
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STOCHASTOK: IMPROVING FINE-GRAINED SUBWORD
UNDERSTANDING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Subword-level understanding is integral to numerous tasks, including understand-
ing multi-digit numbers, spelling mistakes, abbreviations, rhyming, and wordplay.
Despite this, current large language models (LLMs) still struggle disproportionally
with simple subword-level tasks like How many ‘r’s in ‘strawberry’?. A key factor
behind these failures is tokenization which obscures the fine-grained structure
of words. Current alternatives, such as character-level and dropout tokenization
methods, significantly increase computational costs and provide inconsistent im-
provements. In this paper we revisit tokenization and introduce STOCHASTOK, a
simple, efficient stochastic tokenization scheme that randomly splits tokens during
training, allowing LLMs to ‘see’ their internal structure. Our experiments show
that pretraining with STOCHASTOK substantially improves LLMs’ downstream
performance across multiple subword-level language games, including character
counting, substring identification, and math tasks. Furthermore, STOCHASTOK’s
simplicity allows seamless integration at any stage of the training pipeline; and we
demonstrate that post-training with STOCHASTOK can instill improved subword un-
derstanding into existing pretrained models, thus avoiding costly pretraining from
scratch. These dramatic improvements achieved with a minimal change suggest
STOCHASTOK holds exciting potential when applied to larger, more capable mod-
els. Code open-sourced at: anonymous.4open.science/r/stochastok.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress on a wide range of tasks (Achiam
et al., 2023; Team et al., 2023; Dubey et al., 2024). However, their reliance on tokenization (Sennrich
et al., 2016) obscures how humans naturally perceive language. For example, while humans see
‘book’ and ‘cook’ as differing by a single letter, when training LLMs, we always treat these words
as distinct token IDs1. This makes subword-level tasks such as How many ‘r’s in ‘strawberry’?
difficult, even for current state-of-the-art LLMs. Whilst some advanced reasoning models, such as
OpenAI’s o1 (Jaech et al., 2024), have recently started to show promise, it has required a vast increase
in model size and training complexity that seems disproportionate to the simplicity of such questions.
In the arts, this shortcoming impacts wordplay, rhyming, and understanding etymology, while in
the sciences, it is needed for handling multi-digit numbers, chemical formulae, and mathematical
equations. Moreover, these failures highlight a fundamental inability of LLMs to understand how
humans perceive language, an essential aspect of effective communication with humans.

This limitation in standard tokenizers has motivated research into stochastic tokenization, where
‘stochastic tokenization’ refers to methods in which the same text may be encoded as multiple possible
token sequences. A well-known existing method is BPE-dropout (Provilkov et al., 2020), which
adds randomness by skipping BPE merge steps. In this work, we propose a simpler, more flexible,
and more effective alternative: rather than modifying the original tokenization process, we instead
allow LLMs to directly ‘see’ inside tokens by randomly splitting them into equivalent pairs of smaller
tokens with some small probability.

Our experiments show that adding this minimal additional preprocessing step significantly alters the
model’s representations, allowing them to capture subtoken-level morphological structure. Compared

1e.g., ‘book’=3092 and ‘cook’=171691 in the GPT-4o and GPT-4o mini models (Hurst et al., 2024).

1

https://anonymous.4open.science/r/stochastok

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: STOCHASTOK pretraining al-
lows the learned representations to cap-
ture the fine-grained details of how
humans ‘see’ language. This is
demonstrated as models pretrained with
STOCHASTOK can be finetuned to an-
swer language game questions with no
compromise to ability in other domains.

to prior stochastic tokenization methods (Provilkov et al., 2020; Kudo, 2018), we find STOCHASTOK
to be significantly more effective, while also having strong practical advantages of being faster,
simpler, compatible with any base tokenizer, and applicable post-hoc to existing pretrained models.

We demonstrate three main results. Firstly, language models pretrained with STOCHASTOK quickly
adapt to near-perfect accuracy on several language game tasks (such as ‘Which word has the most
e’s?’ or ‘Which word is the shortest?’), while models pretrained with deterministic tokenization
or BPE-dropout struggle (see Figure 1). We test this on two sets of language game tasks: (1)
LangGame - our novel set of subword understanding tasks, and (2) the CUTE benchmark of language
manipulation tasks (Edman et al., 2024). Secondly, we show that STOCHASTOK enables models
to grok multi-digit addition, a dramatic change in learning behavior compared to BPE-dropout or
deterministically trained models (Lee et al., 2023). Thirdly, since STOCHASTOK is compatible
with existing pretrained models, we demonstrate that it can be used to ‘retrofit’ larger existing
pretrained models with improved subword understanding, thus mitigating the need to pretrain from
scratch. In summary, STOCHASTOK provides a stark performance improvement with minimal cost
or implementation changes, and we believe our results at the modest scale have potential for major
impact on LLM ability when used to pretrain or finetune larger, more capable models.

2 BACKGROUND

Tokenization (Sennrich et al., 2016)—the process of converting raw text into tokens—serves two
essential roles in the LLM pipeline. Firstly, it converts text into a sequence of integers to enable
processing by the LLM. Secondly, it compresses sequences of characters into shorter sequences of
tokens, which increases both performance and computational efficiency.

Standard Deterministic Tokenization. A tokenizer consists of two main components: a vo-
cabulary, and an encoding function for converting text into a sequence of token IDs. The decod-
ing procedure shared by all tokenizers simply maps token IDs back to text strings. For instance,
with vocabulary {0:The,1:_c,2:at,3:_s,...}, the sequence [0,1,2,3,2] decodes to
‘The_cat_sat’.

The main tokenizers are Byte-Pair Encoding (BPE; Sennrich et al. (2016)) and Unigram (Kudo,
2018). BPE is constructed by starting with individual character tokens and iteratively merging
the most frequent adjacent token pairs in a training dataset, yielding a fixed-size vocabulary and a
hierarchical set of merge rules. For encoding, text is initially split into character-level tokens, and
the merge rules are applied repeatedly until no further merges are possible. In contrast, Unigram
starts with a large candidate vocabulary and iteratively prunes tokens that least increase the dataset’s
log-likelihood under a unigram model, using the Viterbi (Viterbi, 1967) and EM (Dempster et al.,
1977) algorithms to compute and optimize token probabilities. For encoding, the tokenization with
the highest probability under the learned unigram model is selected using the Viterbi algorithm. BPE
is currently the choice of most SOTA LLMs (Groeneveld et al., 2024; Dubey et al., 2024; Team et al.,
2024; Jiang et al., 2023; Abdin et al., 2024; Guo et al., 2025; Yang et al., 2024; Biderman et al., 2023)
due to having much lower memory requirements than Unigram.

Stochastic Tokenization. BPE and Unigram are deterministic tokenizers, meaning the same
input text always produces the same tokenization. We define stochastic tokenization as
any tokenizer whose encoding function may produce multiple alternative tokenizations for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the same input. With vocab={0:e, 1:x, 2:a, 3:m, 4:p, 5:l, 6:exam, 7:ple,
8:example}, for example, the word ‘example’ might be mapped to any of [8], [6,7],
[0,1,2,3,4,5,0], etc., since the decoding procedure (identical to deterministic tokeniz-
ers)will map each of these back to the text ‘example’.

The two main prior stochastic tokenization methods are Subword Regularization and BPE-dropout.
Subword Regularization (Kudo, 2018) extends Unigram by sampling from alternative tokenizations
according to learned unigram model probabilities. However, this adds complexity and computa-
tional overhead to the already expensive Unigram procedure, and introduces intricacies involving
overlapping candidates, beam tuning, and numerical stability. BPE-dropout (Provilkov et al., 2020)
introduces stochasticity by randomly omitting some merge operations of BPE during encoding.
Unfortunately, this results in a different vocabulary from the original BPE tokenizer,2 preventing easy
application to pretrained models. It also incurs additional drawbacks such as higher computational
costs, unwanted tokenization dependence on text length, and is only compatible with BPE. In our
experiments we therefore compare to BPE, the defacto standard in SOTA LLMs, and BPE-dropout,
the only prior BPE-compatible stochastic variant (see Section 8).

3 STOCHASTOK

Different possible tokenizations for the same text using STOCHASTOK:

text=‘An example sentence’

vocab={An, _example, _sentence, A, n, _exam, ple, ex, ample, amp, le, _sent, _se, nt,

ence...}

Random seed 1 Random seed 2 Random seed 3

Initial tokenization: [An example sentence] [An example sentence] [An example sentence]

↙↘ ↙↘ ↙↘
After 1 expand step: [An example sentence] [An example sentence] [An example sentence]

↙
↘ ↙↘ ↙

↘

After 2 expand steps: [An example sentence] [An example sentence] [An example sentence]

...
...

...

Underlined denotes the token sampled for expansion. Bold denotes the equivalent pair of tokens after expansion.

Figure 2: STOCHASTOK involves iteratively sampling tokens to ‘expand’ into equivalent pairs of tokens in
the vocabulary, resulting in multiple possible tokenizations for the same text. The exposure to alternative
tokenizations enables LLMs to naturally learn about the fine-grained subtoken-level morphological composition
of tokens.

In this section, we describe STOCHASTOK, a simple, lightweight, stochastic tokenization scheme
that, unlike prior work, is compatible with any base tokenizer or pretrained model.

STOCHASTOK involves two steps:

1. Tokenize with the base tokenizer to get a list of token_ids.
2. Iteratively apply ‘expand’ steps in which a token is sampled at random and (if possible) split

into a pair of equivalent tokens in the vocabulary (as depicted in Figure 2). This is repeated
for p · len(token_ids) iterations, where p is a hyperparameter.

In Step 2, if no equivalent pairs of tokens exist for the sampled token (e.g., if the token is already
a single character), then the expand step is skipped. Full pseudocode is given in Section A.3, and
further illustrative examples in Section A.4. Through this repeated token re-segmentation the model
is exposed to many alternative tokenizations; for example, the word [example] may appear in the
dataset as any of: [example], [exam|ple], [ex|ample], [ex|am|ple], [e|x|am|ple], etc,
thus allowing it to learn the fine-grained structure of words.

2In BPE, intermediate tokens not present in the final tokenized training dataset are removed from the
vocabulary, meaning BPE-dropout can produce tokens outside the original vocabulary.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

STOCHASTOK has several practical advantages:

• Cheap and efficient. STOCHASTOK is considerably cheaper than existing methods both
in terms of memory and compute. Rather than re-tokenizing from scratch, data can be
tokenized once and cheaply expanded for varying numbers of ‘expand steps’ to achieve
different levels of stochasticity.

• Compatible with any tokenizer. Unlike BPE-dropout or Subword Regularization,
STOCHASTOK can be applied to any base tokenizer (BPE, Unigram, WordPiece, etc.)
without requiring any knowledge of the base tokenizer itself.

• Extremely simple. STOCHASTOK is simply a lightweight post-processing step after tok-
enization. Everything else—including the training loop—remains unchanged.

• Preserves original vocabulary. Perhaps most significantly, STOCHASTOK maintains the
original tokenizer vocabulary, thus allowing straightforward application to any stage of
the LLM pipeline. In Section 4, for example, we apply STOCHASTOK during pretraining
and switch it off seamlessly for downstream finetuning, while in Section 6, we apply
STOCHASTOK after pretraining to instill subword understanding into existing pretrained
models.

• Robust to hyperparameter choice. STOCHASTOK is robust to hyperparameter choice (see
Figure 5) and hence does not require careful tuning. By default we use p = 0.1, and show
similar effectiveness with p = 0.05 and other values.

In the following sections, we demonstrate STOCHASTOK’s empirical advantages. Firstly, we show
that pretraining with STOCHASTOK dramatically improves downstream performance on language
game tasks, while being (a) extremely robust to hyperparameter choice and (b) exhibiting out-
of-distribution generalization properties (Section 4). Next, we examine math tasks and find that
models trained with STOCHASTOK quickly grok multi-digit addition—and moreover generalize to
unseen test tokenization schemes—whereas models trained with existing tokenizers struggle, even
when tested with the matching tokenizer (see Section 5). We then apply STOCHASTOK to existing
pretrained models and demonstrate that it can be used to ‘retrofit’ improved subtoken understanding
into larger deterministically pretrained models (Section 6). Finally, we provide insights into the
internal mechanisms of STOCHASTOK-trained models compared to models trained with standard
tokenization (Section 7).

4 PRETRAINING WITH STOCHASTOK ENABLES SUCCESS IN LANGUAGE
GAMES

Setup. In this section, we look at the effect of STOCHASTOK when applied during pretraining.
We build on the baseline open-source setup of Hillier et al. (2024) (a 50M-parameter model, using
GPT-2 BPE tokenizer, trained on the OpenWebText dataset—see Section C.1 for full details). We
compare four models: (1) Pretrained with standard deterministic tokenization, (2) Pretrained with
STOCHASTOK, (3) Pretrained with BPE-dropout, and (4) No pretraining. Firstly, in Figure 3, we
verify that STOCHASTOK requires no compromise in original language modeling performance (see
Section C.1 for benchmark details).

Figure 3: We first verify that STOCHASTOK does not compromise test performance across a wide variety of
standard language understanding benchmarks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Task Question Answer

1 Letter Which word has the most letter ‘n’s? The options are: [reason, step, continent, their]. continent
2 Contains Which choice contains ‘ec’? The option words are: [was, children, require, check]. check
3 Starts Which option string starts with ‘mo’? The available options: [case, ask, month, event]. month
4 Ends What option word ends with ‘ad’? The option words are: [cost, lead, south, sun]. lead
5 Longest Which string is the longest? The available choices: [wild, dear, had, section]. section
6 Shortest Which is the shortest? The possible option words: [thought, job, circle, nothing]. job

Table 1: We introduce ‘LangGame,’ a novel dataset consisting of six question types testing fine-grained subword-
level understanding.

Figure 4: Pretraining with STOCHASTOK enables sig-
nificantly higher performance on the CUTE language
manipulation tasks (in addition to the LangGame tasks—
see Figure 1). (For ‘normalized accuracy,’ 0 is random
guessing and 1 is perfect.)

Performance on Language Game Tasks. We
now finetune each of the base models above on
two sets of language game tasks: (1) LangGame,
and (2) CUTE. LangGame is a novel dataset
consisting of six different tasks, including iden-
tifying word lengths, substrings, and individual
letters. Examples are shown in Table 1, and
additional detail is given in Section B.1. The
CUTE benchmark contains further language ma-
nipulation tasks (Edman et al., 2024) (see Sec-
tion B.2 for examples). Critically, each model
is finetuned identically, using deterministic
BPE tokenization.

Figure 1 shows performance on the LangGame questions. We observe that the models pretrained with
STOCHASTOK quickly achieve near-perfect accuracy, while the models pretrained with deterministic
tokenization or no pretraining are unable to reach high accuracy. This suggests that, as well as
the token-level structure learned with deterministic tokenization, STOCHASTOK enables models
to additionally capture subtoken-level fine-grained morphological structure. The prior method of
BPE-dropout gives some of the benefits of stochastic tokenization, but still performs significantly
worse than STOCHASTOK, in addition to being significantly more complex. In Figure 4, we see that
STOCHASTOK gives a similar stark performance difference on the CUTE language manipulation
benchmark, thus giving further evidence that STOCHASTOK significantly changes the representations
of the model to enable fine-grained character-level manipulation.

Robust to Hyperparameter Choice and OOD Questions. In addition to significant performance
increases on both language game benchmarks, we find that the benefits of stochastic tokenization
are robust over an order of magnitude range of the hyperparameter (see Figure 5). Furthermore,
we find that this skill is learned in a way that enables the model to generalize to a set of holdout
language game question types in which the train/validation questions all involve identifying sub-
strings/prefixes/suffixes where the substring/prefix/suffix is always less than or equal to half the
answer length, while in the holdout set the substring/prefix/suffix is always longer than half the
answer length. In Figure 6, we observe that models pretrained with stochastic tokenization gen-
eralize near-perfectly while the deterministic tokenization-pretrained equivalent has a significant
generalization gap in addition to a much lower in-distribution performance.

Figure 5: STOCHASTOK is effective
over a wide range of stochasticity lev-
els (log x-scale), meaning it is robust
to hyperparameter choice.

Figure 6: Models pretrained with STOCHASTOK successfully gen-
eralize to out-of-distribution language game questions, while those
pretrained deterministically exhibit a significant generalization gap
(and a much lower in-distribution performance).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 7: STOCHASTOK also enables improved LangGame
performance in larger models.

Transfers to Larger Models. Next, we
verify that these findings transfer to larger
settings by applying STOCHASTOK to
the modded-nanogpt baseline (Jordan
et al., 2024a). This setup has a differ-
ent architecture and model size of GPT-2
with 275M parameters, a different train-
ing dataset (FineWeb Penedo et al. (2024)),
and a different optimizer (Muon Jordan
et al. (2024b)). In Figure 7, we see that
STOCHASTOK gives a similar performance
benefit in this larger setting, suggesting that
STOCHASTOK scales to larger models.

5 STOCHASTOK ENABLES LLMS TO GROK MATH TASKS

Figure 8: STOCHASTOK allows models to grok multi-digit addition. Unlike training with character-level or
deterministic BPE tokenizers, training with STOCHASTOK achieves near-perfect validation accuracy even when
tested with questions tokenized with methods not seen during training.

In addition to language game-type tasks, tokenization also poses difficulties in learning math, due to
obscuring the relation between numbers, for example in GPT-4o (Hurst et al., 2024), the numbers
‘2’, ‘20’, ‘200’, ‘201’ are tokenized as 17, 455, 1179, 667 respectively. This poses such a
significant additional difficulty for language models that prior works commonly use tricks like adding
‘.’s between every character (to force tokenization to keep each digit separate), or using custom
character-level tokenizers for digits to sidestep the issue (Zhang et al., 2024; Power et al., 2022; Lee
et al., 2023).

We hypothesize that since STOCHASTOK improves sub-token level awareness, it may also help in
learning multi-digit math tasks. To test this, we train on the task of multi-digit addition starting from
the 50M-parameter setup in Hillier et al. (2024). Examples of the questions are given in Section B.3.
We compare the performance of models trained with: (1) standard deterministic tokenization, (2)
BPE-dropout, (3) STOCHASTOK, and (4) character-level tokenization. In Figure 8, for each of the
four models we plot the accuracy with the question tokenized with each of the four methods.

In Figure 8 left, we see—as expected—that the character-level-trained model quickly achieves near-
perfect accuracy when the questions are tokenized character-wise (and gets near-zero accuracy when
the questions are tokenized differently). In Figure 8 middle-left and middle-right, we see that the
models trained with standard deterministic tokenization and BPE-dropout struggle to grok the task,
appearing to slowly learn examples with the accuracy increasing linearly, even with the matching
question tokenization. By contrast, in Figure 8 right, the model trained with STOCHASTOK
quickly groks the task and reaches near-perfect accuracy, not just when the question is tokenized
with the matching tokenizer, but also when the question is tokenized with any of the other
three tokenizers that were unseen during training. This suggests that STOCHASTOK significantly
enhances a model’s ability to understand relationships between multi-digit numbers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 STOCHASTOK CAN INSTILL SUBWORD UNDERSTANDING INTO EXISTING
PRETRAINED MODELS

Pretraining is often prohibitively expensive. In this section, we therefore investigate whether
STOCHASTOK can be used to instill improved subword understanding into models that have already
been pretrained with an alternative tokenization method, offering a more cost-effective alternative to
full retraining from scratch. For our first experiment, we start with the 50M-parameter model from
Section 4, which was trained for 30k iterations on OpenWebText using deterministic BPE. We call
this the ‘base model.’ We then continue to train for an additional 2k iterations on OpenWebText with
STOCHASTOK tokenization, which we refer to as continued pretraining (CPT). As a control, we also
perform CPT with standard deterministic BPE. As before, we then try finetuning on the LangGame
tasks. In Figure 9, we show that a small amount of CPT is sufficient to enable the models to fit the
language game questions near-perfectly, significantly higher than all of the controls. This suggests
that the 2k steps of CPT with STOCHASTOK were effective in instilling subword understanding into
the pretrained model.

Figure 9: A small amount of continued pretrain-
ing (CPT) with STOCHASTOK significantly im-
proves subword awareness in the 50M-parameter
deterministically-pretrained baseline.

Figure 10: The effectiveness of STOCHASTOK in con-
tinued pretraining (CPT) transfers to the larger setting,
enabling the pretrained GPT-2 model to fit language
game tasks.

Larger Pretrained Models. Next, we test this on a larger open-source model. In Figure 10, we
compare the ability of GPT-2 (Radford et al., 2019) to fit the language game tasks with (1) no
additional pretraining, (2) 7k iterations of CPT with deterministic BPE, and (3) 7k iterations of
continued pretraining with STOCHASTOK. CPT with deterministic BPE has no effect on the ability
to learn the LangGame tasks, whilst STOCHASTOK again allows the model to reach significantly
higher accuracy.

7 ANALYSIS

Finally, we present an analysis of how STOCHASTOK enables the improvements in subword-level
understanding. In Figure 11, we show completions when prompted with different tokenizations of the
same prompt. We find that—as expected—the responses from the model trained with STOCHASTOK
are much more consistent across different prompt tokenizations, while the standard tokenization-
trained model quickly breaks down when exposed to alternative tokenizations.

Figure 11: Generations given multiple different tokenizations of the same prompt. We find the STOCHASTOK-
trained model to be more consistent, while the standard-trained model breaks down when prompted with
alternative tokenizations, showing STOCHASTOK improves tokenization robustness. More examples are provided
in Section D.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 12: STOCHASTOK visibly results in the internal representations for alternative tokenizations of the same
words being much more closely aligned.

Figure 13: STOCHASTOK-trained models progressively
map equivalent tokenizations closer together.

Next, in Figure 12, we visualize the internal rep-
resentations, both with and without stochastic
tokenization. We fit a PCA model on the em-
beddings3 of the top 1k most common words
and then plot the results for alternative tokeniza-
tions of the same words, using a random sam-
ple of 20 words. We observe that, when using
stochastic tokenization, the embeddings for al-
ternative tokenizations of the same word are
significantly more closely aligned and visibly
capture subword-level structure.

For a more quantitative measure of this, in Fig-
ure 13, we plot how the mean distance between
representations of alternative tokenizations of
the same word evolves through the transformer
layers. We observe that when trained with
STOCHASTOK, each layer maps alternative tok-
enizations progressively closer to the same repre-
sentation, while the deterministically pretrained
model does not have this behavior.

8 RELATED WORK

Subtoken-level understanding. Numerous papers have studied LLMs’ surprisingly poor ability on
subword-level tasks (Xu & Ma, 2024; Fu et al., 2024; Zhang et al., 2024; Shin & Kaneko, 2024;
Edman et al., 2024; Marjieh et al., 2025; Kaushal & Mahowald, 2022; Itzhak & Levy, 2021, inter
alia). However, solving these tasks remains challenging, despite improvements to core capabilities
and reasoning in other measured benchmarks.

Stochastic Tokenization. Stochastic variants have been proposed for many tokenizers, including
BPE-dropout for BPE (see Section 2), MaxMatch-dropout (Hiraoka, 2022) for WordPiece (Schuster
& Nakajima, 2012), LCP-dropout (Nonaka et al., 2022) for LCP (Cormode & Muthukrishnan, 2002),
and Subword Regularization and STM (Hiraoka et al., 2019) for Unigram (see Section 2). These
prior methods are all tokenizer-specific, for example MaxMatch-dropout randomly omits the longest
next subword when tokenizing with WordPiece, while LCP-dropout adds stochasticity by randomly
partitioning the input before applying LCP tokenization. Similarly, Subword Regularization and

3The activations after the final attention layer at the position of the last token for each word.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

STM rely on Unigram’s unigram model for calculating tokenization probabilities using the FFBS
or Viterbi algorithms (Scott, 2002; Viterbi, 1967), (but rather than choosing the highest probability
tokenization, they instead sample from this distribution). Therefore, since almost all current LLMs
use BPE tokenization, these methods are almost never applicable.

BPE-dropout is, therefore, the relevant baseline. As described in Section 3, compared to BPE-dropout,
STOCHASTOK has several practical advantages: Firstly, to apply BPE-dropout, we require access to
the exact merge hierarchy of the BPE tokenizer. By contrast, STOCHASTOK can be easily applied to
any base tokenizer without any knowledge of the base tokenizer itself (it only requires knowledge
of the model’s vocabulary—a property of the model). Secondly, STOCHASTOK can be applied at
any stage of the LLM pipeline, even to pretrained models, since it preserves the same vocabulary as
the original tokenizer. In contrast, switching between BPE and BPE-dropout changes the possible
vocabulary, leading either to out-of-vocabulary tokens or requiring a change to the model. Finally,
STOCHASTOK is essentially a lightweight processing step after tokenization, meaning it can be used
in conjunction with fast, compiled implementations of base tokenizers. By contrast, BPE-dropout
requires tokenizing from scratch and compiled implementations of BPE-dropout for predefined BPE
tokenizers (i.e., a pre-specified vocabulary and merge hierarchy) are not readily available, thus often
making BPE-dropout prohibitively expensive.

Byte-level models. An alternative line of work in improving character-level understanding is byte-
level or ‘tokenizer-free’ models, which operate directly on characters. This approach removes the
inductive bias imposed by tokenizers’ vocabularies and naturally handles unusual words and typos.
However, the naïve approach is prohibitively inefficient due to increased sequence lengths. As a
result, approaches such as hierarchical architectures, local convolutions, patching mechanisms, or
auxiliary losses, are necessary to bring down the effective sequence lengths (Al-Rfou et al., 2019;
Clark et al., 2022; Yu et al., 2023; Pagnoni et al., 2024). However, these come at the cost of added
complexity and still substantially higher computational requirements (Xue et al., 2022; Nawrot
et al., 2022). Consequently, tokenization-based models currently remain more compute-efficient, and
more practical in general. With STOCHASTOK we enable models to get the benefits of byte-level
understanding without needing to move to an alternate framework.

9 DISCUSSION AND FUTURE WORK

While there are adoption costs with any changes to the LLM pipeline, STOCHASTOK minimizes
these through its simplicity, wide compatibility, and demonstrated ability to be applied to existing
pretrained models. Looking ahead, a valuable addition would be to apply STOCHASTOK ’s on a
larger scale to investigate other potential benefits, such as greater robustness to spelling mistakes and
other general improvements. In this paper, we focus only on English, and it would also be interesting
to explore the effect of STOCHASTOK on languages with different alphabets, structure, and levels
of morphology. Finally, combining STOCHASTOK with recent orthogonal advances in tokenization,
such as Liu et al. (2025), represents another promising direction for future research.

10 CONCLUSION

Our experiments demonstrate that incorporating STOCHASTOK at any stage of training dramatically
enhances language models’ ability to represent subword-level structures central to human language
perception. Tokenization has recently received less attention than other methods, such as finetuning
and prompting techniques, since its position at the start of the pretraining pipeline often makes
experimentation prohibitively expensive. Our work shows that tokenization modifications can be
exceptionally effective, not only at the pre-training stage but also in the continued pre-training
and post-training stages. Our efficient, cheap changes can help fix pervasive idiosyncrasies and
lead to significant improvements in language understanding. Given the stark performance benefits
demonstrated here, we are excited to assess the impact of STOCHASTOK on more challenging tasks
such as coding, algebra, or scientific reasoning when applied to more capable models. We hope our
work encourages renewed exploration of tokenization schemes to bridge the gap between human and
machine language perception.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024. 2

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023. 1

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level
language modeling with deeper self-attention. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3159–3166, 2019. 9

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023. 2

Jonathan H Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an efficient
tokenization-free encoder for language representation. Transactions of the Association for Compu-
tational Linguistics, 10:73–91, 2022. 9

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. 19

Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Trans. Algorithms, 2002. 8

AP Dempster, NM Laird, and DB Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society: series B (methodological), 1977. 2

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024. 1, 2

Lukas Edman, Helmut Schmid, and Alexander Fraser. Cute: Measuring llms’ understanding of their
tokens. arXiv preprint arXiv:2409.15452, 2024. 2, 5, 8, 17

Tairan Fu, Raquel Ferrando, Javier Conde, Carlos Arriaga, and Pedro Reviriego. Why do large
language models (llms) struggle to count letters? arXiv preprint arXiv:2412.18626, 2024. 8

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. 19

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024. 2

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 2

Dylan Hillier, Leon Guertler, Cheston Tan, Palaash Agrawal, Chen Ruirui, and Bobby Cheng. Super
tiny language models. arXiv preprint arXiv:2405.14159, 2024. 4, 6, 17, 19

Tatsuya Hiraoka. Maxmatch-dropout: Subword regularization for wordpiece. arXiv preprint
arXiv:2209.04126, 2022. 8

Tatsuya Hiraoka, Hiroyuki Shindo, and Yuji Matsumoto. Stochastic tokenization with a language
model for neural text classification. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 1620–1629, 2019. 8

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024. 1, 6

Itay Itzhak and Omer Levy. Models in a spelling bee: Language models implicitly learn the character
composition of tokens. arXiv preprint arXiv:2108.11193, 2021. 8

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024. 1

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. 2

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt. 6, 19, 20

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/. 6

Ayush Kaushal and Kyle Mahowald. What do tokens know about their characters and how do they
know it? arXiv preprint arXiv:2206.02608, 2022. 8

Taku Kudo. Subword regularization: Improving neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, pp. 66–75, 2018. 2, 3

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023. 2, 6, 18

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A Smith, and Yejin Choi.
Superbpe: Space travel for language models. arXiv preprint arXiv:2503.13423, 2025. 9

Raja Marjieh, Veniamin Veselovsky, Thomas L Griffiths, and Ilia Sucholutsky. What is a number,
that a large language model may know it? arXiv preprint arXiv:2502.01540, 2025. 8

Piotr Nawrot, Jan Chorowski, Adrian Łańcucki, and Edoardo M Ponti. Efficient transformers with
dynamic token pooling. arXiv preprint arXiv:2211.09761, 2022. 9

Keita Nonaka, Kazutaka Yamanouchi, Tomohiro I, Tsuyoshi Okita, Kazutaka Shimada, and Hiroshi
Sakamoto. A compression-based multiple subword segmentation for neural machine translation.
Electronics, 2022. 8

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024. 9

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG. 6, 19

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.
6

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. Bpe-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 1882–1892, 2020. 1, 2, 3

11

https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019. 7

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
19

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152, 2012. 8, 14

Steven Scott. Bayesian methods for hidden markov models. Journal of the American Statistical
Association, 2002. 9

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, pp. 1715–1725, 2016. 1, 2

Andrew Shin and Kunitake Kaneko. Large language models lack understanding of character compo-
sition of words. arXiv preprint arXiv:2405.11357, 2024. 8

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 1

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024. 2

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 1967. 2, 9

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. Transactions
of the Association for Computational Linguistics, pp. 377–392, 2020. 19

Nan Xu and Xuezhe Ma. Llm the genius paradox: A linguistic and math expert’s struggle with simple
word-based counting problems. arXiv preprint arXiv:2410.14166, 2024. 8

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Transactions of the Association for Computational Linguistics, 10:291–306, 2022. 9

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024. 2

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36:78808–78823, 2023. 9

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019. 19

Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact of
tokenization. arXiv preprint arXiv:2410.19730, 2024. 6, 8

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

TABLE OF CONTENTS

A Tokenizers 14

A.1 BPE Tokenization . 14

A.2 Unigram Tokenization . 14

A.3 STOCHASTOK Tokenization - Pseudocode . 14

A.4 STOCHASTOK Tokenization - Another Illustrative Example 15

B Language Game and Math Datasets 16

B.1 LangGame . 16

B.2 CUTE Benchmark . 17

B.3 Multi-Digit Addition . 18

C Training Setups 19

C.1 50M Parameter Model Setup . 19

C.2 275M Parameter Model Setup . 19

C.3 GPT-2 Continued Pretraining Setup . 19

D Analysis Details 21

D.1 Different Prompt Completions Setup . 21

D.2 Embedding Visualization Setup . 21

D.3 Distance Over Layers Visualization Setup . 21

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TOKENIZERS

A.1 BPE TOKENIZATION

Construction
The tokenizer is constructed by initializing the vocabulary as individual characters and then iteratively
adding the most frequent adjacent token pair in the ‘training dataset’ until the desired vocabulary size
is reached. This yields a vocabulary and a hierarchy of merge rules.

Encoding
The dataset is initially tokenized as individual characters. Pairs of tokens are then merged according
to the hierarchy of merge rules until there are no more merges available.4

Decoding
The text strings corresponding to each token ID are simply looked up and joined together.

A.2 UNIGRAM TOKENIZATION

Construction
In contrast to BPE, Unigram starts with a large candidate vocabulary of possible subword units
and removes elements to get down to the desired vocabulary size. Tokens are removed from the
vocabulary by modeling the dataset as a Unigram model and removing the token that results in the
smallest increase in log-likelihood of the dataset considering all possible tokenizations. This relies
on using the Viterbi algorithm to compute probabilities of all possible tokenizations. It also relies
on using the Expectation-Maximization (EM) to optimize the vocabulary and the probability of the
dataset simultaneously. The result is a vocabulary and corresponding probabilities of each token (i.e.,
a Unigram model of the dataset).

Encoding
All possible tokenizations are considered, and the one with the highest probability under the unigram
model is chosen. This involves using the Viterbi algorithm to find the highest probability tokenization.

Decoding
Same as BPE: The text strings corresponding to each token ID are simply looked up and joined
together.

A.3 STOCHASTOK TOKENIZATION - PSEUDOCODE

Algorithm 1 STOCHASTOK: Construction of splits

1: Require: Tokenizer (e.g. tiktoken’s GPT-2 tokenizer)
2: V ← Tokenizer vocabulary
3: splits← {} Initialize an empty dictionary
4: for each token s in V do
5: t← encode(s) Get the token id
6: splits[t]← [] Initialize empty list for this token
7: for each possible split index i from 1 to len(s)− 1 do
8: s1, s2 ← s[: i], s[i :] Split string s into two substrings
9: if s1 and s2 in V then

10: t1, t2 ← encode(s1), encode(s1) If both substrings are in the vocab
11: splits[t].append((t1, t2)) Add this possible split
12: end if
13: end for
14: end for

4WordPiece (Schuster & Nakajima, 2012) can be seen as a variant of BPE with merges during encoding
chosen by token length rather than the original merge rules.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 STOCHASTOK: Tokenization

1: Require: Tokenizer
2: Require: text: The input text to tokenize
3: Require: splits: Dictionary of possible splits for each token
4: Require: expand_prop: Expansion proportion (e.g. = 0.01)
5: tokenized← Tokenizer(text) Apply standard tokenization
6: num_to_expand← len(tokenized) ∗ expand_prop
7: for _ in 1 · · · num_to_expand do
8: i← randomInteger(1, len(tokenized)) Choose a random position
9: t← tokenized[i]

10: if t in splits and splits[t] not empty then
11: (t1, t2)← randomChoice(splits[t]) Replace with a random split
12: tokenized← tokenized[1 : i− 1] + [t1, t2] + tokenized[i+ 1 :]
13: end if
14: end for
15: return: tokenized

A.4 STOCHASTOK TOKENIZATION - ANOTHER ILLUSTRATIVE EXAMPLE

Example vocabulary of base tokenizer:

vocabulary = [_, h, u, g, b, m, hu, ug, hug, bug]

Build token_splits which, for each token, contains a list of all possible pairs of component
tokens that are themselves in the vocabulary.

token_splits = {

ug:[(u,g)],

hu:[(h,u)],

hug:[(h,ug),(hu,g)],

bug:[(b,ug)],

ugs:[(ug,s)]

}

Examples of possible expansions:

original: [hug] → all possible expansions: [hu g], [h ug], [h u
g]

original: [bug] → all possible expansions: [b ug], [b u g]

original: [m ug] → all possible expansions: [m u g]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B LANGUAGE GAME AND MATH DATASETS

In this section, we provide details of each of the three evaluation datasets: LangGame, CUTE, and
multi-digit addition.

B.1 LANGGAME

We create a new benchmark, ‘LangGame,’ to test subword-level understanding in LLMs. LangGame
is a multiple-choice based dataset, allowing for easy evaluation, and it is suitable for small models.
Here, we describe its construction in detail. The language game consists of six types of questions:

1. Which word has the most letter ‘#’s?

2. Which word contains ‘#’s?

3. Which word starts with ‘#’s?

4. Which word ends with ‘#’s?

5. Which word is longest?

6. Which word is shortest?

We include multiple phrasings for each type of question by constructing the question with a template
and randomly replacing the placeholders.

Question template:

"<WHICH><WORD> <question>? <THE><OPTIONS><ARE>: <options>. Answer:
<answer>."

Synonyms for placeholders:

<WHICH>: ["Which", "What"]

<WORD>: [" word", "", " string", " option", " choice", " option word",
" option string"]

<THE>: ["The", "The possible", "The available"]

<OPTIONS>: [" options", " choices", " option words", " option strings"]

<ARE>: [" are", ""]

This results in 2× 7× 3× 4× 2 = 336 possible phrasings for each question.

Question strings are then chosen from:

"has the most letter ’<AUX>’s?",

"contains ’<AUX>’",

"starts with ’<AUX>’",

"ends with ’<AUX>’",

"is the longest",

"is the shortest",

Option words and answers are sampled randomly from the top 1k English words, and sub-strings for
the "contains", "starts with", and "ends with" question types are sampled randomly from
the answer with length ≥ 1 and ≤ the answer length, and we generate 10k train and 1k validation
examples. For the experiments in Figure 6, for the train and validation sets, substring lengths are ≥
half the answer word length, and for the holdout set, substring lengths are < half the answer word
length. An example of each type of question is given in Table 1.

We evaluate accuracy based on whether the probability of the correct option is the highest compared
to all the alternative options in the question, but additionally when looking at generations, we find
that the STOCHASTOK-finetuned models generate the correct answer over all other possible next
tokens.

16

https://github.com/powerlanguage/word-lists/blob/master/1000-most-common-words.txt

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 CUTE BENCHMARK

We also evaluate on the Character-level Understanding of Tokens Evaluation (CUTE) benchmark (Ed-
man et al., 2024). CUTE contains 14 question types:

Task Question Answer

1 Spelling Spell out the word: there t h e r e
2 Inverse Spelling Write the word that is spelled out (no spaces): t h e r e there
3 Contains Char Is there a ‘c’ in ‘there’? No
4 Contains Word Is there ‘the’ in ‘the sky is blue’? Yes
5 Orthographic Closer in Levenshtein distance to ‘happy’: glad or apply? apply
6 Semantic More semantically related to ‘happy’: glad or apply? glad
7 Char Insertion Add ‘b’ after every ‘e’ in ‘there’ thebreb
8 Word Insertion Add ‘is’ after every ‘the’ in ‘the sky is blue’ the is sky is blue
9 Char Deletion Delete every ‘e’ in ‘there’ thr

10 Word Deletion Delete every ‘the’ in ‘the sky is blue’ sky is blue
11 Char Substitution Replace every ‘e’ with ‘a’ in ‘there’ thara
12 Word Substitution Replace every ‘the’ with ‘is’ in ‘the sky is blue’ is sky is blue
13 Char Swapping Swap ‘t’ and ‘r’ in ‘there’ rhete
14 Word Swapping Swap ‘the’ and ‘is’ in ‘the sky is blue’ is sky the blue

Table 2: Examples of the CUTE benchmark of language composition, similarity, and manipulation tasks.

We use the eight subword-level question types (types 1, 2, 3, 5, 7, 9, 11, and 13). The original
benchmark was designed for zero-shot evaluation of full-scale industrial models, and hence, it only
includes a test set. To evaluate our smaller pre-instruction finetuning models, we require additional
training examples for finetuning, hence we generate more questions for each of the eight types. We
generate questions by randomly sampling words from the top 1k English words. Consistent with the
multiple-choice format of the open-source baseline code (Hillier et al., 2024), we also create incorrect
answer options. For questions where the answer is an option in the question (question types 3 and 5),
the incorrect options are the other options in the question (e.g., Yes/No). For questions where the
answer is a word (question type 2), the incorrect options are other randomly sampled words from the
other top 1k English words. Finally, for the remaining question types where the answer is a sequence
of letters (question types 1, 7, 8, 11, 13), the incorrect options are generated by substituting and
reordering letters in the correct answer. Results on each of the individual CUTE tasks over training
are shown in Figure 14.

17

https://github.com/powerlanguage/word-lists/blob/master/1000-most-common-words.txt

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 14: Performance on each of the tasks within the CUTE benchmark over training. (Accuracy normalized
so that random guessing is zero.)

B.3 MULTI-DIGIT ADDITION

For the multi-digit addition experiments, we sampled pairs of integers up to 1000. The answer
is reversed as per the procedure in Lee et al. (2023), and we then train on a stream of exam-
ples, e.g., ‘$ 151+687=838 $ 328+869=7911 $ 752+917=9661 $ 747+303=0501
$ 857+579=6341 $...’ with the setup described in Section C.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C TRAINING SETUPS

In this section, we provide full details of the training setups used in the paper. For STOCHASTOK’s
hyperparameter p, we find that careful tuning is not required and that any value between 0.01 and
0.2 gives good performance. Throughout the paper, we show results with p = 0.1 (and also include
p = 0.05 in some places as effectively an extra seed). For BPE-dropout, we use p = 0.1 as suggested
in the original paper.

C.1 50M PARAMETER MODEL SETUP

We build on the baseline 50M-parameter model setup in the open-source SuperTinyLanguageModels
repo (Hillier et al., 2024), which is trained on the OpenWebText dataset (Gokaslan & Cohen, 2019) and
uses the GPT-2 BPE tokenizer from the tiktoken5 library. The pretraining benchmarks evaluated
on (see Figure 3) are ARC (Clark et al., 2018), Blimp (Warstadt et al., 2020), HellaSwag (Zellers
et al., 2019), Winograd (Sakaguchi et al., 2021). The full set of hyperparameters for pretraining are
given in Table 3.

Model
number of layers 8
ffn type SwiGLU
ffn dimension 1320
number of attention heads 16
group size 4
hidden dim 512
tokenizer type gpt2
vocab_size 50257
max context window 512
positional_encoding_type RoPE

Training
batch_size 480
total iterations 30000
warmup iterations 5000
dropout 0.1

Optimizer
optimizer AdamW
lr 6.0e-04
min_lr 6.0e-05
lr_scheduler Cosine
weight_decay 0.1

Table 3: The baseline setup as in Hillier et al. (2024)—a 50M-parameter transformer LLM.

For fine-tuning (as in Figure 4), we train for a further 3k iterations with a learning rate of 1.0e-04 on
the LangGame or CUTE datasets. For continued pretraining (as in Figure 9) we similarly train for a
further 3k iterations with learning rate 1.0e-04 on OpenWebText.

C.2 275M PARAMETER MODEL SETUP

For the 275M parameter model, we follow Jordan et al. (2024a), training on FineWeb (Penedo et al.,
2024) with the hyperparameter setup given in Table 4.

C.3 GPT-2 CONTINUED PRETRAINING SETUP

We initialize the model from the publicly available pretrained weights and architecture on Huggingface
at https://huggingface.co/openai-community/gpt2. For the continued pretraining,
we train for 7k steps with a constant learning rate of 1.0e − 4 and a batch size of 128. For the
finetuning on LangGame tasks presented in Figure 10, we finetune for 2k steps, again with a constant
learning rate of 1.0e− 3 and a batch size of 512.

5github.com/openai/tiktoken

19

https://huggingface.co/openai-community/gpt2
https://github.com/openai/tiktoken

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Model
number of layers 12
ffn type ReLU
ffn dimension 768
number of attention heads 6
head dimension 128
tokenizer type gpt2
vocab_size 50257
max context window 1024
positional_encoding_type RoPE

Training
batch size 384
total iterations 60000
cooldown frac 0.4

Optimizer
weights optimizer Muon
head, embeddings, biases optimizer AdamW
head lr 0.044
embeddings lr 0.12
biases lr 0.008
weights lr 0.01

Table 4: The baseline setup as in Jordan et al. (2024a)—a 275M-parameter transformer LLM. The changes made
to the baseline are training for 60k iterations (as opposed to the 1770 iterations of the original baseline, since the
baseline config was set up as a demo) and reducing all the learning rates by a factor of 5 (needed to stabilize
training of all models when training for longer).

Figure 15: Training loss on OpenWebText during continued pretraining for the 50M STLM base model and
GPT-2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ANALYSIS DETAILS

In the following section, we provide additional details and results of the visualizations in Section 7.

D.1 DIFFERENT PROMPT COMPLETIONS SETUP

Further examples of completions from multiple different tokenizations of the same prompts are given
in Figure 16. The prompts are generated by GPT-4o. We find that the deterministic tokenization-
trained model is very sensitive to prompt tokenization and quickly breaks down when given alternative
tokenizations of the same prompt. By contrast, the STOCHASTOK-trained model is much more robust
to prompt tokenization.

D.2 EMBEDDING VISUALIZATION SETUP

As described in the main text, the activations for a word are taken as the residual stream activations
after the final transformer layer. If the word is tokenized into multiple tokens, we use the position
of the final token. We use the standard procedure of normalizing to zero mean and unit standard
deviation before fitting the PCA model.

D.3 DISTANCE OVER LAYERS VISUALIZATION SETUP

In Figure 13, we plot the mean distance between embeddings of different tokenizations of the same
word over the layers of the model. For normalization to allow comparison between different models,
we first normalize all embeddings to have unit length. We then evaluate the average distance between
embeddings for pairs of different words in the model, and we divide by this average distance metric.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 16: Example responses with different tokenizations.

22

	Introduction
	Background
	StochasTok
	Pretraining with StochasTok Enables Success in Language Games
	StochasTok Enables LLMs to Grok Math Tasks
	StochasTok Can Instill Subword Understanding Into Existing Pretrained Models
	Analysis
	Related Work
	Discussion and Future Work
	Conclusion
	Tokenizers
	BPE Tokenization
	Unigram Tokenization
	StochasTok Tokenization - Pseudocode
	StochasTok Tokenization - Another Illustrative Example

	Language Game and Math Datasets
	LangGame
	CUTE Benchmark
	Multi-Digit Addition

	Training Setups
	50M Parameter Model Setup
	275M Parameter Model Setup
	GPT-2 Continued Pretraining Setup

	Analysis Details
	Different Prompt Completions Setup
	Embedding Visualization Setup
	Distance Over Layers Visualization Setup

