on an unconstrained augmented
objective function. The bulk of the computational burden for
these methods is typically an extreme eigenvector calcula-
tion. The scalablity of these methods is still limited, despite
the improved per-iteration complexity, since they require
storing the entire primal matrix which scales quadratically
with the problem dimension.

The most well-known method for scaling semidefinte pro-
gramming without storing the entire primal matrix in mem-
ory is the Burer–Monteiro (BM) factorization heuristic (Bu-
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rer & Monteiro, 2003; Cifuentes & Moitra, 2022). The core
idea of the BM method is to explicitly control the memory
usage by restricting the primal matrix to a low-rank factor-
ization. However, this method sacrifices the convexity of
the problem for scalability. In some cases, the BM method
either requires having a high rank factorization, leading to
burdensome memory requirements, or risks optimization
getting stuck in local minima (Waldspurger & Waters, 2020).
Yurtsever et al. (2021) extend the conditional gradient aug-
mented Lagrangian approach (Yurtsever et al., 2019) with a
matrix sketching technique. This approach avoids storing
the entire primal matrix while maintaining the convexity of
the problem leading to provable convergence for general
SDPs. In addition, this method uses iteration-dependent pa-
rameters prohibiting it from reliably leveraging a warm-start
initialization.

Spectral bundle methods, first proposed by Helmberg &
Rendl (2000), are an appealing framework for solving SDPs
due to their low per-iteration computational complexity and
fast empirical convergence. While several spectral bundle
methods have been presented in the literature (Helmberg
& Kiwiel, 2002; Apkarian et al., 2008; Helmberg et al.,
2014; Ding & Grimmer, 2023), previous work considers
SDPs with either only equality constraints or only inequality
constraints. Furthermore, the lack of an efficient standalone
implementation has prevented the evaluation of spectral
bundle method on massive SDPs.

Contributions. We present USBS, a unified spectral bun-
dle method designed for a broader class of SDPs and show
it is a practical approach for solving large problem instances
quickly. USBS flexibly allows the user to control the trade-
off between per-iteration complexity and the empirical speed
at which the algorithm converges. In addition, USBS can
be augmented with a matrix sketching technique that can
dramatically improve the scalability of the algorithm while
maintaining its fast convergence. We demonstrate the em-
pirical efficacy of our proposed spectral bundle method on
three types of practical large SDPs seeing extraordinary per-
formance improvements in comparison with the previous
state-of-the-art scalable solver for general SDPs. For exam-
ple, USBS is able to obtain a quality solution to an SDP
with over 1013 decision variables while the previous state-
of-the-art fails to reach an accurate solution within 72 hours.
In addition, we see a 500x speedup over the previous state-
of-the-art on an instance with 2 billion decision variables.
Finally, we find that warm-starting can lead to more than a
100x speedup in the convergence of USBS as compared to
cold-starting while the previous state-of-the-art often is not
able to reliably take advantage of a warm-start initialization.
We provide a standalone implementation of the algorithm
in pure JAX (Bradbury et al., 2018; Frostig et al., 2018), en-
abling efficient execution on various hardware (CPU, GPU,
TPU) and wide-spread use.

2. Preliminaries
2.1. Semidefinite Programming

We begin with the notation necessary to define the semidef-
inite programming problem. Let Sn be the set of all real
symmetric n×nmatrices and Sn+ := {X ∈ Sn : X ⪰ 0} be
the positive semidefinite cone. Let ⟨·, ·⟩ denote the standard
inner product for vectors and the Frobenius inner product for
matrices. For any matrix M ∈ Sn, let λmax(M) denote the
maximum eigenvalue of M and let tr(M) denote the trace
of M . Let A : Sn → Rm be a given linear operator and
A∗

: Rm → Sn be its adjoint, i.e. ⟨AX, y⟩ = ⟨X,A∗
y⟩ for

any X ∈ Sn and y ∈ Rm, which take the following form,

AX =

 ⟨A1, X⟩
...

⟨Am, X⟩

 and A∗
y =

m∑
i=1

yiAi,

for given matrices Ai ∈ Sn. For any given I ⊂ {1, . . . ,m},
let AI denote the linear operator restricted to matrices Ai

for i ∈ I and yI to be the corresponding subset of rows
for any y ∈ Rm. In general, we utilize (·)I to extract the
corresponding indices from any vector in Rm. Finally, let
I ′ := {1, · · · ,m} \ I be the compliment of I.

Given fixed C ∈ Sn, A, b ∈ Rm, and I, the primal (P) and
dual (D) semidefinite programs can be written as follows:

max
X⪰0

⟨C,X⟩

s.t. AI′X = bI′

AIX ≤ bI

(P)

min
y∈Rm

⟨b, y⟩

s.t. C −A∗
y ⪯ 0

yI ≥ 0

(D)

Note that while all SDPs of this form can technically be
written as equality constrained SDPs (i.e. standard-form
SDPs), doing so in practice is ill-advised since the problem
dimension, n, grows by one for every inequality constraint.
In addition, we also represent the primal feasibility set as
the convex set K := {z ∈ Rm : zI ≤ bI , zI′ = bI′},
and measure the primal infeasibility dist(AX,K). We use
dist(z,Z) to denote the Euclidean distance from a point
z to a closed set Z and projZ(z) to denote the Euclidean
projection of z onto Z . Equivalently,

dist(z,Z) = inf
z′∈Z

∥z − z′∥ = ∥z − projZ(z)∥.

We denote the solution sets of (P) and (D) by X⋆ and Y⋆,
respectively. We make the standard assumption that (P)
and (D) satisfy strong duality, namely that the solution
sets X⋆ and Y⋆ are nonempty, compact, and every pair
of solutions (X⋆, y⋆) ∈ X⋆ × Y⋆ has zero duality gap:
p⋆ := ⟨C,X⋆⟩ = ⟨b, y⋆⟩ =: d⋆. Strong duality holds
whenever Slater’s condition holds and A is a surjective
linear operator. Additionally, we say that the SDP satis-
fies strict complementarity if there exists (X⋆, y⋆) such
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that for induced dual slack matrix Z⋆ := C − A∗
y⋆,

rank(X⋆) + rank(Z⋆) = n. Strict complementarity is sat-
isfied by generic SDPs (Alizadeh et al., 1997) and many
well-structured SDPs (Ding & Udell, 2021). Lastly, we
denote the maximum nuclear norm of the primal solution
set as N(X⋆) := supX⋆∈X⋆

∥X⋆∥∗.

In many important applications, SDPs take a highly struc-
tured and sparse forms that admit low-rank solutions. The
cost matrix C is often sparse, containing many fewer than
n2 non-zero entries. Additionally, the number of primal
constraints m is often much less n2, being proportional to
n or the number of non-zero entries in C. We would like to
exploit these features with a provably correct, fast and scal-
able optimization algorithm for solving weakly-constrained
SDPs. Note that USBS will provably solve any SDP, but it
might not be fast and scalable for all SDPs, especially those
with dense C or m ≥ O(n2) or high rank solutions.

2.2. Proximal Bundle Method

Proximal bundle methods (Lemarechal et al., 1981; Mifflin,
1977; Feltenmark & Kiwiel, 2000; Kiwiel, 2000) are a class
of optimization algorithms for solving unconstrained convex
minimization problems of the form miny∈Rm f(y), where
f : Rm → (−∞,+∞] is a proper closed convex function
that attains its minimum value, inf f , on some nonempty
set. At each iteration, the proximal bundle method proposes
an update to the current iterate yt by applying a proximal
step to an approximation of the objective function, f̂t:

ỹt+1 ← argmin
y∈Rm

f̂t(y) +
ρ

2
∥y − yt∥2 (1)

where ρ > 0. The next iterate yt+1 is set equal to ỹt+1 only
when the decrease in the objective value is at least a fixed
fraction of the decrease predicted by the model f̂t, i.e.

β(f(yt)− f̂t(ỹt+1)) ≤ f(yt)− f(ỹt+1) (2)

for some fixed β ∈ (0, 1). The iterations where (2) is
satisfied (and thus, yt+1 ← ỹt+1) are referred to as descent
steps. Otherwise, the algorithm takes a null step and sets
yt+1 ← yt. Regardless of whether (2) is satisfied or not,
ỹt+1 is used to construct the next model f̂t+1.

Model Requirements. The model f̂t can take many forms,
but is usually constructed using subgradients of f at past
and current iterates. Let ∂f(y) := {g : f(y′) ≥ f(y) +
⟨g, y′ − y⟩, ∀y′ ∈ Rm} denote the subdifferential of f at
y (i.e. the set of subgradients of f evaluated at a point y).
Following prior work, we require the next model f̂t+1 to
satisfy the following mild assumptions:

1. Minorant.

f̂t+1(y) ≤ f(y), ∀y ∈ Rm (3)

2. Subgradient lower bound. For any gt+1 ∈ ∂f(ỹt+1),

f̂t+1(y) ≥ f(ỹt+1)+⟨gt+1, y− ỹt+1⟩, ∀y ∈ Rm (4)

3. Model subgradient lower bound. The first order
optimality conditions for (1) gives the subgradient
st+1 := ρ(yt − ỹt+1) ∈ ∂f̂t(ỹt+1). After a null step t,

f̂t+1(y) ≥ f̂t(ỹt+1)+⟨st+1, y−ỹt+1⟩, ∀y ∈ Rm (5)

The first two conditions serve to guarantee that a new model
integrates first-order information from the objective at ỹt+1.
The third condition demands the new model to preserve
approximation accuracy exhibited by the preceding model.

Assuming these model requirements, Dı́az & Grimmer
(2023) proved non-asymptotic convergence rates for the
proximal bundle method under various conditions. We sum-
marize the results relevant to this work in Theorem D.1.

3. Unified Spectral Bundling
In this section, we will present USBS, our proposed al-
gorithm for solving the SDP defined in (P) and (D), Our
proposed spectral bundle method is a unified algorithm for
solving SDPs with both equality and inequality constraints
and can be integrated with a matrix sketching technique for
dramatically improved scalability as demonstrated in Sec-
tion 4. To apply the proximal bundle method, we consider
minimizing the following unconstrained objective

f(y) := α [λmax(C −A∗
y)]+ + ⟨b, y⟩+ ιY(y), (pen-D)

where [ · ]+ := max{ · , 0}, Y := {y ∈ Rm : yI ≥ 0},
and where ιY(·) is the indicator function defined such that
ιY(y) = 0 if y ∈ Y and ιY(y) = +∞ otherwise. Mini-
mizing (pen-D) is equivalent to optimizing (D) in the sense
that the optimal solution set and objective are the same
(Appendix A.1). In the following subsections, we will de-
tail how the model is constructed and how to compute the
candidate iterates.

3.1. Spectral Bundle Model

The form of (pen-D) is not quite conducive to defining the
model and solving for the candidate iterate ỹt+1. To address
this, we will consider an equivalent formulation to (pen-D)
that is more amenable to this effort. For any fixed α ≥
2N(X⋆), let X := {X ∈ Sn+ : tr(X) ≤ α} be the trace
constrained subset of the primal domain. Let N := {ν ∈
Rm : νI ≤ 0, νI′ = 0} be the domain of the dual slack
variable ν ∈ Rm for the indicator function ιY(·). Then, we
can rewrite the following equivalent formulation to (pen-D)

f(y) = sup
(X,ν)∈X×N

⟨C −A∗
y,X⟩+ ⟨b− ν, y⟩. (6)

We derive this equivalent formulation in Appendix A.2.
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Defining the model. This equivalent formulation is clearly
just as difficult to optimize as (pen-D), but is helpful in defin-
ing the model we will utilize in the spectral bundle method.
The main idea is to consider (6) over a low-dimensional
subspace of X such that (3), (4), and (5) are satisfied. The
subspace we will consider at step t is parameterized by
matrices X̄t ∈ Sn+ and Vt ∈ Rn×k and is defined as follows

X̂t :=

{
ηX̄t + VtSV

⊤
t

∣∣∣∣ η tr(X̄t) + tr(S) ≤ α
η ≥ 0, S ∈ Sk+

}
. (7)

The matrix Vt has k orthonormal column vectors, where k
is a small user defined parameter. The columns of Vt are
partitioned into kc ≥ 1 current eigenvectors and kp ≥ 0
orthonormal vectors representing past spectral information.
Regardless of the setting of kc and kp, the columns of Vt
will always include a maximum eigenvector v1 of C−A∗

ỹt,
which also means b − αAv1v⊤1 ∈ ∂f(ỹt). For scalability
reasons, we expect k = kc + kp to be relatively small.
The matrix X̄t is a carefully selected weighted sum of past
spectral bounds such that tr(X̄t) ≤ α and enables the last
model condition (5) to be satisfied. Hence, the model is

f̂t(y) := sup
(X,ν)∈X̂t×N

⟨C −A∗
y,X⟩+ ⟨b− ν, y⟩. (8)

We show that this model satisfies the conditions (3), (4), and
(5) in Appendix D.1.

Updating the model. Independent of whether a descent
step or null step is taken, the model needs to be updated. At
every step, we solve the following minimax problem

min
y∈Rm

sup
(X,ν)∈X̂t×N

⟨C−A∗
y,X⟩+ ⟨b−ν, y⟩+ ρ

2
∥y−yt∥2,

(9)
where (ỹt+1, Xt+1, νt+1) is the minimax solution. The
structure of X̂t allows us to rewrite Xt+1 as

Xt+1 = ηt+1X̄t + VtSt+1V
⊤
t . (10)

To compute X̄t+1 and Vt+1 we first compute an eigende-
composition of St+1 to separate current and past spectral
information as follows

St+1 = QpΛpQ
⊤
p +QcΛcQ

⊤
c , (11)

where Λp is a diagonal matrix containing the largest kp
eigenvalues and Qp ∈ Rk×kp contains the corresponding
eigenvectors. The diagonal matrix Λc contains the remain-
ing kc eigenvalues and the corresponding eigenvectors are
contained in the columns of Qc ∈ Rk×kc . Given this de-
composition, we set the next model’s X̄t+1 as follows

X̄t+1 ← ηt+1X̄t + VtQcΛcQ
⊤
c V

⊤
t . (12)

In the case that kp = 0, observe that X̄t = Xt for all t.
To update Vt+1, we first compute the top kc orthonormal

eigenvectors v1, . . . , vkc
of C − A∗

ỹt+1. Then, we set
Vt+1 to k orthonormal vectors that span the columns of
[VtQp; v1, . . . , vkc ] as follows

Vt+1 ← orthonormalize
(
[VtQp ; v1, . . . , vkc

]
)
, (13)

where we can use QR decomposition to orthonormalize the
vectors. If kp = 0, orthonormalization is unnecessary and
we just set Vt+1 ← [v1, . . . , vkc

].

3.2. Computing the Candidate Iterate

We will now discuss how to compute the candidate iterate
ỹt+1 by applying a proximal step to the current approxima-
tion of the objective function (i.e. solve (1)). We show in
Appendix A.3 that the candidate iterate can be computed as

ỹt+1 = yt −
1

ρ
(b− νt+1 −AXt+1), (14)

where (Xt+1, νt+1) ∈ X̂t ×N is the solution to the follow-
ing optimization problem

(Xt+1, νt+1) ∈ argmax
(X,ν)∈X̂t×N

ψt(X, ν), (15)

where we define ψt(X, ν) := ⟨C,X⟩+ ⟨b−ν−AX, yt⟩−
1
2ρ∥b − ν − AX∥

2. To solve for (Xt+1, νt+1) ∈ X̂t × N,
we propose using the alternating maximization algorithm.
After initializing ν̃ = 0, the the following update steps are
repeated until convergence:

X̃ ← argmax
X∈X̂t

ψt(X, ν̃) (16)

ν̃ ← argmax
ν∈N

ψt(X̃, ν) = projN(b−AX̃ − ρyt) (17)

Clearly ψt is smooth, and in this case the alternating max-
imization algorithm is known to converge at a O(1/ε)
rate (Beck, 2015). If ψt happens to also be strongly concave,
the rate improves toO(log(1/ε)) (Luo & Tseng, 1993). We
solve (16) using a primal-dual interior point method derived
in Appendix B.2.

Feasibility of ỹt+1. If we substitute νt+1 = projN(b −
AXt+1 − ρyt) into (14), it can be seen that the candidate
ỹt+1 is always feasible

(
ỹt+1

)
I = max

{(
yt
)
I −

1

ρ

(
bI −AIXt+1

)
, 0

}
≥ 0,

and is also complementary to the dual slack variable νt+1,
i.e. ⟨ỹt+1, νt+1⟩ = 0. This view allows us to see that we
can equivalently express the candidate iterate as

ỹt+1 = projY

(
yt −

1

ρ
(b−AXt+1)

)
.
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Algorithm 1 Unified Spectral Bundling

1: Input: Problem specification (C,A, b, I), parameters
(α, ρ, β, kc, kp), and initialization of X0 = X̄0, y0, and
orthonormal V0 to fully parameterize f̂0 and X̂0.

2: Output: XT , yT
3: for t = 0, 1, . . . , T do
4: (Xt+1, νt+1)← argmax

(X,ν)∈X̂t×N

ψt(X, ν)

5: ỹt+1 ← yt − 1
ρ (b− νt+1 −AXt+1)

6: if β(f(yt)− f̂t(ỹt+1)) ≤ f(yt)− f(ỹt+1) then
7: yt+1 ← ỹt+1 // descent step

8: else
9: yt+1 ← yt // null step

10: end if
11: Update f̂t+1 and X̂t+1 using (7), (8), (12), (13).
12: end for
13: return XT , yT

The complete algorithm is detailed in Algorithm 1. Notice
that USBS has no iteration-dependent step-sizes or parame-
ters, making it more amenable to effectively utilize a warm-
start initialization. It is important to note that the main cost
of computing f(yt) and f(ỹt+1) is a maximum eigenvalue
computation of C − A∗

yt and C − A∗
ỹt+1, respectively.

Lastly, we compute f̂t(ỹt+1) using a primal-dual interior
point method derived in Appendix B.1.

Convergence Rate. Under any setting of the parameters,
Theorem 3.1 guarantees sublinear convergence for both
primal and dual problems, showing that the iterates Xt and
yt converge in terms of objective gap and feasilibity.

Theorem 3.1. Suppose strong duality holds. For any fixed
ρ > 0, β ∈ (0, 1), kc ≥ 1, and kp ≥ 0, USBS produces
iterates Xt ⪰ 0 and yt ∈ Y such that for any ε ∈ (0, 1],

penalized dual optimality: f(yt)− f(y⋆) ≤ ε,
primal feasiblity: dist(AXt,K) ≤

√
ε,

dual feasiblity: λmax(C −A∗
yt) ≤ ε,

primal-dual optimality: |⟨b, yt⟩ − ⟨C,Xt⟩| ≤
√
ε,

by some iteration O(1/ε3). And, if strict complementarity
holds, then these conditions are achieved by some itera-
tion O(1/ε). Additionally, if Slater’s condition holds and
y⋆ is unique, then the approximate primal feasibility and
approximate primal-dual optimality respectively improve to

dist(AXt,K) ≤ ε and |⟨b, yt⟩ − ⟨C,Xt⟩| ≤ ε.

The proof is of this theorem is given in Appendix D.

4. Scaling with Matrix Sketching
The memory required to store the primal iterates X̄t (sim-
ilarly Xt) is prohibitive to scaling SDPs to large problem
instances. We will utilize a Nyström sketch (Tropp et al.,
2017; Gittens, 2013; Halko et al., 2011; Li et al., 2017) to
track a compressed low-rank projection of the primal iterate
as it evolves which at any iteration can be used to compute
a provably accurate low-rank approximation of X̄t.

First, notice that the operations carried out by USBS do not
require explicitly storing X̄t. In fact, if we are not interested
in the primal iterates and we only want to solve the dual
problem (e.g. in the case where we want to test the feasbil-
ity of the primal problem), we only need to store ⟨C, X̄t⟩,
tr(X̄t), and AX̄t, which can be efficiently maintained with
low-rank updates to X̄t (see Appendix C for more details).
This means if we are interested in the primal iterates, our
storage of X̄t is independent from the operations of USBS.

Consider any iterate X̄t ∈ Sn+. Let r ∈ {1, . . . , n} be a
parameter that trades off accuracy for scalability. To con-
struct the Nyström sketch, we sample a random projection
matrix Ψ ∈ Rn×r such that Ψij ∼ N (0, 1) are sampled
i.i.d. The projection of X̄t, or sketch, can be computed as
Pt = X̄tΨ ∈ Rn×r. We can efficiently maintain this sketch
Pt under low-rank updates made to X̄t,

Pt+1 ←
(
ηt+1X̄t + VtQcΛcQ

⊤
c V

⊤
t

)
Ψ

= ηt+1Pt + VtQcΛc

(
Q⊤

c V
⊤
t Ψ

)
.

(18)

Given the sketch Pt and the projection matrix Ψ, we can
compute a rank-r approximation to X̄t. It is important to
note that by applying this Nyström sketching technique the
only approximation error is in the approximation of X̄t, and
all of the error is constant (i.e. the error does not compound
over time) and comes only from the projection matrix Ψ
(and the choice of r). See Appendix C for more details.

5. Experiments
We evaluate USBS on three different problem types with
and without warm-starting strategies against the scalable
semidefinite programming algorithm CGAL (Yurtsever
et al., 2019; 2021) (with sketching). Yurtsever et al. (2021)
perform an extensive evaluation against strong SDP solvers,
including SeDuMi (Sturm, 1999), SDPT3 (Toh et al., 1999),
Mosek (ApS, 2019), SDPNAL+(Yang et al., 2015), and the
BM factorization heuristic (Burer & Monteiro, 2003). They
show on several applications that CGAL with sketching is
by far the standard against which to compare for scalable
semidefinite programming.

We consider the primal iterate an ε-approximate solution
if the relative primal objective suboptimality and relative
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Table 1: MaxCut data instance statistics.

fe sphere hi2010 fe body me2010 fe tooth 598a 144 auto netherlands osm 333SP

n 16K 25K 45K 70K 78K 111K 145K 449K 2.2M 3.7M
nnz(L) 115K 149K 372K 405K 983K 1.6M 2.3M 7.1M 7.1M 25.9M

Figure 1: Convergence time (sec) to moderate relative error tolerance (↓). The time (in seconds) for CGAL and USBS to
achieve an ε-approximate solution for ε = 10−1 with and without warm-starting on 99% of initial data on ten DIMACS10
MaxCut instances. The bars marked with † indicate an ε-approximate solution was not achieved in 72 hours. The datasets
are sorted in ascending order by n, ranging from 16K to 3.7M (more than 1013 decision variables for 333SP). Note that
warm-starting generally improves convergence, but does not always (e.g. 598a). We observe USBS achieves an extraordinary
improvement in convergence over CGAL which fails to reach an accurate solution on 7 out of 10 instances. In contrast,
USBS is able to reach a solution on all of the problem instances in 28 hours or less without a warm-start initialization.

infeasibility is less than ε, i.e.

⟨C,X⟩ − ⟨C,X⋆⟩
1 + ⟨C,X⟩

≤ ε and
dist(AX,K)

1 + ∥b∥
≤ ε. (19)

Computing the relative infeasibility is simple. We do not
usually have access to the optimal primal objective value
⟨C,X⋆⟩ to compute the relative primal objective subopti-
mality, but we can compute an upper bound. See (21) for
how we compute this upper bound.

Following (Yurtsever et al., 2021), we scale the problem data
for all problems such that the following condition holds,

∥C∥F = tr(X⋆) = 1. (20)

In all three problem types, the constraints exactly determine
the trace of all optimal solutions. Since we know the trace
of the optimal solution and we apply problem scaling (20),
we can set α = 2 for all problem types.

Computing the relative infeasibility is simple. As for the
relative primal objective suboptimality, we do not usually
have access to the optimal primal objective value ⟨C,X⋆⟩,
but we can compute an upper bound. For any y ∈ Y ,

f(y) = αmax{λmax(C −A∗
y), 0}+ ⟨b, y⟩

≥ ⟨C −A∗
y,X⋆⟩ − ⟨b, y⟩ = ⟨C,X⋆⟩,

=⇒ ⟨C,X⟩ − ⟨C,X⋆⟩ ≤ ⟨C,X⟩ − f(y).
(21)

We use this upper bound to approximate the relative pri-
mal objective suboptimality in our experiments for USBS.

We use the upper bound given in (Yurtsever et al., 2021)
to compute the relative primal objective suboptimality for
CGAL.

For both CGAL and USBS, we compute eigenvectors and
eigenvalues using an implementation of the thick-restart
Lanczos algorithm (Wu et al., 1999; Hernández et al., 2007)
with 32 inner iterations and a maximum of 10 restarts. Both
CGAL and USBS are implemented using 64-bit floating
point arithmetic. Unless otherwise specified, we use a CPU
machine with 16 cores and up to 128 GB of RAM. Through-
out the presentation of the experimental results we use ↑ to
indicate that higher is better for that particular metric and ↓
to indicate lower is better for that particular metric.

We include further experimental details in Appendix E and
results in Appendix F.

5.1. MaxCut

The MaxCut problem is a fundamental combinatorial op-
timization problem and its SDP relaxation is a common
test bed for SDP solvers. Given an undirected graph, the
MaxCut is a partitioning of the n vertices into two sets
such that the number of edges between the two subsets
is maximized. The MaxCut SDP relaxation (Goemans &
Williamson, 1995) is as follows

max
1

4
tr(LX) s.t. diag(X) = 1 and X ⪰ 0, (22)
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where L is the graph Laplacian, diag(·) extracts the diagonal
of a matrix into a vector, and 1 ∈ Rn is the all-ones vector.
In many instances of MaxCut, the graph Laplacian L is
sparse and the optimal solution is low-rank. This means
that we can represent the MaxCut instance with far less than
O(n2) memory and leverage sketching the primal matrix X
to improve scalability temendously.

We evaluate the CGAL and USBS with and without warm-
starting on ten instances from the DIMACS10 (Bader et al.)
where n and the number of edges in each graph are shown
in Table 1. We warm-start each method by dropping the
last 1% of vertices from the graph, resulting in a graph with
99% of the vertices. We pad the solution from the 99%-
sized problem with zeros and rescale as necessary to create
the warm-start initialization. Figure 1 displays the time
(in seconds) taken by CGAL and USBS, with and without
warm-starting on each of the ten instances, where r = 10.

5.2. Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a very diffi-
cult but fundamental class of combinatorial optimization
problems containing the traveling salesman problem, max-
clique, bandwidth problems, and facilities location problems
among others (Loiola et al., 2007). SDP relaxations have
been shown to facilitate finding good solutions to large
QAPs (Zhao et al., 1998). For any QAP instance, the goal is
to optimize an assignment matrix Π which aligns a weight
matrix W ∈ Sn and distance matrix D ∈ Sn. The number
of n× n assignment matrices is n!, so a brute-force search
becomes quickly intractable as n grows. Generally, QAP
instances with n > 30 are intractable to solve exactly.

There are many SDP relaxtions for QAPs, but we consider
the one presented by (Yurtsever et al., 2021) and inspired
by (Huang et al., 2014; Bravo Ferreira et al., 2018) which is

min tr
(
(D ⊗W )Y

)
s.t. tr1(Y) = I, tr2(Y) = I, G(Y) ≥ 0,

vec(B) = diag(Y), B1 = 1, 1⊤B = 1⊤, B ≥ 0,

X :=

[
1 vec(B)⊤

vec(B) Y

]
⪰ 0, tr(Y) = n

(23)
where ⊗ denotes the Kronecker product, tr1(·) and tr2(·)
denote the partial trace over the first and second systems of
Kronecker product respectively, G(Y) extracts the entries
of Y corresponding to the nonzero entries of D ⊗W , and
vec(·) stacks the columns of a matrix one on top of the
other to form a vector. In many cases, one of D or W is
sparse (i.e. O(n) nonzero entries) resulting in O(n3) total
constraints for the SDP.

The primal variableX has dimension (n2+1)×(n2+1) and
as a result the SDP relaxation has O(n4) decision variables.

Figure 2: relative gap (↓) vs. time. We plot the
relative gap (y-axis, left) and best relative gap

(y-axis, right) against time in seconds (x-axis) for one QAP
instance, pr144, from TSPLIB (n = 144) over one hour of
optimization. We observe that for both algorithms the best
rounded solution is found early in optimization. We observe
that USBS is able to leverage a warm-start initialization.

Given the aggressive growth in complexity, most SDP based
algorithms have difficulty operating on instances where n >
50. To reduce the number of decision variables, we sketch
X with r = n, resulting in O(n3) entries in the sketch and
the same number of constraints in most natural instances.
We show that this enables CGAL and USBS to scale to
instances where n = 198 (1.5 billion decision variables).

We evaluate CGAL and USBS on select large instances from
QAPLIB (Burkard et al., 1997) and TSPLIB (Reinelt, 1995)
ranging in size from 136 to 198. Provided with each of these
QAP instances is the known optimum. For many instances,
we find that the quality of the permutation matrix produced
by the rounding procedure does not entirely correlate with
the quality of the iterates with respect to the SDP (23). Thus,
we apply the rounding procedure at every iteration of both
CGAL and USBS. Our metric for evaluation is relative
gap which is computed as follows

relative gap =
upper bound obtained− optimum

optimum
.

We report the lowest value so far of relative gap as
best relative gap. CGAL (Yurtsever et al., 2021)
is shown to obtain significantly smaller best relative

gap than CSDP (Bravo Ferreira et al., 2018) and PATH (Za-
slavskiy et al., 2008) on most instances, and thus, is a strong
baseline for achieving high quality approximate solutions.

To create a warm-start initialization, we create a slightly
smaller QAP by dropping the final row and column of
both D and W (i.e. solve a size n − 1 subproblem of the
original instance). We use the solution to slightly smaller
problem to set a warm-start initialization for the original
problem, rescaling and padding with zeros where neces-
sary. We stopped optimizing after one hour. When warm-
starting, we optimize the slightly smaller problem for one
hour and then optimize the original problem for one hour.
Figure 2 plots the relative gap and best relative
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(a) PubMed (b) QIAN (c) SCAD-zbMATH

Figure 3: Cumulative SDP solve time (↓) vs. number of ∃-constraints. In each plot (one for each author coreference
dataset), the x-axis is the number of ∃-constraints generated one after the other over time and the y-axis is the the cumulative
solve time (in seconds) for each SDP solver to reach a relative suboptimality, relative infeasibility, and max absolute
infeasibility (i.e. ∥AX − projK(AX)∥∞ ≤ ε) of ε = 10−1. When warm-starting, both solvers are initialized using the
solution from the previous SDP (with one less ∃-constraint). ∃-constraints are generated until the perfect clustering is
predicted. We observe that USBS is able to leverage a warm-start initialization. In addition, we observe that the performance
gap between USBS and CGAL grows as the problem size grows. See Table 2 for dataset sizes and details.

gap against time for CGAL and USBS both with and with-
out warm-starting for one TSPLIB instance.

5.3. Interactive Entity Resolution with ∃-constraints

Angell et al. (2022) introduced a novel SDP relaxation of a
combinatorial optimization problem that arises in automatic
knowledge base construction (Uhlen et al., 2010; Krishna-
murthy, 2015; Iv et al., 2022). They consider the problem
of interactive entity resolution with user feedback to correct
predictions made by a machine learning algorithm. The hu-
man feedback is transformed into a logical constraint on the
output entity resolution decisions. Specifically, they intro-
duce ∃-constraints, a new paradigm of interactive feedback
for correcting entity resolution predictions and presented
a novel SDP relaxation as part of a heuristic algorithm for
satisfying ∃-constraints in the predicted entity resolution
decisions. This novel form of feedback allows users to spec-
ify constraints stating the existence of an entity with and
without certain features. As each ∃-constraint is added to
the optimization problem additional constraints are added to
the SDP relaxation. We use the solution to the SDP without
the newest ∃-constraint to warm-start the solver with the
new ∃-constraint added. See Appendix E.3 for more details.

Table 2: Author coreference dataset statistics.

PubMed QIAN SCAD-zbMATH

# mentions 315 410 1,196
# blocks 5 38 120
# clusters 34 77 166
nnz(W ) 3,973 5,158 18,608
# features 14,093 10,366 8,203

We evaluate the performance of the CGAL and USBS with
and without warm-starting on the same three author corefer-
ence datasets used in (Angell et al., 2022). In these datasets,
each mention is an author-paper pair and the goal is to
identify which author-paper pairs refer to the same author.
We simulate ∃-constraint generation using the same oracle
implemented in (Angell et al., 2022). Figure 3 shows the
cumulative SDP solve time to reach an ε-approximate so-
lution against the number of ∃-constraints for each of the
three datasets until the perfect entity resolution decisions
were predicted by the inference algorithm.

6. Limitations
The intended use for USBS is for solving SDPs with (ap-
proximately) low-rank solutions, particularly when matrix
sketching is used. We should not necessarily expect USBS
to be fast and scalable for all SDPs. For example, USBS
should not be expected to efficiently solve SDPs instances
where the cost matrix C is dense or the number of con-
straintsm is on the order ofO(n2) or greater. It is important
to note that convergence speed is dependent on n and m
which are suppressed by O(·) in the convergence rate. This
is also related to the reason solving inequality-constrained
SDPs written in standard-form is so inefficient. Moreover,
USBS may struggle with important applications such as
sum-of-squares or other polynomial optimization problems
which have a large number of constraints, but we leave this
investigation to future work. Finally, we emphasize USBS is
generally intended to solve SDPs to relatively low accuracy.
This is often perfectly reasonable for applications where
we seek a rounded solution for combinatorial optimization
problems, but may not be best for every application.
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7. Related Work
Efficient SDP solving. Due to their wide-spread appli-
cability and importance, methods for solving SDPs effi-
ciently have been extensively studied in the literature (Todd,
2001; Nesterov, 1989; Nesterov & Nemirovskii, 1994; Al-
izadeh, 1995; Boyd et al., 2011; Friedlander & Macedo,
2016; Yurtsever et al., 2019; 2015; Ding & Udell, 2021).
Interior point methods (Helmberg, 1994; Nesterov & Ne-
mirovskii, 1994; Alizadeh, 1995) are by far the most widely-
used and well-known method for solving SDPs. Interior
point methods enjoy quadratic convergence, but have in-
credibly high per-iteration complexity, and thus, are imprac-
tical for instances having more than a few hundred vari-
ables. ADMM (Boyd et al., 2011) and splitting-based meth-
ods (O’Donoghue et al., 2021) have also been applied to
solving SDPs. These methods are generally more applicable
than interior point methods, but our still restricted do to the
computationally expensive full eigenvalue decomposition.
First-order methods such as conditional gradient augmented
Lagrangian (Yurtsever et al., 2017), primal-dual subgradient
algorithms (Yurtsever et al., 2015), the matrix multiplicative
weight method (Arora et al., 2005; Tsuda et al., 2005; Lee
& Padmanabhan, 2020), and the mirror-prox algorithm with
the quantum entropy mirror map (Nemirovski, 2004) have
by far the lowest per-iteration complexity among all of the
methods for solving SDPs. This lower per-iteration com-
plexity leads to slower convergence rate for these first-order
methods.

Spectral bundle methods. Helmberg & Rendl (2000) were
the first to introduce spectral bundle methods for equality-
constrained SDPs. The biggest difference between the origi-
nal spectral bundle method and our approach is the model
where kc = 1 is fixed and kp is chosen by the user. We find
that larger kc provides better convergence in general and
kp is not very helpful (and sometimes harmful) to conver-
gence. Several other algorithmic variants of spectral bun-
dle methods exist including solving inequality-constrained
SDPs (Helmberg & Kiwiel, 2002), trust region-based meth-
ods for nonconvex eigenvalue optimization (Apkarian et al.,
2008), and incorporating second-order information to speed
up empirical convergence (Helmberg et al., 2014). Ding
& Grimmer (2023) present a spectral bundle method most
similar to ours for solving equality-constrained SDPs. They
prove an impressive set of convergence rates under various
assumptions, including linear convergence if certain strong
assumptions hold. The biggest difference between previ-
ous work of spectral bundle methods and USBS is the fact
that USBS has more flexibility and scalability as compared
with other methods both in terms of the constraints USBS
supports in the SDP and the model the user can specify. In
addition, this work addresses many of the practical imple-
mentation questions enabling scalability to instances with
multiple orders of magnitude more variables.

Memory-efficient semidefinte programming. The most
widely-known memory efficient approach to semidefinite
programming is the Burer–Monteiro (BM) factorization
heuristic (Burer & Monteiro, 2003). Several optimization
techniques have been used to optimize the low-rank factor-
ized problem (Wang et al., 2017; Boumal et al., 2014; Burer
& Monteiro, 2005; Kulis et al., 2007; Sahin et al., 2019;
Souto et al., 2022). Ding et al. (2021) present an optimal
storage approach to solving SDPs by first approximately
solving the dual problem and then using the dual slack ma-
trix to solve the primal problem efficiently. Yurtsever et al.
(2021) implement the conditional gradient augmented La-
grangian method (Yurtsever et al., 2019) with the matrix
sketching technique in (Yurtsever et al., 2017) which forms
a strong state-of-the-art method for scalably solving general
SDPs. Ding & Grimmer (2023) implements a spectral bun-
dle method for solving equality constrained SDPs with the
same matrix sketching technique (Yurtsever et al., 2017).

8. Conclusion
In this work, we presented a practical spectral bundle
method for solving large SDPs with both equality and in-
equality constraints. We proved non-asymptotic conver-
gence rates under standard assumptions for USBS. We
showed empirically that USBS is fast and scalable on prac-
tical SDP instances. Additionally, we showed that USBS
can more reliably leverage a warm-start initialization to
accelerate convergence. Lastly, we make our standalone
implementation in pure JAX available for wide-spread use.
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A. Derivations
A.1. Penalized Dual Objective

Begin by considering the following Lagrangian formulation of the model problem

p⋆ = max
X∈Sn+

min
y∈Rm:yI≥0

L(X, y) = min
y∈Rm:yI≥0

max
X∈Sn+

L(X, y) = d⋆, (A.1)

where the Lagrangian is defined as
L(X, y) := ⟨C −A∗

y,X⟩+ ⟨b, y⟩. (A.2)

Since X⋆ ⊂ X , we know

max
X∈Sn+

min
y∈Y

L(X, y) = max
X∈X

min
y∈Y

L(X, y) = min
y∈Y

max
X∈X

L(X, y). (A.3)

Furthermore, it is easy to show the following fact (Overton, 1992),

max
X⪰0 , tr(X)≤1

⟨Z,X⟩ = max{λmax(Z), 0}. (A.4)

Incorporating (A.4) with (A.3) allows us to write an equivalent formulation of the original dual problem by defining the
penalized dual objective as shown in (pen-D)

f(y) := αmax{λmax(C −A∗
y), 0}+ ⟨b, y⟩+ ιY(y), (pen-D)

where ιY(·) is the indicator function defined such that ιY(y) = 0 if y ∈ Y and ιY(y) = +∞ otherwise.

A.2. Equivalent Penalized Dual Objective

We begin by considering the dual form of the indicator function ιY(·)

ιY(y) = sup{−⟨ν, y⟩ : νI ≤ 0, νI′ = 0}. (A.5)

Define N := {ν ∈ Rm : νI ≤ 0, νI′ = 0}. Substituting (A.5) into (pen-D) and utilizing (A.4) gives

f(y) = sup
(X,ν)∈X×N

⟨C −A∗
y,X⟩+ ⟨b− ν, y⟩.

A.3. Candidate Iterate

Notice that the candidate iterate can be written as follows

ỹt+1 = argmin
y∈Rm

sup
(X,ν)∈X̂t×N

F (X, ν, y), (A.6)

where
F (X, ν, y) := ⟨C −A∗

y,X⟩+ ⟨b− ν, y⟩+ ρ

2
∥y − yt∥2.

To solve for ỹt+1, start by fixing (X, ν) ∈ X̂t ×N arbitrarily. Then, completing the square gives

argmin
y∈Rm

F (X, ν, y) = argmin
y∈Rm

⟨b− ν −AX, y⟩+ ρ

2
∥y − yt∥2

= argmin
y∈Rm

ρ

2

∥∥∥∥y − yt + 1

ρ
(b− ν −AX)

∥∥∥∥2
= yt −

1

ρ
(b− ν −AX).

This implies that the candidate iterate can be computed as follows

ỹt+1 = argmin
y∈Rm

f̂t(y) + ∥y − yt∥2 = yt −
1

ρ
(b− νt+1 −AXt+1), (A.7)
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where (Xt+1, νt+1) ∈ X̂t ×N is the solution to the following optimization problem

(Xt+1, νt+1) ∈ argmax
(X,ν)∈X̂t×N

ψt(X, ν), (A.8)

where

ψt(X, ν) := ⟨C,X⟩+ ⟨b− ν −AX, yt⟩ −
1

2ρ
∥b− ν −AX∥2. (A.9)

B. Solving Iteration Subproblems
In this section, we detail the primal-dual path-following interior point methods used to solve the small semidefinite program
to compute the value f̂t(ỹt+1) and the small quadratic semidefinite program (16). Before we can derive the algorithms, it is
necessary to define the svec operator and symmetric Kronecker product (Alizadeh et al., 1998; Schacke, 2004; Todd et al.,
1998).

For any matrix A ∈ Sn, the vector svec(A) ∈ R(
n+1
2 ) is defined as

svec(A) =
[
a11,
√
2a21, . . . ,

√
2an1, a22,

√
2a32, . . . ,

√
2an2, . . . , ann

]⊤
.

The svec-operator is a structure preserving map between Sn and R(
n+1
2 ) where the constant

√
2 multiplied by some of the

entries ensures that

⟨A,B⟩ = tr(AB) = svec(A)⊤svec(B), ∀A,B ∈ Sn.

For any M ∈ Rn×n, let vec(M) be the map from Rn×n to Rn2

defined by stacking the columns of M into a single

n2-dimensional vector. It is also useful to define the matrix U ∈ R(
n+1
2 )×n2

which maps vec(A) 7→ svec(A) for any
A ∈ Sn. Let uij,kl be the entry in the row which defines element aij in svec(A) and the column that is multiplied with the
element akl in vec(A). Then

uij,kl =


1 i = j = k = l
1√
2

i = k ̸= j = l, or i = l ̸= j = k

0 o.w.

As an example, the case when n = 2:

U =

1 0 0 0
0 1√

2
1√
2

0

0 0 0 1

 .
Note that U is a unique matrix with orthonormal rows and has the following property

U⊤Uvec(A) = U⊤svec(A) = vec(A), ∀A ∈ Sn.

The symmetric Kronecker product ⊗s can be defined for any two square matrices G,H ∈ Rn×n by its action on a vector
svec(A) for A ∈ Sn as follows

(G⊗s H) svec(A) =
1

2
svec(HAG⊤ +GAH⊤).

Alternatively, but equivalently (Schacke, 2004), the symmetric Kronecker product can be defined more explicitly using the
matrix U defined above as follows

G⊗s H =
1

2
U(G⊗H +H ⊗G)U⊤,

where ⊗ is the standard Kronecker product. We use this latter definition in our implementation.
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B.1. Computing f̂t(ỹt+1)

The value f̂t(ỹt+1) is the optimum value of the following optimization problem (remember that ν can be dropped since
ỹt+1 is always feasible)

max ⟨C −A∗
ỹt+1, ηX̄t + VtSV

⊤
t ⟩+ ⟨b, ỹt+1⟩

s.t. η ≥ 0

S ⪰ 0

η + tr(S) ≤ α

This amounts to computing ⟨C−A∗
ỹt+1, η⋆X̄t+VtS⋆V

⊤
t ⟩+ ⟨b, ỹt+1⟩ where (η⋆, S⋆) is a solution to the following (small)

semidefinite program
min g⊤1 svec(S) + η g2

s.t. η ≥ 0

S ⪰ 0

1− v⊤I svec(S)− η ≥ 0

(B.1)

where
g1 = α svec(V ⊤

t (A∗
ỹt+1 − C)Vt),

g2 =
α

tr
(
X̄
) ⟨X̄t,A∗

ỹt+1 − C)⟩,

vI = svec(I). (I is the k × k identity matrix)

We will use a primal-dual interior point method to solve (B.1). We follow the well known technique for deriving primal-dual
interior point methods (Helmberg, 1994). We start by defining the Lagrangian of the dual barrier problem of (B.1),

Lµ(S, η, T, ζ, ω) = g⊤1 svec(S) + ηg2 − svec(S)⊤svec(T )− ηζ
− ω(1− v⊤I svec(S)− η) + µ(log det(T ) + log ζ + logω),

(B.2)

where we introduce a dual slack matrix T ⪰ 0 as complementary to S, a dual slack scalar ζ ≥ 0 as complementary to η, a
Lagrange multiplier ω ≥ 0 for the trace constraint inequality, and a barrier parameter µ > 0. Notice that we have moved
from needing to optimize a constrained optimization problem to an unconstrained optimization problem. The saddle point
solution of (B.2) is given by the solution of the KKT-conditions, which reduces to just the first-order optimality conditions
since the problem is unconstrained. The first-order optimality conditions of (B.2) are the following system of equations

∇SLµ = g1 − svec(T ) + ωvI = 0 (B.3)
∇ηLµ = g2 − ζ + ω = 0 (B.4)

∇TLµ = S − µT−1 = 0 (B.5)

∇ζLµ = η − µζ−1 = 0 (B.6)

∇ωLµ = 1− v⊤I svec(S)− η − µω−1 = 0 (B.7)

By the strict concavity of log detT , log ζ, and logω, there exists a unique solution (Sµ, ηµ, Tµ, ζµ, ωµ) to this system of
equations for any value of the barrier parameter µ > 0. The sequence of these solutions as µ → 0 forms the central
trajectory (also known as the central path). For a point (S, η, T, ζ, ω) on the central trajectory, we can use any combination
of (B.5), (B.6), and/or (B.7) to solve for µ,

µ =
⟨S, T ⟩
k

= ηζ = ω(1− v⊤I svec(S)− η) =
⟨S, T ⟩+ ηζ + ω(1− v⊤I svec(S)− η)

k + 2
. (B.8)

The fundamental idea of primal-dual interior point methods is to use Newton’s method to follow the central path to a solution
of (B.1). Before we can apply Newton’s method, we must linearize the non-linear equations (B.5), (B.6), and (B.7) into an
equivalent linear formulation. There are several ways one could linearize these equations and the choice of linearization
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significantly impacts the algorithm’s behavior (see (Alizadeh et al., 1998) or (Helmberg, 1994) for more on the choice of
linearization). We choose one standard method linearization, detailed in the following system of equations

Fµ(θ) = Fµ(S, η, T, ζ, ω) :=


g1 − svec(T ) + ωvI

g2 − ζ + ω

ST − µI
ηζ − µ

ω(1− v⊤I svec(S)− η)− µ

 = 0. (B.9)

The solution θ⋆ to this system of equations Fµ(θ) = 0 satisfies the first-order optimality conditions (B.3)-(B.7) and is
the optimal solution to the barrier problem. We utilize Newton’s method to take steps in the update direction ∆θ =
(∆S,∆η,∆T,∆ζ,∆ω) towards θ⋆. The update direction ∆θ determined by Newton’s method must satisfy the following
equation

Fµ(θ) +∇Fµ(∆θ) = 0.

Hence, the update direction ∆θ is the solution to the following system of equations (after the same standard linearization
has been applied to the following system as in (B.9))

−svec(∆T ) + ∆ω vI = svec(T )− g1 − ω vI (B.10)
−∆ζ +∆ω = ζ − g2 − ω (B.11)

ω−1(1− v⊤I svec(S)− η)∆ω − v⊤I svec(∆S)−∆η = µω−1 + v⊤I svec(S) + η − 1 (B.12)

(T ⊗s S
−1) svec(∆S) + svec(∆T ) = µ svec(S−1)− svec(T ) (B.13)

ζη−1∆η +∆ζ = µη−1 − ζ (B.14)

We can solve this system efficiently by analytically eliminating all variables except svec(∆S). We can compute svec(∆S)
by solving the following linear matrix equation using an off-the-shelf linear system solver(

T ⊗s S
−1 +

ζη−1

κ1ζη−1 + 1
vIv

⊤
I

)
svec(∆S) = vIg2 − vIµη−1 − g1 + µ svec(S−1)

+ vIζη
−1(−κ1ζη−1 − 1)−1

(
−κ1(µη−1 − g2 − ω) + µω−1 + v⊤I svec(S) + η − 1

) (B.15)

where κ1 := ω−1(1 − v⊤I svec(S) − η). Then, computing the rest of the update directions ∆η, svec(∆T ), ∆ζ, and ∆ω
amounts to back-substituting the solution to (B.15) for svec(∆S) through the analytical variable elimination equations.

Given how to compute the update directions, the primal-dual interior point method proceeds as follows. Initialize the
variables θ = (S, η, T, ζ, ω) to an arbitrary strictly feasible point (i.e. S ≻ 0, η > 0, T ≻ 0, ζ > 0, and ω > 0). Starting
from this primal-dual pair we compute an estimate of the barrier parameter as follows

µ← ⟨S, T ⟩+ ηζ + ω(1− v⊤I svec(S)− η)
2(k + 2)

,

where, as done in (Helmberg, 1994), we use (B.8) and divide by two. Then, we compute the update direction ∆θ as
described above and perform a backtracking line search to find a step size δ ∈ (0, 1] such that θ + δ∆θ is again strictly
feasible. Lastly, following (Helmberg & Rendl, 2000), we compute a non-increasing estimate of the barrier parameter

µ← min

{
µprev, γ

⟨S, T ⟩+ ηζ + ω(1− v⊤I svec(S)− η)
2(k + 2)

}
where γ =

{
1 if δ ≤ 1

5
5
10 −

4
10δ

2 if δ > 1
5

.

We iterate over these steps until the barrier parameter µ is small enough (e.g. µ < 10−7).

B.2. Solving (16)

The subproblem (16) can be rewritten as the following (small) quadratic semidefinite program

max ⟨C −A∗
yt, ηX̄t + VtSV

⊤
t ⟩+ ⟨b− ν̃, yt⟩ −

1

2ρ

∥∥b− ν̃ −A(ηX̄t + VtSV
⊤
t )

∥∥2
2

s.t. η ≥ 0

S ⪰ 0

η + tr(S) ≤ α
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For this subproblem, unlike the subproblem solved in subsection B.1, we are solving for η and S to compute the candidate
iterate ỹt+1, update the primal variable, and update the model. This (small) quadratic semidefinite program is equivalent to
the following optimization problem

min
1

2
svec(S)⊤Q11 svec(S) + η q⊤12 svec(S) +

1

2
η2q22 + h⊤1 svec(S) + η h2

s.t. η ≥ 0

S ⪰ 0

1− v⊤I svec(S)− η ≥ 0

(B.16)

where

Q11 =
α2

ρ

m∑
i=1

svec(V ⊤
t AiVt) svec(V

⊤
t AiVt)

⊤

q12 =
α2

ρ tr
(
X̄t

) svec (V ⊤
t A∗A X̄tVt

)
q22 =

α2

ρ tr
(
X̄t

)2 〈
AX̄t,AX̄t

〉
h1 = α svec

(
V ⊤
t

(
A∗
yt − C −

1

ρ
A∗

(b− ν̃)
)
Vt

)
h2 =

α

tr
(
X̄t

) 〈X̄, A∗
yt − C −

1

ρ
A∗

(b− ν̃)
〉

vI = svec(I)

We follow the same derivation procedure as in subsection B.1, so we proceed by including the details which differ from the
previous section. The Lagrangian of the dual barrier problem of (B.16) is as follows

Lµ(S, η, T, ζ, ω) =
1

2
svec(S)⊤Q11 svec(S) + η q⊤12 svec(S)

+
1

2
η2q22 + h⊤1 svec(S) + η h2 − svec(S)⊤svec(T )− ηζ

− ω(1− v⊤I svec(S)− η) + µ(log det(T ) + log ζ + logω).

(B.17)

The first-order optimality conditions of (B.17) yields the following system of equations (after the same standard linearization)

Fµ(S, η, T, ζ, ω) :=


Q11 svec(S) + η q12 + h1 − svec(T ) + ωvI

q⊤12 svec(S) + η q22 + h2 − ζ + ω

ST − µI
ηζ − µ

ω(1− v⊤I svec(S)− η)− µ

 =:


F1

F2

F3

F4

F5

 = 0. (B.18)

The Newton’s method step direction (∆S,∆η,∆T,∆ζ,∆ω) is determined via the following linearized system

Q11svec(∆S) + ∆η q12 − svec(∆T ) + ∆ω vI = −F1 (B.19)

q⊤12 svec(∆S) + ∆ ηq22 −∆ζ +∆ω = −F2 (B.20)

ω−1(1− v⊤I svec(S)− η)∆ω − v⊤I svec(∆S)−∆η = µω−1 + v⊤I svec(S) + η − 1 (B.21)

(T ⊗s S
−1) svec(∆S) + svec(∆T ) = µ svec(S−1)− svec(T ) (B.22)

ζη−1∆η +∆ζ = µη−1 − ζ (B.23)

We can solve this system efficiently by analytically eliminating all variables except svec(∆S). We can compute svec(∆S)
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by solving the following linear matrix equation using an off-the-shelf linear system solver(
Q11 + T ⊗s S

−1 − (κ1κ2 + 1)−1
(
q12(κ1q12 + vI)

⊤+ vI(q12 − κ2vI)⊤
))

svec(∆S)

= q12
(
(κ1κ2 + 1)−1

(
µω−1 + v⊤I svec(S) + η − 1 + κ1(F2 − µη−1 + ζ)

))
+ vI

(
(κ1κ2 + 1)−1

(
F2 − µη−1 + ζ − κ2(µω−1 + v⊤I svec(S) + η − 1)

))
− F1 + µ svec(S−1)− svec(T ),

(B.24)

where κ1 := ω−1(1 − v⊤I svec(S) − η) and κ2 := ζη−1 + q22. Then, computing the rest of the update directions ∆η,
svec(∆T ), ∆ζ, and ∆ω amounts to back-substituting the solution to (B.24) for svec(∆S) through the analytical variable
elimination equations.

We make a single change to the initialization as compared with the interior point method presented in subsection B.1. Since
this interior point method can be executed multiple times in a row with only the value of ν̃ changing as the first step in the
alternating maximization algorithm, we warm-start initialize θ with the previous execution’s θ⋆. We observe non-negligible
convergence improvements over arbitrary initialization as this interior point method procedure is called in sequence.

B.3. Remark on Solving Subproblems

Ding & Grimmer (2023) claim that (16) could be solved using (accelerated) projected gradient descent and describe the
method necessary for projection and proper scaling, but they use Mosek (ApS, 2019), an off-the-shelf solver, in their
experiments. We find that while theoretically possible, projected gradient descent does not work well in practice since
choosing the correct step size to obtain a high quality solution to (16) is difficult and varies between time steps t. We instead
use (and advocate for) the primal-dual interior point method derived in Appendix B.2.

C. Additional Details on Scaling with Matrix Sketching
The values ⟨C, X̄t⟩, tr(X̄t), and AX̄t can be efficiently maintained given low-rank updates to X̄t due to the linearity of the
operations,

⟨C, X̄t+1⟩ ← ⟨C, ηt+1X̄t + VtQcΛcQ
⊤
c V

⊤
t ⟩ = ηt+1⟨C, X̄t⟩+ tr

(
V ⊤
t Q

⊤
c

(
CVtQcΛc

))
, (C.1)

tr(X̄t+1)← tr
(
ηt+1X̄t + VtQcΛcQ

⊤
c V

⊤
t

)
= ηt+1tr

(
X̄t

)
+ tr

(
Λc

)
, (C.2)

AX̄t+1 ← A
(
ηt+1X̄t + VtQcΛcQ

⊤
c V

⊤
t

)
= ηt+1AX̄t +A

(
VtQcΛcQ

⊤
c V

⊤
t

)
, (C.3)

where A
(
VtQcΛcQ

⊤
c V

⊤
t

)
can be computed efficiently since(

A
(
VtQcΛcQ

⊤
c V

⊤
t

))
i
= tr

(
V ⊤
t Q

⊤
c

(
AiVtQcΛc

))
. (C.4)

C.1. Nyström Sketch Reconstruction

Given the sketch Pt and the projection matrix Ψ, we can compute a rank-r approximation to X̄t. The approximation is as
follows ̂̄Xt := Pt(Ψ

⊤Pt)
+P⊤

t = (X̄tΨ)(Ψ⊤X̄tΨ)+(X̄tΨ)⊤, (C.5)

where + is the Moore-Penrose inverse. The reconstruction is called a Nyström approximation. We will almost always compute
the best rank-r approximation of ̂̄Xt for memory efficiency. In practice, we use the numerically stable implementation
of the Nyström approximation provided by Yurtsever et al. (2021). The Nyström approximation yields a provably good
approximation for any sketched matrix. See the following fact from (Tropp et al., 2017),

Fact C.1. Fix X ∈ Sn+ arbitrarily. Let P := XΨ where Ψ ∈ Rn×r has independently sampled standard normal entries.
For each r′ < r − 1, the Nyström approximation X̂ as defined in (C.5) satisfies

EΨ

∥∥X − X̂∥∥
∗ ≤

(
1 +

r′

r − r′ − 1

)∥∥X − [[X]]r
∥∥
∗, (C.6)
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where EΨ is the expectation with respect to Ψ and [[X]]r is returns an r-truncated singular-value decomposition of the
matrix X , which is a best rank-r approximation with respect to every unitarily invariant norm (Mirsky, 1960). If we replace
X̂ with [[X̂]]r, this error bound still remains valid.

C.2. USBS Memory Requirements.

When we implement USBS using this matrix sketching procedure we see significant decrease in time and memory required
by USBS. Storing the projection matrix Ψ and Pt requires O(nr) memory. Storing ⟨C, X̄t⟩ and tr(X̄t) requires O(1)
memory, respectively, and storing AX̄t, νt, yt, and ỹt+1 requires O(m) memory. The primal-dual interior point methods
require O(k2) and O(k4) memory, respectively, and storing Vt requires O(nk) memory. This means that the entire memory
required by USBS is O(nr + nk +m+ k4) working memory (not including the memory to store the problem data) which
for many SDPs is much less than explicitly storing the iterate X̄t which requires O(n2) memory.

D. Proof of Theorem 3.1
In this section, we present the non-asymptotic convergence results for USBS. First, we summarize the relevant results
presented by Dı́az & Grimmer (2023) in the following theorem.

Theorem D.1. Let β > 0 and ρ > 0 be constant, f : Rm → (−∞,+∞] be a proper closed convex function with nonempty

set of minimizers Y⋆, and the sequence of models produced by the proximal bundle method
{
f̂t+1 : Rm → (−∞,+∞]

}
satisfy the conditions (3), (4), and (5). If the iterates yt and subgradients gt+1 are bounded, then the iterates yt have
f(yt)− f(y⋆) ≤ ε for all t ≥ O(1/ε3). Additionally, if f(y)− f(y⋆) ≥ O(dist2(y,Y⋆)) for all y, then the bound improves
to f(yt)− f(y⋆) ≤ ε for all t ≥ O(1/ε).

We will use this result to prove the non-asymptotic convergence rates for the spectral bundle method.

Note the following fact necessary to use Theorem D.1.

Fact D.2. The set {y ∈ Y : f(y⋆) ≤ f(y) ≤ f(y0)} is compact and contains all iterates yt. Moreover, the iterates yt and
subgradients gt+1 are bounded, i.e. sup t≥0{dist(yt,Y∗)} <∞ and sup t≥0 {∥gt+1∥ : gt+1 ∈ ∂f(ỹt+1)} <∞.

Proof. The function f is continuous and proper over the domain Y . It is a well-known fact that the level sets of continuous
proper functions are compact. Hence, the union of level sets {y ∈ Y : f(y⋆) ≤ f(y) ≤ f(y0)} is compact, and therefore,
sup t≥0{dist(yt,Y∗)} < ∞. The subgradients take the form gt+1 = b + αA(vv⊤) ∈ ∂f(ỹt+1) where v ∈ Rn is a
unit-normed vector, and thus, ∥gt+1∥ <∞ for all t.

The following lemma guarantees quadratic growth whenever strict complementarity holds.

Lemma D.3. Let y ∈ Y be arbitrary. Then,

dist2
d

(y,Y⋆) ≤ O(f(y)− f(y⋆)), (D.1)

where d ∈ {0, 1, . . . ,m} is the singularity degree (Sturm, 2000; Drusvyatskiy & Wolkowicz, 2017; Sremac et al., 2021). If
strict complementarity holds, then d ≤ 1, and if Slater’s condition holds, then d = 0.

Proof. Let F := {y ∈ Rm : A∗
y − C ∈ Sn+}. Observe that Y⋆ = Y ∩ F . Since Y⋆ is compact, the Hölderian error

bound (Sturm, 2000; Drusvyatskiy & Wolkowicz, 2017; Sremac et al., 2021) ensures that

dist(y,Y⋆) ≤ O
(
dist2

−d

(y,Y) + dist2
−d

(y,F)
)
,

where d ∈ {0, 1, . . . ,m} is the singularity degree of the SDP. This implies that for y ∈ Y ,

dist2
d

(y,Y⋆) ≤ O (dist(y,F))
≤ O

(
αmax{λmax(C −A∗

y), 0}
)

≤ O (f(y)− f(y⋆)) .
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The following three lemmas guarantee primal feasiblity, dual feasibility, and primal-dual objective optimality given
convergence of the penalized dual objective, i.e. f(yt)− f(y⋆) ≤ ε.
Lemma D.4. At every descent step t,

dist(AXt+1,K) ≤ O
(√

f(yt)− f(y⋆)
)
. (D.2)

Additionally, if Slater’s condition holds and y⋆ is unique, then

dist(AXt+1,K) ≤ O(f(yt)− f(y⋆)). (D.3)

Proof. For any descent step t, it is easy to verify from (14) and (17) that

projK(AXt+1)−AXt+1 ≤ ρ(yt − yt+1),

and therefore,
∥AXt+1 − projK(AXt+1)∥2 ≤ ρ2∥yt − yt+1∥2.

To complete the proof we utilize the fact that f̂t(yt+1) = miny∈Y f̂t(y) +
ρ
2∥y − yt∥

2, the fact that f̂t(y) ≤ f(y) for all
y ∈ Y , and the definition of a descent step, which gives

ρ

2
∥yt+1 − yt∥2 ≤ f̂t(yt)− f̂t(yt+1) ≤ f(yt)− f̂t(yt+1) ≤

f(yt)− f(yt+1)

β
≤ f(yt)− f(y⋆)

β
.

Assume Slater’s condition holds and y⋆ is unique. Then, using Lemma D.3 gives

∥AXt+1 − projK(AXt+1)∥2 ≤ ρ2∥yt − yt+1∥2

≤ ρ2
(
∥yt − y⋆∥2 + ∥yt+1 − y⋆∥2

)
≤ O

(
(f(yt)− f(y⋆))2

)
+O

(
(f(yt+1)− f(y⋆))2

)
≤ O

(
(f(yt)− f(y⋆))2

)
.

Lemma D.5. Suppose strong duality holds. Then, at every descent step t,

λmax(C −A∗
yt) ≤ O(f(yt)− f(y⋆)) . (D.4)

Proof. By definition of strong duality, we know that for anyX⋆ ∈ X⋆ that ⟨C,X⋆⟩ = ⟨b, y⋆⟩, and equivalently, ⟨X⋆,A∗
y⋆−

C⟩ = 0. Then, the dual objective gap is bounded as follows

⟨b, yt − y⋆⟩ = ⟨AX⋆, yt − y⋆⟩
= ⟨X⋆,A∗

(yt − y⋆)⟩
= ⟨X⋆, (A∗

yt − C)− (A∗
y⋆ − C)⟩

= ⟨X⋆,A∗
yt − C⟩

≥ −∥X⋆∥∗ max{λmax(C −A∗
yt), 0}.

We now utilize this bound to obtain the desired result

f(yt)− f(y⋆) = ⟨b, yt − y⋆⟩+ αmax{λmax(C −A∗
yt), 0} ≥ ∥X⋆∥∗ max{λmax(C −A∗

yt), 0}.

Lemma D.6. At every descent step t,

|⟨b, yt+1⟩ − ⟨C,Xt+1⟩| ≤ O(f(yt)− f(y⋆)) +O
(√

f(yt)− f(y⋆)
)
. (D.5)

Additionally, if Slater’s condition holds and y⋆ is unique, then

|⟨b, yt+1⟩ − ⟨C,Xt+1⟩| ≤ O(f(yt)− f(y⋆)). (D.6)
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Proof. We start by rewriting the primal-dual gap as follows

⟨C,Xt+1⟩ − ⟨b, yt+1⟩ = ⟨C,Xt+1⟩ − ⟨AXt+1, yt+1⟩+ ⟨AXt+1 − b, yt+1⟩
= ⟨Xt+1, C −A∗

yt+1⟩+ ⟨AXt+1 − b, yt+1⟩.

We will now bound the absolute values of the two resulting terms to bound the desired quantity. Using the Cauchy-Schwarz
inequality and Lemma D.4 it can be seen

|⟨AXt+1 − b, yt+1⟩| ≤ ∥AXt+1 − b∥∥yt+1∥

≤ O
(
∥yt+1∥

√
f(yt)− f(y⋆)

)
≤ O

(√
f(yt)− f(y⋆)

)
,

where the last inequality comes from Fact D.2. Assume Slater’s condition holds and y⋆ is unique. Then, using Lemma D.3
gives

|⟨AXt+1 − b, yt+1⟩| ≤ O (f(yt)− f(y⋆)) .

Since Xt+1 ⪰ 0 and tr(Xt+1) ≤ α by construction, we can use Lemma D.5 to yield

|⟨Xt+1, C −A∗
yt+1⟩| ≤ O(max{C −A∗

yt+1, 0})
≤ O(f(yt+1)− f(y⋆))
≤ O(f(yt)− f(y⋆)).

The immediately yields the desired result.

D.1. Proof of Theorem 3.1

The overall proof strategy is to use Theorem D.1 to show that the penalized dual gap, f(yt)− f(y∗), converges at a worst
case rate of O(1/ε3), which improves to O(1/ε) if Slater’s condition or strict complementarity hold. Then, we can use
Lemmas D.4, D.5, and D.6 to obtain the stated convergence of primal feasibility, dual feasibility, and primal-dual optimality.

To apply the result of Theorem D.1, we showed that the norms of the iterates and subgradients of f are bounded (Fact D.2),
and so all we need to do is show that the model satisfies the conditions (3), (4), and (5).

Let v be a maximum eigenvector C − A∗
ỹt+1 if λmax(C − A∗

ỹt+1) > 0 and v = 0, otherwise. Then denote gt+1 =
b+αA(vv⊤) ∈ ∂f(ỹt+1) as the subgradient of f corresponding v at the candidate iterate ỹt+1. Let st+1 = ρ(yt− ỹt+1) ∈
∂f̂t(ỹt+1) be the aggregate subgradient. Recall that at iteration t+ 1 the model approximates X by the low-dimensional
spectral set

X̂t+1 :=
{
ηX̄t+1 + Vt+1SV

⊤
t+1 : η tr(X̄t+1) + tr(S) ≤ α, η ≥ 0, S ∈ Sk+

}
.

and therefore the penalized dual objective and model respectively take the following forms for any y ∈ Y ,

f(y) = sup
X∈X
⟨C −A∗

y,X⟩+ ⟨b, y⟩ and f̂t+1(y) = sup
X∈X̂t+1

⟨C −A∗
y,X⟩+ ⟨b, y⟩. (D.7)

Verifying (3). The condition (3) follows immediately from (D.7), since X̂t+1 ⊆ X .

Verifying (4). Since Vt+1 spans v, there exists a vector s ∈ Rk such that Vt+1s = v. Taking η = 0 and S = αss⊤ implies
αvv⊤ ∈ X̂t+1. Hence,

f̂t+1(y) ≥ ⟨C −A∗
y, αvv⊤⟩+ ⟨b, y⟩

= ⟨C −A∗
, αvv⊤⟩+ ⟨b, ỹt+1⟩+ ⟨b+ αA(vv⊤), y − ỹt+1⟩

= f(ỹt+1) + ⟨gt+1, y − ỹt+1⟩.
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Verifying (5). From the first-order optimality conditions and the update step (14) we know that

st+1 = ρ(yt − ỹt+1) = b− νt+1 −AXt+1,

f̂t(ỹt+1) = ⟨C −A∗
ỹt+1, Xt+1⟩+ ⟨b− νt+1, ỹt+1⟩.

To show the desired result, we first want to show that Xt+1 ∈ X̂t+1. If kp = 0, we are done since Xt+1 = X̄t+1. Otherwise,
kp ≥ 1. First note that tr(Xt+1) ≤ α by construction. Then,

Xt+1 = ηt+1X̄t + VtSt+1V
⊤
t

= ηt+1X̄t + Vt(QpΛpQ
⊤
p +QcΛcQ

⊤
c )V

⊤
t

= ηt+1X̄t + VtQpΛpQ
⊤
p V

⊤
t + VtQcΛcQ

⊤
c V

⊤
t

= X̄t+1 + VtQpΛpQ
⊤
p V

⊤
t .

Since Vt+1 spans each of the columns of VtQp, we can conclude that Xt+1 ∈ X̂t+1. Thus, for any y ∈ Y ,

f̂t+1(y) ≥ ⟨C −A∗
y,Xt+1⟩+ ⟨b− νt+1, y⟩ = f̂t(ỹt+1) + ⟨st+1, y − ỹt+1⟩.

E. Experimental Setup and Details
E.1. MaxCut

The MaxCut problem is a fundamental combinatorial optimization problem and its SDP relaxation is a common test bed for
SDP solvers. Given an undirected graph, the MaxCut is a partitioning of the n vertices into two sets such that the number of
edges between the two subsets is maximized. Formally, the MaxCut problem can be written as follows

max
1

4
x⊤Lx s.t. x ∈ {±1}n, (E.1)

where L is the graph Laplacian. This optimization problem is known to be NP-hard (Karp, 1972), but rounding the solution
to the SDP relaxation can yield very strong approximate solutions (Goemans & Williamson, 1995).

E.1.1. SDP RELAXATION

For any vector x ∈ {±1}n, the matrix X := xx⊤ is positive semidefinite and all of its diagonal entries are exactly one.
These implicit constraints allow us to arrive at the MaxCut SDP as follows

max
1

4
tr(LX) s.t. diag(X) = 1 and X ⪰ 0, (E.2)

where diag(·) extracts the diagonal of a matrix into a vector and 1 ∈ Rn is the all-ones vector. A matrix solution X⋆ to (22)
does not readily elicit a graph cut. One way to round X⋆ is to compute a best rank-one approximation x⋆x

⊤
⋆ and use sgn(x⋆)

as an approximate cut. There are more sophisticated rounding procedures (e.g. (Goemans & Williamson, 1995)), but this
one works quite well in practice.

Notice that (22) contains exactly n equality constraints. Additionally, in many instances of MaxCut, the graph Laplacian L
is sparse and the optimal solution is low-rank. This means that we can represent the MaxCut instance with far less than
O(n2) memory. These attributes make sketching the matrix variable X with relatively small r an attractive and effective
approach when considering the MaxCut problem.

E.1.2. ROUNDING

Both CGAL and USBS maintain a sketch of the primal variable that, along with the test matrix, can be used to construct a
low-rank approximation of the primal iterate X̂ = UΛU⊤ where U ∈ Rn×r has orthonormal columns. Following (Yurtsever
et al., 2021), we evaluate the size of r cuts given by the column vectors of sgn(U) and choose the largest.
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E.1.3. EXPERIMENTAL SETUP

We evaluate the CGAL and USBS with and without warm-starting on ten instances from the DIMACS10 (Bader et al.)
where n and the number of edges in each graph are shown in Table 1. We warm-start each method by dropping the last 1%
of vertices from the graph resulting in a graph with 99% of the vertices. We pad the solution from the 99%-sized problem
with zeros and rescale as necessary to create the warm-start initialization. Unless otherwise specified, we use the following
hyperparameters for USBS in our experiments: r = 10, ρ = 0.01, β = 0.25, kc = 10, kp = 1. In our experiments, we find
that kp > 0 does improve performance slightly. See the implementation for more details.

E.2. Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a very difficult but fundamental class of combinatorial optimization problems
containing the traveling salesman problem, max-clique, bandwidth problems, and facilities location problems among
others (Loiola et al., 2007). SDP relaxations have been shown to facilitate finding good solutions to large QAPs (Zhao et al.,
1998). The QAP can be formally defined as follows

min tr
(
WΠDΠ⊤) s.t. Π is an n× n permutation matrix, (E.3)

where W ∈ Sn is the weight matrix, D ∈ Sn is the distance matrix, and the goal is to optimize for an assignment Π which
aligns W and D. The number of n× n permutation matrices is n!, so a brute-force search becomes quickly intractable as n
grows. Generally, QAP instances with n > 30 are intractable to solve exactly. In our experiments, using an SDP relaxation
and rounding procedure, we can obtain good solutions to QAPs where n is between 136 and 198.

E.2.1. SDP RELAXATION

There are many SDP relaxtions for QAPs, but we consider the one presented by (Yurtsever et al., 2021) and inspired
by (Huang et al., 2014; Bravo Ferreira et al., 2018) which is formulated as follows

min tr
(
(D ⊗W )Y

)
s.t. tr1(Y) = I, tr2(Y) = I, G(Y) ≥ 0,

vec(B) = diag(Y), B1 = 1, 1⊤B = 1⊤, B ≥ 0,

X :=

[
1 vec(B)⊤

vec(B) Y

]
⪰ 0, tr(Y) = n

(E.4)

where ⊗ denotes the Kronecker product, tr1(·) and tr2(·) denote the partial trace over the first and second systems of
Kronecker product respectively, G(Y) extracts the entries of Y corresponding to the nonzero entries of D ⊗W , and vec(·)
stacks the columns of a matrix one on top of the other to form a vector. In many cases, one of D or W is sparse (i.e. O(n)
nonzero entries) resulting in O(n3) total constraints for the SDP.

The primal variable X has dimension (n2 + 1)× (n2 + 1) and as a result the SDP relaxation has O(n4) decision variables.
Given the aggressive growth in complexity, most SDP based algorithms have difficulty operating on instances where n > 50.
To reduce the number of decision variables, we sketch X with r = n, resulting in O(n3) entries in the sketch and the same
number of constraints in most natural instances. We show that this enables CGAL and USBS to scale to instances where
n = 198 (more than 1.5 billion decision variables and constraints).

E.2.2. ROUNDING

We adopt the rounding method presented in (Yurtsever et al., 2021) to convert an approximate solution of (23) into a
permutation matrix. Reconstructing an approximation to the primal variable from the sketch yields X̂ = UΛU⊤where U
has shape (n2 + 1)× n. For each column of U , we discard the first entry of the column vector, reshape the remaining n2

entries into an n× n matrix, and project the reshaped matrix onto the set of n× n permutation matrices using the Hungarian
method (also known as Munkres’ assignment algorithm) (Kuhn, 1955; Munkres, 1957; Jonker & Volgenant, 1988). This
procedure yields a feasible point to the original QAP (E.3). To get an upper bound for (E.3), we perform the rounding
procedure on each column of U and choose the permutation matrix Π which minimizes the objective tr

(
WΠDΠ⊤).
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E.2.3. EXPERIMENTAL SETUP

We evaluate CGAL and USBS on select large instances from QAPLIB (Burkard et al., 1997) and TSPLIB (Reinelt, 1995)
ranging in size from 136 to 198. Provided with each of these QAP instances is the known optimum. For many instances,
we find that the quality of the permutation matrix produced by the rounding procedure does not entirely correlate with the
quality of the iterates with respect to the SDP (23). Thus, we apply the rounding procedure at every iteration of both CGAL
and USBS. Our metric for evaluation is relative gap which is computed as follows

relative gap =
upper bound obtained− optimum

optimum
.

We report the lowest value so far of relative gap as best relative gap. CGAL (Yurtsever et al., 2021) is shown to
obtain significantly smaller best relative gap than CSDP (Bravo Ferreira et al., 2018) and PATH (Zaslavskiy et al.,
2008) on most instances, and thus, is a strong baseline.

To create a warm-start initialization, we create a slightly smaller QAP by dropping the final row and column of both D and
W (i.e. solve a size n − 1 subproblem of the original instance). We use the solution to slightly smaller problem to set a
warm-start initialization for the original problem, rescaling and padding with zeros where necessary. We stopped optimizing
after one hour. When warm-starting, we optimize the slightly smaller problem for one hour and then optimize the original
problem for one hour.

Following (Yurtsever et al., 2021), we apply the following scaling of the problem variables in (23)

∥C∥F = tr(X⋆) = ∥A∥op = 1 and ∥A1∥F = · · · = ∥Am∥F. (E.5)

We use the following hyperparameters for USBS in our experiments: ρ = 0.005, β = 0.25, kc = 2, kp = 0. In our
experiments, we find that kp > 0 does not improve performance. See the implementation for more details.

E.3. Interactive Entity Resolution with ∃-constraints

Angell et al. (2022) introduced a novel SDP relaxation of a combinatorial optimization problem that arises in an automatic
knowledge base construction problem (Uhlen et al., 2010; Krishnamurthy, 2015; Iv et al., 2022). They consider the problem
of interactive entity resolution with user feedback to correct predictions made by a machine learning algorithm. Entity
resolution (also known as coreference resolution or record linkage) is the process of identifying which mentions (sometimes
referred to as records) of entities refer to the same entity (Binette & Steorts, 2022; Angell et al., 2020; Agarwal et al., 2021;
2022; Yadav et al., 2021). Entity resolution is an important problem central to automated knowledge base construction where
the correctness of the resulting knowledge base is vital to its usefulness. The entity resolution problem is fundamentally a
clustering problem where the prefect clusters contain all mentions of exactly one entity. Due to the large volumes of raw data
frequently involved, machine learning approaches are often used to perform entity resolution. To correct inevitable errors in
the predictions made by these automated methods, human feedback can be used to correct errors in entity resolution.

Utilizing human feedback to guide and correct clustering decisions can be broadly categorized into two groups (Bae
et al., 2020): active clustering (also know as semi-supervised clustering) (Viswanathan et al., 2023; Vikram & Dasgupta,
2016; Mazumdar & Saha, 2017; Sato & Iwayama, 2009; Xiong et al., 2016) and interactive clustering (Chuang & Hsu,
2014; Basu et al., 2010; Coden et al., 2017; Dubey et al., 2010)2. There are several paradigms of human feedback used
to steer a clustering algorithm (Frome et al., 2007; Wagstaff et al., 2001; Shental et al., 2004; Klein et al., 2002; Kulis
et al., 2009; Lu & Carreira-Perpinan, 2008; Li et al., 2008; 2009; Xing et al., 2002), the most common of which is
pairwise constraints (Wagstaff & Cardie, 2000) (i.e. statements about whether two points or mentions must or cannot be
clustered together). Recently, Angell et al. (2022) introduced ∃-constraints, a new paradigm of interactive feedback for
correcting entity resolution predictions and presented a novel SDP relaxation as part of a heuristic algorithm for satisfying
∃-constraints in the predicted clustering. This novel form of feedback allows users to specify constraints stating the existence
of an entity with and without certain features.

2Commonly, active clustering is used to describe techniques where the algorithm queries the human for feedback about a specific pair
or group of points or clusters (akin to active learning) and interactive clustering is used to describe techniques where humans observe the
clustering output and provide unelicited feedback, typically in the form of some type of constraint, to the algorithm.
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E.3.1. ∃-CONSTRAINTS

To define ∃-constraints precisely, we must introduce some terminology and notation. Let the set of mentions be represented
by the vertex set V of a fully connected graph. We assume that each of the mentions v ∈ V has an associated set of discrete
features (attributes, relations, other features, etc.) that is readily available or can be extracted easily using some automated
method. Let Φ = {ϕ1, ϕ2, . . .} be the set of possible features and Φ(v) ⊆ Φ be the subset of features associated with vertex
v ∈ V . A clustering C = {C1, C2, . . . , Cm} of vertices V is a set of nonempty sets such that Ci ⊆ V , Ci ∩ Cj = ∅ for all
i ̸= j, and

⋃
C∈C C = V . We denote the ground truth clustering of the vertices (partitioning mentions into entities) as C⋆.

Furthermore, for any subset of vertices S ⊆ V , we define the set of features associated with S as Φ(S) =
⋃

v∈S Φ(v). For
any cluster Ci, we use Φ(Ci) as the canonicalization function for a predicted entity, but this framework allows for more
complex (and even learned) canonicalization functions. When providing feedback, users are able to view the features of
predicted clusters and then provide one or more ∃-constraints.

Formally, a ∃-constraint ξ ⊆ {+,−} × Φ uniquely characterizes a constraint asserting there exists a cluster C ∈ C⋆ such
that all of the positive features ξ+ := {ϕ ∈ Φ : (+, ϕ) ∈ ξ} are contained in the features of C (i.e. ξ+ ⊆ Φ(C)) and none
of the negative features ξ− := {ϕ ∈ Φ : (−, ϕ) ∈ ξ} are contained in the features of C (i.e. ξ− ∩ Φ(C) = ∅). At any given
time, let the set of ∃-constraints be represented by Ξ. We say that a subset of nodes S ⊆ V satisfies a ∃-constraint ξ if
ξ+ ⊆ Φ(S) and ξ− ∩ Φ(S) = ∅. Note that more than one ground truth cluster can satisfy a ∃-constraint. We say that a
subset of vertices S ⊆ V is incompatible with a ∃-constraint ξ if Φ(S) ∩ ξ− ̸= ∅ and denote this as S ⊥ ξ. Similarly, two
∃-constraints ξa, ξb are incompatible if ξ+a ∩ ξ−b ̸= ∅ or ξ−a ∩ ξ+b ̸= ∅, and is also denoted ξa ⊥ ξb. Furthermore, we say a
subset of vertices S ⊆ V and a ∃-constraint ξ or two ∃-constraints ξa, ξb are compatible if they are not incompatible and
denote this as S ̸⊥ ξ and ξa ̸⊥ ξb, respectively. Moreover, we use compatible to describe when a subset of vertices S ⊆ V
could be part of a cluster that satisfies a certain ∃-constraint ξ. This definition allows for Φ(S) ∩ ξ+ to be empty, but still
enables S to be compatible with ξ just as long as Φ(S) ∩ ξ− is empty. Observe that if every mention has a unique feature,
the ∃-constraint framework fully encompasses must-link and cannot-link constraints.

E.3.2. SDP RELAXATION

Following (Angell et al., 2022), the general approach to clustering with ∃-constraints is to jointly cluster the vertices and
the ∃-constraints, so we include ∃-constraints as additional vertices of the graph V (i.e. Ξ ⊂ V ) and create corresponding
decision variables for each of the ∃-constraints. Additionally, we create constraints to ensure that all of the ∃-constraints are
satisfied and none of the ∃-constraints are incompatible with any of the other members of the predicted clustering. Given a
∃-constraint ξ and positive feature ϕ ∈ ξ+, let Γ(ξ, ϕ) := {v ∈ V \Ξ : ϕ ∈ Φ(v)∧Φ(v)∩ ξ− = ∅} be the set of candidate
vertices that could satisfy ϕ ∈ ξ+. The resulting integer linear programming problem is as follows

max
xu,xv∈{e1,e2,...,en}

∑
(u,v)∈V×V

wuv x
⊤
u xv s.t.

{∑
v∈Γ(ξ,ϕ) x

⊤
v xξ ≥ 1, for all ϕ ∈ ξ+

x⊤v xξ = 0, for all v ⊥ ξ
(E.6)

where wuv ∈ R is the pairwise similarity between mentions u and v (usually computed using a trained machine learning
model trained on pairs of mentions) and ei ∈ Rn is the ith standard basis vector. Note that we assume that the wvξ = 0 as
in (Angell et al., 2022). The first constraint ensures that all of the positive features in ξ+ are contained in the same cluster as
ξ for all ξ ∈ Ξ. The last constraint ensures that ξ is not in the same cluster as anything incompatible with it for all ξ ∈ Ξ.
This problem is intractable to optimize exactly, so we relax (E.6) to an SDP in the standard way as follows

max
X⪰0

⟨W,X⟩ s.t.


Xvv = 1, for all v ∈ V
Xuv ≥ 0, for all u, v ∈ V∑

v∈Γ(ξ,ϕ) Xvξ ≥ 1, for all ϕ ∈ ξ+

Xvξ = 0, for all v ⊥ ξ

(E.7)

The decision variables are changed from standard basis vectors, whose dot products determine whether or not two elements
(vertices or ∃-constraints) are in the same cluster, to a positive semidefinite matrix where each entry represents the global
affinity two elements have for one another (corresponding to the row and column of the entry). We constrain the diagonal
of this positive semidefinite matrix to be all ones (representing each element’s affinity with itself) and we enforce that all
entries in the matrix are non-negative. The constraints ensuring ∃-constraint satisfaction are similar to (E.6). Let W be the
(weighted) adjacency matrix of the fully connected graph over the n vertices.
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E.3.3. ROUNDING

The solutionX⋆ to (E.7) is a fractional approximation of the problem we wish to solve. In order to infer a predicted clustering,
we need some procedure to round the fractional solution to an integer solution. Angell et al. (2022) propose first building
a hierarchical clustering over V using X⋆ as the similarity function. Then, a dynamic programming algorithm is used to
extract a (predicted) flat clustering from the hierarchical clustering which maximizes the number ∃-constraints satisfied and
the (correlation) clustering objective. For a more detailed description of the rounding procedure, see (Angell et al., 2022).
The predicted clustering is then observed by the human users in terms of the features of each predicted cluster enabling the
users to provide any additional ∃-constraints to correct the entity resolution decisions. We simulate this human feedback
loop with an oracle ∃-constraint generator.

E.3.4. EXPERIMENTAL SETUP

We evaluate the performance of the CGAL and USBS with and without warm-starting on the same three author coreference
datasets used in (Angell et al., 2022). In these datasets, each mention is an author-paper pair and the goal is to identify which
author-paper pairs were written by the same author. As standard in author coreference, the datasets are preprocessed into
blocks (also known as canopies) based on the author’s first name initial and last name (e.g. authors “Rajarshi Das” and
“Ravi Das” would both be contained in the same block “r das”, but in a different block than “Jane Smith”, which would be
in “j smith”). Within each block, similarity scores are computed between all pairs of mentions using a trained pairwise
model (Angell et al., 2022; Subramanian et al., 2021). We then perform two additional preprocessing steps to convert the
many small dense problems into one large sparse problem. We aggregate all of these pairwise similarity scores into a block
diagonal weight matrix and fill the remaining entries with negative one. We then sparsify this highly structured similarity
matrix using a spectral sparsifier (Spielman & Srivastava, 2008). Table 2 details the dataset statistics including the number
of non-zeros in the pairwise similarity matrix after spectral sparsification, denoted nnz(W ).

We simulate ∃-constraint generation using the same oracle implemented in (Angell et al., 2022). The oracle has access to
the features of the ground truth clusters and the features of the predicted clusters output by the rounding algorithm and
generates a small ∃-constraint which is satisfied by the ground truth clustering, but is not satisfied by the predicted clustering.
The oracle generates ∃-constraints one at a time and added to the optimization problem until the ground truth clustering is
predicted. For both solvers, we iterate until the relative error tolerance (19) and the following absolute infeasibility condition
are satisfied

∥AX − projK(AX)∥∞ ≤ ε. (E.8)

We use ε = 10−1 to determine the stopping condition and find that this is sufficient for the rounding algorithm to satisfy
nearly all of the ∃-constraints generated by the oracle. We also note that the ℓ∞-norm condition is especially important in
this application in order to make sure the relaxed ∃-constraints are satisfied. Due to the small problem size, we simplify the
implementation by using variants of CGAL and USBS without sketching.

When warm-starting, we predict the values of the expanded primal variable corresponding to the newly added ∃-constraint by
computing representations of each vertex using a low-rank factorization, performing a weighted average of the representations
of the positive vertices in the newly added ∃-constraint, and expanding the factorization into an initialization of primal
variable for the new problem. We pad the dual variable with zeros. Since there is no pairwise similarity between ∃-
constraints and mentions, we find that scaling up the norms of Ai’s corresponding to the constraints Xvv = 1 for all v such
that Φ(v) ∩ ξnew ̸= ∅, where ξnew is the newly added ∃-constraint. We use the following USBS hyperparameters in our
experiments: ρ = 0.01, β = 0.25, kc = 3, kp = 0. See the implementation for more details.

F. Additional Experimental Results
F.1. MaxCut

Figure 4 plots three different convergence measures over time for a large data instance, 144, for a total time of 12 hours.
For this instance, warm-starting helps achieve a faster convergence rate of both relative primal objective suboptimality
and relative infeasibility. Additionally, the weight of the cut produced from the primal iterates generated by USBS drops
in value less when warm-starting as compared with CGAL. This is an additional indication that USBS is able to utilize
the warm-start initialization better than CGAL. Finally, observe that USBS, with and without warm-starting, produces a
marginally better graph cut than CGAL.
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Figure 4: Convergence measures on instance 144. We solve instance 144 from DIMACS10 and plot the primal objective
sub-optimality (objective residual, ↓), relative infeasibility (infeasibility gap, ↓), and weight of the cut (↑) produced by the
rounding procedure. The warm-started runs use 99% of the original data to obtain a warm-start initialization. We observe
that USBS is able to more reliably leverage a warm-start initialization. In these plots, USBS is executed with kc = 8, kp = 8.
All runs were executed on a compute node with 16 cores and 128GB of RAM.

(a) kp = 0 (b) kp = 1 (c) kp = 2

(d) kp = 5 (e) kp = 8 (f) kp = 10

Figure 5: Infeasibility gap vs. time for different settings of kc and kp. In each plot, the x-axis is time (up to 12 hours) and
the y-axis is the relative infeasibility gap. In every case, USBS is cold-started on the 144 instance from the DIMACS10
dataset. Each plot considers one value of kp and several values of kc. All runs were executed on a compute node with 16
cores and 128GB of RAM. We observe that USBS performs best when kc ≥ kp.

Figures 5 and 6 compare USBS’s infeasibility gap against time for different settings of kc and kp on the 144 instance from
DIMACS10 on both CPU and GPU. Figures 7 and 8 compare USBS’s infeasibility gap against time for different settings of
kc and kp on the 144 instance from DIMACS10 on both CPU and GPU. Figures 9 and 10 compare CGAL and USBS on
CPU and GPU for different settings of kc and kp on the 144 instance from DIMACS10. We observe anywhere from 10-25x
speedup on GPU as compared to CPU. We also observe that USBS performs best when kc ≥ kp.
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(a) kp = 0 (b) kp = 1 (c) kp = 2

(d) kp = 5 (e) kp = 8 (f) kp = 10

Figure 6: Infeasibility gap vs. time for different settings of kc and kp. In each plot, the x-axis is time (up to 12 hours) and
the y-axis is the relative infeasibility gap. In every case, USBS is cold-started on the 144 instance from the DIMACS10
dataset. Each plot considers one value of kp and several values of kc. All runs were executed on a single NVIDIA GeForce
1080 Ti GPU. We observe that USBS performs best when kc ≥ kp.
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(a) kp = 0 (b) kp = 1 (c) kp = 2

(d) kp = 5 (e) kp = 8 (f) kp = 10

Figure 7: Objective gap vs. time for different settings of kc and kp. In each plot, the x-axis is time (up to 12 hours)
and the y-axis is the primal objective suboptimality. In every case, USBS is cold-started on the 144 instance from the
DIMACS10 dataset. Each plot considers one value of kp and several values of kc. All runs were executed on a compute
node with 16 cores and 128GB of RAM. We observe that USBS performs best when kc ≥ kp.
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(a) kp = 0 (b) kp = 1 (c) kp = 2

(d) kp = 5 (e) kp = 8 (f) kp = 10

Figure 8: Objective gap vs. time for different settings of kc and kp. In each plot, the x-axis is time (up to 12 hours)
and the y-axis is the relative primal objective suboptimality. In every case, USBS is cold-started on the 144 instance from
the DIMACS10 dataset. Each plot considers one value of kp and several values of kc. All runs were executed on a single
NVIDIA GeForce 1080 Ti GPU. We observe that USBS performs best when kc ≥ kp.
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(a) kc = 8, kp = 0 (b) kc = 8, kp = 1 (c) kc = 8, kp = 2

(d) kc = 8, kp = 5 (e) kc = 8, kp = 8 (f) kc = 8, kp = 10

Figure 9: Infeasibility gap vs. time on CPU and GPU. In each plot, the x-axis is time (up to 12 hours) and the y-axis is the
relative infeasibility gap. In every setting of kc and kp, we compare CGAL and USBS cold-started on the 144 instance from
the DIMACS10 dataset on both a compute node with 16 cores and 128GB of RAM (CPU) and a single NVIDIA GeForce
1080 Ti GPU (GPU). We observe that USBS performs best when kc ≥ kp.
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(a) kc = 8, kp = 0 (b) kc = 8, kp = 1 (c) kc = 8, kp = 2

(d) kc = 8, kp = 5 (e) kc = 8, kp = 8 (f) kc = 8, kp = 10

Figure 10: Objective gap vs. time on CPU and GPU. In each plot, the x-axis is time (up to 12 hours) and the y-axis is the
relative primal objective suboptimality. In every setting of kc and kp, we compare CGAL and USBS cold-started on the
144 instance from the DIMACS10 dataset on both a compute node with 16 cores and 128GB of RAM (CPU) and a single
NVIDIA GeForce 1080 Ti GPU (GPU). We observe that USBS performs best when kc ≥ kp.
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F.2. QAP

Figure 11 and Figure 12 plot relative gap and best relative gap against time (in seconds) for three instances,
respectively. Figure 11 shows that even for large instances the best relative gap is obtained within the first few minutes
of the hour of optimization. In these instances, we can also observe that USBS not only obtains a better best relative

gap, but also is able to leverage a warm-start solution to improve performance. Figure 13 shows the best relative gap

obtained for ten data instances over one hour of optimization. It can be seen that warm-starting does not always yield a
better best relative gap, but USBS is better able to leverage a warm-start solution than CGAL. These results show
that warm-starting is a beneficial heuristic for finding a quality approximate solution to QAPs. The warm-starting technique
used in these experiments is not the only possible warm-starting initialization strategy. For examples, one could generate
several warm-start initializations for (23) by dropping other rows and columns of D and W besides the last row and column.
Then, after creating n warm-start initializations, we could take the best upper bound obtained by optimizing (23) from each
of those warm-start initializations.

(a) pr136 (b) kroA150 (c) tai150b

Figure 11: relative gap (↓) vs. time. We plot the relative gap (y-axis) against time in seconds (x-axis) for three
instances from QAPLIB and TSPLIB. We observe that for both algorithms the best rounded solution is found early in
optimization. In addition, we observe that USBS is able to more reliably leverage a warm-start initialization.

(a) pr136 (b) kroA150 (c) tai150b

Figure 12: best relative gap (↓) vs. time. We plot the best relative gap (y-axis) against time in seconds (x-axis)
for three instances from QAPLIB and TSPLIB. We observe that USBS is able to more reliably leverage a warm-start
initialization.
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Figure 13: best relative gap (↓). The best relative gap obtained in one hour of optimization is shown for ten
instances from QAPLIB and TSPLIB. We observe that on most problem instance that USBS produces a better relative gap
than CGAL and that a warm-start initialization helps USBS obtain a better relative gap. CGAL is much less reliable in
leveraging a warm-start initialization.
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F.3. Interactive Entity Resolution with ∃-constraints

Figure 14: Average warm-start fold change (↑). Warm-start
fold change represents the ratio of SDP solve time without
warm-starting divided by the SDP solve time with warm-
starting per ∃-constraint. The error bars indicate one standard
deviation from the mean. We observe that USBS is able to
much more reliably leverage a warm-start initialization. In
addition, we observe that the performance gap between CGAL
and USBS grows as the problem size grows.

Figure 14 shows the average warm-start SDP solve time
fold change. Warm-start fold change greater than one indi-
cates a speedup in solve time while warm-start fold change
less than one indicates a slowdown in solve time. We see
that the warm-start fold change for CGAL is less than or
equal to one, indicating a slowdown consistent with Fig-
ure 3. We see that on average warm-starting affords USBS
a 20-100x speedup on average per ∃-constraint. Note
that this is much faster than the 2-3x we see in Figure 3.
This is due to the fact that sometimes warm-starting does
not help USBS, which makes intuitive sense if the warm-
start initialization is far away from the solution set for the
new SDP. We believe that with some further experimen-
tation including additional pairwise learned similarities
between mentions and ∃-constraints or different warm-
starting strategies we might be able to mitigate these situa-
tions. Regardless, in most cases, warm-starting provides a
significant improvement in convergence time when using
USBS. We also note that Figure 14 shows that warm-
starting provides more of a benefit the larger the SDP we
are trying to solve.
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