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ABSTRACT

Graph-based semi-supervised learning is a powerful paradigm in machine learn-
ing for modeling and exploiting the underlying graph structure that captures the
relationship between labeled and unlabeled data. A large number of classical
as well as modern deep learning based algorithms have been proposed for this
problem, often having tunable hyperparameters. We initiate a formal study of
tuning algorithm hyperparameters from parameterized algorithm families for this
problem. We obtain novel O(log n) pseudo-dimension upper bounds for hyper-
parameter selection in three classical label propagation-based algorithm families,
where n is the number of nodes, implying bounds on the amount of data needed
for learning provably good parameters. We further provide matching Ω(log n)
pseudo-dimension lower bounds, thus asymptotically characterizing the learning-
theoretic complexity of the parameter tuning problem. We extend our study to
selecting architectural hyperparameters in modern graph neural networks. We
bound the Rademacher complexity for tuning the self-loop weighting in recently
proposed Simplified Graph Convolution (SGC) networks. We further propose a
tunable architecture that interpolates graph convolutional neural networks (GCN)
and graph attention networks (GAT) in every layer, and provide Rademacher com-
plexity bounds for tuning the interpolation coefficient.

1 INTRODUCTION

Semi-supervised learning is a powerful paradigm in machine learning which reduces the dependence
on expensive and hard-to-obtain labeled data, by using a combination of labeled and unlabeled data.
This has become increasingly relevant in the era of large language models, where an extremely
large amount of labeled training data is needed. A large number of techniques have been proposed
in the literature to exploit the structure of unlabeled data, including popularly used graph-based
semi-supervised learning algorithms (Blum & Mitchell, 1998; Zhu et al., 2003; Zhou et al., 2003;
Delalleau et al., 2005; Chapelle et al., 2009). More recently, there has been an increasing interest in
developing effective neural network architectures for graph-based learning (Kipf & Welling, 2017;
Veličković, Petar et al., 2018; Iscen et al., 2019). However, different algorithms, architectures, and
values of hyperparameters perform well on different datasets (Dwivedi et al., 2023), and there is
no principled way of selecting the best approach for the data at hand. In this work, we initiate
the study of theoretically principled techniques for learning hyperparameters from infinitely large
semi-supervised learning algorithm families.

In graph-based semi-supervised learning, the graph nodes consist of labeled and unlabeled data
points, and the graph edges denote feature similarity between the nodes. There are several classical
ways of defining a graph-based regularization objective that depend on the available and predicted
labels as well as the graph structure. Optimizing this objective yields the predicted labels and the
accuracy of the predictions depends on the chosen objective. The performance of the same objective
may vary across datasets. By studying parameterized families of objectives, we can learn to design
the objective that works best on a given domain-specific data. Similarly, modern deep learning based
techniques often have several candidate architectures and choices for hyperparameters, often man-
ually optimized for each application domain. Recent work has considered the problem of learning
the graph hyperparameter used in semi-supervised learning (Balcan & Sharma (2021); Fatemi et al.
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(2021)) but leaves the problem of selecting the algorithm hyperparameter wide open. In this pa-
per, we take important initial steps to build the theoretical foundations of algorithm hyperparameter
selection in graph-based semi-supervised learning. Note that we focus specifically on algorithm hy-
perparameters, such as self-loop weights, leaving optimization hyperparameters like learning rates
outside the scope of this study.

1.1 CONTRIBUTIONS

• We study hyperparameter tuning in three canonical label propagation-based semi-
supervised learning algorithms: the local and global consistency (Zhou et al., 2003), the
smoothing-based (Delalleau et al., 2005), and a novel normalized adjacency matrix-based
algorithm. We prove new O (log n) pseudo-dimension upper bounds for all three families,
where n is the number of graph nodes. Our proofs rely on a unified template based on
determinant evaluation and root-counting, which may be of independent interest.

• We provide matching Ω (log n) pseudo-dimension lower bounds for all three aforemen-
tioned families. Our proof involves novel constructions of a class of partially labeled graphs
that exhibit fundamental limitations in tuning the label propagation algorithms.

• Next, we consider the modern graph neural networks (GNNs). We first prove a new
Rademacher complexity bound for tuning the weight of self-loops for a popular archi-
tecture proposed in Wu et al. (2019), the Simplified Graph Networks (SGC).

• We propose an architecture (GCAN) where a hyperparameter η is introduced to interpolate
two canonical GNN architectures: graph convolutional neural networks (GCNs) and graph
attention neural networks (GATs). We bound the Rademacher complexity of tuning η.

• We conducted experiments to empirically validate our theoretical findings and demonstrate
the effectiveness of our hyperparameter selection framework.

1.2 RELATED WORK

Graph Based Semi-supervised Learning Semi-supervised Learning is a popular machine learn-
ing paradigm with significant theoretical interest (Zhou et al., 2003; Delalleau et al., 2005; Garg
et al., 2020). Classical algorithms focus on label-propagation based techniques, such as Zhou
et al. (2003), Zhu et al. (2003), and many more. In recent years, graph neural networks (GNNs)
have become increasingly popular in a wide range of application domains (Kipf & Welling, 2017;
Veličković, Petar et al., 2018; Iscen et al., 2019). A large number of different architectures have
been proposed, including graph convolution networks, graph attention networks, message passing,
and so on (Dwivedi et al., 2023). Both label propagation-based algorithms and neural network-based
algorithms are useful in real life and perform equally well. For example, although GNN-based algo-
rithms are more predominant in applications, Huang et al. (2020) shows that modifications to label
propagation-based algorithms can outperform GNN. For node classification in GNN, many work
study generalization guarantees for tuning network weights in GNNs (Oono & Suzuki, 2021; Esser
et al., 2021; Tang & Liu, 2023). In contrast, we study the tuning of hyperparameters.

Hyperparameter Selection Hyper-parameters, such as the weight for self-loop, play important
roles in the performance of both classical methods and GNNs. In general, hyperparameter tuning is
performed on a validation dataset, and follows the same procedure: determine which hyperparame-
ters to tune and then search within their domain for the combination of parameter values with best
performance Yu & Zhu (2020). Many methods are proposed to efficiently search within the parame-
ter space, such as grid search, random search Bergstra & Bengio (2012), and Bayesian optimization
(Mockus (1974); Mockus et al. (1978); Jones et al. (1998)). A few existing works investigate the
theoretical aspects of these methods, such as through generalization guarantees and complexities of
the algorithms. In particular, Balcan et al. (2024) studies the regularization hyperparameter in Ridge
regression, LASSO, and ElasticNet in statistical settings and provides generalization guarantees. For
self-supervised learning, Balcan et al. (2019) propose a parameterized algorithm family of cluster-
ing algorithms and study the sample and computational complexity of learning the parameters. For
semi-supervised learning, a recent line of work (Balcan & Sharma (2021); Sharma & Jones (2023))
considers the problem of learning the best graph hyperparameter from a set of problem instances
drawn from a data distribution. However, no existing work theoretically studies the algorithm hy-
perparameter in semi-supervised learning, or investigates deep semi-supervised learning algorithms
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2 PRELIMINARIES

Notations. Throughout this paper, f(n) = O(g(n)) denotes that there exists a constant c > 0
such that |f(n)| ≤ c|g(n)|. f(n) = Ω(g(n)) denotes that there exists a constant c > 0 such that
|f(n)| ≥ c|g(n)|. The indicator function is indicated by I, taking values in {0, 1}. In addition, we
define the shorthand [c] = {1, 2, . . . , c}. For a matrix W , we denote its Frobenius norm by ∥W∥F
and spectral norm by ∥W∥. We also denote the Euclidean norm of a vector v by ∥v∥.

Graph-based Semi-supervised Learning. We are given n data points, where some are labeled,
denoted by L ⊆ [n], and the rest are unlabeled. We may also have features associated with each
data point, denoted by zi ∈ Rd for i ∈ [n]. We can construct a graph G by placing (possibly
weighed) edges w(u, v) between pairs of data points u, v. The created graph G is denoted by
G = (V,E), where V represents the vertices and E represents the edges. Based on G, we can
calculate W ∈ Rn×n as the adjacency matrix, i.e., Wij = w(i, j). We let D ∈ Rn×n be the
corresponding degree matrix, so D = diag(d1, . . . , dn) where di =

∑
j∈[n] w(i, j).

For a problem instance of n data points, we define input X as X = (n, {zi}ni=1, L,G), or X =
(n,L,G) if no features are available. We denote the label matrix by Y ∈ {0, 1}n×c where c is the
number of classes. Throughout the paper, we assume c = On(1), i.e. c is treated as a constant with
respect to n, which matches most practical scenarios. Here, Yij = 1 if data point i ∈ L has label
j ∈ [c] and Yij = 0 otherwise. The goal is to predict the labels of the unlabeled data points.

An algorithm F in this setting may be considered as a function that takes in (X,Y ) and outputs a
predictor f that predicts a label in [c] for each data. We denote f(zi) as our prediction on the i-th
data. To evaluate the performance of a predictor f , we use 0-1 loss (i.e. the predictive accuracy)
defined as 1

n

∑n
i=1 ℓ0−1 (f(zi), yi) =

1
n

∑n
i=1 I[f(zi) = yi]. In this work, we are interested in the

generalizability of an algorithm F on 0-1 loss.

Hyperparameter Selection. We consider several parameterized families of classification algo-
rithms. Given a family of algorithms Fρ parameterized by some parameter ρ, and a set of m problem
instances {(X(k), Y (k))}mk=1 i.i.d. generated from the data distribution D of the input space X and
the label space Y , our goal is to select a parameter ρ̂ whose corresponding prediction function fρ̂ of
algorithm Fρ̂ minimizes the prediction error. That is, denote fρ̂(z

(k)
i ) as the predicted label of data

point z(k)i in the k-th problem instance, we want

ρ̂ = argmin
ρ

1

mn

m∑
k=1

n∑
i=1

ℓ0−1(fρ(z
(k)
i ), y

(k)
i ).

Each parameter value ρ defines an algorithm Fρ, mapping a problem instance (X,Y ) to a prediction
function fρ, which induces a loss 1

n

∑n
i=1 ℓ0−1(fρ(zi), yi). We define Hρ as the function mapping

(X,Y ) to this loss and Hρ = Hρ′ρ′ as the family of loss functions parameterized by ρ.

Note that our problem setting differs from prior theoretical works on graph-based semi-supervised
learning. The classical setting considers a single algorithm and learning the model parameter from a
single problem instance. We are considering families of algorithms, each parameterized by a single
hyperparameter, and aiming to learn the best hyperparameter across multiple problem instances.
Our setting combines transductive and inductive aspects: each instance has a fixed graph of size n
(transductive), but the graphs themselves are drawn from an unknown meta-distribution (inductive).

Complexity Measures and Generalization Bounds. We study the generalization ability of sev-
eral representative parameterized families of algorithms. That is, we aim to address the question of
how many problem instances are required to learn a hyperparameter ρ such that a learning algorithm
can perform near-optimally for instances drawn from a fixed problem distribution. Clearly, the more
complex the algorithm family, the more number of problem instances are needed.

Specifically, for each algorithm fρ̂ trained given m problem instances, we study the difference in the
empirical 0-1 loss and the actual 0-1 on the distribution:

E(X,Y )∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]
−min

ρ
E(X,Y )∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ(zi), yi)

]
.
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To quantify this, we consider two learning-theoretic complexity measures for characterizing the
learnability of algorithm families: the pseudo-dimension and the Rademacher complexity.
Definition 1 (Pseudo-dimension). Let H be a set of real-valued functions from input space X .
We say that C = (X(1), ..., X(m)) ∈ Xm is pseudo-shattered by H if there exists a vector r =
(r1, ..., rm) ∈ Rm (called “witness”) such that for all b = (b1, ..., bm) ∈ {±1}m there exists
Hb ∈ H such that sign(Hb(X

(k)) − rk) = bk. Pseudo-dimension of H, denoted PDIM(H), is the
cardinality of the largest set pseudo-shattered by H.

The following theorem bounds generalization error using pseudo-dimension.
Theorem 2.1. (Anthony & Bartlett, 2009) Suppose H is a class of real-valued functions with range
in [0, 1] and finite PDIM(H). Then for any ϵ > 0 and δ ∈ (0, 1), for any distribution D and for any
set S = {X(1), . . . , X(m)} of m = O

( PDIM(H)
ϵ2 + log( 1δ )

)
samples from D, with probability at least

1− δ, we have ∣∣∣∣∣ 1m
m∑

k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ ≤ ϵ, for all H ∈ H.

Therefore, if we can show PDIM(Hρ) is bounded, then using the standard empirical risk mini-
mization argument, Theorem 2.1 implies using m = O (PDIM(H)/ϵ2) problem instances, the expected
error on test instances is upper bounded by ϵ. In Section 3, we will obtain optimal pseudo-dimension
bounds for three canonical label-propagation algorithm families.

Another classical complexity measure is the Rademacher complexity:
Definition 2 (Rademacher Complexity). Given a space X and a distribution D, let S =
{X(1), . . . , X(m)} be a set of examples drawn i.i.d. from D. Let H be the class of functions
H : X → R. The (empirical) Rademacher complexity of H is

R̂m(H) = Eσ

[
sup

(
1

m

m∑
k=1

σkH(X(k))

)]
,

where each σk is i.i.d. sampled from {−1, 1}.

The following theorem bounds generalization error using Rademacher Complexity.
Theorem 2.2. Mohri et al. (2012) Suppose H is a class of real-valued functions with range in [0, 1].
Then for any δ ∈ (0, 1), any distribution D, and any set S = {X(k)}mk=1 of m samples from D, with
probability at least 1− δ, we have∣∣∣∣∣ 1m

m∑
k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ = O

(
R̂m(H) +

√
1

m
log

1

δ

)
, for all H ∈ H.

To bound the Rademacher complexity in our setting, we restrict to binary classification c = 2 and
change the label space to Y ∈ {−1, 1}n. For a predictor f , we also overload notation and let
f(zi) ∈ [0, 1] be the output probability of node zi being classified as 1. Instead of directly using the
0-1 loss, we upper bound it using margin loss, which is defined as

ℓγ(f(zi), yi) = 1[ai > 0] + (1 + ai/γ)1 [ai ∈ [−γ, 0]]

where ai = −τ(f(zi), yi) = (1− 2f(zi))yi. Then, ai > 0 if and only if zi is classified incorrectly.

Now we define Hγ
ρ (X) = 1

n

∑n
i=1 ℓγ (fρ(zi), yi) to be the margin loss of the entire graph when

using a parameterized algorithm Fρ. Based on this definition, we have an induced loss function
family Hγ

ρ . Then, given m instances, for any γ > 0, we can obtain an upper bound for all Hγ
ρ ∈ Hγ

ρ :

E(X,Y )∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]
≤ E(X,Y )∼D

[
1

n

n∑
i=1

ℓγ (fρ̂(zi), yi)

]
(by definition of ℓγ)

=
1

m

m∑
i=1

Hγ
ρ (X

(k)) +O

(
R̂m(Hγ

ρ) +

√
log (1/δ)

m

)
.

(by Theorem 2.2)
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Therefore, suppose we find a ρ̂ whose empirical margin loss 1/m
∑m

i=1 H
γ
ρ̂ (X

(k)) is small, and
if we can show R̂m(Hγ

ρ) is small, then Fρ̂ is a strong algorithm for the new problem instances. In
Section 4, we bound the Rademacher complexity of graph neural network-based algorithm families.

3 LABEL PROPAGATION-BASED FAMILIES AND GENERALIZATION
GUARANTEES

In this section, we consider three parametric families of label propagation-based algorithms, the
classical type of algorithms for semi-supervised learning. Label propagation algorithms output a
soft-label score F ∗ ∈ Rn×c, where the (i, j)-th entry of F ∗ represents the score of class j for the i-th
sample. The prediction for the i-th sample is the class with the highest score, i.e. argmaxj∈[c] F

∗
ij .

Below we describe each family that we considered and their corresponding pseudo-dimension
bounds. Notably, the bounds for all three families of algorithms are Θ(log n), which implies the
existence of efficient algorithms with robust generalization guarantees in this setting.

3.1 ALGORITHM FAMILIES

We consider three parametric families, which we describe below.

Local and Global Consistency Algorithm Family (Fα) The first family considered is the local
and global consistent algorithms Zhou et al. (2003), parameterized by α ∈ (0, 1). The optimal
scoring matrix F ∗ is defined as

F ∗
α = (1− α)(I − αS)−1Y, where S = D−1/2WD−1/2.

Here, S is the symmetrically normalized adjacency matrix. This score matrix F ∗
α corresponds

to minimizing the following objective function Q(F ) = 1
2 (
∑n

i,j=1 Wij∥ 1√
di
Fi − 1√

dj

Fj∥2 +

1−α
α

∑n
i=1 ∥Fi − Yi∥2). The first term of Q(F ) measures the local consistency, i.e., the predic-

tion between nearby points should be similar. The second term measures the global consistency, i.e.,
consistency to its original label. Therefore, the parameter α ∈ (0, 1) induces a trade-off between the
local and the global consistency. We denote this family as Fα, and the 0-1 losses as Hα.

Smoothing-Based Algorithm Family (Fλ) This second class of algorithm is parameterized by
λ ∈ (0,+∞) (Delalleau et al., 2005). Let ∆ ∈ {0, 1}n×n be a diagonal matrix where elements are
1 only if the index is in the labeled set. The scoring matrix F ∗

λ is

F ∗
λ = (S + λIn∆i∈L)

−1λY, whereS = D −W.

The idea of Fλ is similar to Fα. λ is a smoothing parameter that balances the relative importance of
the known labels and the structure of the unlabeled points.

Normalized Adjacency Matrix Based Family (Fδ) Here we consider a new algorithm family
which we name Normalized Adjacency Matrix Based Family. This class of algorithm is parameter-
ized by δ ∈ [0, 1]. The scoring matrix F ∗

δ is

F ∗
δ = (I − c · S)−1Y, where S = D−δWDδ−1.

Here, S is the (not symmetrically) normalized adjacency matrix and c ∈ R is a constant.

This family of algorithms is motivated by Fα and the family of spectral operators defined in Donnat
& Jeong (2023). We may notice that the score matrix F ∗

δ defined here is very similar to F ∗
α in the

local and global consistency family Fα when α is set to a constant c, whose default value considered
in Zhou et al. (2003) is 0.99. Here, instead of focusing on the trade-off between local and global
consistency, we study the spatial convolutions S. With δ = 1, we have the row-normalized adjacency
matrix S = D−1W . With δ = 0, we have the column-normalized adjacency matrix S = WD−1.
Finally, with δ = 1/2, we have the symmetrically normalized adjacency matrix that we used in Fα

and many other default implementations (Donnat & Jeong, 2023; Wu et al., 2019). We denote the
set of 0-1 loss functions corresponding to Fδ as Hδ .

5
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3.2 PSEUDO-DIMENSION GUARANTEES

We study the generalization behavior of the three families through pseudo-dimension. The following
theorems indicate that all three families have pseudo-dimension O(log n), where n is the number
of data in each problem instance. This result suggests that, all three families of algorithms require
m = O (logn/ϵ) problem instances to learn a ϵ-optimal algorithmic parameter. We also complement
our upper bounds with matching pseudo-dimension lower bound Ω(log n), which indicates that we
cannot always learn a near-optimal parameter if the number of problem instances is further reduced.

Theorem 3.1. The pseudo-dimension of the Local and Global Consistency Algorithmic Family, Fα,
is PDIM(Hα) = Θ(logn), where n is the total number of labeled and unlabeled data points.

Theorem 3.2. The pseudo-dimension of the Smoothing-Based Algorithmic Family, Fλ, is
PDIM(Hλ) = Θ(log n), where n is the total number of labeled and unlabeled data points.

Theorem 3.3. The pseudo-dimension of the Normalized Adjacency Matrix-Based Algorithmic Fam-
ily, Fδ , is PDIM(Hδ) = Θ(log n), where n is the total number of labeled and unlabeled data points.

The proofs of the above three theorems follow a similar template. Here, we give an overview of the
proof idea. The full proof is in Appendix A.

Upper Bound First, we investigate the function structure of each index in F ∗. For the function
classes Fα and Fλ, the following lemma is useful.

Lemma 3.4. Let A,B ∈ Rn×n, and C(x) = (A + xB)−1 for some x ∈ R. Each entry of C(x) is
a rational polynomial Pij(x)/Q(x) for i, j ∈ [n] with each Pij of degree at most n − 1 and Q of
degree at most n.

This lemma reduces each index in the matrix of form C(x) = (A + xB)−1 into a polynomial
of parameter x with degree at most n. By definition, we can apply this lemma to F ∗

α and F ∗
λ and

conclude that each index of these matrices is a degree-n polynomial of variable α and λ, respectively.

For the algorithm family Fδ , the following lemma is helpful:

Lemma 3.5. Let S = D−xWDx−1 ∈ Rn×n, and C(x) = (I − c · S)−1 for some constant
c ∈ (0, 1) and variable x ∈ [0, 1]. For any i, j ∈ [n], the i, j-the entry of C(x) is an exponential
C(x)ij = aij exp(bijx) for some constants aij , bij .

By definition of F ∗
δ , this lemma indicates that each index of F ∗

δ is a weighted sum of n exponentials
of the hyperparameter δ.

For F ∗ being a prediction matrix of any of the above three algorithmic family, recall that the pre-
diction on each node i ∈ [n] is ŷi = argmaxj∈[c]([F

∗]ij), so the prediction on a node can change
only when sign([F ∗]ij − [F ∗]ik) changes for some classes j, k ∈ [c]. For the families Fα and Fλ,
[F ∗]ij − [F ∗]ik is a rational polynomial (Pij(α) − Pik(α))/Q(α), where (Pij(α) − Pik(α)) and
Q(α) are degree of at most n (we can simply replace α with λ for Fλ). Therefore, its sign can only
change at most O(n) times. For the family Fδ , we refer to the following lemma and conclude that
the sign of F ∗

ij − F ∗
ik can only change at most O(n) times as well.

Lemma 3.6. Let a1, . . . , an ∈ R be not all zero, b1, . . . , bn ∈ R, and f(x) =
∑n

i=1 aie
bix. The

number of roots of f is at most n− 1.

Therefore, for all three families, the prediction on a single node can change at most
(
c
2

)
O(n) ∈

O(nc2) times as the hyperparameter varies. For m problem instances, each of n nodes, this implies
we have at most O(mn2c2) distinct values of the loss function. The pseudo-dimension m then
satisfies 2m ≤ O(mn2c2), which implies PDIM(Hα) = PDIM(Hλ) = PDIM(Hδ) = O(log n).

Lower Bound Our proof relies on a collection of parameter thresholds and well-designed labeling
instances that are shattered by the thresholds. Here we present the proof idea of pseudo-dimension
lower bound of the family Fα. The analysis for Fλ and Fδ depends on a similar construction.

We first describe a hard instance of 4 nodes, using binary labels a and b. We have two points labeled
a (namely a1, a2), and one point labeled b (namely b1) connected with both a1 and a2 with edge

6
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weight 1. We also have an unlabeled point u connected to b1 with edge weight x ≥ 0. That is, the
affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

With this construction, the prediction on node u changes and only change when α = (x+2)1/2

2 . For
any β ∈ [0, 1] and let x = 4β2 − 2 ≥ 0, then ŷ4 = 0 when α < β and ŷ4 = 1 when α ≥ β.

Now we can create a large graph of n nodes, consisting of n/4 connected components as described
above. We assume 4 divides n for simplicity. Given a sequence of α’s such that 0 < α0 < 1/

√
2 ≤

α1 < α2 < ... < αn/4 < 1, we can create the i-th connected component with x = 4α2
i − 2. Now

the predicted label of the unlabeled node in the i-th connected component is 0 when α < αi and 1
when α ≥ αi. By alternatively labeling these unlabeled nodes, the 0-1 loss of this problem instance
fluctuates as α increases.

Finally, by precisely choosing the subsequences so that the oscillations align with the bit flips in the
binary digit sequence, we can construct m instances that satisfy the 2m shattering constraints.

Figure 1: An illustration of the construction of the problem instance in the lower bound proof.

Remark 1. We reiterate the implications of the above three theorems. All three families have
pseudo-dimension Θ(log n). This indicates that all three families of algorithms require m =
O (logn/ϵ) problem instances to learn a ϵ-optimal hyperparameter.

4 GNN FAMILIES AND THEIR GENERALIZATION GUARANTEES

In this section, we study hyperparameter selection for Graph Neural Networks (GNNs) (Kipf &
Welling, 2017; Veličković, Petar et al., 2018; Iscen et al., 2019), which excel in tasks involving
graph-structured data like social networks, recommendation systems, and citation networks. To un-
derstand generalization in hyperparameter selection for GNNs, we analyze Rademacher complexity.

To the best of our knowledge, we are the first to provide generalization guarantees for hyperpa-
rameter selection. Prior work (Garg et al., 2020) focused on Rademacher complexity for graph
classification with fixed hyperparameters, whereas we address node classification across multiple
instances, optimizing hyperparameters.

In Section 4.1, we examine the Rademacher complexity bound of a basic Simplified Graph Convo-
lutional Network (Wu et al., 2019) family, as a foundation for the more complex family.

In Section 4.2, we introduce a novel architecture, which we call GCAN, that uses a hyperparameter
η ∈ [0, 1] to interpolate two popular GNNS: the graph convolutional neural networks (GCN) and
graph attention neural networks (GAT). GCAN selects the optimal model for specific datasets: η = 0
corresponds to GCN, η = 1 to GAT, and intermediate values explore hybrid architectures that may
outperform both. We also establish a Rademacher complexity bound for the GCAN family.

Our proofs for SGC and GCAN share a common strategy: modeling the 0-1 loss of each problem
instance as an aggregation of single-node losses, reducing the problem to bounding the Rademacher
complexity of computation trees for individual nodes. Specifically, we upper bound the 0-1 loss
with a margin loss, then relate the complexity of problem instances to the computation trees of
nodes. Using a covering argument, we bound the complexity of these trees by analyzing margin loss
changes due to parameter variations.
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For each node zi, we define its computation tree of depth L to represent the structured L-hop neigh-
borhood of v, where the children of any node u are the neighbors of u, Nu. Denote the computation
tree of zi as ti, and the learned parameter as θ, then lγ(zi) = lγ(ti, θ). We can now rewrite lγ(Z)
as an expectation over functions applied to computation trees. Let t1, ..., tt be the set of all possible
computation trees of depth L, and wi(Z) the number of times ti occurs in Z. Then, we have

lγ(Z) =

t∑
i=1

wi(Z)∑t
j=1 wj(Z)

lγ(ti, θ) = Et∼w′(Z)lγ(t, θ).

The following proposition indicates that it suffices to bound the Rademacher Complexity of single-
node computation trees.

Proposition 4.1 (Proposition 6 from Garg et al. (2020).). Let S = {Z1, ..., Zm} be a set of i.i.d.
graphs, and let T = {t1, ..., tm} be such that tj ∼ w′(Zj), j ∈ [m]. Denote by R̂S and R̂T the
empirical Rademacher complexity of Hγ

ρs for graphs S and trees T . Then, R̂S = Et1,...,tmR̂T .

4.1 SIMPLIFIED GRAPH CONVOLUTIONAL NETWORK FAMILY

Simplified Graph Convolution Network (SGC) is introduced by Wu et al. (2019). By removing non-
linearities and collapsing weight matrices between consecutive layers, SGC reduces the complexity
of GCN while maintaining high accuracy in many applications.

Consider input data X = (n,Z, L,G), where the feature is written as a matrix Z ∈ Rn×d. For
any value of the hyperparameter β ∈ [0, 1], let W̃ = W + βI be the augmented adjacency matrix,
D̃ = D + βI be the corresponding degree matrix, and S = D̃−1/2W̃ D̃−1/2 be the normalized
adjacency matrix. Let θ ∈ Rd be the learned parameter. The SGC classifier of depth L is

Ŷ = softmax(SLZθ).

We focus on learning the algorithm hyperparameter β ∈ [0, 1] and define the SGC algorithm family
as Fβ . We denote the class of margin losses induced by Fβ as Hγ

β . To study the generalization ability
to tune β, we bound the Rademacher complexity of Hγ

β . The proof is detailed in Appendix C.1.

Theorem 4.2. Assuming D,W, and Z are bounded (the assumptions in Bartlett et al. (2017); Garg
et al. (2020)), i.e. di ∈ [Cdl, Cdh] ⊂ R+, wij ∈ [0, Cw], and ∥Z∥ ≤ Cz , we have that the
Rademacher complexity of Hγ

β is bounded:

R̂m(Hγ
β) = O


√
dL log Cdh

Cdl
+ d log mCzCθ

γ√
m

 .

This theorem indicates that the number of problem instances needed to learn a near-optimal hyper-
parameter only scale polynomially with the input feature dimension d and the number of layers L of
the neural networks, and only scales logarithmically with the norm bounds C’s and the margin γ.

4.2 GCAN INTERPOLATION AND ITS RADEMACHER COMPLEXITY

In practice, GCN and GAT outperform each other in different problem instances (Dwivedi et al.,
2023). To effectively choose the better algorithm, we introduce a family of algorithms that interpo-
lates GCN and GAT, parameterized by η ∈ [0, 1]. This family includes both GCN and GAT, so by
choosing the best algorithm within this family, we can automatically select the better algorithm of
the two, specifically for each input data. Moreover, GCAN could potentially outperform both GAT
and GCN by taking η as values other than 0 and 1. We believe such an interpolation technique could
potentially be used to select between other algorithms that share similar architecture.

Recall that in both GAT and GCN, the update equation has the form of activation and a summation
over the feature of all neighboring vertices in the graph (a brief description of GAT and GCN is
given in Appendix B). Thus, we can interpolate between the two update rules by introducing a

8
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hyperparameter η ∈ [0, 1], where η = 0 corresponds to GCN and η = 1 corresponds to GAT.
Formally, given input X = (n, {zi}ni=1, L,G), we initialize h0

i = zi and update at a level ℓ by

hℓ
i = σ

∑
j∈Ni

(
η · eℓij + (1− η) · 1√

didj

)
U ℓhℓ

j


where eℓij =

exp(êℓij)∑
j′∈Ni

exp(êℓij′)
, êℓij = σ(V ℓ[U ℓhℓ

i , U
ℓhℓ

j ]).

Here eℓij is the attention score of node j for node i. V ℓ and U ℓ are learnable parameters. σ(·) is
a 1-Lipschitz activation function (e.g. ReLU, sigmoid, etc.). [U ℓhℓ

i , U
ℓhℓ

j ] is the concatenation of
U ℓhℓ

i and U ℓhℓ
j . We denote this algorithm family by Fη and the induced margin loss class by Hγ

η .

While our primary focus is not the comparative performance of GCAN against GAT or GCN, our
curiosity led us to conduct additional experiments, presented in Appendix D. The results consistently
show that GCAN matches or exceeds the performance of both GAT and GCN.
Theorem 4.3. Assume the parameter U ℓ is shared over all layers, i.e. U ℓ = U for all ℓ ∈ [L]
(the assumption used in Garg et al. (2020)), and the parameters are bounded: ∥U∥F ≤ CU ,
∥V ℓ∥2 ≤ CV , ∥zi∥ ≤ Cz , and di ∈ [Cdl, Cdh]. Denoting the branching factor by r =
maxi∈[n] |

∑
j∈[n] I[wij ̸= 0]|, we have that the Rademacher complexity of Hγ

η is bounded:

R̂m(Hγ
η) = O

d
√
L log rCU

Cdl+CU
+ log mdCz

γ√
m

 .

The proof of Theorem 4.3 is similar to that of Theorem 4.2. See Appendix C.2 for details.
Remark 2. The main difference between the Rademacher Complexity of Simplified Graph Convo-
lution Network (Theorem 4.2) and GCAN (Theorem 4.3) is the dependency on feature dimension d:√
d for SGC and d for GCAN. This difference arises from the dimensionality of the parameters. The

parameter θ in SGC has dimension d, but the parameter U and V in GCAN have dimension d × d
and 1 × 2d, respectively. As GCAN is a richer model, it requires more samples to learn, but this is
not a drawback; its complexity allows it to outperform SGC in many scenarios.
Remark 3. There are no direct dependencies on n in Theorem 4.2 and Theorem 4.3, but the depen-
dency is implicitly captured by the more fine-grained value Cdl, Cdh, and CZ . Here, Cdl and Cdh

are the lower and upper bounds of the degree (number of neighbors) of the nodes, which generally
increase with n. CZ is the Frobenius norm of the feature matrix Z ∈ Rn×d. Since the size of Z
scales with n, the value of CZ is generally larger for larger n.

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of our hyperparameter selection method.

5.1 LABEL PROPAGATION-BASED METHOD: NORMALIZED ADJACENCY MATRIX-BASED
ALGORITHMIC FAMILY

We empirically validate our findings in Section 3. For each of the eight datasets, the number of
nodes per problem instance, n, is fixed at 30. We set the target generalization error to ϵ = 0.01,
and calculate the required number of problem instances as m = O(log n/ϵ) ≈ 300. To evaluate
performance, we randomly sample 300 graphs with 30 nodes each, tune the hyperparameter values
to maximize accuracy on these graphs, and then test the selected hyperparameter on a separate set of
300 randomly sampled graphs. The results of evaluating the Normalized Adjacency Matrix-Based
Algorithmic Family is presented in Table 1, confirming that the observed generalization error is
within the scale of the target value 0.01.

5.2 GNN-BASED METHOD: GCAN EXPERIMENT

The bounds provided in Theorem 4.2 and Theorem 4.3 involve multiple constants, making them
challenging to compute directly. Therefore, we focus on demonstrating the effectiveness of our

9
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CIFAR10 WikiCS CORA Citeseer PubMed AmazonPhotos Actor
Train Acc. 0.9445 0.7522 0.7927 0.7845 0.9993 0.9983 0.9185
Test Acc. 0.9397 0.7485 0.8010 0.7714 0.9993 0.9989 0.9239
Abs. Diff. 0.0048 0.0037 0.0083 0.0131 0. 0.0006 0.0054

Table 1: The Training Accuracy and Testing Accuracy of learning the hyperparameter δ in Nor-
malized Adjacency Matrix Based Family (Fδ). The absolute difference between the accuracies (i.e.
generalization error) is within the scale of our target value 0.01.

approach for selecting algorithm hyperparameters in our setup. To illustrate this, we compare the
performance of GCAN with tuned hyperparameters against GAT and GCN.

For each dataset, we sample 20 random sub-graphs of 100 nodes to learn the optimal hyperparam-
eter η via backpropagation. A large disconnected graph is formed by combining these sub-graphs,
allowing parameter values to vary across graphs while sharing a unified learnable η. The optimized
hyperparameter is then tested on another 20 sub-graphs from the dataset

The results are shown in Figure 2. It is evident that GCAN consistently achieves higher or compa-
rable accuracy compared to both GAT and GCN across all datasets. Notably, GCAN demonstrates
significant improvements in CIFAR10 and CORA, highlighting its effectiveness in these scenarios.

Figure 2: Validation Accuracy (computed on the unlabeled nodes across 20 testing graphs) vs.
iterations. GCAN shows no worse accuracy when compared with both GAT and GCN.

6 CONCLUSION

We study algorithm selection in graph-based semi-supervised learning, by tuning real-valued hyper-
parameters that define algorithmic families. Our approach can improve the accuracy of prediction in
semi-supervised learning by selecting the most effective data-specific algorithmic hyperparameter
automatically. We do this by leveraging access to multiple instances of data from a given domain
and providing formal guarantees on the number of data samples needed to learn the best algorithm
for several classical parameterized families as well as a novel family that interpolates convolution
(GCN) and attention (GAT) in graph neural networks.

Our work also opens up several interesting directions for future research. For the graph neural
network hyperparameter tuning, we only upper bound the Rademacher Complexity, and it would be
interesting to obtain lower bounds and determine the tightness of our bounds. We also expect our
techniques to be applicable to other GNN architectures and graph-based semi-supervised learning
families in the literature. Moreover, we only consider single real-valued hyperparameter in our work,
and it would be interesting to investigate the generalizability of learning multiple hyperparamerters
with our approach. Lastly, we limit ourselves on the sample complexity, it is an interesting question
to develop effective and computationally efficient implementations for learning the hyperparameters.
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APPENDIX

A PROOFS IN SECTION 3

We provide additional proof details from Section 3 below.

A.1 PROOF OF LEMMA 3.4

Proof. Using the adjugate matrix, we have

C(x) =
1

det(A+ xB)
adj(A+ xB).

The determinant of A+ xB can be written as

det(A+ xB) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

[A+ xB]iσi

)
,

where Sn represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.
Thus det(A+ xB) is a polynomial of x with a degree at most n. The adjugate of A+ xB is

adj(A+ xB) = C⊤,

where C is the cofactor matrix of A + xB. By definition, each entry of C is Cij = (−1)i+jkij
where kij is the determinant of the (n− 1)× (n− 1) matrix that results from deleting i-th row and
j-th column of A+ xB. This implies that each entry of C (and thus adj(A+ xB)) is a polynomial
of degree at most n − 1. Letting Q(x) = det(A + xB) and Pij(x) = [adj(A + xB)]ij concludes
our proof.

A.2 PROOF OF LEMMA 3.5

Proof. The ij-th element of I − c · S is

[I − c · S]ij =
{
−c · d−δ

i Wijd
δ−1
j = −(d−1

i dj)
δ(c ·Wijd

−1
j ) , if i ̸= j

1 = (d−1
i di)

δ , otherwise.

Using adjugate matrix, we have

(I − c · S)−1 =
1

det(I − c · S)
adj(I − c · S).

Note that the determinant of any k × k matrix A can be written as

det(A) =
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

[A]iσi

)
,

where Sk represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.

Now consider adj(I − c · S). Let Mij be the (n− 1)× (n− 1) matrix resulting from deleting i-th
row and j-th column from [I − c · S]. Then,

[adj(I−c·S)]ij = (−1)i+j det(Mji) =
∑

σ∈Sn−1

(
sgn(σ)

n−1∏
k=1

[Mji]kσk

)
=

∑
σ∈Sn−1

(aσ exp(δ ln bσ)) ,

for some constants aσ, bσ that satisfies

bσ = (
∏

k∈[n]\{j}

d−1
k )(

∏
k∈[n]\{i}

dk) = d−1
i dj .

We can then rewrite [adj(I − c · S)]ij as

[adj(I − c · S)]ij =
∑

σ∈Sn−1

(aσ exp(δ ln(d
−1
i dj))) = aij exp(δ ln(d

−1
i dj)),

where aij =
∑

σ∈Sn−1
aσ .
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A.3 PROOF OF LEMMA 3.6

Proof. We prove by induction on n. If n = 1, then f(x) = aebx and a ̸= 0, so f(x) has 0 = n− 1
root. Now assume that the statement holds for some n = m and consider when n = m+1. That is,
we have

f(x) =

m+1∑
i=1

aie
bix.

Assume for the sake of contradiction that f has n = m+ 1 roots. Define

g(x) =
f(x)

ebm+1x
=

m∑
i=1

aie
(bi−bm+1)x + am+1,

then g also has m+ 1 roots. Since g is continuous,

g′(x) =

m∑
i=1

(bi − bm+1)aie
(bi−bm+1)x

must have m roots. However, using our induction hypothesis, it should have at most m − 1 roots.
This means our assumption is incorrect, i.e. f must have at most m = n− 1 roots.

We conclude that f must have at most n− 1 roots.

A.4 PROOF OF THEOREM 3.1

Upper Bound. Proof is given in Section 3.

Lower Bound. We first construct the small connected component of 4 nodes:
Lemma A.1. Given x ∈ [1/

√
2, 1), there exists a labeling instance (G,L) with 4 nodes, such that

the predicted label of the unlabeled points changes only at α = x as α varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1) connected with both a1 and a2 with edge weight 1. We also have an unlabeled
point u connected to b1 with edge weight x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (1− α)(I − αS)−1Y.

We now calculate:

D−1/2 =

(x+ 2)−1/2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x−1/2

 ,

S = D−1/2WD−1/2 =


0 (x+ 2)−1/2 (x+ 2)−1/2 x1/2(x+ 2)−1/2

(x+ 2)−1/2 0 0 0
(x+ 2)−1/2 0 0 0

x1/2(x+ 2)−1/2 0 0 0

 ,

(I − αS)−1 =
1

det(I − αS)
adj(I − αS)

=
1

1− α2


1 α

(x+2)1/2
α

(x+2)1/2
αx1/2

(x+2)1/2

α
(x+2)1/2

1− α2(x+1)x
(x+2)

α2

x+2
α2x1/2

(x+2)

α
(x+2)1/2

α2

x+2 1− α2(x+1)x
(x+2)

α2x1/2

(x+2)

αx1/2

(x+2)1/2
α2x1/2

(x+2)
α2x1/2

(x+2) 1− 2α2

x+2

 .
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Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) =sign
(
αx1/2(2α− (x+ 2)1/2)

(1 + α)(x+ 2)

)
=sign

(
x1/2(2α− (x+ 2)1/2)

)
. (since α ∈ (0, 1) and x ≥ 0)

Solving the equation x1/2(2α − (x + 2)1/2) = 0, we know that the prediction changes and only

change when α = (x+2)1/2

2 . Let x = 4x2 − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when
α ≥ x, which completes our proof.

Lemma A.2. Given integer n > 1 and a sequence of α’s such that 0 < α0 < 1/
√
2 ≤ α1 <

α2 < ... < αn < 1, there exists a real-valued witness w > 0 and a problem instance of partially
labeled 4n points, such that for 0 ≤ i ≤ n/2 − 1, l < w for α ∈ (α2i, α2i+1), and l > w for
α ∈ (α2i+1, α2i+2).

Proof. We create n connected components using the previous lemma, with xi = αi. Let the un-
labeled point in the ith component be ui, then as α increases from αi−1 to αi, the predicted label
of ui changes from a to b. If the sequence ui is alternately labeled with u1 labeled a, then the loss
increases and decreases alternately as all the labels turn to b when α increases to αn. Specifically, as
α increases to α1, the point u1 has predicted label changes from a to b. Since its true label is a and
the predicted labels of other ui’s remain unchanged, our loss slightly increases to lmax. Then, as α
increases to α2, the point u2 gets correctly labeled as b and all other nodes unchanged, which slightly
decreases our loss back to lmin. The loss thus fluctuates between lmin and lmax. We therefore set
the witness w as something in between.

w =
lmin + lmax

2
.

We now finish the lower bound proof for Theorem 3.1.

Proof. Arbitrarily choose n′ = n/4 (assumed to be a power of 2 for convenient representation)
real numbers 1/

√
2 ≤ α[000..1] < α[000...10] < ... < α[111...11] < 1. The indices are increasing

binary numbers of length m = log n′. We create m labeling instances that can be shattered by these
α values. For the i-th instance (X(i), Y (i)), we apply the previous lemma with a subset of the αb

sequence that corresponds to the i-th bit flip in b, where b ∈ {0, 1}m. For example, (X(1), Y (1)) is
constructed using r[100..0], and (X(2), Y (2)) is constructed using r[010..0], r[100.0] and r[110..0]. The
lemma gives us both the instances and the sequence of witnesses wi.

This construction ensures sign(lαb
−wi) = bi for all b ∈ {0, 1}m. Thus the pseudo-dimension is at

least log n′ = log n− log 4 = Ω(log n)

A.5 PROOF OF THEOREM 3.2

Upper Bound. The closed-form solution F ∗ is given by

F ∗ = (S + λIn∆i∈L)
−1λY.

By Lemma 3.4, each coefficient [F ∗]ij is a rational polynomial in λ of the form Pij(λ)/Q(λ) where
Pij and Q are polynomials of degree n and n respectively. Note that the prediction for each node
i ∈ [n] is ŷi = argmaxj∈c fij and thus the prediction on any node in the graph can only change
when sign(fij − fik) changes for some j, k ∈ [c]. Note that fij − fik is also a rational polynomial
(Pij(λ)−Pik(λ))/Q(λ) where both the numerator and denominator are polynomials in λ of degree
n, meaning the sign can change at most O(n) times. As we vary λ, we have that the prediction on
a single node can change at most

(
c
2

)
O(n) ∈ O(nc2). Across the m problem instances and the n

total nodes, we have at most O(n2c2m) distinct values of our loss function. The pseudo-dimension
m thus satisfies 2m ≤ O(n2c2m), or m = O(log n)
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Lower Bound. We construct the small connected component of 4 nodes as follows:
Lemma A.3. Given λ′ ∈ (1,∞), there exists a labeling instance (X,Y ) with 4 nodes, such that the
predicted label of the unlabeled points changes only at λ = λ′ as λ varies in (0,∞).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1). We also have an unlabeled point u connected to b1 with edge weight x ≥ 0
and connected with both a1 and a2 with edge weight 1. That is, the weight matrix and initial labels
are

W =

0 0 1 0
0 0 1 0
1 1 0 x
0 0 x 0

 , Y =

−1
−1
0
1

 .

The closed form solution is
F ∗ = (S + λIn∆i∈L)

−1λY

where S = diag(W 1⃗n)−W . We now calculate:

S =

 1 0 −1 0
0 1 −1 0
−1 −1 x+ 2 −x
0 0 −x x



S + λIn∆i∈L =

1 + λ 0 −1 0
0 1 + λ −1 0
−1 −1 x+ 2 −x
0 0 −x x+ λ


Recall that the prediction on the unlabeled point is ŷ3 = sign([F∗]32 − [F ∗]31), so we calculate

ŷ3 = sign(F∗]32 − [F ∗]31) =sign
(
−2λ

(
λ+ x

λ2x+ 2λ2 + 3λx

)
+ λ

(
λx+ x

λ2x+ 2λ2 + 3λx

))
=sign (−2λ(λ+ x) + λ(λx+ x)) (since λ > 0 and x ≥ 0)
=sign (−2(λ+ x) + (λx+ x)) (since λ > 0)
=sign (−2λ− x+ λx)

Solving the equation −2λ − x + λx = 0, we know that the prediction changes and only change
when λ = x

x−2 . Let x = 2λ
λ−1 ≥ 0, then ŷ3 = −1 when λ < λ′ and ŷ3 = 1 when λ ≥ λ′, which

completes our proof.

The remaining proof is exactly the same as Lemma A.2 and Theorem 3.1, by simply replacing
notation α with λ.

A.6 PROOF OF THEOREM 3.3

Upper Bound. Using Lemma 3.5, we know that each entry of F ∗ is

F ∗
ij(δ) =

1

det(I − c · S)

n∑
k=1

[adj(I − c ·S)]ikYkj =
1

det(I − c · S)

n∑
k=1

(aikYkj) exp(δ ln(d
−1
i dk)).

Recall that the prediction on a node is made by ŷi = argmax(F ∗
i ), so the prediction changes only

when

F ∗
ic1 − F ∗

ic2 =
1

det(I − c · S)

(
n∑

k=1

(aikYkc1) exp(δ ln(d
−1
i dk))−

n∑
k=1

(aikYkc2) exp(δ ln(d
−1
i dk))

)

=
1

det(I − c · S)

(
n∑

k=1

(aik(Ykc1 − Ykc2)) exp(δ ln(d
−1
i dk))

)
= 0.
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By Lemma 3.6, F ∗
ic1

− F ∗
ic2

has at most n− 1 roots, so the prediction on node i can change at most
n − 1 times. As δ vary, the prediction can change at most

(
c
2

)
O(n) ∈ O(nc2) times. For n nodes

and m problem instances, this implies that we have at most O(mn2c2) distinct values of loss. The
pseudo-dimension m then satisfies 2m ≤ O(mn2c2), or m = O(log nc).

Lower Bound We construct the small connected component as follows:
Lemma A.4. Consider when c ≥ 1/2. Given x ∈ [log(2c)/ log(2), 1), there exists a labeling
instance (G,L) with 4 nodes, such that the predicted label of the unlabeled points changes only at
δ = x as δ varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point
labeled b (namely b1) connected with both a1 and a2 with edge weight 1. We also have an unlabeled
point u connected to b1 with edge weight x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (I − c · S)−1Y,

where S = D−δWDδ−1 and D is diagonal with Dii =
∑

i Wij . We now calculate:

S = D−δWDδ−1 =


0 (x+ 2)−δ (x+ 2)−δ xδ(x+ 2)−δ

(x+ 2)−δ 0 0 0
(x+ 2)−δ 0 0 0

xδ(x+ 2)−δ 0 0 0

 ,

det(I − c · S) = det


1 −c(x+ 2)−δ −c(x+ 2)−δ −cxδ(x+ 2)−δ

−c(x+ 2)−δ 1 0 0
−c(x+ 2)−δ 0 1 0

−cxδ(x+ 2)−δ 0 0 1


= 1− c2 ̸= 0,

so (I − c · S) is invertible on our instance.

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) = sign
(
c · x1−δ(2c− (x+ 2)δ)

(1− c2)(x+ 2)

)
= sign

(
2c− (x+ 2)δ

)
.

(since c ∈ (0, 1), and x ≥ 0)

Solving the equation 2c− (x+2)δ = 0, we know that the prediction changes and only change when
δ = ln(2c)

ln(x+2) . Since x ≤ ln(2c)/ ln(2) ≤ 1, we can let x = (2c)
1/x − 2 ≥ 0, then ŷ4 = 0 when

α < x and ŷ4 = 1 when α ≥ x, which completes our proof.

B INTRODUCTION TO GAT AND GCN

Here, we provide a brief introduction to GAT and GCN.

Graph Convolutional Neural Networks (GCNs) The fundamental idea behind GCNs is to re-
peatedly apply the convolution operator on graphs (Kipf & Welling, 2017). Define h0

i = zi as the
input feature of the i-th node and let hℓ

i be the feature of the ℓ-th layer of the i-th node. We have the
following update rule for the features of hℓ

i

hℓ
i = σ

∑
j∈Ni

1√
didj

U ℓ−1hℓ−1
j


where di represents the degree of vertex i, U ℓ represents the learnable weights in our model, Ni

represents the neighbors of vertex i, and σ(·) is the activation function.
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Graph Attention Neural Networks (GATs) GAT is a more recent architecture that leverages the
self-attention mechanisms to capture the importance of neighboring nodes to generate the features
of the next layer (Veličković, Petar et al., 2018). One of the advantages of GAT is its ability to
capture long-range dependencies within the graph while giving more weight to influential nodes.
This makes GAT particularly effective for tasks involving irregular graph structures and tasks where
global context is essential.

Different from GCN, GAT uses the update rule for each layer

hℓ
i = σ(

∑
j∈Ni

eℓ−1
ij U ℓ−1hℓ−1

j ),

where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ(V ℓ[U ℓhℓ
i , U

ℓhℓ
j ]). (1)

Here eℓij is the attention score of node j for node i and V ℓ and U ℓ are learnable parameters.

C PROOFS IN SECTION 4

We provide additional proof details from Section 4 below.

C.1 PROOF OF THEOREM 4.2

Lemma C.1. The l2 norm of different embedding vectors produced by (β, θ), (β′, θ′) after they
process the tree all the way from the leaf level to the root can be bounded as

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

Proof.

∆L,i =∥TL,i(β, θ)− TL(β
′, θ′)∥

=∥

 β

di + β
TL−1,i(β, θ) +

n∑
j=1

wijTL−1,j(β, θ)√
(di + β)(dj + β)


−

 β′

di + β′TL−1,i(β
′, θ′) +

n∑
j=1

wijTL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

 ∥

≤∥
(

β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

)
∥

+

n∑
j=1

(
∥wij∥∥

(
TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

)
∥

)
(by triangle inequality)

The first part can be bounded as∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥
≤
∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β, θ)

∥∥∥∥
+

∥∥∥∥ β′

di + β′TL−1,i(β, θ)−
β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥ (by triangle inequality)

≤
∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ ∥TL−1,i(β, θ)∥+
∥∥∥∥ β′

di + β′

∥∥∥∥∆L−1,i (by Cauchy-Schwarz inequality)
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Since β ∈ [0, 1] and di ∈ [Cdl, Cdh], we have∥∥∥∥ β′

di + β′

∥∥∥∥ =
β′

di + β′ ≤
1

Cdl + 1
,

and ∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ =

∥∥∥∥ di(β − β′)

(di + β)(di + β′)

∥∥∥∥ ≤ ∥β − β′∥ 1

Cdl
.

For the second term, let’s consider each element in the summation. Using a similar method as above,
we get ∥∥∥∥∥ TL−1,j(β, θ)√

(di + β)(dj + β)
− TL−1,j(β

′, θ′)√
(di + β′)(dj + β′)

∥∥∥∥∥
≤

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β, θ)√
(di + β′)(dj + β′)

∥∥∥∥∥
+

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β′)(dj + β′)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

∥∥∥∥∥ (by triangle inequality)

≤

∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ∥TL−1,j(β, θ)∥

+

∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥∆L−1,i (Cauchy-Schwarz inequality)

Using the bounds on β and di, we have∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ≤ 1

Cdl
,

and ∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥
=

∥∥∥∥∥ (di + β)(dj + β)− (di + β′)(dj + β′)√
(di + β)(dj + β)(di + β′)(dj + β′)[

√
(di + β)(dj + β) +

√
(di + β′)(dj + β′)]

∥∥∥∥∥
≤
∥∥∥∥ (di + dj + β + β′)(β − β′)

Cdl + β)(Cdl + β′)[(Cdl + β) + (Cdl + β′)]

∥∥∥∥
≤Cdh + 1

C3
dl

∥β − β′∥

Combining these results together, we get

∆L,i ≤
1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+

n∑
i=1

(
∥wij∥

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

))
=

1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+ di

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

)
≤
(

1

Cdl
+

(Cdh + 1)Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i
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Lemma C.2. The term ∥TL−1,i(β, θ)∥ satisfies

∥TL−1,i(β, θ)∥ ≤
(
β + CdhCz

Cdl + β

)L

BxBθ

Proof.

∥TL−1,i(β, θ)∥ = ∥ β

di + β
TL−2,i(β, θ) +

n∑
j=1

wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥

≤ ∥ β

di + β
TL−2,i(β, θ)∥+

n∑
j=1

∥ wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥ (by triangle inequality)

≤ β

di + β
∥TL−2,i(β, θ)∥+

n∑
j=1

∥wij∥∥
TL−2,j(β, θ)√
(di + β)(dj + β)

∥

(by Cauchy-Schwarz)

≤ β

di + β
∥TL−2,i(β, θ)∥+ Cdh max

j
∥ TL−2,j(β, θ)√

(di + β)(dj + β)
∥

≤ β

Cdl + β
∥TL−2,i(β, θ)∥+

Cdh

Cdl + β
max

j
∥TL−2,j(β, θ)∥

≤
(
Cdh + β

Cdl + β

)L−1

∥ziθi∥ (by recursively bounding ∥Tl,i(β, θ)∥)

≤
(
Cdh

Cdl

)L−1

CzCθ

Lemma C.3. The change in margin loss for each node, due to change in parameters, after L layers
is

Λi ≤
2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ∥β − β′∥ · k1 − kL1
1− k1

+ kL1 Cz∥θi − θ′i∥

)
,

where k1 = (1 + Cdh/Cdl).

Proof. From previous lemmas, we know how to recursively bound ∆L,i using ∆L−1,i, but it remains
for us to bound the base case ∆0,i. We have

∆0,i = ∥T0,i(β, θ)− T0,i(β, θ)∥ = ∥ziθi − ziθ
′
i∥ ≤ ∥zi∥∥Θi − θ′i∥ ≤ Cz∥θi − θ′i∥,

where the inequality is by Cauchy-Schwarz. For the simplicity of notation, let T̄L be the bound we
derived for ∥TL−1,i(β, θ)∥ from the previous lemma. We have

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ ·

L−1∑
l=0

(
1 + Cdh

Cdl

)l

+

(
1 + Cdh

Cdl

)L

·∆0,i

(by recursively bounding the terms)

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ · k1 − kL1

1− k1
+ kL1 Cz∥θi − θ′i∥

where

k1 =
1 + Cdh

Cdl
.
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The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fβ,θ(xi), yi))− gγ(−τ(fβ′,θ′(xi), yi))|

≤ 1

γ
|τ(fβ,θ(xi), yi))− τ(fβ′,θ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fβ,θ(xi)− fβ′,θ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ
|σ(TL,i(β, θ))− σ(TL,i(β

′, θ′))| (since yi ∈ {−1, 1})

≤ 2

γ
|TL,i(β, θ)− TL,i(β

′, θ′)| (since sigmoid is 1-Lipschitz)

=
2

γ
∆L,i

≤ 2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1 − kL1
1− k1

)
∥β − β′∥+ kL1 Cz∥θi − θ′i∥

)

Lemma C.4. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of
size P, where P depends on ϵ.

Proof. Let k2 = 2
γ

(
C2

dl+C2
dh+Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1−kL

1

1−k1

)
and k3 = 2

γ k
L
1 Cz for simplicity of

notation.

We begin by noting that we can find a covering C
(
β, ϵ

4k2
, | · |

)
of size

N
(
β,

ϵ

4k2
, | · |

)
≤ 8k2

ϵ
+ 1.

Also, we can find a covering C
(
θ, ϵ

4k3
, ∥ · ∥

)
of size

N
(
θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8k3
ϵ

+ 1

)d

.

Thus, for any specified ϵ, we can ensure that Λi is at most ϵ with a covering number

P ≤ N
(
β,

ϵ

4k2
, | · |

)
N
(
Θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8max{k2, k3}

ϵ
+ 1

)d+1

.

When ϵ < 8max{k2, k3}, we have

logP ≤ (d+ 1) log

(
16max{k2, k3}

ϵ

)
.

We can now finish our proof for Lemma 4.2.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

R̂T (Hγ
(β,θ)) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ

)
.
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Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√
(d+ 1) log

(
16max{k2, k3}

ϵ

)
dϵ

≤
√
m

√
(d+ 1) log

(
16max{k2, k3}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(β,θ)) ≤

4

m
+

12
√
(d+ 1) log(16

√
mmax{k2, k3})√

m
.

C.2 PROOF OF THEOREM 4.3

Lemma C.5. For any z, z′,∈ Rd×r and b, b′ ∈ Rr×t such that ∥z∥F ≤ Cz, ∥z′∥F ≤ Cz, ∥b∥F ≤
Cb, ∥b′∥F ≤ Cb, we have

∥zb− z′b′∥F ≤ Cz∥b− b′∥F + Cb∥z − z′∥F .

The result also holds when z, b, z′, b′ are vectors or real numbers. The corresponding norms are ∥·∥
and | · |.
Also, by recursively using the inequality above, we may have that for any z1, . . . , zn and z′1, . . . , z

′
n

such that ∥zi∥ ≤ Ci, ∥z′i∥ ≤ Ci,

∥z1z2 . . . zn − z′1z
′
2 . . . z

′
n∥ ≤

n∑
i=1

∥zi − z′i∥
∏

j∈[n],j ̸=i

Cj

 .

Here, for simplicity of notation, we used ∥ · ∥ to denote the type of norm that corresponds to the
dimension of the zi’s.

Proof.

∥ab− a′b′∥F = ∥ab− a′b′ + ab′ − ab′∥F
≤ ∥ab− ab′∥F + ∥ab′ − a′b′∥F (by triangle inequality)

≤ ∥a∥F ∥b− b′∥F + ∥b′∥F ∥a− a′∥F (by Cauchy-Schwarz inequality)

≤ Cz∥b− b′∥F + Cb∥a− a′∥F

Lemma C.6. The l2 norm of different embedding vectors at level L, hL
i , produced by

(α,U, V ), (α′, U ′, V ′) after they process the tree all the way from the leaf level to the root can
be bounded as

∆i,L ≤CU (max
j∈Ni

∥hL−1
j ∥)|η − η′|+ rCU (max

j∈Ni

∥hL−1
j ∥) + (max

j∈Ni

∥hL−1
j ∥)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
∥hL−1

i ∥∥U − U ′∥+ 2rCU

Cdl
|η − η′|
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Proof.

∆i,L =∥hL
i (η, U, V )− hL

i (η
′, U ′, V ′)∥

=∥σ

∑
j∈Ni

(
η · eL−1

ij + (1− η) · 1√
didj

)
UhL−1

j


− σ

∑
j∈Ni

(
η′ · e′(L−1)

ij + (1− η′) · 1√
didj

)
U ′h

′(L−1)
j

 ∥

≤∥
∑
j∈Ni

(
(η · eL−1

ij UhL−1
j )− (η′ · e′(L−1)

ij U ′h
′(L−1)
j )

)

+
∑
j∈Ni

(
(1− η) · 1√

didj
UhL−1

j − (1− η′) · 1√
didj

U ′h
′(L−1)
j

)
∥

(since σ is 1-Lipschitz)

≤
∑
j∈Ni

∥(η · eL−1
ij UhL−1

j )− (η′ · e′(L−1)
ij U ′h

′(L−1)
j )∥

+
∑
j∈Ni

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥ (by triangle inequality)

Using Lemma C.5, we can bound each term in the first summation as

∥(η · eL−1
ij UhL−1

j )− (η′ · e′(L−1)
ij U ′h

′(L−1)
j )∥

≤CU ē
L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

Here, h̄L−1
j is an upper bound on ∥hL−1

j ∥ and ∥h′(L−1)
j ∥, and ēL−1

ij is an upper bound on |eL−1
ij | and

|e′(L−1)
ij |.

Bounding each term in the second summation, we have

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥

≤∥ 1√
didj

UhL−1
i − 1√

didj
U ′h

′(L−1)
i ∥+ ∥η · 1√

didj
UhL−1

i − η′ · 1√
didj

U ′h
′(L−1)
i ∥

(by triangle inequality)

≤ 1

Cdl
∥UhL−1

i − U ′h
′(L−1)
i ∥+ 1

Cdl
∥η · UhL−1

i − η′ · U ′h
′(L−1)
i ∥

≤ 1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥
)

+
1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
(using Lemma C.5)

=
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
.
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Combining the above results, we have

∆L
i ≤

∑
j∈Ni

(
CU ē

L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

+
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

))
≤CU (max

j∈Ni

h̄L−1
j )|η − η′|+ rCU (max

j∈Ni

h̄L−1
j ) + (max

j∈Ni

h̄L−1
j )∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

(since eℓij ≤ 1,
∑

j∈Ni
eℓij = 1, and the branching factor is r)

It remains for us to derive h̄L−1
j for all j.

Lemma C.7. We can upper bound the norm of node feature embedding at level ℓ+ 1 by

∥hℓ
i∥ ≤ rℓCℓ+1

U Cz max(1,
1

Cdl
)ℓ.

Proof.

∥hℓ+1
i ∥ = ∥σ

∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j

 ∥

≤ ∥
∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j∥ (since ∥σ(x)∥ ≤ ∥x∥)

≤
∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥U∥∥hℓ
j∥

(by triangle inequality and Cauchy-Schwarz inequality)

≤ CU

∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥hℓ
j∥

≤ rCU max(1,
1

Cdl
)(max

j∈Ni

∥hℓ−1
j ∥)

Recursively bounding the terms, we have

∥hℓ
i∥ ≤ rℓCℓ

U max(1,
1

Cdl
)ℓ max

j∈[n]
∥h0

j∥ ≤ rℓCℓ+1
U Cz max(1,

1

Cdl
)ℓ.

Lemma C.8. The change in margin loss due to the change in parameter values after L layers
satisfies

Λi ≤
2

k
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥,
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where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

Proof. Using the previous two lemmas, we know

∥hL
i (η, U, V )− hL

i (η
′, U ′, V ′)∥

≤CU (max
j∈Ni

h̄L−1
j )|η − η′|+ rCU (max

j∈Ni

h̄L−1
j ) + (max

j∈Ni

h̄L−1
j )∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥+ 2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

≤k1 + k2|η − η′|+ k3∥U − U ′∥+ k4(max
j∈[n]

∥hL−1
j − h

′(L−1)
j ∥)

= (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4(max
j∈[n]

∥h0
j − h′0

j ∥)

≤ (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fη,U,V (xi), yi))− gγ(−τ(fη′,U ′,V ′(xi), yi))|

≤ 1

γ
|τ(fη,U,V (xi), yi))− τ(fη′,U ′,V ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fη,U,V (xi)− fη′,U ′,V ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ

∣∣σ(hL
i (η, U, V )[0])− σ(hL

i (η
′, U ′, V ′)[0])

∣∣ (since yi ∈ {−1, 1})

≤ 2

γ

∣∣hL
i (η, U, V )[0]− hL

i (η
′, U ′, V ′)[0]

∣∣ (since σis 1-Lipschitz)

≤ 2

γ
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥.
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Lemma C.9. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of
size P , where P depends on ϵ, with

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Proof. We let A =
2k2(k

L
4 −k4)

k(k4−1) and B =
2k3(k

L
4 −k4)+γ(k2

4−k4)Cz

γ(k4−1) for simplicity of notation. Note
that we have Λi ≤ A|η − η′|+B∥U − U ′∥.

We begin by noting that we can find a covering C(η, ϵ
2A , | · |) of size

N (η,
ϵ

2A
, | · |) ≤ 1 +

4A

ϵ
.

We can also find a covering C(U, ϵ
2B , ∥ · ∥F ) with size

N (U,
ϵ

2B
, ∥ · ∥F ) ≤

(
1 +

4BCU

√
d

ϵ

)d2

.

For any specified ϵ, we can ensure that Λi is at most ϵ with a covering number of

P ≤N (η,
ϵ

2A
, | · |) · N (U,

ϵ

2B
, ∥ · ∥F )

≤
(
1 +

4A

ϵ

)(
1 +

4BCU

√
d

ϵ

)d2

≤ (1 +
4max{A,BCU

√
d}

ϵ
)d

2+1

Moreover, when ϵ ≤ 4max{A,BCU

√
d}, we have

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Now we can finish our proof for Theorem 4.3.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

R̂T (Hγ
(η,U,V ))) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(η,U,V )), ϵ, ∥ · ∥)dϵ

)
.

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(η,U,V )), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
dϵ

≤
√
m

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(η,U,V ))) ≤

4

m
+

12

√
(d2 + 1) log

(
8
√
mmax{A,BCU

√
d}
)

√
m

.
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D EXPERIMENTS

In this section, we empirically evaluate our proposed GCAN interpolation methods on nine standard
benchmark datasets. Our goal is to see whether tuning η gives better results than both GCN and
GAT. The setup details of our experiment are described in Appendix D.1.

Dataset 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Rel. GCN Rel. GAT
CIFAR10 0.7888±

0.0010
0.7908±
0.0008

0.7908±
0.0015

0.7907±
0.0012

0.7943±
0.0022

0.7918±
0.0018

0.7975±
0.0017

0.7971±
0.0023

0.7921±
0.0023

0.7986±
0.0028

0.7984 ±
0.0023

4.54% 0%

WikiCS 0.9525±
0.0007

0.9516±
0.0006

0.9532±
0.0011

0.9545±
0.0008

0.9551±
0.0015

0.9545±
0.0012

0.9539±
0.0012

0.9553 ±
0.0012

0.9530±
0.0007

0.9536±
0.0009

0.9539±
0.0009

5.89% 3.04%

Cora 0.6132±
0.0218

0.8703±
0.0251

0.8879±
0.0206

0.8396±
0.0307

0.8022±
0.0385

0.8615±
0.0402

0.9011 ±
0.0421

0.8088±
0.0362

0.8505±
0.0240

0.8549±
0.0389

0.8725±
0.0334

74.43% 22.43%

Citeseer 0.7632 ±
0.0052

0.6944±
0.0454

0.7602±
0.0566

0.7500±
0.0461

0.7339±
0.0520

0.7427±
0.0462

0.7588±
0.0504

0.7193±
0.0567

0.7661±
0.0482

0.7266±
0.0412

0.7471±
0.0444

0% 6.37%

PubMed 0.9350±
0.0009

0.9306±
0.0006

0.9356±
0.0009

0.9281±
0.0007

0.9356 ±
0.0007

0.9319±
0.0009

0.9313±
0.0007

0.9288±
0.0009

0.9313±
0.0006

0.9338±
0.0010

0.9356±
0.0009

0.92% 0%

CoauthorCS 0.9733±
0.0007

0.9733±
0.0008

0.9765 ±
0.0005

0.9744±
0.0005

0.9733±
0.0009

0.9690±
0.0007

0.9712±
0.0009

0.9722±
0.0005

0.9722±
0.0011

0.9722±
0.0007

0.9744±
0.0007

11.99% 08.20%

AmazonPhotos 0.9605±
0.0022

0.9617±
0.0007

0.9629±
0.0015

0.9599±
0.0013

0.9641±
0.0017

0.9574±
0.0018

0.9641±
0.0019

0.9592±
0.0133

0.9653 ±
0.0027

0.9635±
0.0031

0.9562±
0.0019

12.15% 20.77%

Actor 0.5982±
0.0016

0.5919±
0.0022

0.6005 ±
0.0039

0.5959±
0.0039

0.5965±
0.0038

0.5970±
0.0027

0.5976±
0.0037

0.5993±
0.0043

0.5930±
0.0041

0.5970±
0.0037

0.5953±
0.0031

0.57% 1.28%

Cornell 0.7341±
0.0097

0.7364±
0.0165

0.7364±
0.0073

0.7205±
0.0154

0.7523±
0.0109

0.7795±
0.0120

0.7568±
0.0188

0.7500±
0.0140

0.7477±
0.0138

0.7909±
0.0136

0.8000 ±
0.0423

24.78% 0%

Wisconsin 0.8688±
0.0077

0.8922 ±
0.0035

0.8688±
0.0080

0.8906±
0.0049

0.8797±
0.0044

0.8578±
0.0120

0.8875±
0.0037

0.8781±
0.0082

0.8563±
0.0128

0.8750±
0.0121

0.8719±
0.0076

17.84% 15.84%

Table 2: Results on the proposed GCAN interpolation. Each column corresponds to one η value.
Each row corresponds to one dataset. Each entry shows the accuracy and the interval. The accuracy
with optimal η value outperforms both pure GCN and pure GAT. The right two columns show the
percentage of prediction error reduction relative to GCN and GAT.

In Table 2, we show the mean accuracy across 30 runs of each η value and the 90% confidence
interval associated with each experiment. It is interesting to note that for various datasets we see
varying optimal η values for best performance. More often than not, the best model is interpolated
between GCN and GAT, showing that we can achieve an improvement on both baselines simply by
interpolating between the two. For example, GCN achieves the best accuracy among all interpola-
tions in Citeseer, but in other datasets such as CIFAR 10 or Wisconsin, we see higher final accuracies
when the η parameter is closer to 1.0 (more like GAT). The interpolation between the two points
also does not increase or decrease monotonically for many of the datasets. The optimal η value for
each dataset can be any value between 0.0 and 1.0. This suggests that one should be able to learn
the best η parameter for each specific dataset. By learning the optimal η value, we can outperform
both GAT and GCN.

D.1 EXPERIMENT SETUP FOR GCAN

We apply dropout with a probability of 0.4 for all learnable parameters, apply 1 head of the special-
ized attention layer (with new update rule), and then an out attention layer. The activation we choose
is eLU activation (following prior work Veličković, Petar et al. (2018)), with 8 hidden units, and 3
attention heads.

These GCAN interpolation experiments are all run with only 20% of the dataset being labeled dat-
apoints, and the remaining 80% representing the unlabeled datapoints that we test our classification
accuracy on. Table 3 notes the exact setup of each dataset, and the overall training time of each
experiment.

Dataset Num of train nodes learn rate Epoch Num of exp Train time(sec) Dim of hid. layers Num of Attention Heads

CiFAR10 400 7e-3 1000 30 13.5354 1 3
WikiCS 192 7e-3 1000 30 6.4742 1 3
Cora 170 7e-3 1000 30 7.4527 1 3
Citeseer 400 7e-3 1000 30 6.4957 1 3
Pubmed 400 7e-3 1000 30 13.1791 1 3
CoAuthor CS 400 0.01 1000 30 6.8015 1 3
Amazon Photos 411 0.01 400 30 11.0201 1 3
Actor 438 0.01 1000 30 14.7753 1 3
Cornell 10 0.01 1000 30 6.9423 1 3
Wisconsin 16 0.01 1000 30 6.9271 1 3

Table 3: Experiment setup
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For datasets that are not inherently graph-structured (e.g., CIFAR-10), we first compute the Eu-
clidean distance between the feature vectors of each pair of nodes. An edge is then added between
two nodes if their distance is below a predefined threshold.
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