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Abstract

Commonsense reasoning is crucial for connect-001
ing premises to hypotheses by leveraging im-002
plicit world knowledge. The XCopa dataset,003
spanning 11 languages, serves as a benchmark004
for evaluating cross-lingual transfer capabilities005
in commonsense reasoning and emphasizes the006
importance of tapping into implicit knowledge007
for effective communication in diverse linguis-008
tic contexts. Recent advancements in Large009
Language Models (LLMs), such as Llama2,010
have made remarkable progress in Causal Com-011
monsense Reasoning, setting new benchmarks.012
However, multilingual LLMs like XGLM and013
PolyLM face challenges due to smaller train-014
ing datasets compared to English-centric LLMs.015
This work introduces a novel evaluation strat-016
egy, G-Evaluation, in the XCopa dataset. While017
this strategy resulted in decreased accuracy met-018
rics across models, Llama2 showed improved019
performance, highlighting its adaptability. De-020
spite efforts, multilingual XCopa models still021
fall behind their English counterparts in ac-022
curacy. Models like Llama2 exhibit perfor-023
mance variations across languages, underscor-024
ing the need for bridging this gap with Ma-025
chine Translation (MT). To address this, we026
propose XTools, a strategy that combines Ma-027
chine Translation and Automatic Post-Editing028
tools. By implementing XTools, multilingual029
accuracy can be elevated to 89.60%, aligning030
with English performance. Our contributions031
include redefining the evaluation method with032
G-Evaluation, introducing XTools for enhanc-033
ing multilingual capabilities, validating Auto-034
matic Post-Editing Tool integration, and show-035
casing the potential of lightweight models in036
improving overall performance.037

1 Introduction038

In the realm of natural language understanding,039

commonsense reasoning (Davis and Marcus, 2015)040

plays a crucial role in connecting premises with041

hypotheses by leveraging implicit world knowl-042

edge such as causality, social norms, and emo-043

tions. The XCopa (Roemmele et al., 2011; Edoardo 044

M. Ponti and Korhonen, 2020) dataset, spanning 045

11 languages, serves as a fundamental benchmark 046

for assessing the cross-lingual transfer capabilities 047

of machine learning models in commonsense rea- 048

soning, particularly emphasizing the significance 049

of tapping into implicit knowledge for effective 050

communication across diverse linguistic contexts. 051

The advancement in Large Language Models 052

(LLMs) (Brown et al., 2020; Chowdhery et al., 053

2023; Touvron et al., 2023) has marked remarkable 054

progress recently. Some research defines LLM 055

as an Agent (Weng, 2023). While open-source 056

LLMs like Llama2 (Touvron et al., 2023) are pri- 057

marily trained in English, there is a growing focus 058

on multilingual LLMs such as XGLM (Lin et al., 059

2022) and PolyLM (Wei et al., 2023). Nevertheless, 060

these multilingual models face challenges due to 061

their relatively smaller training datasets compared 062

to English-centric LLMs. Notably, LLMs have 063

demonstrated exceptional performance in Causal 064

Commonsense Reasoning, continually setting new 065

state-of-the-art benchmarks. 066

Evaluation of XCopa conventionally involves 067

calculating the perplexity between two given 068

choices based on a premise and a question, with 069

lower perplexity implying the correct answer (Gao 070

et al., 2023). This approach, termed P-Evaluation, 071

is used to compare the predicted answer to the 072

ground truth for accuracy determination. In this 073

work, we introduce a novel evaluation strategy, G- 074

Evaluation, which incorporates random sampling, 075

offering greater flexibility and scalability. 076

Our experiments with the new evaluation strat- 077

egy reveal a notable decrease in accuracy metrics 078

across various models on XCopa, highlighting the 079

heightened challenge introduced by our proposed 080

evaluation method. Interestingly, we observed an 081

improvement in the performance of Llama2 under 082

the new evaluation strategy, shedding light on its 083

robustness and adaptability. 084
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Figure 1: Performance of Multiple LLMs on Multilin-
gual XCopA Dataset

Despite considerable research efforts, the ac-085

curacy of multilingual XCopa models still trails086

behind their English counterparts. As shown in087

Figure 1, models like Llama2 show significant vari-088

ation in performance across different languages,089

with English achieving an 88% accuracy compared090

to around 50% in non-English test sets. On the091

other hand, models like XGLM and PolyLM ex-092

hibit more balanced performance but hover around093

40% to 50% accuracy. Building on prior stud-094

ies(Edoardo M. Ponti and Korhonen, 2020; Schick095

et al., 2023), we advocate for leveraging Machine096

Translation (MT) as a bridge to extend the capabil-097

ities of LLMs from English to multiple languages.098

This paper introduces an enhanced strategy, XTools,099

which combines Machine Translation (MT) Tool100

and Automatic Post-Editing (APE) (Raunak et al.,101

2023; Liang et al., 2023; Koneru et al., 2023) Tool,102

demonstrating the potential to elevate multilingual103

accuracy to 89.6%, on par with English perfor-104

mance.105

Our main contributions are:106

• Redefinition of a natural evaluation method,107

G-Evaluation, for assessing LLM’s Causal108

Commonsense Reasoning Ability.109

• Introduction of XTools as an effective strategy110

to enhance LLM’s multilingual capabilities.111

• Validation of incorporating Automatic Post-112

Editing Tool within LLM.113

• Demonstration of the potential of lightweight114

solutions like the 7B model in enhancing over-115

all performance.116

2 Proposed Assessment Approach:117

G-Evaluation118

Figure 2 displays an example extracted from the119

XCopa dataset, each comprising a premise, a ques-120

tion, two choices, and their corresponding label.121

The question field delineates the causal relationship 122

between the premise and the choices, classifying 123

them as "cause" and "effect." The label assigned to 124

the correct choice accentuates the dataset’s pivotal 125

role in refining commonsense reasoning abilities 126

across diverse linguistic contexts. 127

Premise: The cashier opened the cash register.
Choice1: The customer searched his wallet.
Choice2: The customer handed her money.
Question: cause
Label: choice2

Agent

Agent

"The cashier opened the cash register." cause
"The customer searched his wallet."

Based on the premise, select the most appropriate reason.
Premise: The cashier opened the cash register.
A. The customer searched his wallet.
B. The customer handed her money.

Answer: B

"The cashier opened the cash register." cause
"The customer handed her money."

ppl: 4.9

ppl: 4.3

(b) G-Evaluation

(a) P-Evaluation

Agent

Based on the premise, select the most appropriate reason.
Premise: The cashier opened the cash register.
A. The customer handed her money.
B. The customer searched his wallet.

Answer: A

Figure 2: Assessment Approach. (a) P-Evaluation. (b)
Proposed G-Evaluation

The traditional evaluation method, P-Evaluation, 128

involves calculating the perplexity between choice1 129

and choice2 based on the premise and question, 130

where a lower perplexity value indicates the correct 131

answer. Subsequently, this answer is cross-checked 132

with the ground truth to ascertain accuracy, as illus- 133

trated in Figure 2(a). 134

In contrast to the conventional P-Evaluation ap- 135

proach, our novel G-Evaluation method revolution- 136

izes the process by transmuting the question into a 137

natural multiple-choice framework. By designating 138

two options, A and B, to choice1 and choice2 and 139

tasking the Language Model (LLM) to generate the 140

answer, we ensure that the LLM forcefully decodes 141

and outputs the option with the higher probabil- 142

ity from A and B. Noteworthy is our practice of 143

randomly assigning either choice to A or B during 144

assessments, introducing a slight variance in accu- 145

racy while consistently converging results around a 146

specific value. We believe that such an evaluation 147

method is not only more natural but also provides 148

a more accurate assessment of the LLM’s capabili- 149

ties, as illustrated in Figure 2(b). 150

3 Proposed Enhanced Strategy: XTools 151

XTools offers two tools, namely Machine Transla- 152

tion (MT) Tool and Automatic Post-Editing (APE) 153

Tool, to assist Agents in translating multilingual 154
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User

Agent

Based on the premise, select the most appropriate reason.
Premise: The cashier opened the cash register.
A. The customer searched his wallet.
B. The customer handed her money.

Premise: The cashier opened the cash register.
Choice1: The customer searched his wallet.
Choice2: The customer handed her money.
Label: choice2

Answer: B

1. XCopa-English Evaluation

User

Agent

โดยอา้งองิจากเหตกุารณ ์โปรดเลอืกผลลพัธท์ ี�เหมาะสมที�สดุ
เหตกุารณ:์ แคชเชยีรเ์ปิดลิ�นชกัเกบ็เงนิ
A. ลกูคา้หากระเป๋าสตางค์
B. ลกูคา้ยื�นเงนิให ้

Premise: แคชเชยีรเ์ปิดลิ�นชกัเกบ็เงนิ
Choice1: ลกูคา้หากระเป๋าสตางค์
Choice2: ลกูคา้ยื�นเงนิให ้
Label: choice2

คาํตอบ:  A

2. XCopa-Thai Evaluation without XTools

User

Agent

Premise: แคชเชยีรเ์ปิดลิ�นชกัเกบ็เงนิ
Choice1: ลกูคา้หากระเป๋าสตางค์
Choice2: ลกูคา้ยื�นเงนิให ้
Label: choice2

3. XCopa-Thai Evaluation with XTools

Premise: The cashier opens the cash drawer
Choice1: Customers find a wallet
Choice2: Clients submit money to

Based on the premise, select the most appropriate reason.
Premise: The cashier opens the cash drawer
A. Customers find a wallet
B. Clients submit money to

Answer: A

Premise: The cashier opened the cash drawer.
Choice1: Customers found a wallet.
Choice2: Customers returned the money.

Based on the premise, select the most appropriate reason.
Premise: The cashier opened the cash drawer.
A. Customers found a wallet.
B. Customers returned the money.

Answer: B

Agent

MT Tool

APE Tool

User

Agent

yes

NoEnglish Input
or not?

Output

No

Yes English Output
or not?

XTools

MT Tool APE Tool

(a) Workflow of XTools (b) An example of XCopa Evaluation

Figure 3: XTools. (a) The Workflow of XTools. (b) An example of dataflow and results on XCopa dataset.

texts into English. The workflow is depicted in155

Figure 3(a). Furthermore, Figure 3(b) provides an156

example using the XCopa Thai dataset, illustrating157

the data flow and results.158

3.1 MT Tool: Google Translate159

Google Translate is a free online translation service160

offered by Google that facilitates instant transla-161

tion across multiple languages and is renowned as162

one of the best machine translation engines avail-163

able. In 2017, Google introduced the Transformer164

model, which was integrated into Google Trans-165

late. For machine translation tasks, the Transformer166

(Vaswani et al., 2017) model comprises an Encoder167

and a Decoder. The encoder processes the source168

language sentence into a fixed-length representa-169

tion, while the decoder generates the target lan-170

guage sentence token by token. These techniques171

heavily depend on large bilingual parallel corpora172

to align source sentences with their corresponding173

translations, with the general belief that translation174

quality improves as datasets and model sizes in-175

crease. In this study, we specifically focus on176

Google Translate as our primary machine trans-177

lation tool.178

3.2 APE Tool: Llama2-ICL-APE179

In-Context Learning (ICL) (Min et al., 2022; Dong180

et al., 2023) is a machine learning approach that181

emphasizes learning in specific contexts by utiliz-182

ing relationships and contextual clues across var-183

ious data formats like text, speech, images, and184

videos. It focuses on learning through analogies185

by connecting query questions with relevant in-186

stances in a demonstration context presented using 187

natural language templates. Unlike traditional su- 188

pervised learning, ICL does not require parameter 189

updates through backpropagation, relying instead 190

on a pre-trained language model for predictions 191

without downstream fine-tuning. The goal is for 192

the model to identify patterns in the demonstrations 193

and make accurate predictions based on acquired 194

knowledge. 195

Llama2-ICL-APE combines Automatic Post- 196

Editing (APE) functionality with the Llama2 197

model, incorporating ICL technology. Research 198

by (Koneru et al., 2023) indicates that direct fine- 199

tuning of Large Language Models (LLMs) for ma- 200

chine translation purposes could result in perfor- 201

mance degradation. However, repurposing LLMs 202

for automatic post-editing can yield more favorable 203

outcomes. Llama2-ICL-APE leverages the robust 204

language model of Llama2, known for its profi- 205

ciency in handling long sequences, in conjunction 206

with ICL technology to dynamically capture con- 207

textual information. This integration enhances the 208

quality of machine translation outputs. 209

4 Experiment 210

4.1 Dataset: XCopa 211

The Cross-lingual Choice of Plausible Alternatives 212

(XCopa) dataset serves as a benchmark for assess- 213

ing machine learning models’ capability to transfer 214

commonsense reasoning skills across different lan- 215

guages. This dataset is a translation and reannota- 216

tion of the English COPA(Roemmele et al., 2011) 217

and spans 11 languages representing diverse lan- 218
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Model en et ht id it sw th tr vi zh Avg
P-Evaluation

XGLM-7.5B 0.654 0.576 0.510 0.598 0.550 0.502 0.508 0.510 0.576 0.566 0.555
PolyLM-13B 0.692 0.512 0.482 0.618 0.600 0.504 0.498 0.516 0.596 0.622 0.564
Llama2-13B 0.718 0.514 0.492 0.606 0.598 0.490 0.516 0.506 0.560 0.596 0.560

G-Evaluation
XGLM-7.5B 0.446 0.438 0.500 0.498 0.488 0.500 0.500 0.498 0.478 0.486 0.483
PolyLM-13B 0.506 0.488 0.504 0.508 0.498 0.500 0.508 0.502 0.500 0.504 0.502
Llama2-13B 0.880 0.504 0.502 0.670 0.634 0.504 0.500 0.564 0.668 0.708 0.613

Table 1: Accuracy of Multiple LLMs on Multilingual XCopA Dataset under P-Evaluation and G-Evaluation
Strategies.

Model en et ht id it sw th tr vi zh Avg(/o en) Per%
Llama2-13B 0.880 0.504 0.502 0.670 0.634 0.504 0.500 0.564 0.668 0.708 0.584 66.34
Xtools 0.808 0.732 0.816 0.832 0.752 0.730 0.778 0.810 0.838 0.788 89.60

- APE Tool (7B) 0.786 0.718 0.790 0.832 0.722 0.690 0.760 0.780 0.816 0.766 87.05
XTools* 0.802 0.732 0.814 0.832 0.726 0.716 0.788 0.804 0.834 0.783 88.99

Table 2: Accuracy on Multilingual XCopA Dataset using XTools under G-Evaluation Strategy. Note: XTools*
represents APE Tool Using Llama2 13B Model as Foundation.

guage families and regions worldwide. The chal-219

lenge lies in the dataset’s requirement for profi-220

ciency in both worldly knowledge and the aptitude221

to generalize across new languages. Additionally,222

the dataset provides "translate test" data generated223

via Google Translate for direct use.224

4.2 Evaluation Metrics225

For the evaluation of Xcopa, we utilize accu-226

racy (ACC) as the evaluation metric. For MT227

& APE evaluation, we utilize SacreBLEU, which228

implements BLEU(Papineni et al., 2002), and229

COMET(Rei et al., 2020) from Unbabel/wmt22-230

comet-da. SacreBLEU calculates similarity based231

on n-gram matching, while COMET leverages232

cross-lingual pretrained models for evaluation.233

4.3 Results and Analysis234

Evaluation Results under different Approach235

As shown in Table 1, under the P-Evaluation assess-236

ment approach, XGLM and PolyLM demonstrated237

comparable abilities to Llama2, with PolyLM even238

achieving slightly higher average accuracy than239

Llama2. However, upon transitioning to the G-240

Evaluation evaluation strategy, the accuracy of241

XGLM and PolyLM sharply declined. In con-242

trast, Llama2 maintained a stable level of accuracy,243

with the average accuracy increasing from 0.560 to244

0.613. Particularly notable was the improvement245

in performance in English, rising from 0.718 to246

0.880. These results indicate the high robustness247

of Llama2.248

Seed en et th
1 0.868 0.786 0.690
2 0.864 0.78 0.692
3 0.866 0.786 0.684
4 0.872 0.778 0.684
5 0.866 0.786 0.692
6 0.868 0.776 0.694
7 0.858 0.776 0.68
8 0.862 0.778 0.694
9 0.87 0.79 0.678
10 0.87 0.778 0.682

Table 3: Accuracy under G-Evaluation Strategy using
XTools with Different Random Seeds.

Results of XTools under G-Evaluation As 249

shown in Table 3, for the G-Evaluation, we em- 250

ployed various random seeds to generate the data. 251

It can be observed that while the accuracy may vary 252

slightly, it tends to stabilize around a certain value. 253

As depicted in Table 2, employing the XTools 254

strategy resulted in a significant improvement in 255

Llama2’s average accuracy on non-English tests, 256

rising from 0.584 to 0.788, reaching an impressive 257

89.60% accuracy level on the English test set. How- 258

ever, when the APE Tool was omitted, the average 259

accuracy decreased by two percentage points to 260

0.766, emphasizing the necessity and effectiveness 261

of the APE Tool. 262

In the aforementioned experiments, we utilized 263

the Llama2 7B model as the APE Tool. Addi- 264

tionally, we also assessed the results of using the 265
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Model en et ht id it sw th tr vi zh
Llama2-13B 0.880 0.504 0.502 0.670 0.634 0.504 0.500 0.564 0.668 0.708
Google Translate Tool 0.786 0.718 0.790 0.832 0.722 0.690 0.760 0.780 0.816
LLM-based MT 0.616 0.578 0.808 0.836 0.546 0.612 0.702 0.800 0.808

+ APE Tool 0.616 0.582 0.808 0.836 0.538 0.610 0.704 0.800 0.808

Table 4: Accuracy Comparison between Llama2-ICL-MT and Google Translate

Lang Metic MT +APE(7B) +APE(13B)
et COMET 0.883 0.892 0.892

BLEU 52.3851 55.3852 55.0876
ht COMET 0.799 0.809 0.819

BLEU 41.4114 47.6386 47.3801
it COMET 0.899 0.909 0.907

BLEU 52.9644 55.7427 55.7090
th COMET 0.829 0.860 0.866

BLEU 22.0342 37.1617 38.9785
zh COMET 0.913 0.923 0.922

BLEU 51.3654 57.4918 57.8066

Table 5: MT Metrics for Translations at Different Stages

Llama2 13B model as the APE Tool, denoted as266

XTools* in Table 2. Surprisingly, despite employ-267

ing a larger APE model, the accuracy remained268

consistent. This suggests that the APE Tool itself269

is lightweight, and the 7B model size is sufficient.270

Furthermore, we evaluated the translation quality271

after applying the APE Tool following machine272

translation methodology. As shown in Table 5, we273

observed enhancements in the COMET scores post274

APE, validating the effectiveness of the APE Tool.275

5 Ablation Study: How about using276

LLM-based MT as Tool rather than277

traditional MT like Google Translate?278

In recent years, Language Model (LM)-based ap-279

proaches have gained attention in the field of ma-280

chine translation (Jiao et al., 2023; Zeng et al.,281

2023; Chen et al., 2023; Xu et al., 2023; Yang et al.,282

2023; Zhang et al., 2023). One line of LLM-based283

methods focuses on zero-shot or few-shot trans-284

lation by incorporating in-context learning(Hendy285

et al., 2023). By conditioning the LLM on a source286

sentence, the model can generate translations in the287

target language without explicitly using parallel288

data. This approach has shown promising results in289

enabling translation for language pairs with limited290

or no parallel resources. Another approach involves291

using a small amount of high-quality bilingual par-292

allel data to construct translation-guiding instruc-293

tions. These instructions explicitly define the trans-294

lation behavior by providing source-language con-295

sistent cues during the supervised fine-tuning (SFT) 296

process. By utilizing these specially crafted in- 297

structions, the LM can be fine-tuned to perform 298

translation more accurately and robustly. 299

When considering the use of LLM-based Ma- 300

chine Translation (MT) tools such as Llama2-ICL- 301

MT compared to traditional ones like Google Trans- 302

late, we conducted experiments employing the 303

Llama2 and ICL technologies to construct trans- 304

lation requests in a five-shot manner, defining 305

the approach as Llama2-ICL-MT. The results, as 306

shown in Table 4, reveal that on high-resource lan- 307

guages like Italian and Chinese, the accuracy of 308

Llama2-ICL-MT is comparable to Google Trans- 309

late, with some instances even showing higher ac- 310

curacy. However, a significant disparity is noted on 311

low-resource languages. 312

Furthermore, we observed that following the us- 313

age of Llama2-ICL-MT, additional optimization 314

using APE did not further enhance the translation 315

quality. This finding underscores the effectiveness 316

of LLM-based MT tools in certain scenarios. 317

6 Related Work: Large Language Models 318

Foundation Model Foundation Model, a prod- 319

uct of pre-training, is a prominent type of Large 320

Language Model. It has gained substantial recogni- 321

tion in recent years for its impressive capabilities 322

in natural language processing tasks. The most 323

prevalent architectural framework for such mod- 324

els is the Transformer, which employs a series of 325

self-attention mechanisms to process input text ef- 326

ficiently. 327

Among the state-of-the-art Large Language 328

Models, notable examples include GPT-3(Brown 329

et al., 2020) and Llama2(Touvron et al., 2023). 330

These models have been widely lauded for their 331

exceptional proficiency in understanding and gen- 332

erating natural language text. They showcase the re- 333

markable potential of Foundation Models, pushing 334

the boundaries of language processing and setting 335

new benchmarks in various applications. 336
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Instruct/Chat Model Instruct/Chat Model, a337

variant of Large Language Models, is specifically338

developed through the process of Supervised Fine-339

Tuning (SFT). Unlike Foundation Models, which340

are pre-trained, Instruct/Chat Models undergo ad-341

ditional supervised training to enhance their perfor-342

mance in specific tasks such as instruction follow-343

ing or conversational dialogue.344

Supervised Fine-Tuning involves training the345

model on labeled datasets, where human annotators346

provide examples of desired input-output behav-347

ior. This approach enables Instruct/Chat Models348

to learn task-specific skills and exhibit improved349

performance in situations that require language un-350

derstanding, generation, and interaction.351

7 Conclusion352

In conclusion, the significance of commonsense353

reasoning in multilingual contexts cannot be under-354

stated. The XCopa dataset has shed light on the355

challenges and opportunities presented by cross-356

lingual transfer learning in the realm of implicit357

knowledge utilization. While recent advancements358

in Large Language Models have propelled the field359

forward, there remains a notable discrepancy in360

performance between English-centric models and361

their multilingual counterparts.362

Our study introduced the G-Evaluation strategy363

to assess the performance of multilingual models364

on the XCopa dataset, revealing both strengths and365

areas for improvement. The versatility demon-366

strated by models like Llama2 underscores the367

potential for adaptation and enhancement across368

diverse linguistic landscapes. However, the need369

for bridging the performance gap through strate-370

gies like Machine Translation and Automatic Post-371

Editing tools is evident.372

The proposed XTools strategy stands out as a373

promising approach to elevate multilingual model374

accuracy, showcasing the feasibility of reach-375

ing parity with English models. By leveraging376

lightweight models in conjunction with efficient377

tools, our research paves the way for improved378

cross-lingual commonsense reasoning capabilities.379

Looking ahead, continued efforts to refine eval-380

uation methods, optimize model training datasets,381

and integrate innovative approaches like XTools382

will be instrumental in advancing the field of mul-383

tilingual commonsense reasoning. As we strive384

towards more effective communication and under-385

standing across languages, the journey towards en-386

hancing multilingual model performance remains 387

an exciting and evolving frontier in natural lan- 388

guage processing research. 389

8 Limitations 390

Our study is limited by a focus on the XCopa 391

dataset for evaluating multilingual commonsense 392

reasoning models, potentially overlooking perfor- 393

mance variations in other benchmarks. The effec- 394

tiveness of our XTools strategy may be hindered 395

by the quality of Machine Translation and Auto- 396

matic Post-Editing tools. Evaluation metrics may 397

not fully capture multilingual model capabilities, 398

and the rapid pace of NLP advancements could 399

risk our findings becoming outdated. Additionally, 400

computational resource requirements may restrict 401

the scalability of our proposed strategies for re- 402

searchers with limited resources. 403
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