THEORETICAL ANALYSES OF HYPERPARAMETER SELECTION IN GRAPH-BASED SEMI-SUPERVISED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph-based semi-supervised learning is a powerful paradigm in machine learning for modeling and exploiting the underlying graph structure that captures the relationship between labeled and unlabeled data. A large number of classical as well as modern deep learning based algorithms have been proposed for this problem, often having tunable hyperparameters. We initiate a formal study of tuning algorithm hyperparameters from parameterized algorithm families for this problem. We obtain novel $O(\log n)$ pseudo-dimension upper bounds for hyperparameter selection in three classical label propagation-based algorithm families, where n is the number of nodes, implying bounds on the amount of data needed for learning provably good parameters. We further provide matching $\Omega(\log n)$ pseudo-dimension lower bounds, thus asymptotically characterizing the learningtheoretic complexity of the parameter tuning problem. We extend our study to selecting architectural hyperparameters in modern graph neural networks. We bound the Rademacher complexity for tuning the self-loop weighting in recently proposed Simplified Graph Convolution (SGC) networks. We further propose a tunable architecture that interpolates graph convolutional neural networks (GCN) and graph attention networks (GAT) in every layer, and provide Rademacher complexity bounds for tuning the interpolation coefficient.

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027

1 INTRODUCTION

033 Semi-supervised learning is a powerful paradigm in machine learning which reduces the dependence 034 on expensive and hard-to-obtain labeled data, by using a combination of labeled and unlabeled data. This has become increasingly relevant in the era of large language models, where an extremely large amount of labeled training data is needed. A large number of techniques have been proposed 036 in the literature to exploit the structure of unlabeled data, including popularly used graph-based 037 semi-supervised learning algorithms (Blum & Mitchell, 1998; Zhu et al., 2003; Zhou et al., 2003; Delalleau et al., 2005; Chapelle et al., 2009). More recently, there has been an increasing interest in developing effective neural network architectures for graph-based learning (Kipf & Welling, 2017; 040 Veličković, Petar et al., 2018; Iscen et al., 2019). However, different algorithms, architectures, and 041 values of hyperparameters perform well on different datasets (Dwivedi et al., 2023), and there is 042 no principled way of selecting the best approach for the data at hand. In this work, we initiate 043 the study of theoretically principled techniques for learning hyperparameters from infinitely large 044 semi-supervised learning algorithm families.

In graph-based semi-supervised learning, the graph nodes consist of labeled and unlabeled data 046 points, and the graph edges denote feature similarity between the nodes. There are several classical 047 ways of defining a graph-based regularization objective that depend on the available and predicted 048 labels as well as the graph structure. Optimizing this objective yields the predicted labels and the 049 accuracy of the predictions depends on the chosen objective. The performance of the same objective may vary across datasets. By studying parameterized families of objectives, we can learn to design 051 the objective that works best on a given domain-specific data. Similarly, modern deep learning based techniques often have several candidate architectures and choices for hyperparameters, often man-052 ually optimized for each application domain. Recent work has considered the problem of learning the graph hyperparameter used in semi-supervised learning (Balcan & Sharma (2021); Fatemi et al. (2021)) but leaves the problem of selecting the algorithm hyperparameter wide open. In this paper, we take important initial steps to build the theoretical foundations of algorithm hyperparameter selection in graph-based semi-supervised learning. Note that we focus specifically on algorithm hyperparameters, such as self-loop weights, leaving optimization hyperparameters like learning rates outside the scope of this study.

060 1.1 CONTRIBUTIONS

061

062

063

064

065

067

068

069

070

071

073

075

076

077

078 079

- We study hyperparameter tuning in three canonical label propagation-based semisupervised learning algorithms: the local and global consistency (Zhou et al., 2003), the smoothing-based (Delalleau et al., 2005), and a novel normalized adjacency matrix-based algorithm. We prove new $O(\log n)$ pseudo-dimension upper bounds for all three families, where n is the number of graph nodes. Our proofs rely on a unified template based on determinant evaluation and root-counting, which may be of independent interest.
- We provide matching $\Omega(\log n)$ pseudo-dimension lower bounds for all three aforementioned families. Our proof involves novel constructions of a class of partially labeled graphs that exhibit fundamental limitations in tuning the label propagation algorithms.
- Next, we consider the modern graph neural networks (GNNs). We first prove a new Rademacher complexity bound for tuning the weight of self-loops for a popular architecture proposed in Wu et al. (2019), the Simplified Graph Networks (SGC).
 - We propose an architecture (GCAN) where a hyperparameter η is introduced to interpolate two canonical GNN architectures: graph convolutional neural networks (GCNs) and graph attention neural networks (GATs). We bound the Rademacher complexity of tuning η .
 - We conducted experiments to empirically validate our theoretical findings and demonstrate the effectiveness of our hyperparameter selection framework.
- 1.2 RELATED WORK

081 Graph Based Semi-supervised Learning Semi-supervised Learning is a popular machine learn-082 ing paradigm with significant theoretical interest (Zhou et al., 2003; Delalleau et al., 2005; Garg 083 et al., 2020). Classical algorithms focus on label-propagation based techniques, such as Zhou et al. (2003), Zhu et al. (2003), and many more. In recent years, graph neural networks (GNNs) 084 have become increasingly popular in a wide range of application domains (Kipf & Welling, 2017; 085 Veličković, Petar et al., 2018; Iscen et al., 2019). A large number of different architectures have been proposed, including graph convolution networks, graph attention networks, message passing, 087 and so on (Dwivedi et al., 2023). Both label propagation-based algorithms and neural network-based 880 algorithms are useful in real life and perform equally well. For example, although GNN-based algorithms are more predominant in applications, Huang et al. (2020) shows that modifications to label propagation-based algorithms can outperform GNN. For node classification in GNN, many work 091 study generalization guarantees for tuning network weights in GNNs (Oono & Suzuki, 2021; Esser 092 et al., 2021; Tang & Liu, 2023). In contrast, we study the tuning of hyperparameters.

002

094 **Hyperparameter Selection** Hyper-parameters, such as the weight for self-loop, play important roles in the performance of both classical methods and GNNs. In general, hyperparameter tuning is 095 performed on a validation dataset, and follows the same procedure: determine which hyperparame-096 ters to tune and then search within their domain for the combination of parameter values with best 097 performance Yu & Zhu (2020). Many methods are proposed to efficiently search within the parame-098 ter space, such as grid search, random search Bergstra & Bengio (2012), and Bayesian optimization (Mockus (1974); Mockus et al. (1978); Jones et al. (1998)). A few existing works investigate the 100 theoretical aspects of these methods, such as through generalization guarantees and complexities of 101 the algorithms. In particular, Balcan et al. (2024) studies the regularization hyperparameter in Ridge 102 regression, LASSO, and ElasticNet in statistical settings and provides generalization guarantees. For 103 self-supervised learning, Balcan et al. (2019) propose a parameterized algorithm family of cluster-104 ing algorithms and study the sample and computational complexity of learning the parameters. For 105 semi-supervised learning, a recent line of work (Balcan & Sharma (2021); Sharma & Jones (2023)) considers the problem of learning the best graph hyperparameter from a set of problem instances 106 drawn from a data distribution. However, no existing work theoretically studies the algorithm hy-107 perparameter in semi-supervised learning, or investigates deep semi-supervised learning algorithms

¹⁰⁸ 2 PRELIMINARIES

115

133

140 141 142

152

161

Notations. Throughout this paper, f(n) = O(g(n)) denotes that there exists a constant c > 0such that $|f(n)| \le c|g(n)|$. $f(n) = \Omega(g(n))$ denotes that there exists a constant c > 0 such that $|f(n)| \ge c|g(n)|$. The indicator function is indicated by I, taking values in $\{0, 1\}$. In addition, we define the shorthand $[c] = \{1, 2, ..., c\}$. For a matrix W, we denote its Frobenius norm by $||W||_F$ and spectral norm by ||W||. We also denote the Euclidean norm of a vector v by ||v||.

Graph-based Semi-supervised Learning. We are given n data points, where some are labeled, denoted by $L \subseteq [n]$, and the rest are unlabeled. We may also have features associated with each data point, denoted by $z_i \in \mathbb{R}^d$ for $i \in [n]$. We can construct a graph G by placing (possibly weighed) edges w(u, v) between pairs of data points u, v. The created graph G is denoted by G = (V, E), where V represents the vertices and E represents the edges. Based on G, we can calculate $W \in \mathbb{R}^{n \times n}$ as the adjacency matrix, i.e., $W_{ij} = w(i, j)$. We let $D \in \mathbb{R}^{n \times n}$ be the corresponding degree matrix, so $D = \text{diag}(d_1, \ldots, d_n)$ where $d_i = \sum_{j \in [n]} w(i, j)$.

For a problem instance of n data points, we define input X as $X = (n, \{z_i\}_{i=1}^n, L, G)$, or X = (n, L, G) if no features are available. We denote the label matrix by $Y \in \{0, 1\}^{n \times c}$ where c is the number of classes. Throughout the paper, we assume $c = O_n(1)$, i.e. c is treated as a constant with respect to n, which matches most practical scenarios. Here, $Y_{ij} = 1$ if data point $i \in L$ has label $j \in [c]$ and $Y_{ij} = 0$ otherwise. The goal is to predict the labels of the unlabeled data points.

An algorithm F in this setting may be considered as a function that takes in (X, Y) and outputs a predictor f that predicts a label in [c] for each data. We denote $f(z_i)$ as our prediction on the *i*-th data. To evaluate the performance of a predictor f, we use 0-1 loss (i.e. the predictive accuracy) defined as $\frac{1}{n} \sum_{i=1}^{n} \ell_{0-1} (f(z_i), y_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[f(z_i) = y_i]$. In this work, we are interested in the generalizability of an algorithm F on 0-1 loss.

Hyperparameter Selection. We consider several *parameterized families* of classification algorithms. Given a family of algorithms \mathcal{F}_{ρ} parameterized by some parameter ρ , and a set of m problem instances $\{(X^{(k)}, Y^{(k)})\}_{k=1}^{m}$ i.i.d. generated from the data distribution \mathcal{D} of the input space \mathcal{X} and the label space \mathcal{Y} , our goal is to select a parameter $\hat{\rho}$ whose corresponding prediction function $f_{\hat{\rho}}$ of algorithm $F_{\hat{\rho}}$ minimizes the prediction error. That is, denote $f_{\hat{\rho}}(z_i^{(k)})$ as the predicted label of data point $z_i^{(k)}$ in the k-th problem instance, we want

$$\hat{\rho} = \underset{\rho}{\operatorname{arg\,min}} \frac{1}{mn} \sum_{k=1}^{m} \sum_{i=1}^{n} \ell_{0-1}(f_{\rho}(z_i^{(k)}), y_i^{(k)}).$$

Each parameter value ρ defines an algorithm F_{ρ} , mapping a problem instance (X, Y) to a prediction function f_{ρ} , which induces a loss $\frac{1}{n} \sum_{i=1}^{n} \ell_{0-1}(f_{\rho}(z_i), y_i)$. We define H_{ρ} as the function mapping (X, Y) to this loss and $\mathcal{H}\rho = H\rho'_{\rho'}$ as the family of loss functions parameterized by ρ .

Note that our problem setting differs from prior theoretical works on graph-based semi-supervised
learning. The classical setting considers a single algorithm and learning the model parameter from a
single problem instance. We are considering *families of algorithms*, each parameterized by a single
hyperparameter, and aiming to learn the best *hyperparameter* across *multiple problem instances*.
Our setting combines transductive and inductive aspects: each instance has a fixed graph of size *n*(transductive), but the graphs themselves are drawn from an unknown meta-distribution (inductive).

Complexity Measures and Generalization Bounds. We study the generalization ability of several representative parameterized families of algorithms. That is, we aim to address the question of how many problem instances are required to learn a hyperparameter ρ such that a learning algorithm can perform near-optimally for instances drawn from a fixed problem distribution. Clearly, the more complex the algorithm family, the more number of problem instances are needed.

Specifically, for each algorithm $f_{\hat{\rho}}$ trained given *m* problem instances, we study the difference in the empirical 0-1 loss and the actual 0-1 on the distribution:

$$\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\ell_{0-1}\left(f_{\hat{\rho}}(z_{i}),y_{i}\right)\right] - \min_{\rho}\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\ell_{0-1}\left(f_{\rho}(z_{i}),y_{i}\right)\right].$$

162 163

177 178 179

188 189

190

192

197

199

204

21

215

To quantify this, we consider two learning-theoretic complexity measures for characterizing the 164 learnability of algorithm families: the *pseudo-dimension* and the *Rademacher complexity*. 165

Definition 1 (Pseudo-dimension). Let \mathcal{H} be a set of real-valued functions from input space \mathcal{X} . 166 We say that $C = (X^{(1)}, ..., X^{(m)}) \in \mathcal{X}^m$ is pseudo-shattered by \mathcal{H} if there exists a vector r =167 $(r_1,...,r_m) \in \mathbb{R}^m$ (called "witness") such that for all $b = (b_1,...,b_m) \in \{\pm 1\}^m$ there exists 168 $H_b \in \mathcal{H}$ such that $sign(H_b(X^{(k)}) - r_k) = b_k$. **Pseudo-dimension** of \mathcal{H} , denoted PDIM(\mathcal{H}), is the cardinality of the largest set pseudo-shattered by H. 170

171 The following theorem bounds generalization error using pseudo-dimension.

172 **Theorem 2.1.** (Anthony & Bartlett, 2009) Suppose H is a class of real-valued functions with range 173 in [0,1] and finite PDIM(\mathcal{H}). Then for any $\epsilon > 0$ and $\delta \in (0,1)$, for any distribution \mathcal{D} and for any 174 set $S = \{X^{(1)}, \dots, X^{(m)}\}$ of $m = O(\frac{\text{PDIM}(\mathcal{H})}{\epsilon^2} + \log(\frac{1}{\delta}))$ samples from \mathcal{D} , with probability at least 175 $1 - \delta$, we have 176

$$\left|\frac{1}{m}\sum_{k=1}^{m}H(X^{(k)}) - \mathbb{E}_{X\sim\mathcal{D}}[H(X)]\right| \leq \epsilon, \text{ for all } H \in \mathcal{H}.$$

Therefore, if we can show $PDIM(\mathcal{H}_{\rho})$ is bounded, then using the standard empirical risk mini-180 mization argument, Theorem 2.1 implies using $m = O\left(\frac{\text{PDIM}(\mathcal{H})}{\epsilon^2}\right)$ problem instances, the expected 181 error on test instances is upper bounded by ϵ . In Section 3, we will obtain *optimal* pseudo-dimension 182 bounds for three canonical label-propagation algorithm families. 183

Another classical complexity measure is the Rademacher complexity:

185 **Definition 2** (Rademacher Complexity). Given a space \mathcal{X} and a distribution \mathcal{D} , let S = $\{X^{(1)}, \ldots, X^{(m)}\}$ be a set of examples drawn i.i.d. from \mathcal{D} . Let \mathcal{H} be the class of functions 186 $H: \mathcal{X} \to \mathbb{R}$. The (empirical) Rademacher complexity of \mathcal{H} is 187

$$\hat{R}_m(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup \left(\frac{1}{m} \sum_{k=1}^m \sigma_k H(X^{(k)}) \right) \right],$$

191 where each σ_k is i.i.d. sampled from $\{-1, 1\}$.

The following theorem bounds generalization error using Rademacher Complexity. 193

Theorem 2.2. Mohri et al. (2012) Suppose \mathcal{H} is a class of real-valued functions with range in [0, 1]. 194 Then for any $\delta \in (0,1)$, any distribution \mathcal{D} , and any set $S = \{X^{(k)}\}_{k=1}^{m}$ of m samples from \mathcal{D} , with 195 probability at least $1 - \delta$, we have 196

$$\left|\frac{1}{m}\sum_{k=1}^{m}H(X^{(k)}) - \mathbb{E}_{X\sim D}[H(X)]\right| = O\left(\hat{R}_m(\mathcal{H}) + \sqrt{\frac{1}{m}\log\frac{1}{\delta}}\right), \text{ for all } H \in \mathcal{H}.$$

200 To bound the Rademacher complexity in our setting, we restrict to binary classification c = 2 and 201 change the label space to $Y \in \{-1,1\}^n$. For a predictor f, we also overload notation and let 202 $f(z_i) \in [0,1]$ be the output probability of node z_i being classified as 1. Instead of directly using the 203 0-1 loss, we upper bound it using margin loss, which is defined as

$$\ell_{\gamma}(f(z_i), y_i) = \mathbf{1}[a_i > 0] + (1 + a_i/\gamma)\mathbf{1} [a_i \in [-\gamma, 0]]$$

205 where $a_i = -\tau(f(z_i), y_i) = (1 - 2f(z_i))y_i$. Then, $a_i > 0$ if and only if z_i is classified incorrectly. 206

Now we define $H_{\rho}^{\gamma}(X) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\gamma}(f_{\rho}(z_i), y_i)$ to be the margin loss of the entire graph when using a parameterized algorithm F_{ρ} . Based on this definition, we have an induced loss function 207 208 family $\mathcal{H}_{\rho}^{\gamma}$. Then, given *m* instances, for any $\gamma > 0$, we can obtain an upper bound for all $\mathcal{H}_{\rho}^{\gamma} \in \mathcal{H}_{\rho}^{\gamma}$: 209

210
211
$$\mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\ell_{0-1}\left(f_{\hat{\rho}}(z_{i}),y_{i}\right)\right] \leq \mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\ell_{\gamma}\left(f_{\hat{\rho}}(z_{i}),y_{i}\right)\right] \quad \text{(by definition of }\ell_{\gamma})$$
212
$$\sum_{i=1}^{m}\ell_{\gamma}\left(f_{\hat{\rho}}(z_{i}),y_{i}\right) \leq \mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\ell_{\gamma}\left(f_{\hat{\rho}}(z_{i}),y_{i}\right)\right] \quad \text{(by definition of }\ell_{\gamma})$$

$$= \frac{1}{m} \sum_{i=1}^{m} H_{\rho}^{\gamma}(X^{(k)}) + O\left(\hat{R}_{m}(\mathcal{H}_{\rho}^{\gamma}) + \sqrt{\frac{\log(1/\delta)}{m}}\right)$$

(by Theorem 2.2)

Therefore, suppose we find a $\hat{\rho}$ whose empirical margin loss $1/m \sum_{i=1}^{m} H_{\hat{\rho}}^{\gamma}(X^{(k)})$ is small, and if we can show $\hat{R}_m(\mathcal{H}_{\rho}^{\gamma})$ is small, then $F_{\hat{\rho}}$ is a strong algorithm for the new problem instances. In Section 4, we bound the Rademacher complexity of graph neural network-based algorithm families.

3 LABEL PROPAGATION-BASED FAMILIES AND GENERALIZATION GUARANTEES

222 223 224

225

226

227

231

233

235

239 240

251

252

255

259 260

220

221

In this section, we consider three parametric families of label propagation-based algorithms, the classical type of algorithms for semi-supervised learning. Label propagation algorithms output a soft-label score $F^* \in \mathbb{R}^{n \times c}$, where the (i, j)-th entry of F^* represents the score of class j for the *i*-th sample. The prediction for the *i*-th sample is the class with the highest score, i.e. $\arg \max_{j \in [c]} F^*_{ij}$.

Below we describe each family that we considered and their corresponding pseudo-dimension bounds. Notably, the bounds for all three families of algorithms are $\Theta(\log n)$, which implies the existence of efficient algorithms with robust generalization guarantees in this setting.

232 3.1 Algorithm Families

234 We consider three parametric families, which we describe below.

Local and Global Consistency Algorithm Family (\mathcal{F}_{α}) The first family considered is the local and global consistent algorithms Zhou et al. (2003), parameterized by $\alpha \in (0, 1)$. The optimal scoring matrix F^* is defined as

$$F_{\alpha}^{*} = (1 - \alpha)(I - \alpha S)^{-1}Y$$
, where $S = D^{-1/2}WD^{-1/2}$

Here, S is the symmetrically normalized adjacency matrix. This score matrix F_{α}^* corresponds to minimizing the following objective function $Q(F) = \frac{1}{2} (\sum_{i,j=1}^n W_{ij} \| \frac{1}{\sqrt{d_i}} F_i - \frac{1}{\sqrt{d_j}} F_j \|^2 +$

 $\frac{1-\alpha}{\alpha}\sum_{i=1}^{n} \|F_{i} - Y_{i}\|^{2}$ The first term of Q(F) measures the local consistency, i.e., the prediction between nearby points should be similar. The second term measures the global consistency, i.e., consistency to its original label. Therefore, the parameter $\alpha \in (0, 1)$ induces a trade-off between the local and the global consistency. We denote this family as \mathcal{F}_{α} , and the 0-1 losses as \mathcal{H}_{α} .

248 Smoothing-Based Algorithm Family (\mathcal{F}_{λ}) This second class of algorithm is parameterized by 249 $\lambda \in (0, +\infty)$ (Delalleau et al., 2005). Let $\Delta \in \{0, 1\}^{n \times n}$ be a diagonal matrix where elements are 250 1 only if the index is in the labeled set. The scoring matrix F_{λ}^* is

 $F_{\lambda}^* = (S + \lambda I_n \Delta_{i \in L})^{-1} \lambda Y$, where S = D - W.

The idea of \mathcal{F}_{λ} is similar to \mathcal{F}_{α} . λ is a smoothing parameter that balances the relative importance of the known labels and the structure of the unlabeled points.

Normalized Adjacency Matrix Based Family (\mathcal{F}_{δ}) Here we consider a new algorithm family which we name *Normalized Adjacency Matrix Based Family*. This class of algorithm is parameterized by $\delta \in [0, 1]$. The scoring matrix F_{δ}^* is

$$F^*_{\delta} = (I - c \cdot S)^{-1} Y$$
, where $S = D^{-\delta} W D^{\delta - 1}$.

Here, S is the (not symmetrically) normalized adjacency matrix and $c \in \mathbb{R}$ is a constant.

262 This family of algorithms is motivated by \mathcal{F}_{α} and the family of spectral operators defined in Donnat 263 & Jeong (2023). We may notice that the score matrix F_{δ}^* defined here is very similar to F_{α}^* in the 264 local and global consistency family \mathcal{F}_{α} when α is set to a constant c, whose default value considered 265 in Zhou et al. (2003) is 0.99. Here, instead of focusing on the trade-off between local and global 266 consistency, we study the spatial convolutions S. With $\delta = 1$, we have the row-normalized adjacency matrix $S = D^{-1}W$. With $\delta = 0$, we have the column-normalized adjacency matrix $S = WD^{-1}$. 267 Finally, with $\delta = 1/2$, we have the symmetrically normalized adjacency matrix that we used in \mathcal{F}_{α} 268 and many other default implementations (Donnat & Jeong, 2023; Wu et al., 2019). We denote the 269 set of 0-1 loss functions corresponding to \mathcal{F}_{δ} as \mathcal{H}_{δ} .

270 3.2 PSEUDO-DIMENSION GUARANTEES271

We study the generalization behavior of the three families through pseudo-dimension. The following theorems indicate that all three families have pseudo-dimension $O(\log n)$, where *n* is the number of data in each problem instance. This result suggests that, all three families of algorithms require $m = O(\log n/\epsilon)$ problem instances to learn a ϵ -optimal algorithmic parameter. We also complement our upper bounds with matching pseudo-dimension lower bound $\Omega(\log n)$, which indicates that we cannot always learn a near-optimal parameter if the number of problem instances is further reduced.

Theorem 3.1. The pseudo-dimension of the Local and Global Consistency Algorithmic Family, \mathcal{F}_{α} , *is* PDIM(\mathcal{H}_{α}) = $\Theta(\log n)$, where *n* is the total number of labeled and unlabeled data points.

Theorem 3.2. The pseudo-dimension of the Smoothing-Based Algorithmic Family, \mathcal{F}_{λ} , is PDIM $(\mathcal{H}_{\lambda}) = \Theta(\log n)$, where n is the total number of labeled and unlabeled data points.

Theorem 3.3. The pseudo-dimension of the Normalized Adjacency Matrix-Based Algorithmic Family, \mathcal{F}_{δ} , is PDIM $(\mathcal{H}_{\delta}) = \Theta(\log n)$, where n is the total number of labeled and unlabeled data points.

The proofs of the above three theorems follow a similar template. Here, we give an overview of the
proof idea. The full proof is in Appendix A.

Upper Bound First, we investigate the function structure of each index in F^* . For the function classes \mathcal{F}_{α} and \mathcal{F}_{λ} , the following lemma is useful.

Lemma 3.4. Let $A, B \in \mathbb{R}^{n \times n}$, and $C(x) = (A + xB)^{-1}$ for some $x \in \mathbb{R}$. Each entry of C(x) is a rational polynomial $P_{ij}(x)/Q(x)$ for $i, j \in [n]$ with each P_{ij} of degree at most n - 1 and Q of degree at most n.

This lemma reduces each index in the matrix of form $C(x) = (A + xB)^{-1}$ into a polynomial of parameter x with degree at most n. By definition, we can apply this lemma to F_{α}^{*} and F_{λ}^{*} and conclude that each index of these matrices is a degree-n polynomial of variable α and λ , respectively.

For the algorithm family \mathcal{F}_{δ} , the following lemma is helpful:

Lemma 3.5. Let $S = D^{-x}WD^{x-1} \in \mathbb{R}^{n \times n}$, and $C(x) = (I - c \cdot S)^{-1}$ for some constant $c \in (0, 1)$ and variable $x \in [0, 1]$. For any $i, j \in [n]$, the i, j-the entry of C(x) is an exponential $C(x)_{ij} = a_{ij} \exp(b_{ij}x)$ for some constants a_{ij}, b_{ij} .

By definition of F_{δ}^* , this lemma indicates that each index of F_{δ}^* is a weighted sum of *n* exponentials of the hyperparameter δ .

For F^* being a prediction matrix of any of the above three algorithmic family, recall that the prediction on each node $i \in [n]$ is $\hat{y}_i = \operatorname{argmax}_{j \in [c]}([F^*]_{ij})$, so the prediction on a node can change only when $\operatorname{sign}([F^*]_{ij} - [F^*]_{ik})$ changes for some classes $j, k \in [c]$. For the families \mathcal{F}_{α} and \mathcal{F}_{λ} , $[F^*]_{ij} - [F^*]_{ik}$ is a rational polynomial $(P_{ij}(\alpha) - P_{ik}(\alpha))/Q(\alpha)$, where $(P_{ij}(\alpha) - P_{ik}(\alpha))$ and $Q(\alpha)$ are degree of at most n (we can simply replace α with λ for \mathcal{F}_{λ}). Therefore, its sign can only change at most O(n) times. For the family \mathcal{F}_{δ} , we refer to the following lemma and conclude that the sign of $F^*_{ij} - F^*_{ik}$ can only change at most O(n) times as well.

Lemma 3.6. Let $a_1, \ldots, a_n \in \mathbb{R}$ be not all zero, $b_1, \ldots, b_n \in \mathbb{R}$, and $f(x) = \sum_{i=1}^n a_i e^{b_i x}$. The number of roots of f is at most n-1.

Therefore, for all three families, the prediction on a single node can change at most $\binom{c}{2}O(n) \in O(nc^2)$ times as the hyperparameter varies. For *m* problem instances, each of *n* nodes, this implies we have at most $O(mn^2c^2)$ distinct values of the loss function. The pseudo-dimension *m* then satisfies $2^m \leq O(mn^2c^2)$, which implies $\text{PDIM}(\mathcal{H}_{\alpha}) = \text{PDIM}(\mathcal{H}_{\lambda}) = O(\log n)$.

310

Lower Bound Our proof relies on a collection of parameter thresholds and well-designed labeling instances that are shattered by the thresholds. Here we present the proof idea of pseudo-dimension lower bound of the family \mathcal{F}_{α} . The analysis for \mathcal{F}_{λ} and \mathcal{F}_{δ} depends on a similar construction.

We first describe a hard instance of 4 nodes, using binary labels a and b. We have two points labeled a (namely a_1, a_2), and one point labeled b (namely b_1) connected with both a_1 and a_2 with edge

weight 1. We also have an unlabeled point u connected to b_1 with edge weight $x \ge 0$. That is, the affinity matrix and initial labels are

327
328
329
330

$$W = \begin{bmatrix} 0 & 1 & 1 & x \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

339

340

347

348 349

350 351

352

353

354 355

356

With this construction, the prediction on node u changes and only change when $\alpha = \frac{(x+2)^{1/2}}{2}$. For any $\beta \in [0,1]$ and let $x = 4\beta^2 - 2 \ge 0$, then $\hat{y}_4 = 0$ when $\alpha < \beta$ and $\hat{y}_4 = 1$ when $\alpha \ge \beta$.

Now we can create a large graph of n nodes, consisting of n/4 connected components as described above. We assume 4 divides n for simplicity. Given a sequence of α 's such that $0 < \alpha_0 < 1/\sqrt{2} \le \alpha_1 < \alpha_2 < \ldots < \alpha_{n/4} < 1$, we can create the *i*-th connected component with $x = 4\alpha_i^2 - 2$. Now the predicted label of the unlabeled node in the *i*-th connected component is 0 when $\alpha < \alpha_i$ and 1 when $\alpha \ge \alpha_i$. By alternatively labeling these unlabeled nodes, the 0-1 loss of this problem instance fluctuates as α increases.

Finally, by precisely choosing the subsequences so that the oscillations align with the bit flips in the binary digit sequence, we can construct m instances that satisfy the 2^m shattering constraints.

Figure 1: An illustration of the construction of the problem instance in the lower bound proof.

Remark 1. We reiterate the implications of the above three theorems. All three families have pseudo-dimension $\Theta(\log n)$. This indicates that all three families of algorithms require $m = O(\log n/\epsilon)$ problem instances to learn a ϵ -optimal hyperparameter.

4 GNN FAMILIES AND THEIR GENERALIZATION GUARANTEES

In this section, we study hyperparameter selection for Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Veličković, Petar et al., 2018; Iscen et al., 2019), which excel in tasks involving graph-structured data like social networks, recommendation systems, and citation networks. To understand generalization in hyperparameter selection for GNNs, we analyze Rademacher complexity.

To the best of our knowledge, we are the first to provide generalization guarantees for hyperparameter selection. Prior work (Garg et al., 2020) focused on Rademacher complexity for graph classification with fixed hyperparameters, whereas we address node classification across multiple instances, optimizing hyperparameters.

In Section 4.1, we examine the Rademacher complexity bound of a basic Simplified Graph Convolutional Network (Wu et al., 2019) family, as a foundation for the more complex family.

In Section 4.2, we introduce a novel architecture, which we call GCAN, that uses a hyperparameter $\eta \in [0, 1]$ to interpolate two popular GNNS: the graph convolutional neural networks (GCN) and graph attention neural networks (GAT). GCAN selects the optimal model for specific datasets: $\eta = 0$ corresponds to GCN, $\eta = 1$ to GAT, and intermediate values explore hybrid architectures that may outperform both. We also establish a Rademacher complexity bound for the GCAN family.

Our proofs for SGC and GCAN share a common strategy: modeling the 0-1 loss of each problem instance as an aggregation of single-node losses, reducing the problem to bounding the Rademacher complexity of computation trees for individual nodes. Specifically, we upper bound the 0-1 loss with a margin loss, then relate the complexity of problem instances to the computation trees of nodes. Using a covering argument, we bound the complexity of these trees by analyzing margin loss changes due to parameter variations. For each node z_i , we define its computation tree of depth L to represent the structured L-hop neighborhood of v, where the children of any node u are the neighbors of u, \mathcal{N}_u . Denote the computation tree of z_i as t_i , and the learned parameter as θ , then $l_{\gamma}(z_i) = l_{\gamma}(t_i, \theta)$. We can now rewrite $l_{\gamma}(Z)$ as an expectation over functions applied to computation trees. Let $t_1, ..., t_t$ be the set of all possible computation trees of depth L, and $w_i(Z)$ the number of times t_i occurs in Z. Then, we have

$$l_{\gamma}(Z) = \sum_{i=1}^{t} \frac{w_i(Z)}{\sum_{j=1}^{t} w_j(Z)} l_{\gamma}(t_i, \theta) = \mathbb{E}_{t \sim w'(Z)} l_{\gamma}(t, \theta).$$

The following proposition indicates that it suffices to bound the Rademacher Complexity of singlenode computation trees.

Proposition 4.1 (Proposition 6 from Garg et al. (2020).). Let $S = \{Z_1, ..., Z_m\}$ be a set of i.i.d. graphs, and let $\mathcal{T} = \{t_1, ..., t_m\}$ be such that $t_j \sim w'(Z_j), j \in [m]$. Denote by \hat{R}_S and $\hat{R}_{\mathcal{T}}$ the empirical Rademacher complexity of $\mathcal{H}_{\rho}^{\gamma}s$ for graphs S and trees \mathcal{T} . Then, $\hat{R}_S = \mathbb{E}_{t_1,...,t_m}\hat{R}_{\mathcal{T}}$.

4.1 SIMPLIFIED GRAPH CONVOLUTIONAL NETWORK FAMILY

Simplified Graph Convolution Network (SGC) is introduced by Wu et al. (2019). By removing non linearities and collapsing weight matrices between consecutive layers, SGC reduces the complexity of GCN while maintaining high accuracy in many applications.

Consider input data X = (n, Z, L, G), where the feature is written as a matrix $Z \in \mathbb{R}^{n \times d}$. For any value of the hyperparameter $\beta \in [0, 1]$, let $\tilde{W} = W + \beta I$ be the augmented adjacency matrix, $\tilde{D} = D + \beta I$ be the corresponding degree matrix, and $S = \tilde{D}^{-1/2} \tilde{W} \tilde{D}^{-1/2}$ be the normalized adjacency matrix. Let $\theta \in \mathbb{R}^d$ be the learned parameter. The SGC classifier of depth L is

$$\hat{Y} = \operatorname{softmax}(S^L Z \theta)$$

We focus on learning the algorithm hyperparameter $\beta \in [0, 1]$ and define the SGC algorithm family as \mathcal{F}_{β} . We denote the class of margin losses induced by \mathcal{F}_{β} as $\mathcal{H}_{\beta}^{\gamma}$. To study the generalization ability to tune β , we bound the Rademacher complexity of $\mathcal{H}_{\beta}^{\gamma}$. The proof is detailed in Appendix C.1.

Theorem 4.2. Assuming D, W, and Z are bounded (the assumptions in Bartlett et al. (2017); Garg et al. (2020)), i.e. $d_i \in [C_{dl}, C_{dh}] \subset \mathbb{R}^+$, $w_{ij} \in [0, C_w]$, and $||Z|| \leq C_z$, we have that the Rademacher complexity of $\mathcal{H}^{\gamma}_{\beta}$ is bounded:

412 413 414

388

389

390

391

392 393

394 395

403 404 405

$$\hat{R}_m(\mathcal{H}_\beta^{\gamma}) = O\left(\frac{\sqrt{dL\log\frac{C_{dh}}{C_{dl}} + d\log\frac{mC_zC_{\theta}}{\gamma}}}{\sqrt{m}}\right).$$

415 416 417

418

419

420 421 This theorem indicates that the number of problem instances needed to learn a near-optimal hyperparameter only scale polynomially with the input feature dimension d and the number of layers L of the neural networks, and only scales logarithmically with the norm bounds C's and the margin γ .

421 4.2 GCAN INTERPOLATION AND ITS RADEMACHER COMPLEXITY 422

In practice, GCN and GAT outperform each other in different problem instances (Dwivedi et al., 2023). To effectively choose the better algorithm, we introduce a family of algorithms that *interpolates* GCN and GAT, parameterized by $\eta \in [0, 1]$. This family includes both GCN and GAT, so by choosing the best algorithm within this family, we can automatically select the better algorithm of the two, specifically for each input data. Moreover, GCAN could potentially outperform both GAT and GCN by taking η as values other than 0 and 1. We believe such an interpolation technique could potentially be used to select between other algorithms that share similar architecture.

Recall that in both GAT and GCN, the update equation has the form of activation and a summation
over the feature of all neighboring vertices in the graph (a brief description of GAT and GCN is given in Appendix B). Thus, we can interpolate between the two update rules by introducing a

432 hyperparameter $\eta \in [0,1]$, where $\eta = 0$ corresponds to GCN and $\eta = 1$ corresponds to GAT. 433 Formally, given input $X = (n, \{z_i\}_{i=1}^n, L, G)$, we initialize $h_i^0 = z_i$ and update at a level ℓ by 434

- 435
- $h_i^{\ell} = \sigma \left(\sum_{i \in \mathcal{N}_i} \left(\eta \cdot e_{ij}^{\ell} + (1 \eta) \cdot \frac{1}{\sqrt{d_i d_j}} \right) U^{\ell} h_j^{\ell} \right)$
- 437 438 439

436

where
$$e_{ij}^{\ell} = \frac{\exp(\hat{e}_{ij}^{\ell})}{\sum_{j' \in \mathcal{N}_i} \exp(\hat{e}_{ij'}^{\ell})}, \quad \hat{e}_{ij}^{\ell} = \sigma(V^{\ell}[U^{\ell}h_i^{\ell}, U^{\ell}h_j^{\ell}]).$$

440 Here e_{ij}^{ℓ} is the attention score of node j for node i. V^{ℓ} and U^{ℓ} are learnable parameters. $\sigma(\cdot)$ is 441 a 1-Lipschitz activation function (e.g. ReLU, sigmoid, etc.). $[U^{\ell}h_i^{\ell}, U^{\ell}h_i^{\ell}]$ is the concatenation of 442 $U^{\ell}h_{i}^{\ell}$ and $U^{\ell}h_{i}^{\ell}$. We denote this algorithm family by \mathcal{F}_{η} and the induced margin loss class by \mathcal{H}_{η}^{r} . 443

444 While our primary focus is not the comparative performance of GCAN against GAT or GCN, our 445 curiosity led us to conduct additional experiments, presented in Appendix D. The results consistently 446 show that GCAN matches or exceeds the performance of both GAT and GCN.

Theorem 4.3. Assume the parameter U^{ℓ} is shared over all layers, i.e. $U^{\ell} = U$ for all $\ell \in [L]$ 447 (the assumption used in Garg et al. (2020)), and the parameters are bounded: $||U||_F \leq C_U$, 448 $\|V^{\ell}\|_{2} \leq C_{V}, \|z_{i}\| \leq C_{z}$, and $d_{i} \in [C_{dl}, C_{dh}]$. Denoting the branching factor by $r = C_{V}$ 449 $\max_{i \in [n]} |\sum_{j \in [n]} \mathbb{I}[w_{ij} \neq 0]|$, we have that the Rademacher complexity of $\mathcal{H}_{\eta}^{\gamma}$ is bounded: 450

454

 $\hat{R}_m(\mathcal{H}^{\gamma}_{\eta}) = O\left(\frac{d\sqrt{L\log\frac{rC_U}{C_{dl}+C_U}} + \log\frac{mdC_z}{\gamma}}{\sqrt{m}}\right).$

455 The proof of Theorem 4.3 is similar to that of Theorem 4.2. See Appendix C.2 for details.

456 **Remark 2.** The main difference between the Rademacher Complexity of Simplified Graph Convo-457 lution Network (Theorem 4.2) and GCAN (Theorem 4.3) is the dependency on feature dimension d: 458 \sqrt{d} for SGC and d for GCAN. This difference arises from the dimensionality of the parameters. The 459 parameter θ in SGC has dimension d, but the parameter U and V in GCAN have dimension $d \times d$ 460 and $1 \times 2d$, respectively. As GCAN is a richer model, it requires more samples to learn, but this is not a drawback; its complexity allows it to outperform SGC in many scenarios. 461

462 **Remark 3.** There are no direct dependencies on n in Theorem 4.2 and Theorem 4.3, but the depen-463 dency is implicitly captured by the more fine-grained value C_{dl}, C_{dh} , and C_Z . Here, C_{dl} and C_{dh} are the lower and upper bounds of the degree (number of neighbors) of the nodes, which generally 464 increase with n. C_Z is the Frobenius norm of the feature matrix $Z \in \mathbb{R}^{n \times d}$. Since the size of Z 465 scales with n, the value of C_Z is generally larger for larger n. 466

467 468

471 472

473 474 5 EXPERIMENTS

469 470

In this section, we empirically verify the effectiveness of our hyperparameter selection method.

5.1 LABEL PROPAGATION-BASED METHOD: NORMALIZED ADJACENCY MATRIX-BASED ALGORITHMIC FAMILY

We empirically validate our findings in Section 3. For each of the eight datasets, the number of 475 nodes per problem instance, n, is fixed at 30. We set the target generalization error to $\epsilon = 0.01$, 476 and calculate the required number of problem instances as $m = O(\log n/\epsilon) \approx 300$. To evaluate 477 performance, we randomly sample 300 graphs with 30 nodes each, tune the hyperparameter values 478 to maximize accuracy on these graphs, and then test the selected hyperparameter on a separate set of 479 300 randomly sampled graphs. The results of evaluating the Normalized Adjacency Matrix-Based 480 Algorithmic Family is presented in Table 1, confirming that the observed generalization error is 481 within the scale of the target value 0.01.

482 483

484

5.2 GNN-BASED METHOD: GCAN EXPERIMENT

The bounds provided in Theorem 4.2 and Theorem 4.3 involve multiple constants, making them 485 challenging to compute directly. Therefore, we focus on demonstrating the effectiveness of our WikiCS

0.7522

0.7485

CIFAR10

0.9445

0.9397

Train Acc.

Test Acc.

486 487

4	8	8
4	8	9

Abs. Diff. 0.0048 0.0037 0.0083 0.0131 0.0054 490 Table 1: The Training Accuracy and Testing Accuracy of learning the hyperparameter δ in Nor-491 malized Adjacency Matrix Based Family (\mathcal{F}_{δ}). The absolute difference between the accuracies (i.e. 492 generalization error) is within the scale of our target value 0.01. 493

Citeseer

0.7845

0.7714

PubMed

0.9993

0.9993

0.

AmazonPhotos

0.9983

0.9989

0.0006

Actor

0.9185

0.9239

CORA

0.7927

0.8010

494 495

496

497

498

499

500

501

502

503

504 505

506

507

509

510

511

512

513

514

515

516

517

518

519 520

521

522 523 524

525

527

529

531

approach for selecting algorithm hyperparameters in our setup. To illustrate this, we compare the performance of GCAN with tuned hyperparameters against GAT and GCN.

For each dataset, we sample 20 random sub-graphs of 100 nodes to learn the optimal hyperparameter η via backpropagation. A large disconnected graph is formed by combining these sub-graphs, allowing parameter values to vary across graphs while sharing a unified learnable η . The optimized hyperparameter is then tested on another 20 sub-graphs from the dataset

The results are shown in Figure 2. It is evident that GCAN consistently achieves higher or comparable accuracy compared to both GAT and GCN across all datasets. Notably, GCAN demonstrates significant improvements in CIFAR10 and CORA, highlighting its effectiveness in these scenarios.

Figure 2: Validation Accuracy (computed on the unlabeled nodes across 20 testing graphs) vs. iterations. GCAN shows no worse accuracy when compared with both GAT and GCN.

6 CONCLUSION

526 We study algorithm selection in graph-based semi-supervised learning, by tuning real-valued hyperparameters that define algorithmic families. Our approach can improve the accuracy of prediction in 528 semi-supervised learning by selecting the most effective data-specific algorithmic hyperparameter automatically. We do this by leveraging access to multiple instances of data from a given domain 530 and providing formal guarantees on the number of data samples needed to learn the best algorithm for several classical parameterized families as well as a novel family that interpolates convolution (GCN) and attention (GAT) in graph neural networks. 532

533 Our work also opens up several interesting directions for future research. For the graph neural 534 network hyperparameter tuning, we only upper bound the Rademacher Complexity, and it would be interesting to obtain lower bounds and determine the tightness of our bounds. We also expect our 536 techniques to be applicable to other GNN architectures and graph-based semi-supervised learning 537 families in the literature. Moreover, we only consider single real-valued hyperparameter in our work, and it would be interesting to investigate the generalizability of learning multiple hyperparameters 538 with our approach. Lastly, we limit ourselves on the sample complexity, it is an interesting question to develop effective and computationally efficient implementations for learning the hyperparameters.

540 REFERENCES

54 54

562

570

571

572

573

2	Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
3	University Press, USA, 1st edition, 2009.

- Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in Neural Information Processing Systems, 34, 2021.
- 547 Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
 548 lloyd's families, 2019. URL https://arxiv.org/abs/1809.06987.
- Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning the elasticnet across instances, 2024. URL https://arxiv.org/abs/2207.10199.
- Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
 neural networks. *Advances in Neural Information Processing Systems*, 30, 2017.
- James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/v13/bergstra12a.html.
- Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In *Computational learning theory*, pp. 92–100, 1998.
- Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. *IEEE Transactions on Neural Networks*, 20(3):542–542, 2009.
- Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function induction
 in semi-supervised learning. In *International Workshop on Artificial Intelligence and Statistics*,
 pp. 96–103. PMLR, 2005.
- Claire Donnat and So Won Jeong. Studying the effect of GNN spatial convolutions on the embedding
 space's geometry. In Robin J. Evans and Ilya Shpitser (eds.), *Uncertainty in Artificial Intelligence* (*UAI*), volume 216 of *Proceedings of Machine Learning Research*, pp. 539–548. PMLR, 31 Jul–
 04 Aug 2023.
 - Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24(43):1–48, 2023.
- Pascal Mattia Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can (sometimes) explain generalisation in graph neural networks, 2021. URL https: //arxiv.org/abs/2112.03968.
- Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure learning for graph neural networks. *Advances in Neural Information Processing Systems*, 34: 22667–22681, 2021.
- Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph neural networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 3419–3430. PMLR, 13–18 Jul 2020.
- Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label
 propagation and simple models out-performs graph neural networks, 2020. URL https://
 arxiv.org/abs/2010.13993.
- Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semisupervised learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5070–5079, 2019.
- Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
 expensive black-box functions. *Journal of Global Optimization*, 13(4):455–492, 1998. doi:
 10.1023/A:1008306431147.

works. International Conference on Learning Representations (ICLR), 2017. J. Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for seeking *the extremum*, volume 2, pp. 117–129. North Holand, 09 1978. ISBN 0-444-85171-2. Jonas Mockus. On bayesian methods for seeking the extremum. In Proceedings of the IFIP Techni-cal Conference, pp. 400-404, Berlin, Heidelberg, 1974. Springer-Verlag. ISBN 3540071652. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2012. Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through gradient boosting and application to multi-scale graph neural networks, 2021. URL https: //arxiv.org/abs/2006.08550. Dravyansh Sharma and Maxwell Jones. Efficiently learning the graph for semi-supervised learning. Uncertainty in Artificial Intelligence (UAI), 2023. Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks, 2023. URL https://arxiv.org/abs/2305.08048. Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. International Conference on Learning Representations (ICLR), 2018. Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019. Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications, 2020. URL https://arxiv.org/abs/2003.05689. Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. Advances in Neural Information Processing Systems, 16, 2003. Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In International conference on Machine learning (ICML), pp. 912-919, 2003.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-

Appendix

A PROOFS IN SECTION 3

We provide additional proof details from Section 3 below.

654 A.1 PROOF OF LEMMA 3.4

Proof. Using the adjugate matrix, we have

$$C(x) = \frac{1}{\det(A + xB)} \operatorname{adj}(A + xB).$$

The determinant of A + xB can be written as

$$\det(A + xB) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n [A + xB]_{i\sigma_i} \right)$$

where S_n represents the symmetric group and $sgn(\sigma) \in \{\pm 1\}$ is the signature of permutation σ . Thus det(A + xB) is a polynomial of x with a degree at most n. The adjugate of A + xB is

$$\operatorname{adj}(A + xB) = C^{\top}$$

667 where C is the cofactor matrix of A + xB. By definition, each entry of C is $C_{ij} = (-1)^{i+j}k_{ij}$ 668 where k_{ij} is the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting *i*-th row and 669 *j*-th column of A + xB. This implies that each entry of C (and thus adj(A + xB)) is a polynomial 670 of degree at most n - 1. Letting Q(x) = det(A + xB) and $P_{ij}(x) = [adj(A + xB)]_{ij}$ concludes 671 our proof.

A.2 PROOF OF LEMMA 3.5

Proof. The *ij*-th element of $I - c \cdot S$ is

$$[I - c \cdot S]_{ij} = \begin{cases} -c \cdot d_i^{-\delta} W_{ij} d_j^{\delta-1} = -(d_i^{-1} d_j)^{\delta} (c \cdot W_{ij} d_j^{-1}) & \text{, if } i \neq j \\ 1 = (d_i^{-1} d_i)^{\delta} & \text{, otherwise.} \end{cases}$$

Using adjugate matrix, we have

$$(I - c \cdot S)^{-1} = \frac{1}{\det(I - c \cdot S)} \operatorname{adj}(I - c \cdot S).$$

682 Note that the determinant of any $k \times k$ matrix A can be written as

$$\det(A) = \sum_{\sigma \in S_k} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^k [A]_{i\sigma_i} \right),$$

where S_k represents the symmetric group and $sgn(\sigma) \in \{\pm 1\}$ is the signature of permutation σ .

Now consider $\operatorname{adj}(I - c \cdot S)$. Let M_{ij} be the $(n-1) \times (n-1)$ matrix resulting from deleting *i*-th row and *j*-th column from $[I - c \cdot S]$. Then,

$$[\operatorname{adj}(I-c\cdot S)]_{ij} = (-1)^{i+j} \det(M_{ji}) = \sum_{\sigma \in S_{n-1}} \left(\operatorname{sgn}(\sigma) \prod_{k=1}^{n-1} [M_{ji}]_{k\sigma_k} \right) = \sum_{\sigma \in S_{n-1}} \left(a_\sigma \exp(\delta \ln b_\sigma) \right),$$

for some constants a_{σ}, b_{σ} that satisfies

$$b_{\sigma} = (\prod_{k \in [n] \setminus \{j\}} d_k^{-1})(\prod_{k \in [n] \setminus \{i\}} d_k) = d_i^{-1} d_j$$

We can then rewrite $[adj(I - c \cdot S)]_{ij}$ as

$$[\operatorname{adj}(I - c \cdot S)]_{ij} = \sum_{\sigma \in S_{n-1}} (a_{\sigma} \exp(\delta \ln(d_i^{-1}d_j))) = a_{ij} \exp(\delta \ln(d_i^{-1}d_j)),$$

where $a_{ij} = \sum_{\sigma \in S_{n-1}} a_{\sigma}$.

A.3 PROOF OF LEMMA 3.6

Proof. We prove by induction on n. If n = 1, then $f(x) = ae^{bx}$ and $a \neq 0$, so f(x) has 0 = n - 1root. Now assume that the statement holds for some n = m and consider when n = m + 1. That is, we have

$$f(x) = \sum_{i=1}^{m+1} a_i e^{b_i x}.$$

Assume for the sake of contradiction that f has n = m + 1 roots. Define

$$g(x) = \frac{f(x)}{e^{b_{m+1}x}} = \sum_{i=1}^{m} a_i e^{(b_i - b_{m+1})x} + a_{m+1},$$

then g also has m + 1 roots. Since g is continuous,

$$g'(x) = \sum_{i=1}^{m} (b_i - b_{m+1}) a_i e^{(b_i - b_{m+1})x}$$

must have m roots. However, using our induction hypothesis, it should have at most m-1 roots. This means our assumption is incorrect, i.e. f must have at most m = n - 1 roots.

We conclude that f must have at most n-1 roots.

A.4 PROOF OF THEOREM 3.1

Upper Bound. Proof is given in Section 3.

Lower Bound. We first construct the small connected component of 4 nodes:

Lemma A.1. Given $x \in [1/\sqrt{2}, 1)$, there exists a labeling instance (G, L) with 4 nodes, such that the predicted label of the unlabeled points changes only at $\alpha = x$ as α varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a_1, a_2), and one point labeled b (namely b_1) connected with both a_1 and a_2 with edge weight 1. We also have an unlabeled point u connected to b_1 with edge weight $x \ge 0$. That is, the affinity matrix and initial labels are

$$W = \begin{bmatrix} 0 & 1 & 1 & x \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Recall that the score matrix is

$$F^* = (1 - \alpha)(I - \alpha S)^{-1}Y.$$
We now calculate:

$$D^{-1/2} = \begin{bmatrix} (x + 2)^{-1/2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & x^{-1/2} \end{bmatrix},$$

$$S = D^{-1/2}WD^{-1/2} = \begin{bmatrix} 0 & (x + 2)^{-1/2} & (x + 2)^{-1/2} & x^{1/2}(x + 2)^{-1/2} \\ (x + 2)^{-1/2} & 0 & 0 & 0 \\ (x + 2)^{-1/2} & 0 & 0 & 0 \\ x^{1/2}(x + 2)^{-1/2} & 0 & 0 & 0 \\ x^{1/2}(x + 2)^{-1/2} & 0 & 0 & 0 \\ \end{bmatrix},$$

$$(I - \alpha S)^{-1} = \frac{1}{\det(I - \alpha S)} \operatorname{adj}(I - \alpha S)$$

$$= \frac{1}{1 - \alpha^2} \begin{bmatrix} \frac{\alpha}{(x+2)^{1/2}} & 1 - \frac{\alpha^2(x+1)x}{(x+2)^{1/2}} & \frac{\alpha^2}{x+2} & \frac{\alpha^2x^{1/2}}{(x+2)} \\ \frac{\alpha}{(x+2)^{1/2}} & \frac{\alpha^2}{x+2} & 1 - \frac{\alpha^2(x+1)x}{(x+2)} & \frac{\alpha^2x^{1/2}}{(x+2)} \\ \frac{\alpha}{(x+2)^{1/2}} & \frac{\alpha^2x^{1/2}}{(x+2)^{1/2}} & \frac{\alpha^2x^{1/2}}{(x+2)} & 1 - \frac{2\alpha^2}{x+2} \end{bmatrix}.$$

Recall that the prediction on the unlabeled point is $\hat{y}_4 = \operatorname{argmax} F_4^*$, so we calculate

$$\begin{aligned} \hat{y}_4 &= \operatorname{sign}(F_{4,2}^* - F_{4,1}^*) = \operatorname{sign}\left(\frac{\alpha x^{1/2}(2\alpha - (x+2)^{1/2})}{(1+\alpha)(x+2)}\right) \\ &= \operatorname{sign}\left(x^{1/2}(2\alpha - (x+2)^{1/2})\right). \quad (\text{since } \alpha \in (0,1) \text{ and } x \ge 0) \end{aligned}$$

Solving the equation $x^{1/2}(2\alpha - (x+2)^{1/2}) = 0$, we know that the prediction changes and only change when $\alpha = \frac{(x+2)^{1/2}}{2}$. Let $x = 4x^2 - 2 \ge 0$, then $\hat{y}_4 = 0$ when $\alpha < x$ and $\hat{y}_4 = 1$ when $\alpha > x$, which completes our proof.

766 **Lemma A.2.** Given integer n > 1 and a sequence of α 's such that $0 < \alpha_0 < 1/\sqrt{2} \le \alpha_1 < 1$ 767 $\alpha_2 < ... < \alpha_n < 1$, there exists a real-valued witness w > 0 and a problem instance of partially 768 labeled 4n points, such that for $0 \le i \le n/2 - 1$, l < w for $\alpha \in (\alpha_{2i}, \alpha_{2i+1})$, and l > w for 769 $\alpha \in (\alpha_{2i+1}, \alpha_{2i+2}).$ 770

771 *Proof.* We create n connected components using the previous lemma, with $x_i = \alpha_i$. Let the un-772 labeled point in the *i*th component be u_i , then as α increases from α_{i-1} to α_i , the predicted label 773 of u_i changes from a to b. If the sequence u_i is alternately labeled with u_1 labeled a, then the loss 774 increases and decreases alternately as all the labels turn to b when α increases to α_n . Specifically, as 775 α increases to α_1 , the point u_1 has predicted label changes from a to b. Since its true label is a and the predicted labels of other u_i 's remain unchanged, our loss slightly increases to l_{max} . Then, as α 776 increases to α_2 , the point u_2 gets correctly labeled as b and all other nodes unchanged, which slightly 777 decreases our loss back to l_{min} . The loss thus fluctuates between l_{min} and l_{max} . We therefore set 778 the witness w as something in between. 779

$$w = \frac{l_{min} + l_{max}}{2}.$$

784 We now finish the lower bound proof for Theorem 3.1.

Proof. Arbitrarily choose n' = n/4 (assumed to be a power of 2 for convenient representation) 787 real numbers $1/\sqrt{2} \le \alpha_{[000..1]} < \alpha_{[000..10]} < ... < \alpha_{[111...11]} < 1$. The indices are increasing 788 binary numbers of length $m = \log n'$. We create m labeling instances that can be shattered by these 789 α values. For the *i*-th instance $(X^{(i)}, Y^{(i)})$, we apply the previous lemma with a subset of the α_b 790 sequence that corresponds to the *i*-th bit flip in b, where $b \in \{0,1\}^m$. For example, $(X^{(1)}, Y^{(1)})$ is 791 constructed using $r_{[100,.0]}$, and $(X^{(2)}, Y^{(2)})$ is constructed using $r_{[010,.0]}, r_{[100,.0]}$ and $r_{[110,.0]}$. The 792 lemma gives us both the instances and the sequence of witnesses w_i . 793

794 This construction ensures sign $(l_{\alpha_h} - w_i) = b_i$ for all $b \in \{0, 1\}^m$. Thus the pseudo-dimension is at 795 least $\log n' = \log n - \log 4 = \Omega(\log n)$

796 797 798

799 800

801

A.5 PROOF OF THEOREM 3.2

Upper Bound. The closed-form solution F^* is given by

$$F^* = (S + \lambda I_n \Delta_{i \in L})^{-1} \lambda Y.$$

802 By Lemma 3.4, each coefficient $[F^*]_{ij}$ is a rational polynomial in λ of the form $P_{ij}(\lambda)/Q(\lambda)$ where 803 P_{ij} and Q are polynomials of degree n and n respectively. Note that the prediction for each node $i \in [n]$ is $\hat{y}_i = \arg \max_{j \in c} f_{ij}$ and thus the prediction on any node in the graph can only change 804 when $sign(f_{ij} - f_{ik})$ changes for some $j, k \in [c]$. Note that $f_{ij} - f_{ik}$ is also a rational polynomial 805 $(P_{ij}(\lambda) - P_{ik}(\lambda))/Q(\lambda)$ where both the numerator and denominator are polynomials in λ of degree 806 n, meaning the sign can change at most O(n) times. As we vary λ , we have that the prediction on 807 a single node can change at most $\binom{c}{2}O(n) \in O(nc^2)$. Across the *m* problem instances and the *n* 808 total nodes, we have at most $O(n^2c^2m)$ distinct values of our loss function. The pseudo-dimension 809 m thus satisfies $2^m \leq O(n^2 c^2 m)$, or $m = O(\log n)$

```
756
758
```

760

761 762

763

764

765

781 782

783

Lower Bound. We construct the small connected component of 4 nodes as follows:

Lemma A.3. Given $\lambda' \in (1, \infty)$, there exists a labeling instance (X, Y) with 4 nodes, such that the predicted label of the unlabeled points changes only at $\lambda = \lambda'$ as λ varies in $(0, \infty)$.

Proof. We use binary labeling a and b. We have two points labeled a (namely a_1, a_2), and one point labeled b (namely b_1). We also have an unlabeled point u connected to b_1 with edge weight $x \ge 0$ and connected with both a_1 and a_2 with edge weight 1. That is, the weight matrix and initial labels are

W =	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	$\begin{array}{c} 1 \\ 1 \\ 0 \\ x \end{array}$	$\begin{array}{c} 0\\ 0\\ x\\ 0\end{array}$,Y =	$\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$	
	Ľυ	0	x	0]			

The closed form solution is

$$F^* = (S + \lambda I_n \Delta_{i \in L})^{-1} \lambda Y$$

where $S = \text{diag}(W\vec{1}_n) - W$. We now calculate:

$$S = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & x + 2 & -x \\ 0 & 0 & -x & x \end{bmatrix}$$

$$S = \begin{bmatrix} 1 + \lambda & 0 & -1 & 0 \\ 0 & 1 + \lambda & -1 & 0 \\ 0 & 1 + \lambda & -1 & 0 \\ -1 & -1 & x + 2 & -x \\ 0 & 0 & -x & x + \lambda \end{bmatrix}$$

$$S = \begin{bmatrix} 1 + \lambda & 0 & -1 & 0 \\ 0 & 1 + \lambda & -1 & 0 \\ -1 & -1 & x + 2 & -x \\ 0 & 0 & -x & x + \lambda \end{bmatrix}$$

Recall that the prediction on the unlabeled point is $\hat{y}_3 = \text{sign}([F*]_{32} - [F^*]_{31})$, so we calculate

$$\hat{y}_3 = \operatorname{sign}(F*]_{32} - [F^*]_{31}) = \operatorname{sign}\left(-2\lambda\left(\frac{\lambda+x}{\lambda^2x+2\lambda^2+3\lambda x}\right) + \lambda\left(\frac{\lambda x+x}{\lambda^2x+2\lambda^2+3\lambda x}\right)\right)$$

$$= \operatorname{sign}\left(-2\lambda(\lambda+x) + \lambda(\lambda x+x)\right) \qquad (\operatorname{since} \lambda > 0 \text{ and } x \ge 0)$$

$$= \operatorname{sign}\left(-2(\lambda+x) + (\lambda x+x)\right) \qquad (\operatorname{since} \lambda > 0)$$

$$= \operatorname{sign}\left(-2\lambda - x + \lambda x\right)$$

Solving the equation $-2\lambda - x + \lambda x = 0$, we know that the prediction changes and only change when $\lambda = \frac{x}{x-2}$. Let $x = \frac{2\lambda}{\lambda-1} \ge 0$, then $\hat{y}_3 = -1$ when $\lambda < \lambda'$ and $\hat{y}_3 = 1$ when $\lambda \ge \lambda'$, which completes our proof.

The remaining proof is exactly the same as Lemma A.2 and Theorem 3.1, by simply replacing notation α with λ .

A.6 PROOF OF THEOREM 3.3

Upper Bound. Using Lemma 3.5, we know that each entry of F^* is

$$F_{ij}^*(\delta) = \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n [\operatorname{adj}(I - c \cdot S)]_{ik} Y_{kj} = \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \sum_{k=1}^n (a_{ik} Y_{kj}) \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c \cdot S)} \exp(\delta \ln(d_i^{-1} d_k)) + \frac{1}{\det(I - c$$

Recall that the prediction on a node is made by $\hat{y}_i = \operatorname{argmax}(F_i^*)$, so the prediction changes only when

$$F_{ic_{1}}^{*} - F_{ic_{2}}^{*} = \frac{1}{\det(I - c \cdot S)} \left(\sum_{k=1}^{n} (a_{ik}Y_{kc_{1}}) \exp(\delta \ln(d_{i}^{-1}d_{k})) - \sum_{k=1}^{n} (a_{ik}Y_{kc_{2}}) \exp(\delta \ln(d_{i}^{-1}d_{k})) \right)$$
$$= \frac{1}{\det(I - c \cdot S)} \left(\sum_{k=1}^{n} (a_{ik}(Y_{kc_{1}} - Y_{kc_{2}})) \exp(\delta \ln(d_{i}^{-1}d_{k})) \right)$$

$$= 0$$

By Lemma 3.6, $F_{ic_1}^* - F_{ic_2}^*$ has at most n-1 roots, so the prediction on node *i* can change at most n-1 times. As δ vary, the prediction can change at most $\binom{n}{2}O(n) \in O(nc^2)$ times. For n nodes and m problem instances, this implies that we have at most $O(mn^2c^2)$ distinct values of loss. The pseudo-dimension m then satisfies $2^m \leq O(mn^2c^2)$, or $m = O(\log nc)$.

Lower Bound We construct the small connected component as follows:

Lemma A.4. Consider when $c \ge 1/2$. Given $x \in \lfloor \log(2c) / \log(2), 1 \rfloor$, there exists a labeling instance (G, L) with 4 nodes, such that the predicted label of the unlabeled points changes only at $\delta = x \text{ as } \delta \text{ varies in } (0, 1).$

Proof. We use binary labeling a and b. We have two points labeled a (namely a_1, a_2), and one point labeled b (namely b_1) connected with both a_1 and a_2 with edge weight 1. We also have an unlabeled point u connected to b_1 with edge weight $x \ge 0$. That is, the affinity matrix and initial labels are

Recall that the score matrix is

$$F^* = (I - c \cdot S)^{-1}Y,$$

where $S = D^{-\delta}WD^{\delta-1}$ and D is diagonal with $D_{ii} = \sum_i W_{ij}$. We now calculate:

$$S = D^{-\delta}WD^{\delta-1} = \begin{bmatrix} 0 & (x+2)^{-\delta} & (x+2)^{-\delta} & x^{\delta}(x+2)^{-\delta} \\ (x+2)^{-\delta} & 0 & 0 & 0 \\ (x+2)^{-\delta} & 0 & 0 & 0 \\ x^{\delta}(x+2)^{-\delta} & 0 & 0 & 0 \end{bmatrix},$$

$$\det(I - c \cdot S) = \det \begin{bmatrix} 1 & -c(x+2)^{-\delta} & -c(x+2)^{-\delta} & -cx^{\delta}(x+2)^{-\delta} \\ -c(x+2)^{-\delta} & 1 & 0 & 0 \\ -c(x+2)^{-\delta} & 0 & 1 & 0 \\ -cx^{\delta}(x+2)^{-\delta} & 0 & 0 & 1 \\ -cx^{\delta}(x+2)^{-\delta} & 0 & 0 & 1 \\ = 1 - c^2 \neq 0,$$

so
$$(I - c \cdot S)$$
 is invertible on our instance.

Recall that the prediction on the unlabeled point is $\hat{y}_4 = \operatorname{argmax} F_4^*$, so we calculate

$$\hat{y}_4 = \operatorname{sign}(F_{4,2}^* - F_{4,1}^*) = \operatorname{sign}\left(\frac{c \cdot x^{1-\delta}(2c - (x+2)^{\delta})}{(1-c^2)(x+2)}\right) = \operatorname{sign}\left(2c - (x+2)^{\delta}\right).$$
(since $c \in (0,1)$, and $x \ge 0$)

Solving the equation $2c - (x+2)^{\delta} = 0$, we know that the prediction changes and only change when $\delta = \frac{\ln(2c)}{\ln(x+2)}$. Since $x \le \ln(2c)/\ln(2) \le 1$, we can let $x = (2c)^{1/x} - 2 \ge 0$, then $\hat{y}_4 = 0$ when $\alpha < x$ and $\hat{y}_4 = 1$ when $\alpha > x$, which completes our proof.

INTRODUCTION TO GAT AND GCN В

Here, we provide a brief introduction to GAT and GCN.

Graph Convolutional Neural Networks (GCNs) The fundamental idea behind GCNs is to re-peatedly apply the convolution operator on graphs (Kipf & Welling, 2017). Define $h_i^0 = z_i$ as the input feature of the *i*-th node and let h_i^{ℓ} be the feature of the ℓ -th layer of the *i*-th node. We have the following update rule for the features of h_i^{ℓ}

$$h_i^{\ell} = \sigma \left(\sum_{j \in \mathcal{N}_i} \frac{1}{\sqrt{d_i d_j}} U^{\ell-1} h_j^{\ell-1} \right)$$

where d_i represents the degree of vertex i, U^{ℓ} represents the learnable weights in our model, \mathcal{N}_i represents the neighbors of vertex *i*, and $\sigma(\cdot)$ is the activation function.

Graph Attention Neural Networks (GATs) GAT is a more recent architecture that leverages the self-attention mechanisms to capture the importance of neighboring nodes to generate the features of the next layer (Veličković, Petar et al., 2018). One of the advantages of GAT is its ability to capture long-range dependencies within the graph while giving more weight to influential nodes. This makes GAT particularly effective for tasks involving irregular graph structures and tasks where global context is essential.

Different from GCN, GAT uses the update rule for each layer

$$h_i^\ell = \sigma(\sum_{j \in \mathcal{N}_i} e_{ij}^{\ell-1} U^{\ell-1} h_j^{\ell-1}),$$

where

$$e_{ij}^{\ell} = \frac{\exp(\hat{e}_{ij}^{\ell})}{\sum_{j' \in \mathcal{N}_i} \exp(\hat{e}_{ij'}^{\ell})}, \ \hat{e}_{ij}^{\ell} = \sigma(V^{\ell}[U^{\ell}h_i^{\ell}, U^{\ell}h_j^{\ell}]).$$
(1)

Here e_{ij}^{ℓ} is the attention score of node j for node i and V^{ℓ} and U^{ℓ} are learnable parameters.

C PROOFS IN SECTION 4

We provide additional proof details from Section 4 below.

 $\Delta_{L,i} = \|T_{L,i}(\beta,\theta) - T_L(\beta',\theta')\|$

C.1 PROOF OF THEOREM 4.2

Lemma C.1. The l_2 norm of different embedding vectors produced by $(\beta, \theta), (\beta', \theta')$ after they process the tree all the way from the leaf level to the root can be bounded as

$$\Delta_{L,i} \le \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3}\right) \|T_{L-1,i}(\beta,\theta)\| \|\beta - \beta'\| + \left(\frac{1}{C_{dl} + 1} + \frac{C_{dh}}{C_{dl}}\right) \Delta_{L-1,i}$$

 $-\left(\frac{\beta'}{d_i+\beta'}T_{L-1,i}(\beta',\theta')+\sum_{j=1}^n\frac{w_{ij}T_{L-1,j}(\beta',\theta')}{\sqrt{(d_i+\beta')(d_j+\beta')}}\right)\|$

 $+\sum_{i=1}^{n} \left(\|w_{ij}\| \| \left(\frac{T_{L-1,j}(\beta,\theta)}{\sqrt{(d_i+\beta)(d_i+\beta)}} - \frac{T_{L-1,j}(\beta',\theta')}{\sqrt{(d_i+\beta')(d_i+\beta')}} \right) \| \right)$

(by triangle inequality)

 $= \left\| \left(\frac{\beta}{d_i + \beta} T_{L-1,i}(\beta, \theta) + \sum_{i=1}^n \frac{w_{ij} T_{L-1,j}(\beta, \theta)}{\sqrt{(d_i + \beta)(d_j + \beta)}} \right) \right\|$

 $\leq \| \left(\frac{\beta}{d_i + \beta} T_{L-1,i}(\beta, \theta) - \frac{\beta'}{d_i + \beta'} T_{L-1,i}(\beta', \theta') \right) \|$

Proof.

The first part can be bounded as

$$\begin{aligned} & \left\| \frac{\beta}{d_i + \beta} T_{L-1,i}(\beta, \theta) - \frac{\beta'}{d_i + \beta'} T_{L-1,i}(\beta', \theta') \right\| \\ & \leq \left\| \frac{\beta}{d_i + \beta} T_{L-1,i}(\beta, \theta) - \frac{\beta'}{d_i + \beta'} T_{L-1,i}(\beta, \theta) \right\| \\ & + \left\| \frac{\beta'}{d_i + \beta'} T_{L-1,i}(\beta, \theta) - \frac{\beta'}{d_i + \beta'} T_{L-1,i}(\beta', \theta') \right\| \\ & \leq \left\| \frac{\beta}{d_i + \beta} - \frac{\beta'}{d_i + \beta'} \right\| \| T_{L-1,i}(\beta, \theta) \| + \left\| \frac{\beta'}{d_i + \beta'} \right\| \Delta_{L-1,i} \quad \text{(by Cauchy-Schwarz inequality)} \end{aligned}$$

972 Since
$$\beta \in [0,1]$$
 and $d_i \in [C_{dl}, C_{dh}]$, we have

$$\left\|\frac{\beta'}{d_i+\beta'}\right\| = \frac{\beta'}{d_i+\beta'} \le \frac{1}{C_{dl}+1},$$

and

$$\left\|\frac{\beta}{d_i+\beta}-\frac{\beta'}{d_i+\beta'}\right\| = \left\|\frac{d_i(\beta-\beta')}{(d_i+\beta)(d_i+\beta')}\right\| \le \|\beta-\beta'\|\frac{1}{C_{dl}}.$$

For the second term, let's consider each element in the summation. Using a similar method as above, we get

$$\begin{aligned} \left\| \frac{T_{L-1,j}(\beta,\theta)}{\sqrt{(d_i+\beta)(d_j+\beta)}} - \frac{T_{L-1,j}(\beta',\theta')}{\sqrt{(d_i+\beta')(d_j+\beta')}} \right\| \\ &\leq \left\| \frac{T_{L-1,j}(\beta,\theta)}{\sqrt{(d_i+\beta)(d_j+\beta)}} - \frac{T_{L-1,j}(\beta,\theta)}{\sqrt{(d_i+\beta')(d_j+\beta')}} \right\| \\ &+ \left\| \frac{T_{L-1,j}(\beta,\theta)}{\sqrt{(d_i+\beta')(d_j+\beta')}} - \frac{T_{L-1,j}(\beta',\theta')}{\sqrt{(d_i+\beta')(d_j+\beta')}} \right\| \qquad \text{(by triangle inequality)} \\ &\leq \left\| \frac{1}{\sqrt{(d_i+\beta)(d_j+\beta)}} - \frac{1}{\sqrt{(d_i+\beta')(d_j+\beta')}} \right\| \|T_{L-1,j}(\beta,\theta)\| \\ &+ \left\| \frac{1}{\sqrt{(d_i+\beta')(d_j+\beta')}} \right\| \Delta_{L-1,i} \qquad \text{(Cauchy-Schwarz inequality)} \end{aligned}$$

Using the bounds on β and d_i , we have

$$\left\|\frac{1}{\sqrt{(d_i+\beta')(d_j+\beta')}}\right\| \le \frac{1}{C_{dl}},$$

and

$$\begin{aligned} \left\| \frac{1}{\sqrt{(d_i + \beta)(d_j + \beta)}} - \frac{1}{\sqrt{(d_i + \beta')(d_j + \beta')}} \right\| \\ &= \left\| \frac{(d_i + \beta)(d_j + \beta) - (d_i + \beta')(d_j + \beta')}{\sqrt{(d_i + \beta)(d_j + \beta)(d_i + \beta')(d_j + \beta')} \sqrt{(d_i + \beta)(d_j + \beta)(d_j + \beta')}} \right\| \\ &\leq \left\| \frac{(d_i + d_j + \beta + \beta')(\beta - \beta')}{C_{dl} + \beta)(C_{dl} + \beta') [(C_{dl} + \beta) + (C_{dl} + \beta')]} \right\| \\ &\leq \frac{C_{dh} + 1}{C_{dl}^3} \|\beta - \beta'\| \end{aligned}$$

Combining these results together, we get

$$\begin{split} \Delta_{L,i} &\leq \frac{1}{C_{dl}} \|\beta - \beta'\| \|T_{L-1,i}(\beta,\theta)\| + \frac{1}{C_{dl}+1} \Delta_{L-1,i} \\ &+ \sum_{i=1}^{n} \left(\|w_{ij}\| \left(\frac{(C_{dh}+1)\|T_{L-1,i}(\beta,\theta)\|}{C_{dl}^{3}} \|\beta - \beta'\| + \frac{1}{C_{dl}} \Delta_{L-1,i} \right) \right) \\ &= \frac{1}{C_{dl}} \|\beta - \beta'\| \|T_{L-1,i}(\beta,\theta)\| + \frac{1}{C_{dl}+1} \Delta_{L-1,i} \\ &+ d_{i} \left(\frac{(C_{dh}+1)\|T_{L-1,i}(\beta,\theta)\|}{C_{dl}^{3}} \|\beta - \beta'\| + \frac{1}{C_{dl}} \Delta_{L-1,i} \right) \\ &\leq \left(\frac{1}{C_{dl}} + \frac{(C_{dh}+1)C_{dh}}{C_{dl}^{3}} \right) \|T_{L-1,i}(\beta,\theta)\| \|\beta - \beta'\| + \left(\frac{1}{C_{dl}+1} + \frac{C_{dh}}{C_{dl}} \right) \Delta_{L-1,i} \\ &\leq \left(\frac{C_{dl}^{2} + C_{dh}^{2} + C_{dh}}{C_{dl}^{3}} \right) \|T_{L-1,i}(\beta,\theta)\| \|\beta - \beta'\| + \left(\frac{1+C_{dh}}{C_{dl}} \right) \Delta_{L-1,i} \end{split}$$

Lemma C.2. The term $||T_{L-1,i}(\beta, \theta)||$ satisfies

$$|T_{L-1,i}(\beta,\theta)|| \le \left(\frac{\beta + C_{dh}C_z}{C_{dl} + \beta}\right)^L B_x B_\theta$$

n

 $\leq \frac{\beta}{d_i + \beta} \|T_{L-2,i}(\beta,\theta)\| + \sum_{i=1}^n \|w_{ij}\| \|\frac{T_{L-2,j}(\beta,\theta)}{\sqrt{(d_i + \beta)(d_j + \beta)}}\|$

 $\leq \frac{\beta}{d_i + \beta} \|T_{L-2,i}(\beta,\theta)\| + C_{dh} \max_j \|\frac{T_{L-2,j}(\beta,\theta)}{\sqrt{(d_i + \beta)(d_j + \beta)}}\|$

 $\leq \frac{\beta}{C_{dl} + \beta} \|T_{L-2,i}(\beta,\theta)\| + \frac{C_{dh}}{C_{dl} + \beta} \max_{j} \|T_{L-2,j}(\beta,\theta)\|$

Proof.

$$\|T_{L-1,i}(\beta,\theta)\| = \|\frac{\beta}{d_i+\beta}T_{L-2,i}(\beta,\theta) + \sum_{j=1}^n \frac{w_{ij}T_{L-2,j}(\beta,\theta)}{\sqrt{(d_i+\beta)(d_j+\beta)}}\|$$
$$\leq \|\frac{\beta}{d_i+\beta}T_{L-2,i}(\beta,\theta)\| + \sum_{j=1}^n \|\frac{w_{ij}T_{L-2,j}(\beta,\theta)}{\sqrt{(d_i+\beta)(d_j+\beta)}}\| \quad \text{(by triangle inequality)}$$

 $\leq \left(\frac{C_{dh}+\beta}{C_{dl}+\beta}\right)^{L-1} \|z_i\theta_i\|$

 $\leq \left(\frac{C_{dh}}{C_{dl}}\right)^{L-1} C_z C_\theta$

Lemma C.3. The change in margin loss for each node, due to change in parameters, after L layers is

$$\Lambda_{i} \leq \frac{2}{\gamma} \left(\left(\frac{C_{dl}^{2} + C_{dh}^{2} + C_{dh}}{C_{dl}^{3}} \right) \left(\frac{C_{dh}}{C_{dl}} \right)^{L-1} C_{z} C_{\theta} \|\beta - \beta'\| \cdot \frac{k_{1} - k_{1}^{L}}{1 - k_{1}} + k_{1}^{L} C_{z} \|\theta_{i} - \theta'_{i}\| \right),$$
where $k_{1} = (1 + C_{dh}/C_{dl}).$

Proof. From previous lemmas, we know how to recursively bound $\Delta_{L,i}$ using $\Delta_{L-1,i}$, but it remains for us to bound the base case $\Delta_{0,i}$. We have

$$\Delta_{0,i} = \|T_{0,i}(\beta,\theta) - T_{0,i}(\beta,\theta)\| = \|z_i\theta_i - z_i\theta'_i\| \le \|z_i\|\|\Theta_i - \theta'_i\| \le C_z\|\theta_i - \theta'_i\|,$$

where the inequality is by Cauchy-Schwarz. For the simplicity of notation, let T_L be the bound we derived for $||T_{L-1,i}(\beta,\theta)||$ from the previous lemma. We have

$$\begin{split} \Delta_{L,i} &\leq \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3}\right) \|T_{L-1,i}(\beta,\theta)\| \|\beta - \beta'\| + \left(\frac{1 + C_{dh}}{C_{dl}}\right) \Delta_{L-1,i} \\ &\leq \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3}\right) \bar{T}_L \|\beta - \beta'\| + \left(\frac{1 + C_{dh}}{C_{dl}}\right) \Delta_{L-1,i} \\ &= \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3}\right) \bar{T}_L \|\beta - \beta'\| \cdot \sum_{l=0}^{L-1} \left(\frac{1 + C_{dh}}{C_{dl}}\right)^l + \left(\frac{1 + C_{dh}}{C_{dl}}\right)^L \cdot \Delta_{0,i} \end{split}$$

(by recursively bounding the terms)

(by Cauchy-Schwarz)

(by recursively bounding $||T_{l,i}(\beta, \theta)||$)

$$= \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3}\right) \bar{T}_L \|\beta - \beta'\| \cdot \frac{k_1 - k_1^L}{1 - k_1} + k_1^L C_z \|\theta_i - \theta'_i\|$$

where

$$k_1 = \frac{1 + C_{dh}}{C_{dl}}.$$

The change in margin loss for each node after L layers is then

$$\begin{split} \Lambda_{i} &= |g_{\gamma}(-\tau(f_{\beta,\theta}(x_{i}), y_{i})) - g_{\gamma}(-\tau(f_{\beta',\theta'}(x_{i}), y_{i}))| \\ &\leq \frac{1}{\gamma} |\tau(f_{\beta,\theta}(x_{i}), y_{i})) - \tau(f_{\beta',\theta'}(x_{i}), y_{i}))| \\ &= \frac{1}{\gamma} |(2f_{\beta,\theta}(x_{i}) - 1)y_{i} - (2f_{\beta',\theta'}(x_{i}) - 1)y_{i})| \\ &\leq \frac{2}{\gamma} |y_{i}| |f_{\beta,\theta}(x_{i}) - f_{\beta',\theta'}(x_{i})| \\ &\leq \frac{2}{\gamma} |\sigma(T_{L,i}(\beta,\theta)) - \sigma(T_{L,i}(\beta',\theta'))| \\ &\leq \frac{2}{\gamma} |\sigma(T_{L,i}(\beta,\theta) - T_{L,i}(\beta',\theta'))| \\ &\leq \frac{2}{\gamma} |T_{L,i}(\beta,\theta) - T_{L,i}(\beta',\theta')| \\ &\leq \frac{2}{\gamma} \left(\left(\frac{C_{dl}^{2} + C_{dh}^{2} + C_{dh}}{C_{dl}^{3}} \right) \left(\frac{C_{dh}}{C_{dl}} \right)^{L-1} C_{z} C_{\theta} \left(\frac{k_{1} - k_{1}^{L}}{1 - k_{1}} \right) ||\beta - \beta'|| + k_{1}^{L} C_{z} ||\theta_{i} - \theta'_{i}|| \right) \\ & \Box \\ \mathbf{Lemma C.4. The change in margin loss } \Lambda_{i} for each node can be bounded by ϵ, using a covering of \\ \end{split}$$

Lemma C.4. The change in margin loss Λ_i for each node can be bounded by ϵ , using a covering of size *P*, where *P* depends on ϵ .

1104
1105 *Proof.* Let
$$k_2 = \frac{2}{\gamma} \left(\frac{C_{dl}^2 + C_{dh}^2 + C_{dh}}{C_{dl}^3} \right) \left(\frac{C_{dh}}{C_{dl}} \right)^{L-1} C_z C_\theta \left(\frac{k_1 - k_1^L}{1 - k_1} \right)$$
 and $k_3 = \frac{2}{\gamma} k_1^L C_z$ for simplicity of notation.

We begin by noting that we can find a covering $C\left(\beta, \frac{\epsilon}{4k_2}, |\cdot|\right)$ of size

$$\mathcal{N}\left(eta, rac{\epsilon}{4k_2}, |\cdot|
ight) \leq rac{8k_2}{\epsilon} + 1$$

Also, we can find a covering $C\left(\theta, \frac{\epsilon}{4k_3}, \|\cdot\|\right)$ of size

$$\mathcal{N}\left(\theta, \frac{\epsilon}{4k_3}, \|\cdot\|\right) \le \left(\frac{8k_3}{\epsilon} + 1\right)^d$$

1117 Thus, for any specified ϵ , we can ensure that Λ_i is at most ϵ with a covering number

$$P \le \mathcal{N}\left(\beta, \frac{\epsilon}{4k_2}, |\cdot|\right) \mathcal{N}\left(\Theta, \frac{\epsilon}{4k_3}, \|\cdot\|\right) \le \left(\frac{8\max\{k_2, k_3\}}{\epsilon} + 1\right)^{d+1}.$$

When $\epsilon < 8 \max\{k_2, k_3\}$, we have

$$\log P \le (d+1) \log \left(\frac{16 \max\{k_2, k_3\}}{\epsilon}\right)$$

¹¹²⁸ We can now finish our proof for Lemma 4.2.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

1132
1133
$$\hat{R}_{\mathcal{T}}(\mathcal{H}^{\gamma}_{(\beta,\theta)}) \leq \inf_{\alpha>0} \left(\frac{4\alpha}{\sqrt{m}} + \frac{12}{m} \int_{\alpha}^{\sqrt{m}} \sqrt{\log \mathcal{N}(\mathcal{H}^{\gamma}_{(\beta,\theta)}, \epsilon, \|\cdot\|)} d\epsilon \right).$$

Using the previous lemmas, we have $\int_{-\infty}^{\sqrt{m}} \sqrt{\log \mathcal{N}(\mathcal{H}^{\gamma}_{(\beta,\theta)},\epsilon,\|\cdot\|)} d\epsilon = \int_{-\infty}^{\sqrt{m}} \sqrt{\log P} d\epsilon$ $\leq \int_{\alpha}^{\sqrt{m}} \sqrt{(d+1)\log\left(\frac{16\max\{k_2,k_3\}}{\epsilon}\right)} d\epsilon$ $\leq \sqrt{m} \sqrt{(d+1)\log\left(\frac{16\max\{k_2,k_3\}}{\alpha}\right)}$ Plugging in $\alpha = \sqrt{\frac{1}{m}}$, we have $\hat{R}_{\mathcal{T}}(\mathcal{H}^{\gamma}_{(\beta,\theta)}) \leq \frac{4}{m} + \frac{12\sqrt{(d+1)\log(16\sqrt{m}\max\{k_2,k_3\})}}{\sqrt{m}}.$ C.2 PROOF OF THEOREM 4.3 **Lemma C.5.** For any $z, z' \in \mathbb{R}^{d \times r}$ and $b, b' \in \mathbb{R}^{r \times t}$ such that $||z||_F \leq C_z, ||z'||_F \leq C_z, ||b||_F \leq C_z$ $C_b, \|b'\|_F \leq C_b$, we have $||zb - z'b'||_{F} < C_{z}||b - b'||_{F} + C_{b}||z - z'||_{F}.$ The result also holds when z, b, z', b' are vectors or real numbers. The corresponding norms are $\|\cdot\|$ and $|\cdot|$. Also, by recursively using the inequality above, we may have that for any z_1, \ldots, z_n and z'_1, \ldots, z'_n such that $||z_i|| \leq C_i, ||z'_i|| \leq C_i,$ $||z_1 z_2 \dots z_n - z'_1 z'_2 \dots z'_n|| \le \sum_{i=1}^n \left(||z_i - z'_i|| \prod_{j \in [n], j \ne i} C_j \right).$ Here, for simplicity of notation, we used $\|\cdot\|$ to denote the type of norm that corresponds to the dimension of the z_i 's. Proof. $||ab - a'b'||_F = ||ab - a'b' + ab' - ab'||_F$ $< \|ab - ab'\|_{F} + \|ab' - a'b'\|_{F}$ (by triangle inequality) $< ||a||_F ||b - b'||_F + ||b'||_F ||a - a'||_F$ (by Cauchy-Schwarz inequality) $< C_z \|b - b'\|_F + C_b \|a - a'\|_F$

Lemma C.6. The l_2 norm of different embedding vectors at level L, h_i^L , produced by (α, U, V), (α', U', V') after they process the tree all the way from the leaf level to the root can be bounded as

$$\Delta_{i,L} \leq C_U(\max_{j \in \mathcal{N}_i} \|h_j^{L-1}\|) |\eta - \eta'| + rC_U(\max_{j \in \mathcal{N}_i} \|h_j^{L-1}\|) + (\max_{j \in \mathcal{N}_i} \|h_j^{L-1}\|) \|U - U'\|$$

1185
$$+ C_U(\max \|h_i^{L-1} - h_i'^{(L-1)}\|) + \frac{2rC_U}{2} \|h_i^{L-1} - h_i'^{(L-1)}\|$$

1186
$$j \in \mathcal{N}_i$$
 n_j n_j n_j n_j n_i C_{dl} n_i
1187 $2r n_L - 1 n_L n_L$ $2r C_U$ n_j

Proof. $\Delta_{iL} = \|h_i^L(\eta, U, V) - h_i^L(\eta', U', V')\|$ $= \|\sigma\left(\sum_{i \in \mathcal{N}} \left(\eta \cdot e_{ij}^{L-1} + (1-\eta) \cdot \frac{1}{\sqrt{d_i d_j}}\right) U h_j^{L-1}\right)\right)$ $-\sigma\left(\sum_{i=1}^{L} \left(\eta' \cdot e_{ij}^{\prime(L-1)} + (1-\eta') \cdot \frac{1}{\sqrt{d_i d_i}}\right) U' h_j^{\prime(L-1)}\right) \|$ $\leq \parallel \sum_{i=1}^{M} \left((\eta \cdot e_{ij}^{L-1} U h_j^{L-1}) - (\eta' \cdot e_{ij}'^{(L-1)} U' h_j'^{(L-1)}) \right)$ $+\sum_{i \in \mathcal{M}_{i}} \left((1-\eta) \cdot \frac{1}{\sqrt{d_{i}d_{j}}} Uh_{j}^{L-1} - (1-\eta') \cdot \frac{1}{\sqrt{d_{i}d_{j}}} U'h_{j}'^{(L-1)} \right) \|$ (since σ is 1-Lipschitz) $\leq \sum_{i \in \mathcal{N}_{:}} \| (\eta \cdot e_{ij}^{L-1} U h_{j}^{L-1}) - (\eta' \cdot e_{ij}'^{(L-1)} U' h_{j}'^{(L-1)}) \|$ + $\sum_{i \in \mathcal{N}} \|(1-\eta) \cdot \frac{1}{\sqrt{d_i d_i}} U h_i^{L-1} - (1-\eta') \cdot \frac{1}{\sqrt{d_i d_i}} U' h_i'^{(L-1)} \|$ (by triangle inequality) Using Lemma C.5, we can bound each term in the first summation as $\|(\eta \cdot e_{ii}^{L-1}Uh_i^{L-1}) - (\eta' \cdot e_{ii}'^{(L-1)}U'h_i'^{(L-1)})\|$ $\leq C_U \bar{e}_{ij}^{L-1} \bar{h}_j^{L-1} \cdot |\eta - \eta'| + C_U \bar{h}_j^{L-1} \cdot |e_{ij}^{L-1} - e_{ij}'^{(L-1)}$ $+ \bar{e}_{ii}^{L-1} \bar{h}_{i}^{L-1} ||U - U'|| + C_U \bar{e}_{ii}^{L-1} ||h_i^{L-1} - h_i'^{(L-1)}||$ Here, \bar{h}_j^{L-1} is an upper bound on $||h_j^{L-1}||$ and $||h_j'^{(L-1)}||$, and \bar{e}_{ij}^{L-1} is an upper bound on $|e_{ij}^{L-1}|$ and $|e_{ij}'^{(L-1)}|$. Bounding each term in the second summation, we have $\|(1-\eta)\cdot \frac{1}{\sqrt{d_id_i}}Uh_i^{L-1} - (1-\eta')\cdot \frac{1}{\sqrt{d_id_i}}U'h_i'^{(L-1)}\|$ $\leq \|\frac{1}{\sqrt{d_i d_j}} U h_i^{L-1} - \frac{1}{\sqrt{d_i d_j}} U' h'_i^{(L-1)}\| + \|\eta \cdot \frac{1}{\sqrt{d_i d_j}} U h_i^{L-1} - \eta' \cdot \frac{1}{\sqrt{d_i d_j}} U' h'_i^{(L-1)}\|$ (by triangle inequality) $\leq \frac{1}{C_{n}} \|Uh_{i}^{L-1} - U'h_{i}'^{(L-1)}\| + \frac{1}{C_{n}} \|\eta \cdot Uh_{i}^{L-1} - \eta' \cdot U'h_{i}'^{(L-1)}\|$ $\leq \frac{1}{C_{u}} \left(C_{U} \| h_{i}^{L-1} - h_{i}^{\prime(L-1)} \| + \bar{h}_{i}^{L-1} \| U - U^{\prime} \| \right)$ $+\frac{1}{C_{\cdots}}\left(C_{U}\|h_{i}^{L-1}-h_{i}^{\prime(L-1)}\|+\bar{h}_{i}^{L-1}\|U-U^{\prime}\|+C_{U}\bar{h}_{i}^{L-1}|\eta-\eta^{\prime}|\right)$ (using Lemma C.5) $=\frac{1}{C_{u}}\left(2C_{U}\|h_{i}^{L-1}-h_{i}^{\prime(L-1)}\|+2\bar{h}_{i}^{L-1}\|U-U^{\prime}\|+C_{U}\bar{h}_{i}^{L-1}|\eta-\eta^{\prime}|\right).$

Combining the above results, we have $\Delta_i^L \le \sum_{i \in \mathcal{N}} \left(C_U \bar{e}_{ij}^{L-1} \bar{h}_j^{L-1} \cdot |\eta - \eta'| + C_U \bar{h}_j^{L-1} \cdot |e_{ij}^{L-1} - e_{ij}'^{(L-1)}| \right)$ $+ \bar{e}_{ii}^{L-1} \bar{h}_{i}^{L-1} \|U - U'\| + C_U \bar{e}_{ii}^{L-1} \|h_i^{L-1} - h_i'^{(L-1)}\|$ $+\frac{1}{C_{u}}\left(2C_{U}\|h_{i}^{L-1}-h_{i}^{\prime(L-1)}\|+2\bar{h}_{i}^{L-1}\|U-U^{\prime}\|+C_{U}\bar{h}_{i}^{L-1}|\eta-\eta^{\prime}|\right)\right)$ $\leq C_U(\max_{j \in \mathcal{N}_i} \bar{h}_j^{L-1}) |\eta - \eta'| + r C_U(\max_{j \in \mathcal{N}_i} \bar{h}_j^{L-1}) + (\max_{j \in \mathcal{N}_i} \bar{h}_j^{L-1}) \|U - U'\|$ $+ C_U(\max_{j \in \mathcal{N}_i} \|h_j^{L-1} - h_j'^{(L-1)}\|) + \frac{2rC_U}{C_U} \|h_i^{L-1} - h_i'^{(L-1)}\|$ $+ \frac{2r}{C_{dl}} \bar{h}_i^{L-1} \|U - U'\| + \frac{2rC_U}{C_{dl}} |\eta - \eta'|$ (since $e_{ij}^{\ell} \leq 1$, $\sum_{i \in \mathcal{N}_i} e_{ij}^{\ell} = 1$, and the branching factor is r) It remains for us to derive \bar{h}_{i}^{L-1} for all j. **Lemma C.7.** We can upper bound the norm of node feature embedding at level $\ell + 1$ by $||h_i^{\ell}|| \le r^{\ell} C_U^{\ell+1} C_z \max(1, \frac{1}{C_u})^{\ell}.$ Proof. $\|h_i^{\ell+1}\| = \|\sigma\left(\sum_{i \in \mathcal{N}_i} (\eta \cdot e_{ij}^\ell + (1-\eta) \cdot \frac{1}{\sqrt{d_i d_j}}) Uh_j^\ell\right)\|$ $\leq \|\sum_{i \in \mathcal{M}} (\eta \cdot e_{ij}^{\ell} + (1 - \eta) \cdot \frac{1}{\sqrt{d_i d_j}}) U h_j^{\ell}\|$ (since $\|\sigma(x)\| \le \|x\|$) $\leq \sum_{i \in \mathcal{N}} \left| \eta \cdot e_{ij}^{\ell} + (1 - \eta) \cdot \frac{1}{\sqrt{d_i d_j}} \right| \|U\| \|h_j^{\ell}\|$ (by triangle inequality and Cauchy-Schwarz inequality) $\leq C_U \sum_{i=1}^{\ell} \left| \eta \cdot e_{ij}^{\ell} + (1-\eta) \cdot \frac{1}{\sqrt{d_i d_i}} \right| \|h_j^{\ell}\|$ $\leq rC_U \max(1, \frac{1}{C_u})(\max_{j \in \mathcal{N}_i} \|h_j^{\ell-1}\|)$ Recursively bounding the terms, we have $\|h_i^{\ell}\| \le r^{\ell} C_U^{\ell} \max(1, \frac{1}{C_{\mathcal{H}}})^{\ell} \max_{j \in [n]} \|h_j^0\| \le r^{\ell} C_U^{\ell+1} C_z \max(1, \frac{1}{C_{\mathcal{H}}})^{\ell}.$ **Lemma C.8.** The change in margin loss due to the change in parameter values after L layers

satisfies

1294
1295
$$\Lambda_i \leq \frac{2}{k} \left(k_1 + k_2 |\eta - \eta'| + k_3 ||U - U'|| \right) \frac{k_4^L - k_4}{k_4 - 1} + k_4 C_z ||U - U'||,$$

1296 where

Proof. Using the previous two lemmas, we know

$$\begin{aligned} \|h_{i}^{L}(\eta, U, V) - h_{i}^{L}(\eta', U', V')\| \\ \leq C_{U}(\max_{j \in \mathcal{N}_{i}} \bar{h}_{j}^{L-1}) \|\eta - \eta'\| + rC_{U}(\max_{j \in \mathcal{N}_{i}} \bar{h}_{j}^{L-1}) + (\max_{j \in \mathcal{N}_{i}} \bar{h}_{j}^{L-1}) \|U - U'\| \\ + C_{U}(\max_{j \in \mathcal{N}_{i}} \|h_{j}^{L-1} - h_{j}'^{(L-1)}\|) + \frac{2rC_{U}}{C_{dl}} \|h_{i}^{L-1} - h_{i}'^{(L-1)}\| + \frac{2r}{C_{dl}} \bar{h}_{i}^{L-1} \|U - U'\| + \frac{2rC_{U}}{C_{dl}} |\eta - \eta'| \\ \leq k_{1} + k_{2}|\eta - \eta'| + k_{3}\|U - U'\| + k_{4}(\max_{j \in [n]} \|h_{j}^{L-1} - h_{j}'^{(L-1)}\|) \\ \leq (k_{1} + k_{2}|\eta - \eta'| + k_{3}\|U - U'\|) \frac{k_{4}^{L} - k_{4}}{k_{4} - 1} + k_{4}(\max_{j \in [n]} \|h_{j}^{0} - h_{j}'^{0}\|) \\ \leq (k_{1} + k_{2}|\eta - \eta'| + k_{3}\|U - U'\|) \frac{k_{4}^{L} - k_{4}}{k_{4} - 1} + k_{4}C_{z}\|U - U'\| \\ \end{cases}$$

 $k_2 = r^{L-1} C_U^{L+1} C_z \max(1, \frac{1}{C_{dl}})^{L-1} + \frac{2rC_U}{C_{dl}}$

 $k_{3} = \left(1 + \frac{2r}{C_{dl}}\right) r^{L-1} C_{U}^{L} C_{z} \max(1, \frac{1}{C_{dl}})^{L-1}$

 $k_1 = r^L C_U^{L+1} C_z \max(1, \frac{1}{C_{dl}})^{L-1}$

 $k_1 = r^L C_U^{L+1} C_z \max(1, \frac{1}{C_{\mathcal{H}}})^{L-1}$

 $k_4 = C_U + \frac{2rC_U}{C_{dl}}.$

 $k_2 = r^{L-1} C_U^{L+1} C_z \max(1, \frac{1}{C_{dl}})^{L-1} + \frac{2rC_U}{C_{dl}}$

 $k_3 = \left(1 + \frac{2r}{C_{dl}}\right) r^{L-1} C_U^L C_z \max(1, \frac{1}{C_{dl}})^{L-1}$

where

The change in margin loss for each node after L layers is then

 $k_4 = C_U + \frac{2rC_U}{C_{dl}}.$

$$\begin{aligned} \Lambda_{i} &= |g_{\gamma}(-\tau(f_{\eta,U,V}(x_{i}),y_{i})) - g_{\gamma}(-\tau(f_{\eta',U',V'}(x_{i}),y_{i}))| \\ &\leq \frac{1}{\gamma} |\tau(f_{\eta,U,V}(x_{i}),y_{i})) - \tau(f_{\eta',U',V'}(x_{i}),y_{i}))| \\ &\leq \frac{1}{\gamma} |\tau(f_{\eta,U,V}(x_{i}),y_{i})) - \tau(f_{\eta',U',V'}(x_{i}),y_{i})| \\ &= \frac{1}{\gamma} |(2f_{\beta,\theta}(x_{i}) - 1)y_{i} - (2f_{\beta',\theta'}(x_{i}) - 1)y_{i})| \\ &\leq \frac{2}{\gamma} |y_{i}| |f_{\eta,U,V}(x_{i}) - f_{\eta',U',V'}(x_{i})| \\ &\leq \frac{2}{\gamma} |y_{i}| |f_{\eta,U,V}(x_{i}) - f_{\eta',U',V'}(x_{i})| \\ &\leq \frac{2}{\gamma} |\sigma(h_{i}^{L}(\eta,U,V)[0]) - \sigma(h_{i}^{L}(\eta',U',V')[0])| \\ &\leq \frac{2}{\gamma} |\sigma(h_{i}^{L}(\eta,U,V)[0] - h_{i}^{L}(\eta',U',V')[0])| \\ &\leq \frac{2}{\gamma} |h_{i}^{L}(\eta,U,V)[0] - h_{i}^{L}(\eta',U',V')[0]| \\ &\leq \frac{2}{\gamma} (k_{1} + k_{2}|\eta - \eta'| + k_{3}||U - U'||) \frac{k_{4}^{L} - k_{4}}{k_{4} - 1} + k_{4}C_{z}||U - U'||. \end{aligned}$$

Lemma C.9. The change in margin loss Λ_i for each node can be bounded by ϵ , using a covering of size *P*, where *P* depends on ϵ , with

$$\log P \le (d^2 + 1) \log \left(\frac{8 \max\{A, BC_U \sqrt{d}\}}{\epsilon} \right)$$

1357 *Proof.* We let $A = \frac{2k_2(k_4^L - k_4)}{k(k_4 - 1)}$ and $B = \frac{2k_3(k_4^L - k_4) + \gamma(k_4^2 - k_4)C_z}{\gamma(k_4 - 1)}$ for simplicity of notation. Note that we have $\Lambda_i \leq A|\eta - \eta'| + B||U - U'||$.

1359 We begin by noting that we can find a covering $C(\eta, \frac{\epsilon}{2A}, |\cdot|)$ of size

$$\mathcal{N}(\eta, \frac{\epsilon}{2A}, |\cdot|) \le 1 + \frac{4A}{\epsilon}$$

1363 We can also find a covering $C(U, \frac{\epsilon}{2B}, \|\cdot\|_F)$ with size

$$\mathcal{N}(U, \frac{\epsilon}{2B}, \|\cdot\|_F) \le \left(1 + \frac{4BC_U\sqrt{d}}{\epsilon}\right)^{d^2}.$$

1367 For any specified ϵ , we can ensure that Λ_i is at most ϵ with a covering number of

$$P \leq \mathcal{N}(\eta, \frac{\epsilon}{2A}, |\cdot|) \cdot \mathcal{N}(U, \frac{\epsilon}{2B}, \|\cdot\|_F)$$

$$\leq \left(1 + \frac{4A}{\epsilon}\right) \left(1 + \frac{4BC_U\sqrt{d}}{\epsilon}\right)^{d^2} \leq \left(1 + \frac{4\max\{A, BC_U\sqrt{d}\}}{\epsilon}\right)^{d^2 + 1}$$

1374 Moreover, when $\epsilon \leq 4 \max\{A, BC_U\sqrt{d}\}$, we have

$$\log P \le (d^2 + 1) \log \left(\frac{8 \max\{A, BC_U \sqrt{d}\}}{\epsilon} \right).$$

1381 Now we can finish our proof for Theorem 4.3.

Proof. Using Lemma A.5 from Bartlett et al. (2017), we obtain that

$$\hat{R}_{\mathcal{T}}(\mathcal{H}^{\gamma}_{(\eta,U,V))}) \leq \inf_{\alpha>0} \left(\frac{4\alpha}{\sqrt{m}} + \frac{12}{m} \int_{\alpha}^{\sqrt{m}} \sqrt{\log \mathcal{N}(\mathcal{H}^{\gamma}_{(\eta,U,V)}), \epsilon, \|\cdot\|)} d\epsilon \right).$$

Using the previous lemmas, we have

$$\int_{\alpha}^{\sqrt{m}} \sqrt{\log \mathcal{N}(\mathcal{H}_{(\eta,U,V)}^{\gamma}), \epsilon, \|\cdot\|)} d\epsilon = \int_{\alpha}^{\sqrt{m}} \sqrt{\log P} d\epsilon$$
$$\leq \int_{\alpha}^{\sqrt{m}} \sqrt{(d^2 + 1) \log\left(\frac{8 \max\{A, BC_U\sqrt{d}\}}{\epsilon}\right)} d\epsilon$$
$$\leq \sqrt{m} \sqrt{(d^2 + 1) \log\left(\frac{8 \max\{A, BC_U\sqrt{d}\}}{\alpha}\right)}$$

Plugging in $\alpha = \sqrt{\frac{1}{m}}$, we have

$$\hat{R}_{\mathcal{T}}(\mathcal{H}^{\gamma}_{(\eta,U,V))}) \leq \frac{4}{m} + \frac{12\sqrt{(d^2+1)\log\left(8\sqrt{m}\max\{A, BC_U\sqrt{d}\}\right)}}{\sqrt{m}}$$

D EXPERIMENTS

1405 1406 1407

In this section, we empirically evaluate our proposed GCAN interpolation methods on nine standard benchmark datasets. Our goal is to see whether tuning η gives better results than both GCN and GAT. The setup details of our experiment are described in Appendix D.1.

1409 1410 1411

1408

Dataset	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	Rel. GCN	Rel. GAT
CIFAR10	$0.7888 \pm$	$0.7908 \pm$	$0.7908 \pm$	$0.7907 \pm$	$0.7943 \pm$	$0.7918 \pm$	$0.7975 \pm$	$0.7971 \pm$	$0.7921 \pm$	$0.7986 \pm$	$0.7984 \pm$	4.54%	0%
	0.0010	0.0008	0.0015	0.0012	0.0022	0.0018	0.0017	0.0023	0.0023	0.0028	0.0023		
WikiCS	$0.9525 \pm$	$0.9516 \pm$	$0.9532 \pm$	$0.9545 \pm$	$0.9551 \pm$	$0.9545 \pm$	$0.9539 \pm$	$0.9553 \pm$	$0.9530 \pm$	$0.9536 \pm$	$0.9539 \pm$	5.89%	3.04%
	0.0007	0.0006	0.0011	0.0008	0.0015	0.0012	0.0012	0.0012	0.0007	0.0009	0.0009		
Cora	$0.6132 \pm$	$0.8703 \pm$	$0.8879 \pm$	$0.8396 \pm$	$0.8022 \pm$	$0.8615 \pm$	$0.9011 \pm$	$0.8088 \pm$	$0.8505 \pm$	$0.8549 \pm$	$0.8725 \pm$	74.43%	22.43%
	0.0218	0.0251	0.0206	0.0307	0.0385	0.0402	0.0421	0.0362	0.0240	0.0389	0.0334		
Citeseer	$0.7632 \pm$	$0.6944 \pm$	$0.7602 \pm$	$0.7500 \pm$	$0.7339 \pm$	$0.7427 \pm$	$0.7588 \pm$	$0.7193 \pm$	$0.7661 \pm$	$0.7266 \pm$	$0.7471 \pm$	0%	6.37%
	0.0052	0.0454	0.0566	0.0461	0.0520	0.0462	0.0504	0.0567	0.0482	0.0412	0.0444		
PubMed	$0.9350 \pm$	$0.9306 \pm$	$0.9356 \pm$	$0.9281 \pm$	$0.9356 \pm$	$0.9319 \pm$	$0.9313 \pm$	$0.9288 \pm$	$0.9313 \pm$	$0.9338 \pm$	$0.9356 \pm$	0.92%	0%
	0.0009	0.0006	0.0009	0.0007	0.0007	0.0009	0.0007	0.0009	0.0006	0.0010	0.0009		
CoauthorCS	$0.9733 \pm$	$0.9733 \pm$	$0.9765 \pm$	$0.9744 \pm$	$0.9733 \pm$	$0.9690 \pm$	$0.9712 \pm$	$0.9722 \pm$	$0.9722 \pm$	$0.9722 \pm$	$0.9744 \pm$	11.99%	08.20%
	0.0007	0.0008	0.0005	0.0005	0.0009	0.0007	0.0009	0.0005	0.0011	0.0007	0.0007		
AmazonPhotos	$0.9605 \pm$	$0.9617 \pm$	$0.9629 \pm$	$0.9599 \pm$	$0.9641 \pm$	$0.9574 \pm$	$0.9641 \pm$	$0.9592 \pm$	$0.9653 \pm$	$0.9635 \pm$	$0.9562 \pm$	12.15%	20.77%
	0.0022	0.0007	0.0015	0.0013	0.0017	0.0018	0.0019	0.0133	0.0027	0.0031	0.0019		
Actor	$0.5982 \pm$	$0.5919 \pm$	$0.6005 \pm$	$0.5959 \pm$	$0.5965 \pm$	$0.5970 \pm$	$0.5976 \pm$	$0.5993 \pm$	$0.5930 \pm$	$0.5970 \pm$	$0.5953 \pm$	0.57%	1.28%
	0.0016	0.0022	0.0039	0.0039	0.0038	0.0027	0.0037	0.0043	0.0041	0.0037	0.0031		
Cornell	$0.7341 \pm$	$0.7364 \pm$	$0.7364 \pm$	$0.7205 \pm$	$0.7523 \pm$	$0.7795 \pm$	$0.7568 \pm$	$0.7500 \pm$	$0.7477 \pm$	$0.7909 \pm$	$0.8000 \pm$	24.78%	0%
	0.0097	0.0165	0.0073	0.0154	0.0109	0.0120	0.0188	0.0140	0.0138	0.0136	0.0423		
Wisconsin	$0.8688 \pm$	$0.8922 \pm$	$0.8688 \pm$	$0.8906 \pm$	$0.8797 \pm$	$0.8578 \pm$	$0.8875 \pm$	$0.8781 \pm$	$0.8563 \pm$	$0.8750 \pm$	$0.8719 \pm$	17.84%	15.84%
	0.0077	0.0035	0.0080	0.0049	0.0044	0.0120	0.0037	0.0082	0.0128	0.0121	0.0076		

Table 2: Results on the proposed GCAN interpolation. Each column corresponds to one η value. Each row corresponds to one dataset. Each entry shows the accuracy and the interval. The accuracy with optimal η value outperforms both pure GCN and pure GAT. The right two columns show the percentage of prediction error reduction relative to GCN and GAT.

1425

1426 In Table 2, we show the mean accuracy across 30 runs of each η value and the 90% confidence 1427 interval associated with each experiment. It is interesting to note that for various datasets we see 1428 varying optimal η values for best performance. More often than not, the best model is interpolated 1429 between GCN and GAT, showing that we can achieve an improvement on both baselines simply by 1430 interpolating between the two. For example, GCN achieves the best accuracy among all interpola-1431 tions in Citeseer, but in other datasets such as CIFAR 10 or Wisconsin, we see higher final accuracies 1432 when the η parameter is closer to 1.0 (more like GAT). The interpolation between the two points also does not increase or decrease monotonically for many of the datasets. The optimal η value for 1433 each dataset can be any value between 0.0 and 1.0. This suggests that one should be able to learn 1434 the best η parameter for each specific dataset. By learning the optimal η value, we can outperform 1435 both GAT and GCN. 1436

1437

1438 D.1 EXPERIMENT SETUP FOR GCAN

We apply dropout with a probability of 0.4 for all learnable parameters, apply 1 head of the specialized attention layer (with new update rule), and then an out attention layer. The activation we choose
is eLU activation (following prior work Veličković, Petar et al. (2018)), with 8 hidden units, and 3
attention heads.

These GCAN interpolation experiments are all run with only 20% of the dataset being labeled datapoints, and the remaining 80% representing the unlabeled datapoints that we test our classification accuracy on. Table 3 notes the exact setup of each dataset, and the overall training time of each experiment.

1	4	4	8
			_

1449	Dataset	Num of train nodes	learn rate	Epoch	Num of exp	Train time(sec)	Dim of hid. layers	Num of Attention Heads
1450	CiFAR10	400	7e-3	1000	30	13.5354	1	3
1451	WikiCS	192	7e-3	1000	30	6.4742	1	3
4.450	Cora	170	7e-3	1000	30	7.4527	1	3
1452	Citeseer	400	7e-3	1000	30	6.4957	1	3
1453	Pubmed	400	7e-3	1000	30	13.1791	1	3
1100	CoAuthor CS	400	0.01	1000	30	6.8015	1	3
1454	Amazon Photos	411	0.01	400	30	11.0201	1	3
1/155	Actor	438	0.01	1000	30	14.7753	1	3
1455	Cornell	10	0.01	1000	30	6.9423	1	3
1456	Wisconsin	16	0.01	1000	30	6.9271	1	3

1457

Table 3: Experiment setup

1458	For detects that are not inhomently graph structured (a.g. CIEAD 10), we first compute the Eu
1459	For datasets that are not innerently graph-structured (e.g., CIFAR-10), we first compute the Eu-
1460	two nodes if their distance is below a predefined threshold
1461	two nodes if their distance is below a predefined threshold.
1462	
1/63	
1/6/	
1404	
1400	
1400	
1407	
1468	
1469	
1470	
1471	
1472	
1473	
1474	
1475	
1476	
1477	
1478	
1479	
1480	
1481	
1482	
1483	
1484	
1485	
1486	
1487	
1488	
1489	
1490	
1491	
1492	
1493	
1494	
1495	
1496	
1497	
1/08	
1/00	
1499	
1500	
1501	
1502	
1503	
1504	
1505	
1506	
1507	
1508	
1509	
1510	
1511	