
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THEORETICAL ANALYSES OF HYPERPARAMETER
SELECTION IN GRAPH-BASED SEMI-SUPERVISED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph-based semi-supervised learning is a powerful paradigm in machine learn-
ing for modeling and exploiting the underlying graph structure that captures the
relationship between labeled and unlabeled data. A large number of classical
as well as modern deep learning based algorithms have been proposed for this
problem, often having tunable hyperparameters. We initiate a formal study of
tuning algorithm hyperparameters from parameterized algorithm families for this
problem. We obtain novel O(log n) pseudo-dimension upper bounds for hyper-
parameter selection in three classical label propagation-based algorithm families,
where n is the number of nodes, implying bounds on the amount of data needed
for learning provably good parameters. We further provide matching Ω(log n)
pseudo-dimension lower bounds, thus asymptotically characterizing the learning-
theoretic complexity of the parameter tuning problem. We extend our study to
selecting architectural hyperparameters in modern graph neural networks. We
bound the Rademacher complexity for tuning the self-loop weighting in recently
proposed Simplified Graph Convolution (SGC) networks. We further propose a
tunable architecture that interpolates graph convolutional neural networks (GCN)
and graph attention networks (GAT) in every layer, and provide Rademacher com-
plexity bounds for tuning the interpolation coefficient.

1 INTRODUCTION

Semi-supervised learning is a powerful paradigm in machine learning which reduces the dependence
on expensive and hard-to-obtain labeled data, by using a combination of labeled and unlabeled data.
This has become increasingly relevant in the era of large language models, where an extremely
large amount of labeled training data is needed. A large number of techniques have been proposed
in the literature to exploit the structure of unlabeled data, including popularly used graph-based
semi-supervised learning algorithms (Blum & Mitchell, 1998; Zhu et al., 2003; Zhou et al., 2003;
Delalleau et al., 2005; Chapelle et al., 2009). More recently, there has been an increasing interest in
developing effective neural network architectures for graph-based learning (Kipf & Welling, 2017;
Veličković, Petar et al., 2018; Iscen et al., 2019). However, different algorithms, architectures, and
values of hyperparameters perform well on different datasets (Dwivedi et al., 2023), and there is
no principled way of selecting the best approach for the data at hand. In this work, we initiate
the study of theoretically principled techniques for learning hyperparameters from infinitely large
semi-supervised learning algorithm families.

In graph-based semi-supervised learning, the graph nodes consist of labeled and unlabeled data
points, and the graph edges denote feature similarity between the nodes. There are several classical
ways of defining a graph-based regularization objective that depend on the available and predicted
labels as well as the graph structure. Optimizing this objective yields the predicted labels and the
accuracy of the predictions depends on the chosen objective. The performance of the same objective
may vary across datasets. By studying parameterized families of objectives, we can learn to design
the objective that works best on a given domain-specific data. Similarly, modern deep learning based
techniques often have several candidate architectures and choices for hyperparameters, often man-
ually optimized for each application domain. Recent work has considered the problem of learning
the graph hyperparameter used in semi-supervised learning (Balcan & Sharma (2021); Fatemi et al.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2021)) but leaves the problem of selecting the algorithm hyperparameter wide open. In this pa-
per, we take important initial steps to build the theoretical foundations of algorithm hyperparameter
selection in graph-based semi-supervised learning. Note that we focus specifically on algorithm hy-
perparameters, such as self-loop weights, leaving optimization hyperparameters like learning rates
outside the scope of this study.

1.1 CONTRIBUTIONS

• We study hyperparameter tuning in three canonical label propagation-based semi-
supervised learning algorithms: the local and global consistency (Zhou et al., 2003), the
smoothing-based (Delalleau et al., 2005), and a novel normalized adjacency matrix-based
algorithm. We prove new O (log n) pseudo-dimension upper bounds for all three families,
where n is the number of graph nodes. Our proofs rely on a unified template based on
determinant evaluation and root-counting, which may be of independent interest.

• We provide matching Ω (log n) pseudo-dimension lower bounds for all three aforemen-
tioned families. Our proof involves novel constructions of a class of partially labeled graphs
that exhibit fundamental limitations in tuning the label propagation algorithms.

• Next, we consider the modern graph neural networks (GNNs). We first prove a new
Rademacher complexity bound for tuning the weight of self-loops for a popular archi-
tecture proposed in Wu et al. (2019), the Simplified Graph Networks (SGC).

• We propose an architecture (GCAN) where a hyperparameter η is introduced to interpolate
two canonical GNN architectures: graph convolutional neural networks (GCNs) and graph
attention neural networks (GATs). We bound the Rademacher complexity of tuning η.

• We conducted experiments to empirically validate our theoretical findings and demonstrate
the effectiveness of our hyperparameter selection framework.

1.2 RELATED WORK

Graph Based Semi-supervised Learning Semi-supervised Learning is a popular machine learn-
ing paradigm with significant theoretical interest (Zhou et al., 2003; Delalleau et al., 2005; Garg
et al., 2020). Classical algorithms focus on label-propagation based techniques, such as Zhou
et al. (2003), Zhu et al. (2003), and many more. In recent years, graph neural networks (GNNs)
have become increasingly popular in a wide range of application domains (Kipf & Welling, 2017;
Veličković, Petar et al., 2018; Iscen et al., 2019). A large number of different architectures have
been proposed, including graph convolution networks, graph attention networks, message passing,
and so on (Dwivedi et al., 2023). Both label propagation-based algorithms and neural network-based
algorithms are useful in real life and perform equally well. For example, although GNN-based algo-
rithms are more predominant in applications, Huang et al. (2020) shows that modifications to label
propagation-based algorithms can outperform GNN. For node classification in GNN, many work
study generalization guarantees for tuning network weights in GNNs (Oono & Suzuki, 2021; Esser
et al., 2021; Tang & Liu, 2023). In contrast, we study the tuning of hyperparameters.

Hyperparameter Selection Hyper-parameters, such as the weight for self-loop, play important
roles in the performance of both classical methods and GNNs. In general, hyperparameter tuning is
performed on a validation dataset, and follows the same procedure: determine which hyperparame-
ters to tune and then search within their domain for the combination of parameter values with best
performance Yu & Zhu (2020). Many methods are proposed to efficiently search within the parame-
ter space, such as grid search, random search Bergstra & Bengio (2012), and Bayesian optimization
(Mockus (1974); Mockus et al. (1978); Jones et al. (1998)). A few existing works investigate the
theoretical aspects of these methods, such as through generalization guarantees and complexities of
the algorithms. In particular, Balcan et al. (2024) studies the regularization hyperparameter in Ridge
regression, LASSO, and ElasticNet in statistical settings and provides generalization guarantees. For
self-supervised learning, Balcan et al. (2019) propose a parameterized algorithm family of cluster-
ing algorithms and study the sample and computational complexity of learning the parameters. For
semi-supervised learning, a recent line of work (Balcan & Sharma (2021); Sharma & Jones (2023))
considers the problem of learning the best graph hyperparameter from a set of problem instances
drawn from a data distribution. However, no existing work theoretically studies the algorithm hy-
perparameter in semi-supervised learning, or investigates deep semi-supervised learning algorithms

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

Notations. Throughout this paper, f(n) = O(g(n)) denotes that there exists a constant c > 0
such that |f(n)| ≤ c|g(n)|. f(n) = Ω(g(n)) denotes that there exists a constant c > 0 such that
|f(n)| ≥ c|g(n)|. The indicator function is indicated by I, taking values in {0, 1}. In addition, we
define the shorthand [c] = {1, 2, . . . , c}. For a matrix W , we denote its Frobenius norm by ∥W∥F
and spectral norm by ∥W∥. We also denote the Euclidean norm of a vector v by ∥v∥.

Graph-based Semi-supervised Learning. We are given n data points, where some are labeled,
denoted by L ⊆ [n], and the rest are unlabeled. We may also have features associated with each
data point, denoted by zi ∈ Rd for i ∈ [n]. We can construct a graph G by placing (possibly
weighed) edges w(u, v) between pairs of data points u, v. The created graph G is denoted by
G = (V,E), where V represents the vertices and E represents the edges. Based on G, we can
calculate W ∈ Rn×n as the adjacency matrix, i.e., Wij = w(i, j). We let D ∈ Rn×n be the
corresponding degree matrix, so D = diag(d1, . . . , dn) where di =

∑
j∈[n] w(i, j).

For a problem instance of n data points, we define input X as X = (n, {zi}ni=1, L,G), or X =
(n,L,G) if no features are available. We denote the label matrix by Y ∈ {0, 1}n×c where c is the
number of classes. Throughout the paper, we assume c = On(1), i.e. c is treated as a constant with
respect to n, which matches most practical scenarios. Here, Yij = 1 if data point i ∈ L has label
j ∈ [c] and Yij = 0 otherwise. The goal is to predict the labels of the unlabeled data points.

An algorithm F in this setting may be considered as a function that takes in (X,Y) and outputs a
predictor f that predicts a label in [c] for each data. We denote f(zi) as our prediction on the i-th
data. To evaluate the performance of a predictor f , we use 0-1 loss (i.e. the predictive accuracy)
defined as 1

n

∑n
i=1 ℓ0−1 (f(zi), yi) =

1
n

∑n
i=1 I[f(zi) = yi]. In this work, we are interested in the

generalizability of an algorithm F on 0-1 loss.

Hyperparameter Selection. We consider several parameterized families of classification algo-
rithms. Given a family of algorithms Fρ parameterized by some parameter ρ, and a set of m problem
instances {(X(k), Y (k))}mk=1 i.i.d. generated from the data distribution D of the input space X and
the label space Y , our goal is to select a parameter ρ̂ whose corresponding prediction function fρ̂ of
algorithm Fρ̂ minimizes the prediction error. That is, denote fρ̂(z

(k)
i) as the predicted label of data

point z(k)i in the k-th problem instance, we want

ρ̂ = argmin
ρ

1

mn

m∑
k=1

n∑
i=1

ℓ0−1(fρ(z
(k)
i), y

(k)
i).

Each parameter value ρ defines an algorithm Fρ, mapping a problem instance (X,Y) to a prediction
function fρ, which induces a loss 1

n

∑n
i=1 ℓ0−1(fρ(zi), yi). We define Hρ as the function mapping

(X,Y) to this loss and Hρ = Hρ′ρ′ as the family of loss functions parameterized by ρ.

Note that our problem setting differs from prior theoretical works on graph-based semi-supervised
learning. The classical setting considers a single algorithm and learning the model parameter from a
single problem instance. We are considering families of algorithms, each parameterized by a single
hyperparameter, and aiming to learn the best hyperparameter across multiple problem instances.
Our setting combines transductive and inductive aspects: each instance has a fixed graph of size n
(transductive), but the graphs themselves are drawn from an unknown meta-distribution (inductive).

Complexity Measures and Generalization Bounds. We study the generalization ability of sev-
eral representative parameterized families of algorithms. That is, we aim to address the question of
how many problem instances are required to learn a hyperparameter ρ such that a learning algorithm
can perform near-optimally for instances drawn from a fixed problem distribution. Clearly, the more
complex the algorithm family, the more number of problem instances are needed.

Specifically, for each algorithm fρ̂ trained given m problem instances, we study the difference in the
empirical 0-1 loss and the actual 0-1 on the distribution:

E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]
−min

ρ
E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ(zi), yi)

]
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To quantify this, we consider two learning-theoretic complexity measures for characterizing the
learnability of algorithm families: the pseudo-dimension and the Rademacher complexity.
Definition 1 (Pseudo-dimension). Let H be a set of real-valued functions from input space X .
We say that C = (X(1), ..., X(m)) ∈ Xm is pseudo-shattered by H if there exists a vector r =
(r1, ..., rm) ∈ Rm (called “witness”) such that for all b = (b1, ..., bm) ∈ {±1}m there exists
Hb ∈ H such that sign(Hb(X

(k)) − rk) = bk. Pseudo-dimension of H, denoted PDIM(H), is the
cardinality of the largest set pseudo-shattered by H.

The following theorem bounds generalization error using pseudo-dimension.
Theorem 2.1. (Anthony & Bartlett, 2009) Suppose H is a class of real-valued functions with range
in [0, 1] and finite PDIM(H). Then for any ϵ > 0 and δ ∈ (0, 1), for any distribution D and for any
set S = {X(1), . . . , X(m)} of m = O

(PDIM(H)
ϵ2 + log(1δ)

)
samples from D, with probability at least

1− δ, we have ∣∣∣∣∣ 1m
m∑

k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ ≤ ϵ, for all H ∈ H.

Therefore, if we can show PDIM(Hρ) is bounded, then using the standard empirical risk mini-
mization argument, Theorem 2.1 implies using m = O (PDIM(H)/ϵ2) problem instances, the expected
error on test instances is upper bounded by ϵ. In Section 3, we will obtain optimal pseudo-dimension
bounds for three canonical label-propagation algorithm families.

Another classical complexity measure is the Rademacher complexity:
Definition 2 (Rademacher Complexity). Given a space X and a distribution D, let S =
{X(1), . . . , X(m)} be a set of examples drawn i.i.d. from D. Let H be the class of functions
H : X → R. The (empirical) Rademacher complexity of H is

R̂m(H) = Eσ

[
sup

(
1

m

m∑
k=1

σkH(X(k))

)]
,

where each σk is i.i.d. sampled from {−1, 1}.

The following theorem bounds generalization error using Rademacher Complexity.
Theorem 2.2. Mohri et al. (2012) Suppose H is a class of real-valued functions with range in [0, 1].
Then for any δ ∈ (0, 1), any distribution D, and any set S = {X(k)}mk=1 of m samples from D, with
probability at least 1− δ, we have∣∣∣∣∣ 1m

m∑
k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ = O

(
R̂m(H) +

√
1

m
log

1

δ

)
, for all H ∈ H.

To bound the Rademacher complexity in our setting, we restrict to binary classification c = 2 and
change the label space to Y ∈ {−1, 1}n. For a predictor f , we also overload notation and let
f(zi) ∈ [0, 1] be the output probability of node zi being classified as 1. Instead of directly using the
0-1 loss, we upper bound it using margin loss, which is defined as

ℓγ(f(zi), yi) = 1[ai > 0] + (1 + ai/γ)1 [ai ∈ [−γ, 0]]

where ai = −τ(f(zi), yi) = (1− 2f(zi))yi. Then, ai > 0 if and only if zi is classified incorrectly.

Now we define Hγ
ρ (X) = 1

n

∑n
i=1 ℓγ (fρ(zi), yi) to be the margin loss of the entire graph when

using a parameterized algorithm Fρ. Based on this definition, we have an induced loss function
family Hγ

ρ . Then, given m instances, for any γ > 0, we can obtain an upper bound for all Hγ
ρ ∈ Hγ

ρ :

E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]
≤ E(X,Y)∼D

[
1

n

n∑
i=1

ℓγ (fρ̂(zi), yi)

]
(by definition of ℓγ)

=
1

m

m∑
i=1

Hγ
ρ (X

(k)) +O

(
R̂m(Hγ

ρ) +

√
log (1/δ)

m

)
.

(by Theorem 2.2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Therefore, suppose we find a ρ̂ whose empirical margin loss 1/m
∑m

i=1 H
γ
ρ̂ (X

(k)) is small, and
if we can show R̂m(Hγ

ρ) is small, then Fρ̂ is a strong algorithm for the new problem instances. In
Section 4, we bound the Rademacher complexity of graph neural network-based algorithm families.

3 LABEL PROPAGATION-BASED FAMILIES AND GENERALIZATION
GUARANTEES

In this section, we consider three parametric families of label propagation-based algorithms, the
classical type of algorithms for semi-supervised learning. Label propagation algorithms output a
soft-label score F ∗ ∈ Rn×c, where the (i, j)-th entry of F ∗ represents the score of class j for the i-th
sample. The prediction for the i-th sample is the class with the highest score, i.e. argmaxj∈[c] F

∗
ij .

Below we describe each family that we considered and their corresponding pseudo-dimension
bounds. Notably, the bounds for all three families of algorithms are Θ(log n), which implies the
existence of efficient algorithms with robust generalization guarantees in this setting.

3.1 ALGORITHM FAMILIES

We consider three parametric families, which we describe below.

Local and Global Consistency Algorithm Family (Fα) The first family considered is the local
and global consistent algorithms Zhou et al. (2003), parameterized by α ∈ (0, 1). The optimal
scoring matrix F ∗ is defined as

F ∗
α = (1− α)(I − αS)−1Y, where S = D−1/2WD−1/2.

Here, S is the symmetrically normalized adjacency matrix. This score matrix F ∗
α corresponds

to minimizing the following objective function Q(F) = 1
2 (
∑n

i,j=1 Wij∥ 1√
di
Fi − 1√

dj

Fj∥2 +

1−α
α

∑n
i=1 ∥Fi − Yi∥2). The first term of Q(F) measures the local consistency, i.e., the predic-

tion between nearby points should be similar. The second term measures the global consistency, i.e.,
consistency to its original label. Therefore, the parameter α ∈ (0, 1) induces a trade-off between the
local and the global consistency. We denote this family as Fα, and the 0-1 losses as Hα.

Smoothing-Based Algorithm Family (Fλ) This second class of algorithm is parameterized by
λ ∈ (0,+∞) (Delalleau et al., 2005). Let ∆ ∈ {0, 1}n×n be a diagonal matrix where elements are
1 only if the index is in the labeled set. The scoring matrix F ∗

λ is

F ∗
λ = (S + λIn∆i∈L)

−1λY, whereS = D −W.

The idea of Fλ is similar to Fα. λ is a smoothing parameter that balances the relative importance of
the known labels and the structure of the unlabeled points.

Normalized Adjacency Matrix Based Family (Fδ) Here we consider a new algorithm family
which we name Normalized Adjacency Matrix Based Family. This class of algorithm is parameter-
ized by δ ∈ [0, 1]. The scoring matrix F ∗

δ is

F ∗
δ = (I − c · S)−1Y, where S = D−δWDδ−1.

Here, S is the (not symmetrically) normalized adjacency matrix and c ∈ R is a constant.

This family of algorithms is motivated by Fα and the family of spectral operators defined in Donnat
& Jeong (2023). We may notice that the score matrix F ∗

δ defined here is very similar to F ∗
α in the

local and global consistency family Fα when α is set to a constant c, whose default value considered
in Zhou et al. (2003) is 0.99. Here, instead of focusing on the trade-off between local and global
consistency, we study the spatial convolutions S. With δ = 1, we have the row-normalized adjacency
matrix S = D−1W . With δ = 0, we have the column-normalized adjacency matrix S = WD−1.
Finally, with δ = 1/2, we have the symmetrically normalized adjacency matrix that we used in Fα

and many other default implementations (Donnat & Jeong, 2023; Wu et al., 2019). We denote the
set of 0-1 loss functions corresponding to Fδ as Hδ .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 PSEUDO-DIMENSION GUARANTEES

We study the generalization behavior of the three families through pseudo-dimension. The following
theorems indicate that all three families have pseudo-dimension O(log n), where n is the number
of data in each problem instance. This result suggests that, all three families of algorithms require
m = O (logn/ϵ) problem instances to learn a ϵ-optimal algorithmic parameter. We also complement
our upper bounds with matching pseudo-dimension lower bound Ω(log n), which indicates that we
cannot always learn a near-optimal parameter if the number of problem instances is further reduced.

Theorem 3.1. The pseudo-dimension of the Local and Global Consistency Algorithmic Family, Fα,
is PDIM(Hα) = Θ(logn), where n is the total number of labeled and unlabeled data points.

Theorem 3.2. The pseudo-dimension of the Smoothing-Based Algorithmic Family, Fλ, is
PDIM(Hλ) = Θ(log n), where n is the total number of labeled and unlabeled data points.

Theorem 3.3. The pseudo-dimension of the Normalized Adjacency Matrix-Based Algorithmic Fam-
ily, Fδ , is PDIM(Hδ) = Θ(log n), where n is the total number of labeled and unlabeled data points.

The proofs of the above three theorems follow a similar template. Here, we give an overview of the
proof idea. The full proof is in Appendix A.

Upper Bound First, we investigate the function structure of each index in F ∗. For the function
classes Fα and Fλ, the following lemma is useful.

Lemma 3.4. Let A,B ∈ Rn×n, and C(x) = (A + xB)−1 for some x ∈ R. Each entry of C(x) is
a rational polynomial Pij(x)/Q(x) for i, j ∈ [n] with each Pij of degree at most n − 1 and Q of
degree at most n.

This lemma reduces each index in the matrix of form C(x) = (A + xB)−1 into a polynomial
of parameter x with degree at most n. By definition, we can apply this lemma to F ∗

α and F ∗
λ and

conclude that each index of these matrices is a degree-n polynomial of variable α and λ, respectively.

For the algorithm family Fδ , the following lemma is helpful:

Lemma 3.5. Let S = D−xWDx−1 ∈ Rn×n, and C(x) = (I − c · S)−1 for some constant
c ∈ (0, 1) and variable x ∈ [0, 1]. For any i, j ∈ [n], the i, j-the entry of C(x) is an exponential
C(x)ij = aij exp(bijx) for some constants aij , bij .

By definition of F ∗
δ , this lemma indicates that each index of F ∗

δ is a weighted sum of n exponentials
of the hyperparameter δ.

For F ∗ being a prediction matrix of any of the above three algorithmic family, recall that the pre-
diction on each node i ∈ [n] is ŷi = argmaxj∈[c]([F

∗]ij), so the prediction on a node can change
only when sign([F ∗]ij − [F ∗]ik) changes for some classes j, k ∈ [c]. For the families Fα and Fλ,
[F ∗]ij − [F ∗]ik is a rational polynomial (Pij(α) − Pik(α))/Q(α), where (Pij(α) − Pik(α)) and
Q(α) are degree of at most n (we can simply replace α with λ for Fλ). Therefore, its sign can only
change at most O(n) times. For the family Fδ , we refer to the following lemma and conclude that
the sign of F ∗

ij − F ∗
ik can only change at most O(n) times as well.

Lemma 3.6. Let a1, . . . , an ∈ R be not all zero, b1, . . . , bn ∈ R, and f(x) =
∑n

i=1 aie
bix. The

number of roots of f is at most n− 1.

Therefore, for all three families, the prediction on a single node can change at most
(
c
2

)
O(n) ∈

O(nc2) times as the hyperparameter varies. For m problem instances, each of n nodes, this implies
we have at most O(mn2c2) distinct values of the loss function. The pseudo-dimension m then
satisfies 2m ≤ O(mn2c2), which implies PDIM(Hα) = PDIM(Hλ) = PDIM(Hδ) = O(log n).

Lower Bound Our proof relies on a collection of parameter thresholds and well-designed labeling
instances that are shattered by the thresholds. Here we present the proof idea of pseudo-dimension
lower bound of the family Fα. The analysis for Fλ and Fδ depends on a similar construction.

We first describe a hard instance of 4 nodes, using binary labels a and b. We have two points labeled
a (namely a1, a2), and one point labeled b (namely b1) connected with both a1 and a2 with edge

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

weight 1. We also have an unlabeled point u connected to b1 with edge weight x ≥ 0. That is, the
affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

With this construction, the prediction on node u changes and only change when α = (x+2)1/2

2 . For
any β ∈ [0, 1] and let x = 4β2 − 2 ≥ 0, then ŷ4 = 0 when α < β and ŷ4 = 1 when α ≥ β.

Now we can create a large graph of n nodes, consisting of n/4 connected components as described
above. We assume 4 divides n for simplicity. Given a sequence of α’s such that 0 < α0 < 1/

√
2 ≤

α1 < α2 < ... < αn/4 < 1, we can create the i-th connected component with x = 4α2
i − 2. Now

the predicted label of the unlabeled node in the i-th connected component is 0 when α < αi and 1
when α ≥ αi. By alternatively labeling these unlabeled nodes, the 0-1 loss of this problem instance
fluctuates as α increases.

Finally, by precisely choosing the subsequences so that the oscillations align with the bit flips in the
binary digit sequence, we can construct m instances that satisfy the 2m shattering constraints.

Figure 1: An illustration of the construction of the problem instance in the lower bound proof.

Remark 1. We reiterate the implications of the above three theorems. All three families have
pseudo-dimension Θ(log n). This indicates that all three families of algorithms require m =
O (logn/ϵ) problem instances to learn a ϵ-optimal hyperparameter.

4 GNN FAMILIES AND THEIR GENERALIZATION GUARANTEES

In this section, we study hyperparameter selection for Graph Neural Networks (GNNs) (Kipf &
Welling, 2017; Veličković, Petar et al., 2018; Iscen et al., 2019), which excel in tasks involving
graph-structured data like social networks, recommendation systems, and citation networks. To un-
derstand generalization in hyperparameter selection for GNNs, we analyze Rademacher complexity.

To the best of our knowledge, we are the first to provide generalization guarantees for hyperpa-
rameter selection. Prior work (Garg et al., 2020) focused on Rademacher complexity for graph
classification with fixed hyperparameters, whereas we address node classification across multiple
instances, optimizing hyperparameters.

In Section 4.1, we examine the Rademacher complexity bound of a basic Simplified Graph Convo-
lutional Network (Wu et al., 2019) family, as a foundation for the more complex family.

In Section 4.2, we introduce a novel architecture, which we call GCAN, that uses a hyperparameter
η ∈ [0, 1] to interpolate two popular GNNS: the graph convolutional neural networks (GCN) and
graph attention neural networks (GAT). GCAN selects the optimal model for specific datasets: η = 0
corresponds to GCN, η = 1 to GAT, and intermediate values explore hybrid architectures that may
outperform both. We also establish a Rademacher complexity bound for the GCAN family.

Our proofs for SGC and GCAN share a common strategy: modeling the 0-1 loss of each problem
instance as an aggregation of single-node losses, reducing the problem to bounding the Rademacher
complexity of computation trees for individual nodes. Specifically, we upper bound the 0-1 loss
with a margin loss, then relate the complexity of problem instances to the computation trees of
nodes. Using a covering argument, we bound the complexity of these trees by analyzing margin loss
changes due to parameter variations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For each node zi, we define its computation tree of depth L to represent the structured L-hop neigh-
borhood of v, where the children of any node u are the neighbors of u, Nu. Denote the computation
tree of zi as ti, and the learned parameter as θ, then lγ(zi) = lγ(ti, θ). We can now rewrite lγ(Z)
as an expectation over functions applied to computation trees. Let t1, ..., tt be the set of all possible
computation trees of depth L, and wi(Z) the number of times ti occurs in Z. Then, we have

lγ(Z) =

t∑
i=1

wi(Z)∑t
j=1 wj(Z)

lγ(ti, θ) = Et∼w′(Z)lγ(t, θ).

The following proposition indicates that it suffices to bound the Rademacher Complexity of single-
node computation trees.

Proposition 4.1 (Proposition 6 from Garg et al. (2020).). Let S = {Z1, ..., Zm} be a set of i.i.d.
graphs, and let T = {t1, ..., tm} be such that tj ∼ w′(Zj), j ∈ [m]. Denote by R̂S and R̂T the
empirical Rademacher complexity of Hγ

ρs for graphs S and trees T . Then, R̂S = Et1,...,tmR̂T .

4.1 SIMPLIFIED GRAPH CONVOLUTIONAL NETWORK FAMILY

Simplified Graph Convolution Network (SGC) is introduced by Wu et al. (2019). By removing non-
linearities and collapsing weight matrices between consecutive layers, SGC reduces the complexity
of GCN while maintaining high accuracy in many applications.

Consider input data X = (n,Z, L,G), where the feature is written as a matrix Z ∈ Rn×d. For
any value of the hyperparameter β ∈ [0, 1], let W̃ = W + βI be the augmented adjacency matrix,
D̃ = D + βI be the corresponding degree matrix, and S = D̃−1/2W̃ D̃−1/2 be the normalized
adjacency matrix. Let θ ∈ Rd be the learned parameter. The SGC classifier of depth L is

Ŷ = softmax(SLZθ).

We focus on learning the algorithm hyperparameter β ∈ [0, 1] and define the SGC algorithm family
as Fβ . We denote the class of margin losses induced by Fβ as Hγ

β . To study the generalization ability
to tune β, we bound the Rademacher complexity of Hγ

β . The proof is detailed in Appendix C.1.

Theorem 4.2. Assuming D,W, and Z are bounded (the assumptions in Bartlett et al. (2017); Garg
et al. (2020)), i.e. di ∈ [Cdl, Cdh] ⊂ R+, wij ∈ [0, Cw], and ∥Z∥ ≤ Cz , we have that the
Rademacher complexity of Hγ

β is bounded:

R̂m(Hγ
β) = O

√
dL log Cdh

Cdl
+ d log mCzCθ

γ√
m

 .

This theorem indicates that the number of problem instances needed to learn a near-optimal hyper-
parameter only scale polynomially with the input feature dimension d and the number of layers L of
the neural networks, and only scales logarithmically with the norm bounds C’s and the margin γ.

4.2 GCAN INTERPOLATION AND ITS RADEMACHER COMPLEXITY

In practice, GCN and GAT outperform each other in different problem instances (Dwivedi et al.,
2023). To effectively choose the better algorithm, we introduce a family of algorithms that interpo-
lates GCN and GAT, parameterized by η ∈ [0, 1]. This family includes both GCN and GAT, so by
choosing the best algorithm within this family, we can automatically select the better algorithm of
the two, specifically for each input data. Moreover, GCAN could potentially outperform both GAT
and GCN by taking η as values other than 0 and 1. We believe such an interpolation technique could
potentially be used to select between other algorithms that share similar architecture.

Recall that in both GAT and GCN, the update equation has the form of activation and a summation
over the feature of all neighboring vertices in the graph (a brief description of GAT and GCN is
given in Appendix B). Thus, we can interpolate between the two update rules by introducing a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

hyperparameter η ∈ [0, 1], where η = 0 corresponds to GCN and η = 1 corresponds to GAT.
Formally, given input X = (n, {zi}ni=1, L,G), we initialize h0

i = zi and update at a level ℓ by

hℓ
i = σ

∑
j∈Ni

(
η · eℓij + (1− η) · 1√

didj

)
U ℓhℓ

j

where eℓij =

exp(êℓij)∑
j′∈Ni

exp(êℓij′)
, êℓij = σ(V ℓ[U ℓhℓ

i , U
ℓhℓ

j]).

Here eℓij is the attention score of node j for node i. V ℓ and U ℓ are learnable parameters. σ(·) is
a 1-Lipschitz activation function (e.g. ReLU, sigmoid, etc.). [U ℓhℓ

i , U
ℓhℓ

j] is the concatenation of
U ℓhℓ

i and U ℓhℓ
j . We denote this algorithm family by Fη and the induced margin loss class by Hγ

η .

While our primary focus is not the comparative performance of GCAN against GAT or GCN, our
curiosity led us to conduct additional experiments, presented in Appendix D. The results consistently
show that GCAN matches or exceeds the performance of both GAT and GCN.
Theorem 4.3. Assume the parameter U ℓ is shared over all layers, i.e. U ℓ = U for all ℓ ∈ [L]
(the assumption used in Garg et al. (2020)), and the parameters are bounded: ∥U∥F ≤ CU ,
∥V ℓ∥2 ≤ CV , ∥zi∥ ≤ Cz , and di ∈ [Cdl, Cdh]. Denoting the branching factor by r =
maxi∈[n] |

∑
j∈[n] I[wij ̸= 0]|, we have that the Rademacher complexity of Hγ

η is bounded:

R̂m(Hγ
η) = O

d
√
L log rCU

Cdl+CU
+ log mdCz

γ√
m

 .

The proof of Theorem 4.3 is similar to that of Theorem 4.2. See Appendix C.2 for details.
Remark 2. The main difference between the Rademacher Complexity of Simplified Graph Convo-
lution Network (Theorem 4.2) and GCAN (Theorem 4.3) is the dependency on feature dimension d:√
d for SGC and d for GCAN. This difference arises from the dimensionality of the parameters. The

parameter θ in SGC has dimension d, but the parameter U and V in GCAN have dimension d × d
and 1 × 2d, respectively. As GCAN is a richer model, it requires more samples to learn, but this is
not a drawback; its complexity allows it to outperform SGC in many scenarios.
Remark 3. There are no direct dependencies on n in Theorem 4.2 and Theorem 4.3, but the depen-
dency is implicitly captured by the more fine-grained value Cdl, Cdh, and CZ . Here, Cdl and Cdh

are the lower and upper bounds of the degree (number of neighbors) of the nodes, which generally
increase with n. CZ is the Frobenius norm of the feature matrix Z ∈ Rn×d. Since the size of Z
scales with n, the value of CZ is generally larger for larger n.

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of our hyperparameter selection method.

5.1 LABEL PROPAGATION-BASED METHOD: NORMALIZED ADJACENCY MATRIX-BASED
ALGORITHMIC FAMILY

We empirically validate our findings in Section 3. For each of the eight datasets, the number of
nodes per problem instance, n, is fixed at 30. We set the target generalization error to ϵ = 0.01,
and calculate the required number of problem instances as m = O(log n/ϵ) ≈ 300. To evaluate
performance, we randomly sample 300 graphs with 30 nodes each, tune the hyperparameter values
to maximize accuracy on these graphs, and then test the selected hyperparameter on a separate set of
300 randomly sampled graphs. The results of evaluating the Normalized Adjacency Matrix-Based
Algorithmic Family is presented in Table 1, confirming that the observed generalization error is
within the scale of the target value 0.01.

5.2 GNN-BASED METHOD: GCAN EXPERIMENT

The bounds provided in Theorem 4.2 and Theorem 4.3 involve multiple constants, making them
challenging to compute directly. Therefore, we focus on demonstrating the effectiveness of our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

CIFAR10 WikiCS CORA Citeseer PubMed AmazonPhotos Actor
Train Acc. 0.9445 0.7522 0.7927 0.7845 0.9993 0.9983 0.9185
Test Acc. 0.9397 0.7485 0.8010 0.7714 0.9993 0.9989 0.9239
Abs. Diff. 0.0048 0.0037 0.0083 0.0131 0. 0.0006 0.0054

Table 1: The Training Accuracy and Testing Accuracy of learning the hyperparameter δ in Nor-
malized Adjacency Matrix Based Family (Fδ). The absolute difference between the accuracies (i.e.
generalization error) is within the scale of our target value 0.01.

approach for selecting algorithm hyperparameters in our setup. To illustrate this, we compare the
performance of GCAN with tuned hyperparameters against GAT and GCN.

For each dataset, we sample 20 random sub-graphs of 100 nodes to learn the optimal hyperparam-
eter η via backpropagation. A large disconnected graph is formed by combining these sub-graphs,
allowing parameter values to vary across graphs while sharing a unified learnable η. The optimized
hyperparameter is then tested on another 20 sub-graphs from the dataset

The results are shown in Figure 2. It is evident that GCAN consistently achieves higher or compa-
rable accuracy compared to both GAT and GCN across all datasets. Notably, GCAN demonstrates
significant improvements in CIFAR10 and CORA, highlighting its effectiveness in these scenarios.

Figure 2: Validation Accuracy (computed on the unlabeled nodes across 20 testing graphs) vs.
iterations. GCAN shows no worse accuracy when compared with both GAT and GCN.

6 CONCLUSION

We study algorithm selection in graph-based semi-supervised learning, by tuning real-valued hyper-
parameters that define algorithmic families. Our approach can improve the accuracy of prediction in
semi-supervised learning by selecting the most effective data-specific algorithmic hyperparameter
automatically. We do this by leveraging access to multiple instances of data from a given domain
and providing formal guarantees on the number of data samples needed to learn the best algorithm
for several classical parameterized families as well as a novel family that interpolates convolution
(GCN) and attention (GAT) in graph neural networks.

Our work also opens up several interesting directions for future research. For the graph neural
network hyperparameter tuning, we only upper bound the Rademacher Complexity, and it would be
interesting to obtain lower bounds and determine the tightness of our bounds. We also expect our
techniques to be applicable to other GNN architectures and graph-based semi-supervised learning
families in the literature. Moreover, we only consider single real-valued hyperparameter in our work,
and it would be interesting to investigate the generalizability of learning multiple hyperparamerters
with our approach. Lastly, we limit ourselves on the sample complexity, it is an interesting question
to develop effective and computationally efficient implementations for learning the hyperparameters.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, USA, 1st edition, 2009.

Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in
Neural Information Processing Systems, 34, 2021.

Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
lloyd’s families, 2019. URL https://arxiv.org/abs/1809.06987.

Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning
the elasticnet across instances, 2024. URL https://arxiv.org/abs/2207.10199.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in Neural Information Processing Systems, 30, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/
v13/bergstra12a.html.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Compu-
tational learning theory, pp. 92–100, 1998.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o.
et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function induction
in semi-supervised learning. In International Workshop on Artificial Intelligence and Statistics,
pp. 96–103. PMLR, 2005.

Claire Donnat and So Won Jeong. Studying the effect of GNN spatial convolutions on the embedding
space’s geometry. In Robin J. Evans and Ilya Shpitser (eds.), Uncertainty in Artificial Intelligence
(UAI), volume 216 of Proceedings of Machine Learning Research, pp. 539–548. PMLR, 31 Jul–
04 Aug 2023.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Pascal Mattia Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning the-
ory can (sometimes) explain generalisation in graph neural networks, 2021. URL https:
//arxiv.org/abs/2112.03968.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 3419–3430. PMLR, 13–18 Jul 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label
propagation and simple models out-performs graph neural networks, 2020. URL https://
arxiv.org/abs/2010.13993.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semi-
supervised learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5070–5079, 2019.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998. doi:
10.1023/A:1008306431147.

11

https://arxiv.org/abs/1809.06987
https://arxiv.org/abs/2207.10199
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://arxiv.org/abs/2112.03968
https://arxiv.org/abs/2112.03968
https://arxiv.org/abs/2010.13993
https://arxiv.org/abs/2010.13993

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations (ICLR), 2017.

J. Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for seeking
the extremum, volume 2, pp. 117–129. North Holand, 09 1978. ISBN 0-444-85171-2.

Jonas Mockus. On bayesian methods for seeking the extremum. In Proceedings of the IFIP Techni-
cal Conference, pp. 400–404, Berlin, Heidelberg, 1974. Springer-Verlag. ISBN 3540071652.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT Press, 2012.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks, 2021. URL https:
//arxiv.org/abs/2006.08550.

Dravyansh Sharma and Maxwell Jones. Efficiently learning the graph for semi-supervised learning.
Uncertainty in Artificial Intelligence (UAI), 2023.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks,
2023. URL https://arxiv.org/abs/2305.08048.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations
(ICLR), 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications,
2020. URL https://arxiv.org/abs/2003.05689.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in Neural Information Processing Systems, 16, 2003.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In International conference on Machine learning (ICML), pp.
912–919, 2003.

12

https://arxiv.org/abs/2006.08550
https://arxiv.org/abs/2006.08550
https://arxiv.org/abs/2305.08048
https://arxiv.org/abs/2003.05689

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOFS IN SECTION 3

We provide additional proof details from Section 3 below.

A.1 PROOF OF LEMMA 3.4

Proof. Using the adjugate matrix, we have

C(x) =
1

det(A+ xB)
adj(A+ xB).

The determinant of A+ xB can be written as

det(A+ xB) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

[A+ xB]iσi

)
,

where Sn represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.
Thus det(A+ xB) is a polynomial of x with a degree at most n. The adjugate of A+ xB is

adj(A+ xB) = C⊤,

where C is the cofactor matrix of A + xB. By definition, each entry of C is Cij = (−1)i+jkij
where kij is the determinant of the (n− 1)× (n− 1) matrix that results from deleting i-th row and
j-th column of A+ xB. This implies that each entry of C (and thus adj(A+ xB)) is a polynomial
of degree at most n − 1. Letting Q(x) = det(A + xB) and Pij(x) = [adj(A + xB)]ij concludes
our proof.

A.2 PROOF OF LEMMA 3.5

Proof. The ij-th element of I − c · S is

[I − c · S]ij =
{
−c · d−δ

i Wijd
δ−1
j = −(d−1

i dj)
δ(c ·Wijd

−1
j) , if i ̸= j

1 = (d−1
i di)

δ , otherwise.

Using adjugate matrix, we have

(I − c · S)−1 =
1

det(I − c · S)
adj(I − c · S).

Note that the determinant of any k × k matrix A can be written as

det(A) =
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

[A]iσi

)
,

where Sk represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.

Now consider adj(I − c · S). Let Mij be the (n− 1)× (n− 1) matrix resulting from deleting i-th
row and j-th column from [I − c · S]. Then,

[adj(I−c·S)]ij = (−1)i+j det(Mji) =
∑

σ∈Sn−1

(
sgn(σ)

n−1∏
k=1

[Mji]kσk

)
=

∑
σ∈Sn−1

(aσ exp(δ ln bσ)) ,

for some constants aσ, bσ that satisfies

bσ = (
∏

k∈[n]\{j}

d−1
k)(

∏
k∈[n]\{i}

dk) = d−1
i dj .

We can then rewrite [adj(I − c · S)]ij as

[adj(I − c · S)]ij =
∑

σ∈Sn−1

(aσ exp(δ ln(d
−1
i dj))) = aij exp(δ ln(d

−1
i dj)),

where aij =
∑

σ∈Sn−1
aσ .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 PROOF OF LEMMA 3.6

Proof. We prove by induction on n. If n = 1, then f(x) = aebx and a ̸= 0, so f(x) has 0 = n− 1
root. Now assume that the statement holds for some n = m and consider when n = m+1. That is,
we have

f(x) =

m+1∑
i=1

aie
bix.

Assume for the sake of contradiction that f has n = m+ 1 roots. Define

g(x) =
f(x)

ebm+1x
=

m∑
i=1

aie
(bi−bm+1)x + am+1,

then g also has m+ 1 roots. Since g is continuous,

g′(x) =

m∑
i=1

(bi − bm+1)aie
(bi−bm+1)x

must have m roots. However, using our induction hypothesis, it should have at most m − 1 roots.
This means our assumption is incorrect, i.e. f must have at most m = n− 1 roots.

We conclude that f must have at most n− 1 roots.

A.4 PROOF OF THEOREM 3.1

Upper Bound. Proof is given in Section 3.

Lower Bound. We first construct the small connected component of 4 nodes:
Lemma A.1. Given x ∈ [1/

√
2, 1), there exists a labeling instance (G,L) with 4 nodes, such that

the predicted label of the unlabeled points changes only at α = x as α varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1) connected with both a1 and a2 with edge weight 1. We also have an unlabeled
point u connected to b1 with edge weight x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (1− α)(I − αS)−1Y.

We now calculate:

D−1/2 =

(x+ 2)−1/2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x−1/2

 ,

S = D−1/2WD−1/2 =

0 (x+ 2)−1/2 (x+ 2)−1/2 x1/2(x+ 2)−1/2

(x+ 2)−1/2 0 0 0
(x+ 2)−1/2 0 0 0

x1/2(x+ 2)−1/2 0 0 0

 ,

(I − αS)−1 =
1

det(I − αS)
adj(I − αS)

=
1

1− α2

1 α

(x+2)1/2
α

(x+2)1/2
αx1/2

(x+2)1/2

α
(x+2)1/2

1− α2(x+1)x
(x+2)

α2

x+2
α2x1/2

(x+2)

α
(x+2)1/2

α2

x+2 1− α2(x+1)x
(x+2)

α2x1/2

(x+2)

αx1/2

(x+2)1/2
α2x1/2

(x+2)
α2x1/2

(x+2) 1− 2α2

x+2

 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) =sign
(
αx1/2(2α− (x+ 2)1/2)

(1 + α)(x+ 2)

)
=sign

(
x1/2(2α− (x+ 2)1/2)

)
. (since α ∈ (0, 1) and x ≥ 0)

Solving the equation x1/2(2α − (x + 2)1/2) = 0, we know that the prediction changes and only

change when α = (x+2)1/2

2 . Let x = 4x2 − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when
α ≥ x, which completes our proof.

Lemma A.2. Given integer n > 1 and a sequence of α’s such that 0 < α0 < 1/
√
2 ≤ α1 <

α2 < ... < αn < 1, there exists a real-valued witness w > 0 and a problem instance of partially
labeled 4n points, such that for 0 ≤ i ≤ n/2 − 1, l < w for α ∈ (α2i, α2i+1), and l > w for
α ∈ (α2i+1, α2i+2).

Proof. We create n connected components using the previous lemma, with xi = αi. Let the un-
labeled point in the ith component be ui, then as α increases from αi−1 to αi, the predicted label
of ui changes from a to b. If the sequence ui is alternately labeled with u1 labeled a, then the loss
increases and decreases alternately as all the labels turn to b when α increases to αn. Specifically, as
α increases to α1, the point u1 has predicted label changes from a to b. Since its true label is a and
the predicted labels of other ui’s remain unchanged, our loss slightly increases to lmax. Then, as α
increases to α2, the point u2 gets correctly labeled as b and all other nodes unchanged, which slightly
decreases our loss back to lmin. The loss thus fluctuates between lmin and lmax. We therefore set
the witness w as something in between.

w =
lmin + lmax

2
.

We now finish the lower bound proof for Theorem 3.1.

Proof. Arbitrarily choose n′ = n/4 (assumed to be a power of 2 for convenient representation)
real numbers 1/

√
2 ≤ α[000..1] < α[000...10] < ... < α[111...11] < 1. The indices are increasing

binary numbers of length m = log n′. We create m labeling instances that can be shattered by these
α values. For the i-th instance (X(i), Y (i)), we apply the previous lemma with a subset of the αb

sequence that corresponds to the i-th bit flip in b, where b ∈ {0, 1}m. For example, (X(1), Y (1)) is
constructed using r[100..0], and (X(2), Y (2)) is constructed using r[010..0], r[100.0] and r[110..0]. The
lemma gives us both the instances and the sequence of witnesses wi.

This construction ensures sign(lαb
−wi) = bi for all b ∈ {0, 1}m. Thus the pseudo-dimension is at

least log n′ = log n− log 4 = Ω(log n)

A.5 PROOF OF THEOREM 3.2

Upper Bound. The closed-form solution F ∗ is given by

F ∗ = (S + λIn∆i∈L)
−1λY.

By Lemma 3.4, each coefficient [F ∗]ij is a rational polynomial in λ of the form Pij(λ)/Q(λ) where
Pij and Q are polynomials of degree n and n respectively. Note that the prediction for each node
i ∈ [n] is ŷi = argmaxj∈c fij and thus the prediction on any node in the graph can only change
when sign(fij − fik) changes for some j, k ∈ [c]. Note that fij − fik is also a rational polynomial
(Pij(λ)−Pik(λ))/Q(λ) where both the numerator and denominator are polynomials in λ of degree
n, meaning the sign can change at most O(n) times. As we vary λ, we have that the prediction on
a single node can change at most

(
c
2

)
O(n) ∈ O(nc2). Across the m problem instances and the n

total nodes, we have at most O(n2c2m) distinct values of our loss function. The pseudo-dimension
m thus satisfies 2m ≤ O(n2c2m), or m = O(log n)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lower Bound. We construct the small connected component of 4 nodes as follows:
Lemma A.3. Given λ′ ∈ (1,∞), there exists a labeling instance (X,Y) with 4 nodes, such that the
predicted label of the unlabeled points changes only at λ = λ′ as λ varies in (0,∞).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1). We also have an unlabeled point u connected to b1 with edge weight x ≥ 0
and connected with both a1 and a2 with edge weight 1. That is, the weight matrix and initial labels
are

W =

0 0 1 0
0 0 1 0
1 1 0 x
0 0 x 0

 , Y =

−1
−1
0
1

 .

The closed form solution is
F ∗ = (S + λIn∆i∈L)

−1λY

where S = diag(W 1⃗n)−W . We now calculate:

S =

 1 0 −1 0
0 1 −1 0
−1 −1 x+ 2 −x
0 0 −x x

S + λIn∆i∈L =

1 + λ 0 −1 0
0 1 + λ −1 0
−1 −1 x+ 2 −x
0 0 −x x+ λ

Recall that the prediction on the unlabeled point is ŷ3 = sign([F∗]32 − [F ∗]31), so we calculate

ŷ3 = sign(F∗]32 − [F ∗]31) =sign
(
−2λ

(
λ+ x

λ2x+ 2λ2 + 3λx

)
+ λ

(
λx+ x

λ2x+ 2λ2 + 3λx

))
=sign (−2λ(λ+ x) + λ(λx+ x)) (since λ > 0 and x ≥ 0)
=sign (−2(λ+ x) + (λx+ x)) (since λ > 0)
=sign (−2λ− x+ λx)

Solving the equation −2λ − x + λx = 0, we know that the prediction changes and only change
when λ = x

x−2 . Let x = 2λ
λ−1 ≥ 0, then ŷ3 = −1 when λ < λ′ and ŷ3 = 1 when λ ≥ λ′, which

completes our proof.

The remaining proof is exactly the same as Lemma A.2 and Theorem 3.1, by simply replacing
notation α with λ.

A.6 PROOF OF THEOREM 3.3

Upper Bound. Using Lemma 3.5, we know that each entry of F ∗ is

F ∗
ij(δ) =

1

det(I − c · S)

n∑
k=1

[adj(I − c ·S)]ikYkj =
1

det(I − c · S)

n∑
k=1

(aikYkj) exp(δ ln(d
−1
i dk)).

Recall that the prediction on a node is made by ŷi = argmax(F ∗
i), so the prediction changes only

when

F ∗
ic1 − F ∗

ic2 =
1

det(I − c · S)

(
n∑

k=1

(aikYkc1) exp(δ ln(d
−1
i dk))−

n∑
k=1

(aikYkc2) exp(δ ln(d
−1
i dk))

)

=
1

det(I − c · S)

(
n∑

k=1

(aik(Ykc1 − Ykc2)) exp(δ ln(d
−1
i dk))

)
= 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

By Lemma 3.6, F ∗
ic1

− F ∗
ic2

has at most n− 1 roots, so the prediction on node i can change at most
n − 1 times. As δ vary, the prediction can change at most

(
c
2

)
O(n) ∈ O(nc2) times. For n nodes

and m problem instances, this implies that we have at most O(mn2c2) distinct values of loss. The
pseudo-dimension m then satisfies 2m ≤ O(mn2c2), or m = O(log nc).

Lower Bound We construct the small connected component as follows:
Lemma A.4. Consider when c ≥ 1/2. Given x ∈ [log(2c)/ log(2), 1), there exists a labeling
instance (G,L) with 4 nodes, such that the predicted label of the unlabeled points changes only at
δ = x as δ varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1) connected with both a1 and a2 with edge weight 1. We also have an unlabeled
point u connected to b1 with edge weight x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (I − c · S)−1Y,

where S = D−δWDδ−1 and D is diagonal with Dii =
∑

i Wij . We now calculate:

S = D−δWDδ−1 =

0 (x+ 2)−δ (x+ 2)−δ xδ(x+ 2)−δ

(x+ 2)−δ 0 0 0
(x+ 2)−δ 0 0 0

xδ(x+ 2)−δ 0 0 0

 ,

det(I − c · S) = det

1 −c(x+ 2)−δ −c(x+ 2)−δ −cxδ(x+ 2)−δ

−c(x+ 2)−δ 1 0 0
−c(x+ 2)−δ 0 1 0

−cxδ(x+ 2)−δ 0 0 1

= 1− c2 ̸= 0,

so (I − c · S) is invertible on our instance.

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) = sign
(
c · x1−δ(2c− (x+ 2)δ)

(1− c2)(x+ 2)

)
= sign

(
2c− (x+ 2)δ

)
.

(since c ∈ (0, 1), and x ≥ 0)

Solving the equation 2c− (x+2)δ = 0, we know that the prediction changes and only change when
δ = ln(2c)

ln(x+2) . Since x ≤ ln(2c)/ ln(2) ≤ 1, we can let x = (2c)
1/x − 2 ≥ 0, then ŷ4 = 0 when

α < x and ŷ4 = 1 when α ≥ x, which completes our proof.

B INTRODUCTION TO GAT AND GCN

Here, we provide a brief introduction to GAT and GCN.

Graph Convolutional Neural Networks (GCNs) The fundamental idea behind GCNs is to re-
peatedly apply the convolution operator on graphs (Kipf & Welling, 2017). Define h0

i = zi as the
input feature of the i-th node and let hℓ

i be the feature of the ℓ-th layer of the i-th node. We have the
following update rule for the features of hℓ

i

hℓ
i = σ

∑
j∈Ni

1√
didj

U ℓ−1hℓ−1
j

where di represents the degree of vertex i, U ℓ represents the learnable weights in our model, Ni

represents the neighbors of vertex i, and σ(·) is the activation function.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Graph Attention Neural Networks (GATs) GAT is a more recent architecture that leverages the
self-attention mechanisms to capture the importance of neighboring nodes to generate the features
of the next layer (Veličković, Petar et al., 2018). One of the advantages of GAT is its ability to
capture long-range dependencies within the graph while giving more weight to influential nodes.
This makes GAT particularly effective for tasks involving irregular graph structures and tasks where
global context is essential.

Different from GCN, GAT uses the update rule for each layer

hℓ
i = σ(

∑
j∈Ni

eℓ−1
ij U ℓ−1hℓ−1

j),

where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ(V ℓ[U ℓhℓ
i , U

ℓhℓ
j]). (1)

Here eℓij is the attention score of node j for node i and V ℓ and U ℓ are learnable parameters.

C PROOFS IN SECTION 4

We provide additional proof details from Section 4 below.

C.1 PROOF OF THEOREM 4.2

Lemma C.1. The l2 norm of different embedding vectors produced by (β, θ), (β′, θ′) after they
process the tree all the way from the leaf level to the root can be bounded as

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

Proof.

∆L,i =∥TL,i(β, θ)− TL(β
′, θ′)∥

=∥

 β

di + β
TL−1,i(β, θ) +

n∑
j=1

wijTL−1,j(β, θ)√
(di + β)(dj + β)

−

 β′

di + β′TL−1,i(β
′, θ′) +

n∑
j=1

wijTL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

 ∥

≤∥
(

β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

)
∥

+

n∑
j=1

(
∥wij∥∥

(
TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

)
∥

)
(by triangle inequality)

The first part can be bounded as∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥
≤
∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β, θ)

∥∥∥∥
+

∥∥∥∥ β′

di + β′TL−1,i(β, θ)−
β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥ (by triangle inequality)

≤
∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ ∥TL−1,i(β, θ)∥+
∥∥∥∥ β′

di + β′

∥∥∥∥∆L−1,i (by Cauchy-Schwarz inequality)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since β ∈ [0, 1] and di ∈ [Cdl, Cdh], we have∥∥∥∥ β′

di + β′

∥∥∥∥ =
β′

di + β′ ≤
1

Cdl + 1
,

and ∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ =

∥∥∥∥ di(β − β′)

(di + β)(di + β′)

∥∥∥∥ ≤ ∥β − β′∥ 1

Cdl
.

For the second term, let’s consider each element in the summation. Using a similar method as above,
we get ∥∥∥∥∥ TL−1,j(β, θ)√

(di + β)(dj + β)
− TL−1,j(β

′, θ′)√
(di + β′)(dj + β′)

∥∥∥∥∥
≤

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β, θ)√
(di + β′)(dj + β′)

∥∥∥∥∥
+

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β′)(dj + β′)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

∥∥∥∥∥ (by triangle inequality)

≤

∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ∥TL−1,j(β, θ)∥

+

∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥∆L−1,i (Cauchy-Schwarz inequality)

Using the bounds on β and di, we have∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ≤ 1

Cdl
,

and ∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥
=

∥∥∥∥∥ (di + β)(dj + β)− (di + β′)(dj + β′)√
(di + β)(dj + β)(di + β′)(dj + β′)[

√
(di + β)(dj + β) +

√
(di + β′)(dj + β′)]

∥∥∥∥∥
≤
∥∥∥∥ (di + dj + β + β′)(β − β′)

Cdl + β)(Cdl + β′)[(Cdl + β) + (Cdl + β′)]

∥∥∥∥
≤Cdh + 1

C3
dl

∥β − β′∥

Combining these results together, we get

∆L,i ≤
1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+

n∑
i=1

(
∥wij∥

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

))
=

1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+ di

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

)
≤
(

1

Cdl
+

(Cdh + 1)Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma C.2. The term ∥TL−1,i(β, θ)∥ satisfies

∥TL−1,i(β, θ)∥ ≤
(
β + CdhCz

Cdl + β

)L

BxBθ

Proof.

∥TL−1,i(β, θ)∥ = ∥ β

di + β
TL−2,i(β, θ) +

n∑
j=1

wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥

≤ ∥ β

di + β
TL−2,i(β, θ)∥+

n∑
j=1

∥ wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥ (by triangle inequality)

≤ β

di + β
∥TL−2,i(β, θ)∥+

n∑
j=1

∥wij∥∥
TL−2,j(β, θ)√
(di + β)(dj + β)

∥

(by Cauchy-Schwarz)

≤ β

di + β
∥TL−2,i(β, θ)∥+ Cdh max

j
∥ TL−2,j(β, θ)√

(di + β)(dj + β)
∥

≤ β

Cdl + β
∥TL−2,i(β, θ)∥+

Cdh

Cdl + β
max

j
∥TL−2,j(β, θ)∥

≤
(
Cdh + β

Cdl + β

)L−1

∥ziθi∥ (by recursively bounding ∥Tl,i(β, θ)∥)

≤
(
Cdh

Cdl

)L−1

CzCθ

Lemma C.3. The change in margin loss for each node, due to change in parameters, after L layers
is

Λi ≤
2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ∥β − β′∥ · k1 − kL1
1− k1

+ kL1 Cz∥θi − θ′i∥

)
,

where k1 = (1 + Cdh/Cdl).

Proof. From previous lemmas, we know how to recursively bound ∆L,i using ∆L−1,i, but it remains
for us to bound the base case ∆0,i. We have

∆0,i = ∥T0,i(β, θ)− T0,i(β, θ)∥ = ∥ziθi − ziθ
′
i∥ ≤ ∥zi∥∥Θi − θ′i∥ ≤ Cz∥θi − θ′i∥,

where the inequality is by Cauchy-Schwarz. For the simplicity of notation, let T̄L be the bound we
derived for ∥TL−1,i(β, θ)∥ from the previous lemma. We have

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ ·

L−1∑
l=0

(
1 + Cdh

Cdl

)l

+

(
1 + Cdh

Cdl

)L

·∆0,i

(by recursively bounding the terms)

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ · k1 − kL1

1− k1
+ kL1 Cz∥θi − θ′i∥

where

k1 =
1 + Cdh

Cdl
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fβ,θ(xi), yi))− gγ(−τ(fβ′,θ′(xi), yi))|

≤ 1

γ
|τ(fβ,θ(xi), yi))− τ(fβ′,θ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fβ,θ(xi)− fβ′,θ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ
|σ(TL,i(β, θ))− σ(TL,i(β

′, θ′))| (since yi ∈ {−1, 1})

≤ 2

γ
|TL,i(β, θ)− TL,i(β

′, θ′)| (since sigmoid is 1-Lipschitz)

=
2

γ
∆L,i

≤ 2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1 − kL1
1− k1

)
∥β − β′∥+ kL1 Cz∥θi − θ′i∥

)

Lemma C.4. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of
size P, where P depends on ϵ.

Proof. Let k2 = 2
γ

(
C2

dl+C2
dh+Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1−kL

1

1−k1

)
and k3 = 2

γ k
L
1 Cz for simplicity of

notation.

We begin by noting that we can find a covering C
(
β, ϵ

4k2
, | · |

)
of size

N
(
β,

ϵ

4k2
, | · |

)
≤ 8k2

ϵ
+ 1.

Also, we can find a covering C
(
θ, ϵ

4k3
, ∥ · ∥

)
of size

N
(
θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8k3
ϵ

+ 1

)d

.

Thus, for any specified ϵ, we can ensure that Λi is at most ϵ with a covering number

P ≤ N
(
β,

ϵ

4k2
, | · |

)
N
(
Θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8max{k2, k3}

ϵ
+ 1

)d+1

.

When ϵ < 8max{k2, k3}, we have

logP ≤ (d+ 1) log

(
16max{k2, k3}

ϵ

)
.

We can now finish our proof for Lemma 4.2.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

R̂T (Hγ
(β,θ)) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√
(d+ 1) log

(
16max{k2, k3}

ϵ

)
dϵ

≤
√
m

√
(d+ 1) log

(
16max{k2, k3}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(β,θ)) ≤

4

m
+

12
√
(d+ 1) log(16

√
mmax{k2, k3})√

m
.

C.2 PROOF OF THEOREM 4.3

Lemma C.5. For any z, z′,∈ Rd×r and b, b′ ∈ Rr×t such that ∥z∥F ≤ Cz, ∥z′∥F ≤ Cz, ∥b∥F ≤
Cb, ∥b′∥F ≤ Cb, we have

∥zb− z′b′∥F ≤ Cz∥b− b′∥F + Cb∥z − z′∥F .

The result also holds when z, b, z′, b′ are vectors or real numbers. The corresponding norms are ∥·∥
and | · |.
Also, by recursively using the inequality above, we may have that for any z1, . . . , zn and z′1, . . . , z

′
n

such that ∥zi∥ ≤ Ci, ∥z′i∥ ≤ Ci,

∥z1z2 . . . zn − z′1z
′
2 . . . z

′
n∥ ≤

n∑
i=1

∥zi − z′i∥
∏

j∈[n],j ̸=i

Cj

 .

Here, for simplicity of notation, we used ∥ · ∥ to denote the type of norm that corresponds to the
dimension of the zi’s.

Proof.

∥ab− a′b′∥F = ∥ab− a′b′ + ab′ − ab′∥F
≤ ∥ab− ab′∥F + ∥ab′ − a′b′∥F (by triangle inequality)

≤ ∥a∥F ∥b− b′∥F + ∥b′∥F ∥a− a′∥F (by Cauchy-Schwarz inequality)

≤ Cz∥b− b′∥F + Cb∥a− a′∥F

Lemma C.6. The l2 norm of different embedding vectors at level L, hL
i , produced by

(α,U, V), (α′, U ′, V ′) after they process the tree all the way from the leaf level to the root can
be bounded as

∆i,L ≤CU (max
j∈Ni

∥hL−1
j ∥)|η − η′|+ rCU (max

j∈Ni

∥hL−1
j ∥) + (max

j∈Ni

∥hL−1
j ∥)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
∥hL−1

i ∥∥U − U ′∥+ 2rCU

Cdl
|η − η′|

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof.

∆i,L =∥hL
i (η, U, V)− hL

i (η
′, U ′, V ′)∥

=∥σ

∑
j∈Ni

(
η · eL−1

ij + (1− η) · 1√
didj

)
UhL−1

j

− σ

∑
j∈Ni

(
η′ · e′(L−1)

ij + (1− η′) · 1√
didj

)
U ′h

′(L−1)
j

 ∥

≤∥
∑
j∈Ni

(
(η · eL−1

ij UhL−1
j)− (η′ · e′(L−1)

ij U ′h
′(L−1)
j)

)

+
∑
j∈Ni

(
(1− η) · 1√

didj
UhL−1

j − (1− η′) · 1√
didj

U ′h
′(L−1)
j

)
∥

(since σ is 1-Lipschitz)

≤
∑
j∈Ni

∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)∥

+
∑
j∈Ni

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥ (by triangle inequality)

Using Lemma C.5, we can bound each term in the first summation as

∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)∥

≤CU ē
L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

Here, h̄L−1
j is an upper bound on ∥hL−1

j ∥ and ∥h′(L−1)
j ∥, and ēL−1

ij is an upper bound on |eL−1
ij | and

|e′(L−1)
ij |.

Bounding each term in the second summation, we have

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥

≤∥ 1√
didj

UhL−1
i − 1√

didj
U ′h

′(L−1)
i ∥+ ∥η · 1√

didj
UhL−1

i − η′ · 1√
didj

U ′h
′(L−1)
i ∥

(by triangle inequality)

≤ 1

Cdl
∥UhL−1

i − U ′h
′(L−1)
i ∥+ 1

Cdl
∥η · UhL−1

i − η′ · U ′h
′(L−1)
i ∥

≤ 1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥
)

+
1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
(using Lemma C.5)

=
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Combining the above results, we have

∆L
i ≤

∑
j∈Ni

(
CU ē

L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

+
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

))
≤CU (max

j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

(since eℓij ≤ 1,
∑

j∈Ni
eℓij = 1, and the branching factor is r)

It remains for us to derive h̄L−1
j for all j.

Lemma C.7. We can upper bound the norm of node feature embedding at level ℓ+ 1 by

∥hℓ
i∥ ≤ rℓCℓ+1

U Cz max(1,
1

Cdl
)ℓ.

Proof.

∥hℓ+1
i ∥ = ∥σ

∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j

 ∥

≤ ∥
∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j∥ (since ∥σ(x)∥ ≤ ∥x∥)

≤
∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥U∥∥hℓ
j∥

(by triangle inequality and Cauchy-Schwarz inequality)

≤ CU

∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥hℓ
j∥

≤ rCU max(1,
1

Cdl
)(max

j∈Ni

∥hℓ−1
j ∥)

Recursively bounding the terms, we have

∥hℓ
i∥ ≤ rℓCℓ

U max(1,
1

Cdl
)ℓ max

j∈[n]
∥h0

j∥ ≤ rℓCℓ+1
U Cz max(1,

1

Cdl
)ℓ.

Lemma C.8. The change in margin loss due to the change in parameter values after L layers
satisfies

Λi ≤
2

k
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

Proof. Using the previous two lemmas, we know

∥hL
i (η, U, V)− hL

i (η
′, U ′, V ′)∥

≤CU (max
j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥+ 2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

≤k1 + k2|η − η′|+ k3∥U − U ′∥+ k4(max
j∈[n]

∥hL−1
j − h

′(L−1)
j ∥)

= (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4(max
j∈[n]

∥h0
j − h′0

j ∥)

≤ (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fη,U,V (xi), yi))− gγ(−τ(fη′,U ′,V ′(xi), yi))|

≤ 1

γ
|τ(fη,U,V (xi), yi))− τ(fη′,U ′,V ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fη,U,V (xi)− fη′,U ′,V ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ

∣∣σ(hL
i (η, U, V)[0])− σ(hL

i (η
′, U ′, V ′)[0])

∣∣ (since yi ∈ {−1, 1})

≤ 2

γ

∣∣hL
i (η, U, V)[0]− hL

i (η
′, U ′, V ′)[0]

∣∣ (since σis 1-Lipschitz)

≤ 2

γ
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma C.9. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of
size P , where P depends on ϵ, with

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Proof. We let A =
2k2(k

L
4 −k4)

k(k4−1) and B =
2k3(k

L
4 −k4)+γ(k2

4−k4)Cz

γ(k4−1) for simplicity of notation. Note
that we have Λi ≤ A|η − η′|+B∥U − U ′∥.

We begin by noting that we can find a covering C(η, ϵ
2A , | · |) of size

N (η,
ϵ

2A
, | · |) ≤ 1 +

4A

ϵ
.

We can also find a covering C(U, ϵ
2B , ∥ · ∥F) with size

N (U,
ϵ

2B
, ∥ · ∥F) ≤

(
1 +

4BCU

√
d

ϵ

)d2

.

For any specified ϵ, we can ensure that Λi is at most ϵ with a covering number of

P ≤N (η,
ϵ

2A
, | · |) · N (U,

ϵ

2B
, ∥ · ∥F)

≤
(
1 +

4A

ϵ

)(
1 +

4BCU

√
d

ϵ

)d2

≤ (1 +
4max{A,BCU

√
d}

ϵ
)d

2+1

Moreover, when ϵ ≤ 4max{A,BCU

√
d}, we have

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Now we can finish our proof for Theorem 4.3.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

R̂T (Hγ
(η,U,V))) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ

)
.

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
dϵ

≤
√
m

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(η,U,V))) ≤

4

m
+

12

√
(d2 + 1) log

(
8
√
mmax{A,BCU

√
d}
)

√
m

.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D EXPERIMENTS

In this section, we empirically evaluate our proposed GCAN interpolation methods on nine standard
benchmark datasets. Our goal is to see whether tuning η gives better results than both GCN and
GAT. The setup details of our experiment are described in Appendix D.1.

Dataset 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Rel. GCN Rel. GAT
CIFAR10 0.7888±

0.0010
0.7908±
0.0008

0.7908±
0.0015

0.7907±
0.0012

0.7943±
0.0022

0.7918±
0.0018

0.7975±
0.0017

0.7971±
0.0023

0.7921±
0.0023

0.7986±
0.0028

0.7984 ±
0.0023

4.54% 0%

WikiCS 0.9525±
0.0007

0.9516±
0.0006

0.9532±
0.0011

0.9545±
0.0008

0.9551±
0.0015

0.9545±
0.0012

0.9539±
0.0012

0.9553 ±
0.0012

0.9530±
0.0007

0.9536±
0.0009

0.9539±
0.0009

5.89% 3.04%

Cora 0.6132±
0.0218

0.8703±
0.0251

0.8879±
0.0206

0.8396±
0.0307

0.8022±
0.0385

0.8615±
0.0402

0.9011 ±
0.0421

0.8088±
0.0362

0.8505±
0.0240

0.8549±
0.0389

0.8725±
0.0334

74.43% 22.43%

Citeseer 0.7632 ±
0.0052

0.6944±
0.0454

0.7602±
0.0566

0.7500±
0.0461

0.7339±
0.0520

0.7427±
0.0462

0.7588±
0.0504

0.7193±
0.0567

0.7661±
0.0482

0.7266±
0.0412

0.7471±
0.0444

0% 6.37%

PubMed 0.9350±
0.0009

0.9306±
0.0006

0.9356±
0.0009

0.9281±
0.0007

0.9356 ±
0.0007

0.9319±
0.0009

0.9313±
0.0007

0.9288±
0.0009

0.9313±
0.0006

0.9338±
0.0010

0.9356±
0.0009

0.92% 0%

CoauthorCS 0.9733±
0.0007

0.9733±
0.0008

0.9765 ±
0.0005

0.9744±
0.0005

0.9733±
0.0009

0.9690±
0.0007

0.9712±
0.0009

0.9722±
0.0005

0.9722±
0.0011

0.9722±
0.0007

0.9744±
0.0007

11.99% 08.20%

AmazonPhotos 0.9605±
0.0022

0.9617±
0.0007

0.9629±
0.0015

0.9599±
0.0013

0.9641±
0.0017

0.9574±
0.0018

0.9641±
0.0019

0.9592±
0.0133

0.9653 ±
0.0027

0.9635±
0.0031

0.9562±
0.0019

12.15% 20.77%

Actor 0.5982±
0.0016

0.5919±
0.0022

0.6005 ±
0.0039

0.5959±
0.0039

0.5965±
0.0038

0.5970±
0.0027

0.5976±
0.0037

0.5993±
0.0043

0.5930±
0.0041

0.5970±
0.0037

0.5953±
0.0031

0.57% 1.28%

Cornell 0.7341±
0.0097

0.7364±
0.0165

0.7364±
0.0073

0.7205±
0.0154

0.7523±
0.0109

0.7795±
0.0120

0.7568±
0.0188

0.7500±
0.0140

0.7477±
0.0138

0.7909±
0.0136

0.8000 ±
0.0423

24.78% 0%

Wisconsin 0.8688±
0.0077

0.8922 ±
0.0035

0.8688±
0.0080

0.8906±
0.0049

0.8797±
0.0044

0.8578±
0.0120

0.8875±
0.0037

0.8781±
0.0082

0.8563±
0.0128

0.8750±
0.0121

0.8719±
0.0076

17.84% 15.84%

Table 2: Results on the proposed GCAN interpolation. Each column corresponds to one η value.
Each row corresponds to one dataset. Each entry shows the accuracy and the interval. The accuracy
with optimal η value outperforms both pure GCN and pure GAT. The right two columns show the
percentage of prediction error reduction relative to GCN and GAT.

In Table 2, we show the mean accuracy across 30 runs of each η value and the 90% confidence
interval associated with each experiment. It is interesting to note that for various datasets we see
varying optimal η values for best performance. More often than not, the best model is interpolated
between GCN and GAT, showing that we can achieve an improvement on both baselines simply by
interpolating between the two. For example, GCN achieves the best accuracy among all interpola-
tions in Citeseer, but in other datasets such as CIFAR 10 or Wisconsin, we see higher final accuracies
when the η parameter is closer to 1.0 (more like GAT). The interpolation between the two points
also does not increase or decrease monotonically for many of the datasets. The optimal η value for
each dataset can be any value between 0.0 and 1.0. This suggests that one should be able to learn
the best η parameter for each specific dataset. By learning the optimal η value, we can outperform
both GAT and GCN.

D.1 EXPERIMENT SETUP FOR GCAN

We apply dropout with a probability of 0.4 for all learnable parameters, apply 1 head of the special-
ized attention layer (with new update rule), and then an out attention layer. The activation we choose
is eLU activation (following prior work Veličković, Petar et al. (2018)), with 8 hidden units, and 3
attention heads.

These GCAN interpolation experiments are all run with only 20% of the dataset being labeled dat-
apoints, and the remaining 80% representing the unlabeled datapoints that we test our classification
accuracy on. Table 3 notes the exact setup of each dataset, and the overall training time of each
experiment.

Dataset Num of train nodes learn rate Epoch Num of exp Train time(sec) Dim of hid. layers Num of Attention Heads

CiFAR10 400 7e-3 1000 30 13.5354 1 3
WikiCS 192 7e-3 1000 30 6.4742 1 3
Cora 170 7e-3 1000 30 7.4527 1 3
Citeseer 400 7e-3 1000 30 6.4957 1 3
Pubmed 400 7e-3 1000 30 13.1791 1 3
CoAuthor CS 400 0.01 1000 30 6.8015 1 3
Amazon Photos 411 0.01 400 30 11.0201 1 3
Actor 438 0.01 1000 30 14.7753 1 3
Cornell 10 0.01 1000 30 6.9423 1 3
Wisconsin 16 0.01 1000 30 6.9271 1 3

Table 3: Experiment setup

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

For datasets that are not inherently graph-structured (e.g., CIFAR-10), we first compute the Eu-
clidean distance between the feature vectors of each pair of nodes. An edge is then added between
two nodes if their distance is below a predefined threshold.

28

	Introduction
	Contributions
	Related Work

	Preliminaries
	Label Propagation-based Families and Generalization Guarantees
	Algorithm Families
	Pseudo-dimension Guarantees

	GNN Families and Their Generalization Guarantees
	Simplified Graph Convolutional Network Family
	GCAN Interpolation and Its Rademacher Complexity

	Experiments
	Label Propagation-based Method: Normalized Adjacency Matrix-Based Algorithmic Family
	GNN-based Method: GCAN Experiment

	Conclusion
	Proofs in Section 3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Introduction to GAT and GCN
	Proofs in Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Experiments
	Experiment Setup for GCAN

