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ABSTRACT

Subword-level understanding is integral to numerous tasks, including understand-
ing multi-digit numbers, spelling mistakes, abbreviations, rhyming, and wordplay.
Despite this, current large language models (LLMs) still struggle disproportionally
with simple subword-level tasks like How many ‘r’s in ‘strawberry’?. A key factor
behind these failures is tokenization which obscures the fine-grained structure
of words. Current alternatives, such as character-level and dropout tokenization
methods, significantly increase computational costs and provide inconsistent im-
provements. In this paper we revisit tokenization and introduce STOCHASTOK, a
simple, efficient stochastic tokenization scheme that randomly splits tokens during
training, allowing LLMs to ‘see’ their internal structure. Our experiments show
that pretraining with STOCHASTOK substantially improves LLMs’ downstream
performance across multiple subword-level language games, including character
counting, substring identification, and math tasks. Furthermore, STOCHASTOK’s
simplicity allows seamless integration at any stage of the training pipeline; and we
demonstrate that post-training with STOCHASTOK can instill improved subword un-
derstanding into existing pretrained models, thus avoiding costly pretraining from
scratch. These dramatic improvements achieved with a minimal change suggest
STOCHASTOK holds exciting potential when applied to larger, more capable mod-
els. Code open-sourced at: anonymous.4open.science/r/stochastok.

1 INTRODUCTION

Large language models (LL.Ms) have achieved remarkable progress on a wide range of tasks (Achiam
et al., 2023; Team et al., 2023; Dubey et al., 2024). However, their reliance on tokenization (Sennrich
et al., 2016) obscures how humans naturally perceive language. For example, while humans see
‘book’ and ‘cook’ as differing by a single letter, when training LLMs, we always treat these words
as distinct token IDs'. This makes subword-level tasks such as How many ‘r’s in ‘strawberry’?
difficult, even for current state-of-the-art LLMs. Whilst some advanced reasoning models, such as
OpenATl’s ol (Jaech et al., 2024), have recently started to show promise, it has required a vast increase
in model size and training complexity that seems disproportionate to the simplicity of such questions.
In the arts, this shortcoming impacts wordplay, rhyming, and understanding etymology, while in
the sciences, it is needed for handling multi-digit numbers, chemical formulae, and mathematical
equations. Moreover, these failures highlight a fundamental inability of LLMs to understand how
humans perceive language, an essential aspect of effective communication with humans.

This limitation in standard tokenizers has motivated research into stochastic tokenization, where
‘stochastic tokenization’ refers to methods in which the same text may be encoded as multiple possible
token sequences. A well-known existing method is BPE-dropout (Provilkov et al., 2020), which
adds randomness by skipping BPE merge steps. In this work, we propose a simpler, more flexible,
and more effective alternative: rather than modifying the original tokenization process, we instead
allow LLMs to directly ‘see’ inside tokens by randomly splitting them into equivalent pairs of smaller
tokens with some small probability.

Our experiments show that adding this minimal additional preprocessing step significantly alters the
model’s representations, allowing them to capture subtoken-level morphological structure. Compared

1e.g., ‘book’=3092 and ‘cook’=171691 in the GPT-40 and GPT-40 mini models (Hurst et al., 2024).
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to prior stochastic tokenization methods (Provilkov et al., 2020; Kudo, 2018), we find STOCHASTOK
to be significantly more effective, while also having strong practical advantages of being faster,
simpler, compatible with any base tokenizer, and applicable post-hoc to existing pretrained models.

We demonstrate three main results. Firstly, language models pretrained with STOCHASTOK quickly
adapt to near-perfect accuracy on several language game tasks (such as “Which word has the most
e’s?” or ‘Which word is the shortest?’), while models pretrained with deterministic tokenization
or BPE-dropout struggle (see Figure 1). We test this on two sets of language game tasks: (1)
LangGame - our novel set of subword understanding tasks, and (2) the CUTE benchmark of language
manipulation tasks (Edman et al., 2024). Secondly, we show that STOCHASTOK enables models
to grok multi-digit addition, a dramatic change in learning behavior compared to BPE-dropout or
deterministically trained models (Lee et al., 2023). Thirdly, since STOCHASTOK is compatible
with existing pretrained models, we demonstrate that it can be used to ‘retrofit’ larger existing
pretrained models with improved subword understanding, thus mitigating the need to pretrain from
scratch. In summary, STOCHASTOK provides a stark performance improvement with minimal cost
or implementation changes, and we believe our results at the modest scale have potential for major
impact on LLM ability when used to pretrain or finetune larger, more capable models.

2 BACKGROUND

Tokenization (Sennrich et al., 2016)—the process of converting raw text into tokens—serves two
essential roles in the LLM pipeline. Firstly, it converts text into a sequence of integers to enable
processing by the LLM. Secondly, it compresses sequences of characters into shorter sequences of
tokens, which increases both performance and computational efficiency.

Standard Deterministic Tokenization. A tokenizer consists of two main components: a vo-
cabulary, and an encoding function for converting text into a sequence of token IDs. The decod-
ing procedure shared by all tokenizers simply maps token IDs back to text strings. For instance,
with vocabulary {0:The,1:_c,2:at,3:_s, ...}, the sequence [0,1,2,3,2] decodes to
‘The_cat_sat’.

The main tokenizers are Byte-Pair Encoding (BPE; Sennrich et al. (2016)) and Unigram (Kudo,
2018). BPE is constructed by starting with individual character tokens and iteratively merging
the most frequent adjacent token pairs in a training dataset, yielding a fixed-size vocabulary and a
hierarchical set of merge rules. For encoding, text is initially split into character-level tokens, and
the merge rules are applied repeatedly until no further merges are possible. In contrast, Unigram
starts with a large candidate vocabulary and iteratively prunes tokens that least increase the dataset’s
log-likelihood under a unigram model, using the Viterbi (Viterbi, 1967) and EM (Dempster et al.,
1977) algorithms to compute and optimize token probabilities. For encoding, the tokenization with
the highest probability under the learned unigram model is selected using the Viterbi algorithm. BPE
is currently the choice of most SOTA LLMs (Groeneveld et al., 2024; Dubey et al., 2024; Team et al.,
2024; Jiang et al., 2023; Abdin et al., 2024; Guo et al., 2025; Yang et al., 2024; Biderman et al., 2023)
due to having much lower memory requirements than Unigram.

Stochastic Tokenization. BPE and Unigram are deterministic tokenizers, meaning the same
input text always produces the same tokenization. We define stochastic tokenization as
any tokenizer whose encoding function may produce multiple alternative tokenizations for
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the same input. With vocab={0:e, 1:x, 2:a, 3:m, 4:p, 5:1, 6:exam, 7:ple,
8:example}, for example, the word ‘*example’ might be mapped to any of [8], [6,7],
(0,1,2,3,4,5,0], etc., since the decoding procedure (identical to deterministic tokeniz-
ers)will map each of these back to the text *example’.

The two main prior stochastic tokenization methods are Subword Regularization and BPE-dropout.
Subword Regularization (Kudo, 2018) extends Unigram by sampling from alternative tokenizations
according to learned unigram model probabilities. However, this adds complexity and computa-
tional overhead to the already expensive Unigram procedure, and introduces intricacies involving
overlapping candidates, beam tuning, and numerical stability. BPE-dropout (Provilkov et al., 2020)
introduces stochasticity by randomly omitting some merge operations of BPE during encoding.
Unfortunately, this results in a different vocabulary from the original BPE tokenizer,? preventing easy
application to pretrained models. It also incurs additional drawbacks such as higher computational
costs, unwanted tokenization dependence on text length, and is only compatible with BPE. In our
experiments we therefore compare to BPE, the defacto standard in SOTA LLMs, and BPE-dropout,
the only prior BPE-compatible stochastic variant (see Section 8).

3 STOCHASTOK

Different possible tokenizations for the same text using STOCHASTOK:

text="An example sentence’

vocab={An, _example, _sentence, A, n, _exam, ple, ex, ample, amp, le, _sent, _se, nt,
ence ...}
Random seed 1 Random seed 2 Random seed 3
Initial tokenization: [ An example sentence ] [ An example sentence ] [ An example sentence ]
VN Y N
After 1 expand step: [ An example sentence ] [ An example sentence ] [ An example sentence ]
AS Y /1
After 2 expand steps: [ An example sentence ] [ An example sentence ] [ An example sentence ]

Underlined denotes the token sampled for expansion. Bold denotes the equivalent pair of tokens after expansion.

Figure 2: STOCHASTOK involves iteratively sampling tokens to ‘expand’ into equivalent pairs of tokens in
the vocabulary, resulting in multiple possible tokenizations for the same text. The exposure to alternative
tokenizations enables LLMs to naturally learn about the fine-grained subtoken-level morphological composition
of tokens.

In this section, we describe STOCHASTOK, a simple, lightweight, stochastic tokenization scheme
that, unlike prior work, is compatible with any base tokenizer or pretrained model.

STOCHASTOK involves two steps:

1. Tokenize with the base tokenizer to get a list of token_ids.

2. Tteratively apply ‘expand’ steps in which a token is sampled at random and (if possible) split
into a pair of equivalent tokens in the vocabulary (as depicted in Figure 2). This is repeated
for p- len (token_ids) iterations, where p is a hyperparameter.

In Step 2, if no equivalent pairs of tokens exist for the sampled token (e.g., if the token is already
a single character), then the expand step is skipped. Full pseudocode is given in Section A.3, and
further illustrative examples in Section A.4. Through this repeated token re-segmentation the model
is exposed to many alternative tokenizations; for example, the word [example] may appear in the
dataset as any of: [example], [exam|ple], [ex|ample], [ex|am|ple], [e|x|am|ple], etc,
thus allowing it to learn the fine-grained structure of words.

’In BPE, intermediate tokens not present in the final tokenized training dataset are removed from the
vocabulary, meaning BPE-dropout can produce tokens outside the original vocabulary.
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STOCHASTOK has several practical advantages:

* Cheap and efficient. STOCHASTOK is considerably cheaper than existing methods both
in terms of memory and compute. Rather than re-tokenizing from scratch, data can be
tokenized once and cheaply expanded for varying numbers of ‘expand steps’ to achieve
different levels of stochasticity.

* Compatible with any tokenizer. Unlike BPE-dropout or Subword Regularization,
STOCHASTOK can be applied to any base tokenizer (BPE, Unigram, WordPiece, etc.)
without requiring any knowledge of the base tokenizer itself.

* Extremely simple. STOCHASTOK is simply a lightweight post-processing step after tok-
enization. Everything else—including the training loop—remains unchanged.

* Preserves original vocabulary. Perhaps most significantly, STOCHASTOK maintains the
original tokenizer vocabulary, thus allowing straightforward application to any stage of
the LLM pipeline. In Section 4, for example, we apply STOCHASTOK during pretraining
and switch it off seamlessly for downstream finetuning, while in Section 6, we apply
STOCHASTOK after pretraining to instill subword understanding into existing pretrained
models.

* Robust to hyperparameter choice. STOCHASTOK is robust to hyperparameter choice (see
Figure 5) and hence does not require careful tuning. By default we use p = 0.1, and show
similar effectiveness with p = 0.05 and other values.

In the following sections, we demonstrate STOCHASTOK’s empirical advantages. Firstly, we show
that pretraining with STOCHASTOK dramatically improves downstream performance on language
game tasks, while being (a) extremely robust to hyperparameter choice and (b) exhibiting out-
of-distribution generalization properties (Section 4). Next, we examine math tasks and find that
models trained with STOCHASTOK quickly grok multi-digit addition—and moreover generalize to
unseen test tokenization schemes—whereas models trained with existing tokenizers struggle, even
when tested with the matching tokenizer (see Section 5). We then apply STOCHASTOK to existing
pretrained models and demonstrate that it can be used to ‘retrofit’ improved subtoken understanding
into larger deterministically pretrained models (Section 6). Finally, we provide insights into the
internal mechanisms of STOCHASTOK-trained models compared to models trained with standard
tokenization (Section 7).

4 PRETRAINING WITH STOCHASTOK ENABLES SUCCESS IN LANGUAGE
GAMES

Setup. In this section, we look at the effect of STOCHASTOK when applied during pretraining.
We build on the baseline open-source setup of Hillier et al. (2024) (a 50M-parameter model, using
GPT-2 BPE tokenizer, trained on the OpenWebText dataset—see Section C.1 for full details). We
compare four models: (1) Pretrained with standard deterministic tokenization, (2) Pretrained with
STOCHASTOK, (3) Pretrained with BPE-dropout, and (4) No pretraining. Firstly, in Figure 3, we
verify that STOCHASTOK requires no compromise in original language modeling performance (see
Section C.1 for benchmark details).
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Figure 3: We first verify that STOCHASTOK does not compromise test performance across a wide variety of
standard language understanding benchmarks.
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Task Question Answer
1 Letter Which word has the most letter ‘n’s? The options are: [ reason, step, continent, their]. continent
2 Contains ‘Which choice contains ‘ec’? The option words are: [ was, children, require, check]. check
3 Starts ‘Which option string starts with ‘mo’? The available options: [ case, ask, month, event]. month
4 Ends What option word ends with ‘ad’? The option words are: [ cost, lead, south, sun]. lead
5  Longest Which string is the longest? The available choices: [ wild, dear, had, section]. section
6 Shortest Which is the shortest? The possible option words: [ thought, job, circle, nothing]. job

Table 1: We introduce ‘LangGame,” a novel dataset consisting of six question types testing fine-grained subword-

level understanding.

Performance on Language Game Tasks. We
now finetune each of the base models above on
two sets of language game tasks: (1) LangGame,
and (2) CUTE. LangGame is a novel dataset
consisting of six different tasks, including iden-
tifying word lengths, substrings, and individual
letters. Examples are shown in Table 1, and
additional detail is given in Section B.1. The
CUTE benchmark contains further language ma-
nipulation tasks (Edman et al., 2024) (see Sec-
tion B.2 for examples). Critically, each model
is finetuned identically, using deterministic
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Figure 4: Pretraining with STOCHASTOK enables sig-
nificantly higher performance on the CUTE language
manipulation tasks (in addition to the LangGame tasks—
see Figure 1). (For ‘normalized accuracy,” 0 is random

BPE tokenization. guessing and 1 is perfect.)

Figure 1 shows performance on the LangGame questions. We observe that the models pretrained with
STOCHASTOK quickly achieve near-perfect accuracy, while the models pretrained with deterministic
tokenization or no pretraining are unable to reach high accuracy. This suggests that, as well as
the token-level structure learned with deterministic tokenization, STOCHASTOK enables models
to additionally capture subtoken-level fine-grained morphological structure. The prior method of
BPE-dropout gives some of the benefits of stochastic tokenization, but still performs significantly
worse than STOCHASTOK, in addition to being significantly more complex. In Figure 4, we see that
STOCHASTOK gives a similar stark performance difference on the CUTE language manipulation
benchmark, thus giving further evidence that STOCHASTOK significantly changes the representations
of the model to enable fine-grained character-level manipulation.

Robust to Hyperparameter Choice and OOD Questions. In addition to significant performance
increases on both language game benchmarks, we find that the benefits of stochastic tokenization
are robust over an order of magnitude range of the hyperparameter (see Figure 5). Furthermore,
we find that this skill is learned in a way that enables the model to generalize to a set of holdout
language game question types in which the train/validation questions all involve identifying sub-
strings/prefixes/suffixes where the substring/prefix/suffix is always less than or equal to half the
answer length, while in the holdout set the substring/prefix/suffix is always longer than half the
answer length. In Figure 6, we observe that models pretrained with stochastic tokenization gen-
eralize near-perfectly while the deterministic tokenization-pretrained equivalent has a significant
generalization gap in addition to a much lower in-distribution performance.
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Figure 6: Models pretrained with STOCHASTOK successfully gen-
eralize to out-of-distribution language game questions, while those
pretrained deterministically exhibit a significant generalization gap
(and a much lower in-distribution performance).
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Transfers to Larger Models. Next, we

verify that these findings transfer to larger Y e gl T T pretraining Tokenizer
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and a different optimizer (Muon Jordan
et al. (2024b)). In Figure 7, we see that
STOCHASTOK gives a similar performance Figure 7: STQCHASTOK also enables improved LangGame
benefit in this larger setting, suggesting that Performance in larger models.

STOCHASTOK scales to larger models.
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5 STOCHASTOK ENABLES LLMS TO GROK MATH TASKS
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Figure 8: STOCHASTOK allows models to grok multi-digit addition. Unlike training with character-level or
deterministic BPE tokenizers, training with STOCHASTOK achieves near-perfect validation accuracy even when
tested with questions tokenized with methods not seen during training.

In addition to language game-type tasks, tokenization also poses difficulties in learning math, due to
obscuring the relation between numbers, for example in GPT-4o0 (Hurst et al., 2024), the numbers
2’, 207, 200°, ‘201° are tokenized as 17, 455, 1179, 667 respectively. This poses such a
significant additional difficulty for language models that prior works commonly use tricks like adding
‘s between every character (to force tokenization to keep each digit separate), or using custom
character-level tokenizers for digits to sidestep the issue (Zhang et al., 2024; Power et al., 2022; Lee
et al., 2023).

We hypothesize that since STOCHASTOK improves sub-token level awareness, it may also help in
learning multi-digit math tasks. To test this, we train on the task of multi-digit addition starting from
the SOM-parameter setup in Hillier et al. (2024). Examples of the questions are given in Section B.3.
We compare the performance of models trained with: (1) standard deterministic tokenization, (2)
BPE-dropout, (3) STOCHASTOK, and (4) character-level tokenization. In Figure 8, for each of the
four models we plot the accuracy with the question tokenized with each of the four methods.

In Figure 8 left, we see—as expected—that the character-level-trained model quickly achieves near-
perfect accuracy when the questions are tokenized character-wise (and gets near-zero accuracy when
the questions are tokenized differently). In Figure 8 middle-left and middle-right, we see that the
models trained with standard deterministic tokenization and BPE-dropout struggle to grok the task,
appearing to slowly learn examples with the accuracy increasing linearly, even with the matching
question tokenization. By contrast, in Figure 8 right, the model trained with STOCHASTOK
quickly groks the task and reaches near-perfect accuracy, not just when the question is tokenized
with the matching tokenizer, but also when the question is tokenized with any of the other
three tokenizers that were unseen during training. This suggests that STOCHASTOK significantly
enhances a model’s ability to understand relationships between multi-digit numbers.
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6 STOCHASTOK CAN INSTILL SUBWORD UNDERSTANDING INTO EXISTING
PRETRAINED MODELS

Pretraining is often prohibitively expensive. In this section, we therefore investigate whether
STOCHASTOK can be used to instill improved subword understanding into models that have already
been pretrained with an alternative tokenization method, offering a more cost-effective alternative to
full retraining from scratch. For our first experiment, we start with the SOM-parameter model from
Section 4, which was trained for 30k iterations on OpenWebText using deterministic BPE. We call
this the ‘base model.” We then continue to train for an additional 2k iterations on OpenWebText with
STOCHASTOK tokenization, which we refer to as continued pretraining (CPT). As a control, we also
perform CPT with standard deterministic BPE. As before, we then try finetuning on the LangGame
tasks. In Figure 9, we show that a small amount of CPT is sufficient to enable the models to fit the
language game questions near-perfectly, significantly higher than all of the controls. This suggests
that the 2k steps of CPT with STOCHASTOK were effective in instilling subword understanding into
the pretrained model.
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Figure 9: A small amount of continued pretrain-
ing (CPT) with STOCHASTOK significantly im-
proves subword awareness in the 50M-parameter
deterministically-pretrained baseline.

GPT2 + CPT with StochasTok

Figure 10: The effectiveness of STOCHASTOK in con-
tinued pretraining (CPT) transfers to the larger setting,
enabling the pretrained GPT-2 model to fit language
game tasks.

Larger Pretrained Models. Next, we test this on a larger open-source model. In Figure 10, we
compare the ability of GPT-2 (Radford et al., 2019) to fit the language game tasks with (1) no
additional pretraining, (2) 7k iterations of CPT with deterministic BPE, and (3) 7k iterations of
continued pretraining with STOCHASTOK. CPT with deterministic BPE has no effect on the ability
to learn the LangGame tasks, whilst STOCHASTOK again allows the model to reach significantly
higher accuracy.

7 ANALYSIS

Finally, we present an analysis of how STOCHASTOK enables the improvements in subword-level
understanding. In Figure 11, we show completions when prompted with different tokenizations of the
same prompt. We find that—as expected—the responses from the model trained with STOCHASTOK
are much more consistent across different prompt tokenizations, while the standard tokenization-
trained model quickly breaks down when exposed to alternative tokenizations.

Different prompt tokenizations Deterministic Training StochasTok Training

The chef sighed and put the knife in his mouth . " dish on the table .

The chef sigh ed and p ut the words . € @ dish on the table .

T he ch ef sighed a nd put t he on the table and said , m oust ache on the

The chef sighed and put th e au , and then he turned dish on the table .

Th e chef sighed and p ut the words . " | 'm not dish on the table .

The chef s ighed an d put the dish on the table and then dish on the table .

Figure 11: Generations given multiple different tokenizations of the same prompt. We find the STOCHASTOK-
trained model to be more consistent, while the standard-trained model breaks down when prompted with
alternative tokenizations, showing STOCHASTOK improves tokenization robustness. More examples are provided
in Section D.1.
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Figure 12: STOCHASTOK visibly results in the internal representations for alternative tokenizations of the same
words being much more closely aligned.

0.9
Next, in Figure 12, we visualize the internal rep-
resentations, both with and without stochastic oss T
tokenization. We fit a PCA model on the em-
beddings® of the top 1k most common words /
and then plot the results for alternative tokeniza- g 08
tions of the same words, using a random sam- 8
ple of 20 words. We observe that, when using 0 075
stochastic tokenization, the embeddings for al- §
ternative tokenizations of the same word are = g7
significantly more closely aligned and visibly E
capture subword-level structure. Té 065
For a more quantitative measure of this, in Fig- g

ure 13, we plot how the mean distance between 0.6
representations of alternative tokenizations of
the same word evolves through the transformer
layers. We observe that when trained with
STOCHASTOK, each layer maps alternative tok-
enizations progressively closer to the same repre- 0.5 %
sentation, while the deterministically pretrained Yo Yo o, Yo o T T Yo
model does not have this behavior.
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Figure 13: STOCHASTOK-trained models progressively
map equivalent tokenizations closer together.

8 RELATED WORK

Subtoken-level understanding. Numerous papers have studied LLMs’ surprisingly poor ability on
subword-level tasks (Xu & Ma, 2024; Fu et al., 2024; Zhang et al., 2024; Shin & Kaneko, 2024;
Edman et al., 2024; Marjieh et al., 2025; Kaushal & Mahowald, 2022; Itzhak & Levy, 2021, inter
alia). However, solving these tasks remains challenging, despite improvements to core capabilities
and reasoning in other measured benchmarks.

Stochastic Tokenization. Stochastic variants have been proposed for many tokenizers, including
BPE-dropout for BPE (see Section 2), MaxMatch-dropout (Hiraoka, 2022) for WordPiece (Schuster
& Nakajima, 2012), LCP-dropout (Nonaka et al., 2022) for LCP (Cormode & Muthukrishnan, 2002),
and Subword Regularization and STM (Hiraoka et al., 2019) for Unigram (see Section 2). These
prior methods are all tokenizer-specific, for example MaxMatch-dropout randomly omits the longest
next subword when tokenizing with WordPiece, while LCP-dropout adds stochasticity by randomly
partitioning the input before applying LCP tokenization. Similarly, Subword Regularization and

3The activations after the final attention layer at the position of the last token for each word.
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STM rely on Unigram’s unigram model for calculating tokenization probabilities using the FFBS
or Viterbi algorithms (Scott, 2002; Viterbi, 1967), (but rather than choosing the highest probability
tokenization, they instead sample from this distribution). Therefore, since almost all current LLMs
use BPE tokenization, these methods are almost never applicable.

BPE-dropout is, therefore, the relevant baseline. As described in Section 3, compared to BPE-dropout,
STOCHASTOK has several practical advantages: Firstly, to apply BPE-dropout, we require access to
the exact merge hierarchy of the BPE tokenizer. By contrast, STOCHASTOK can be easily applied to
any base tokenizer without any knowledge of the base tokenizer itself (it only requires knowledge
of the model’s vocabulary—a property of the model). Secondly, STOCHASTOK can be applied at
any stage of the LLM pipeline, even to pretrained models, since it preserves the same vocabulary as
the original tokenizer. In contrast, switching between BPE and BPE-dropout changes the possible
vocabulary, leading either to out-of-vocabulary tokens or requiring a change to the model. Finally,
STOCHASTOK is essentially a lightweight processing step after tokenization, meaning it can be used
in conjunction with fast, compiled implementations of base tokenizers. By contrast, BPE-dropout
requires tokenizing from scratch and compiled implementations of BPE-dropout for predefined BPE
tokenizers (i.e., a pre-specified vocabulary and merge hierarchy) are not readily available, thus often
making BPE-dropout prohibitively expensive.

Byte-level models. An alternative line of work in improving character-level understanding is byte-
level or ‘tokenizer-free’ models, which operate directly on characters. This approach removes the
inductive bias imposed by tokenizers’ vocabularies and naturally handles unusual words and typos.
However, the naive approach is prohibitively inefficient due to increased sequence lengths. As a
result, approaches such as hierarchical architectures, local convolutions, patching mechanisms, or
auxiliary losses, are necessary to bring down the effective sequence lengths (Al-Rfou et al., 2019;
Clark et al., 2022; Yu et al., 2023; Pagnoni et al., 2024). However, these come at the cost of added
complexity and still substantially higher computational requirements (Xue et al., 2022; Nawrot
et al., 2022). Consequently, tokenization-based models currently remain more compute-efficient, and
more practical in general. With STOCHASTOK we enable models to get the benefits of byte-level
understanding without needing to move to an alternate framework.

9 DISCUSSION AND FUTURE WORK

While there are adoption costs with any changes to the LLM pipeline, STOCHASTOK minimizes
these through its simplicity, wide compatibility, and demonstrated ability to be applied to existing
pretrained models. Looking ahead, a valuable addition would be to apply STOCHASTOK ’s on a
larger scale to investigate other potential benefits, such as greater robustness to spelling mistakes and
other general improvements. In this paper, we focus only on English, and it would also be interesting
to explore the effect of STOCHASTOK on languages with different alphabets, structure, and levels
of morphology. Finally, combining STOCHASTOK with recent orthogonal advances in tokenization,
such as Liu et al. (2025), represents another promising direction for future research.

10 CONCLUSION

Our experiments demonstrate that incorporating STOCHASTOK at any stage of training dramatically
enhances language models’ ability to represent subword-level structures central to human language
perception. Tokenization has recently received less attention than other methods, such as finetuning
and prompting techniques, since its position at the start of the pretraining pipeline often makes
experimentation prohibitively expensive. Our work shows that tokenization modifications can be
exceptionally effective, not only at the pre-training stage but also in the continued pre-training
and post-training stages. Our efficient, cheap changes can help fix pervasive idiosyncrasies and
lead to significant improvements in language understanding. Given the stark performance benefits
demonstrated here, we are excited to assess the impact of STOCHASTOK on more challenging tasks
such as coding, algebra, or scientific reasoning when applied to more capable models. We hope our
work encourages renewed exploration of tokenization schemes to bridge the gap between human and
machine language perception.
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A  TOKENIZERS

A.1 BPE TOKENIZATION

Construction

The tokenizer is constructed by initializing the vocabulary as individual characters and then iteratively
adding the most frequent adjacent token pair in the ‘training dataset’ until the desired vocabulary size
is reached. This yields a vocabulary and a hierarchy of merge rules.

Encoding
The dataset is initially tokenized as individual characters. Pairs of tokens are then merged according
to the hierarchy of merge rules until there are no more merges available.*

Decoding
The text strings corresponding to each token ID are simply looked up and joined together.

A.2 UNIGRAM TOKENIZATION

Construction

In contrast to BPE, Unigram starts with a large candidate vocabulary of possible subword units
and removes elements to get down to the desired vocabulary size. Tokens are removed from the
vocabulary by modeling the dataset as a Unigram model and removing the token that results in the
smallest increase in log-likelihood of the dataset considering all possible tokenizations. This relies
on using the Viterbi algorithm to compute probabilities of all possible tokenizations. It also relies
on using the Expectation-Maximization (EM) to optimize the vocabulary and the probability of the
dataset simultaneously. The result is a vocabulary and corresponding probabilities of each token (i.e.,
a Unigram model of the dataset).

Encoding
All possible tokenizations are considered, and the one with the highest probability under the unigram
model is chosen. This involves using the Viterbi algorithm to find the highest probability tokenization.

Decoding
Same as BPE: The text strings corresponding to each token ID are simply looked up and joined
together.

A.3 STOCHASTOK TOKENIZATION - PSEUDOCODE

Algorithm 1 STocHASTOK: Construction of splits

1: Require: Tokenizer (e.g. tiktoken’s GPT-2 tokenizer)
2: 'V <« Tokenizer vocabulary
3: splits < {} Initialize an empty dictionary
4: for each token s in V do
5:  t < encode(s) Get the token id
6: splits[t] «[] Initialize empty list for this token
7:  for each possible split index ¢ from 1 to len(s) — 1 do
8: 1, 82 < s[: 1], [t ¢ Split string s into two substrings
9: if s1 and s» in V then
10: t1,t2 <+ encode(s1), encode(sy) If both substrings are in the vocab
11: splits]tl.append((t1,t2)) Add this possible split
12: end if
13:  end for
14: end for

*WordPiece (Schuster & Nakajima, 2012) can be seen as a variant of BPE with merges during encoding
chosen by token length rather than the original merge rules.

14



Under review as a conference paper at ICLR 2026

Algorithm 2 STocHASTOK: Tokenization

: Require: Tokenizer

: Require: text: The input text to tokenize

: Require: splits: Dictionary of possible splits for each token

: Require: expand_prop: Expansion proportion (e.g. = 0.01)

. tokenized <« Tokenizer(text) Apply standard tokenization

:num_to_expandé—lmﬁtokenized)*expand_prop

:for _inl--- num_to_expanddo

1 < randomlInteger(1, len(tokenized)) Choose a random position

t < tokenized]i]

iftin splits and splits[t] not empty then
(t1,t2) + randomChoice(splits]t]) Replace with a random split
tokenized + tokenized[l:i— 1]+ [t1,t2] + tokenized[i + 1 ]

end if

: end for

. return: tokenized

SOPTQU AWM —

—
DN W =

A.4 STOCHASTOK TOKENIZATION - ANOTHER ILLUSTRATIVE EXAMPLE

Example vocabulary of base tokenizer:

vocabulary = [_, h, u, g, b, m, hu, ug, hug, bug]

Build token_splits which, for each token, contains a list of all possible pairs of component
tokens that are themselves in the vocabulary.

token_splits = {
ug: [(u,9) 1,
hu: [ (h,u)],
hug: [ (h,ug), (hu,g) 1,
bug: [ (b,ug)],
ugs: [ (ug, s) ]

}

Examples of possible expansions:

original: [hug] — all possible expansions: [hu g], [h ugl, [h u
gl

original: [bug] — all possible expansions: [b ugl, [b u gl
original: [m ug] — all possible expansions: [m u gl

15
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B LANGUAGE GAME AND MATH DATASETS

In this section, we provide details of each of the three evaluation datasets: LangGame, CUTE, and
multi-digit addition.

B.1 LANGGAME

We create a new benchmark, ‘LangGame,’ to test subword-level understanding in LLMs. LangGame
is a multiple-choice based dataset, allowing for easy evaluation, and it is suitable for small models.
Here, we describe its construction in detail. The language game consists of six types of questions:

. Which word has the most letter ‘#’s?
. Which word contains ‘#’s?

. Which word starts with ‘#’s?

. Which word ends with ‘#’s?

. Which word is longest?

AN L A WD =

. Which word is shortest?

We include multiple phrasings for each type of question by constructing the question with a template
and randomly replacing the placeholders.

Question template:

"<WHICH><WORD> <question>? <THE><OPTIONS><ARE>: <options>. Answer:
<answer>."

Synonyms for placeholders:

<WHICH>: ["Which", "What"]

<WORD>: [" word", "", " string", " option", " choice", " option word",
" option string"]

<THE>: ["The", "The possible", "The available"]

<OPTIONS>: [" options", " choices", " option words", " option strings"]

<ARE>: [" are", ""]

This results in 2 X 7 x 3 x 4 x 2 = 336 possible phrasings for each question.

Question strings are then chosen from:

"has the most letter ’'<AUX>'s?",
"contains ' <AUX>'",

"starts with ’'<AUX>"",

"ends with ’<AUX>'",

"is the longest",

"is the shortest",

Option words and answers are sampled randomly from the top 1k English words, and sub-strings for
the "contains™", "starts with", and "ends with" question types are sampled randomly from
the answer with length > 1 and < the answer length, and we generate 10k train and 1k validation
examples. For the experiments in Figure 6, for the train and validation sets, substring lengths are >
half the answer word length, and for the holdout set, substring lengths are < half the answer word
length. An example of each type of question is given in Table 1.

We evaluate accuracy based on whether the probability of the correct option is the highest compared
to all the alternative options in the question, but additionally when looking at generations, we find
that the STOCHASTOK-finetuned models generate the correct answer over all other possible next
tokens.
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B.2 CUTE BENCHMARK

We also evaluate on the Character-level Understanding of Tokens Evaluation (CUTE) benchmark (Ed-
man et al., 2024). CUTE contains 14 question types:

Task Question Answer
1 Spelling Spell out the word: there there
2 Inverse Spelling Write the word that is spelled out (no spaces): there there
3 Contains Char Is there a ‘c’ in ‘there’? No
4 Contains Word Is there ‘the’ in ‘the sky is blue’? Yes
5 Orthographic Closer in Levenshtein distance to ‘happy’: glad or apply?  apply
6  Semantic More semantically related to ‘happy’: glad or apply? glad
7  Char Insertion Add ‘b’ after every ‘e’ in ‘there’ thebreb
8  Word Insertion Add ‘is’ after every ‘the’ in ‘the sky is blue’ the is sky is blue
9 Char Deletion Delete every ‘e’ in ‘there’ thr
10 Word Deletion Delete every ‘the’ in ‘the sky is blue’ sky is blue
11 Char Substitution Replace every ‘e’ with ‘a’ in ‘there’ thara
12 Word Substitution ~ Replace every ‘the’ with ‘is’ in ‘the sky is blue’ is sky is blue
13 Char Swapping Swap ‘t” and ‘r’ in ‘there’ rhete
14 Word Swapping Swap ‘the” and ‘is’ in ‘the sky is blue’ is sky the blue

Table 2: Examples of the CUTE benchmark of language composition, similarity, and manipulation tasks.

We use the eight subword-level question types (types 1, 2, 3, 5, 7, 9, 11, and 13). The original
benchmark was designed for zero-shot evaluation of full-scale industrial models, and hence, it only
includes a test set. To evaluate our smaller pre-instruction finetuning models, we require additional
training examples for finetuning, hence we generate more questions for each of the eight types. We
generate questions by randomly sampling words from the top 1k English words. Consistent with the
multiple-choice format of the open-source baseline code (Hillier et al., 2024), we also create incorrect
answer options. For questions where the answer is an option in the question (question types 3 and 5),
the incorrect options are the other options in the question (e.g., Yes/No). For questions where the
answer is a word (question type 2), the incorrect options are other randomly sampled words from the
other top 1k English words. Finally, for the remaining question types where the answer is a sequence
of letters (question types 1, 7, 8, 11, 13), the incorrect options are generated by substituting and
reordering letters in the correct answer. Results on each of the individual CUTE tasks over training
are shown in Figure 14.

17


https://github.com/powerlanguage/word-lists/blob/master/1000-most-common-words.txt

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

CUTE Benchmark Tasks
Spelling Inverse Spelling

=
o

o
®

0.8

o
o

0.6

I
~

0.4

Normalized Accuracy

o
)

0.2

00 H R

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Contains Character Character Insertion

o
®

o
o

o
i

Normalized Accuracy

o
)

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Character Deletion Character Substitution

Normalized Accuracy
o o o
5 o »

o
N

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Orthographic Distance

Normalized Accuracy
o o o
5 > o

o
N

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration Iteration

—— [Train] === Deterministic =~ === StochasTok (p=0.05) === No Pretraining
------ [Val] e BPE-dropout  e=== StochasTok (p=0.1)

Figure 14: Performance on each of the tasks within the CUTE benchmark over training. (Accuracy normalized
so that random guessing is zero.)

B.3 MULTI-DIGIT ADDITION

For the multi-digit addition experiments, we sampled pairs of integers up to 1000. The answer
is reversed as per the procedure in Lee et al. (2023), and we then train on a stream of exam-
ples, e.g., '$ 151+687=838 $ 328+869=7911 $ 752+917=9661 $ 747+303=0501
$ 857+579=6341 $ ...’ with the setup described in Section C.1.
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C TRAINING SETUPS

In this section, we provide full details of the training setups used in the paper. For STOCHASTOK’s
hyperparameter p, we find that careful tuning is not required and that any value between 0.01 and
0.2 gives good performance. Throughout the paper, we show results with p = 0.1 (and also include
p = 0.05 in some places as effectively an extra seed). For BPE-dropout, we use p = 0.1 as suggested
in the original paper.

C.1 50M PARAMETER MODEL SETUP

We build on the baseline 50M-parameter model setup in the open-source SuperTinyLanguageModels
repo (Hillier et al., 2024), which is trained on the OpenWebText dataset (Gokaslan & Cohen, 2019) and
uses the GPT-2 BPE tokenizer from the t i kt oken?® library. The pretraining benchmarks evaluated
on (see Figure 3) are ARC (Clark et al., 2018), Blimp (Warstadt et al., 2020), HellaSwag (Zellers
et al., 2019), Winograd (Sakaguchi et al., 2021). The full set of hyperparameters for pretraining are
given in Table 3.

Model
number of layers 8
ffn type SwiGLU
ffn dimension 1320
number of attention heads 16
group size 4
hidden dim 512
tokenizer type gpt2
vocab_size 50257
max context window 512
positional_encoding_type = RoPE
Training
batch_size 480
total iterations 30000
warmup iterations 5000
dropout 0.1
Optimizer
optimizer AdamW
Ir 6.0e-04
min_Ir 6.0e-05
Ir_scheduler Cosine
weight_decay 0.1

Table 3: The baseline setup as in Hillier et al. (2024)—a 50M-parameter transformer LLM.

For fine-tuning (as in Figure 4), we train for a further 3k iterations with a learning rate of 1.0e-04 on
the LangGame or CUTE datasets. For continued pretraining (as in Figure 9) we similarly train for a
further 3k iterations with learning rate 1.0e-04 on OpenWebText.

C.2 275M PARAMETER MODEL SETUP

For the 275M parameter model, we follow Jordan et al. (2024a), training on FineWeb (Penedo et al.,
2024) with the hyperparameter setup given in Table 4.

C.3 GPT-2 CONTINUED PRETRAINING SETUP

We initialize the model from the publicly available pretrained weights and architecture on Huggingface
athttps://huggingface.co/openai-community/gpt?2. For the continued pretraining,
we train for 7k steps with a constant learning rate of 1.0e — 4 and a batch size of 128. For the
finetuning on LangGame tasks presented in Figure 10, we finetune for 2k steps, again with a constant
learning rate of 1.0e — 3 and a batch size of 512.

> github.com/openai/tiktoken
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Model
number of layers 12
ffn type ReLU
ffn dimension 768
number of attention heads 6
head dimension 128
tokenizer type gpt2
vocab_size 50257
max context window 1024
positional_encoding_type RoPE
Training
batch size 384
total iterations 60000
cooldown frac 0.4
Optimizer
weights optimizer Muon
head, embeddings, biases optimizer =~ AdamW
head Ir 0.044
embeddings Ir 0.12
biases Ir 0.008
weights Ir 0.01

Table 4: The baseline setup as in Jordan et al. (2024a)—a 275M-parameter transformer LLM. The changes made
to the baseline are training for 60k iterations (as opposed to the 1770 iterations of the original baseline, since the
baseline config was set up as a demo) and reducing all the learning rates by a factor of 5 (needed to stabilize
training of all models when training for longer).

Loss
Loss

5 5
45 45

4 4
3-5»-:-""" pae 4 “

3

2.5

0 500 1000 1500 2000 2.5
: 0 2000 4000 6000
Iteration
Iteration
— Base model + CPT with StochasTok
— Base model + CPT without StochasTok ——— GPT2-Small + CPT with StochasTok
Pretraining from scratch with StochasTok ~——— GPT2-Small + CPT without StochasTok

Figure 15: Training loss on OpenWebText during continued pretraining for the 50M STLM base model and
GPT-2.
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D ANALYSIS DETAILS
In the following section, we provide additional details and results of the visualizations in Section 7.

D.1 DIFFERENT PROMPT COMPLETIONS SETUP

Further examples of completions from multiple different tokenizations of the same prompts are given
in Figure 16. The prompts are generated by GPT-40. We find that the deterministic tokenization-
trained model is very sensitive to prompt tokenization and quickly breaks down when given alternative
tokenizations of the same prompt. By contrast, the STOCHASTOK-trained model is much more robust
to prompt tokenization.

D.2 EMBEDDING VISUALIZATION SETUP

As described in the main text, the activations for a word are taken as the residual stream activations
after the final transformer layer. If the word is tokenized into multiple tokens, we use the position
of the final token. We use the standard procedure of normalizing to zero mean and unit standard
deviation before fitting the PCA model.

D.3 DISTANCE OVER LAYERS VISUALIZATION SETUP

In Figure 13, we plot the mean distance between embeddings of different tokenizations of the same
word over the layers of the model. For normalization to allow comparison between different models,
we first normalize all embeddings to have unit length. We then evaluate the average distance between
embeddings for pairs of different words in the model, and we divide by this average distance metric.

Different prompt tokenizations Deterministic Training StochasTok Training

Deep in the forest , they found a small , small , and a small , white - tailed

Deep in the forest , they fou nd own , and the water is a small , white - tailed

De ep in the forest, th ey found , they found a small group of people who

D e ep in the forest , t hey found a small , small , and a small , white - tailed

Deep in the forest , they fou nd own , and the water is a small , white - tailed

De ep in the forest , th e y found the first evidence of the presence a small , white - tailed

She stepped onto the stage , and the crowd was cheering . crowd was silent .

She step ped onto the stage , and th e ep , the crowd was cheering crowd was silent .

S he stepped onto th e stage , and th e stage . " crowd was silent .

She stepped on to the stage , a nd the first time | saw him . crowd was silent .

She ste pped onto the stage , a nd th e -t-t-t crowd was silent .

S he stepped onto the stage , and the sound of the sound of the crowd was silent .

In the picture , the waves crashed against the wall of the building , and wall of the building , and

In the picture , the wave s cr ashed again st t he the wind , and the wind wall , and the wind blew

In the picture , the waves cr ashed again st th e -tungs . wall , and the wind blew

In th e picture , the waves cr ashed again st t he the waves . The wall , and the ground was

I n the picture , the waves crashed against the wall . " wall , and the ground shook

In the picture , th e waves crashed again st t he , and the wind blew out wall , and the ground shook

The scientist carefully adjusted the microscope , searching for the source of the light . the most common and most common
The scientist car efully adjusted the microscope , searching for the source of the data . the most common and most common
The scient ist carefully adjusted t he microscope , se arching f or so a o -d ino the most common and most common
The scient ist car efully adjusted the microscope , se arching for the first time in a decade the most common and most common
The scient ist car efully adjusted th e microsc ope , searching for the source of the gas . the most common and most common
The scient ist car efully adjusted the microsc ope , se arching f or so - shaped , and the the most common cause of death
The journalist pressed record , ready to capture the truth . o o truth .  The story

Th e journalist pressed record , ready to capture t h e © O s true identity . truth . The story

The journalist pres sed record , ready to capt ure the world. © €@ truth . The story

T he journal ist pres sed record , ready to capture the essence of the universe . essence of the story .

The journalist pressed record , ready to capt ure th e - fi into the world of truth . The story

T he journalist pressed record , ready to capture t he 's face . " truth . The story
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As the train departed , he remembered he had

As the train dep arted , he remembered he had

A s the tra in departed , he remembered he had

As the train departed , he remem bered he h ad

As the train departed , he remembered h e had

A s the train departed , he remem bered he ha d
After years of training , she finally reached the

After years of t raining , she finally reached t he
After years of training , she finally re ached the

After years of training , she finally reached t he

After y ears of training , she finally reached the
After years of training , she finally reached th e

The detective examined the crime scene , looking for
T he det ective examined the crime scene , looking fo r
The det ective examine d the crime scene , looking f o r
Th e detective examined the crime scene , lo oking for
T he detective examine d the crime sc en e , looking f or
The detective examined the crime scene , lo oking for
He opened the ancient book and discovered a

He opened the ancient bo ok and discovered a

He opened the an cient book and disco vered a

He opened the ancient book and discovered a

He opened the ancient boo k and d iscovered a

He opened the ancient book a nd discovered a

In the heart of the city , a storm

In the he art of the city , a storm

In the hear t of the city , a storm

In th e he art of the city, a storm

In th e heart of the city, a storm

In the he art of t he city, a storm

The spaceship h overed above the planet , and the
The spaces hip h overed above the planet , and t he
The spaceship h overed above the planet , and th e
The spaces hip h overed above th e planet , an d the
The spaces hip h overed above the planet , a nd th e
The spaces hip h overed above the plane t, and the
The chef sighed and put the

The chef sigh ed and p ut the

T he ch ef sighed a nd put t he

The chef sighed and put th e

Th e chef sighed and p ut the

The chef s ighed an d put the

to be in the car to
"1'm

been in the same boat .

a few words .

been in the car .

ited the name of the man

age of 16 . She was

- treats. She

mark . She was a little

===

point where she could see the

5 i 2t B

a suspect who was in the

te to the crime scene ,

, and the scene of the

a few minutes , and then

gy , and the police .

the first time , and found

new way of thinking about the

large , large , and very

ute ur , and the book

hem , the ancient world of

-z-z-z

few years ago .

was expected to hit the city

of the city was sweeping through

was expected to hit the city
, and the storm .

, and the storm , the

ec an , the city of

ship was still in orbit .

was the first to see the
ep , the planet was a
planet 's atmosphere , and the
- t et hered , and

two - story building was a
knife in his mouth . "
words . @ @

on the table and said ,

au , and then he turned
words . " | 'm not

dish on the table and then

been in
been in
been in
been in
been in

been in

the train for a
the train for a
the same boat as
the train for a
the train for a

the train for a

point where she could be come

age of 18 .

point where she was able to

age of 18 .

age of 18 .

age of 18 .

clues , and found that the

the suspects , and found that

the suspects , and found that

clues to the identity of the

clues to the identity of the

clues to the crime scene .

new way to read it .

new way to read the Bible

new kind of art .

new kind of magic .

new way to read it .

new way to read it .

of a few hundred people

of a few hundred people

of protest s and protests erupted

of a few hundred people

of a few hundred people

of violence has been unleashed on

planet was still in the distance

planet was a little more than

planet was still in the distance

planet was a little more than

planet was a little more than

two - story building was a

dish on
dish on
m oust
dish on
dish on

dish on

Figure 16: Example responses with different tokenizations.
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