
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE PRACTICALITY OF BOLTZMANN NEURAL SAMPLERS

Anonymous authors

Paper under double-blind review

ABSTRACT

We tackle a challenge at the heart of the missions of computational chemistry and biophysics—to sample a Boltzmann-type distribution

$$p(\mathbf{x}|\mathcal{G}) \propto e^{-U(\mathbf{x}|\mathcal{G})} \quad (1)$$

on $\mathbb{R}^{N \times 3}$ associated with some N -body system \mathcal{G} , where U is an energy function (termed *force field*) with orthogonal invariance and *deep, isolated* minima. Traditionally, this is sampled sequentially using Markov chain Monte Carlo methods, which can be so slow that one, for weeks of wall time, never breaks free from the local minima defined by the starting pose. Neural samplers have been designed to speed up this process by optimizing the dynamics, prescribed by a stochastic differential equation (SDE). Though sound and elegant in continuous time, they can be practically unstable and inefficient when discretized. In this paper, we attribute this phenomena to the limited expressiveness of the finite additive transition kernels, and their inability to bridge distant distributions. To remedy this, we design a new type of highly flexible prior by mixing orthogonally invariant densities (Mint), as well as a new discretized non-volume-preserving kernel, termed Jacobian-unpreserving Langevin with explicit projection (Julep). Together, MintJulep greatly improve the practical performance of neural samplers, while keeping the underlying SDE intact.

1 INTRODUCTION: BOLTZMANN DISTRIBUTION AND NEURAL SAMPLERS

Statistical mechanics, some [1] say, bridges the microscopic and the macroscopic world,

$$\bar{\mathcal{O}} = \int d\mathbf{x} \mathcal{O}(\mathbf{x}) p(\mathbf{x}), \quad (2)$$

with the probability distribution p , conditioned on some N -body system \mathcal{G} , adopting the Boltzmann [2] form (Equation 1), known up to a constant. On one end of the bridge are per-frame ($\mathbf{x} \in \mathbb{R}^{N \times 3}$) computable quantities $\mathcal{O}(\mathbf{x})$; on the other, $\bar{\mathcal{O}}$, some ensemble observable tangibly measurable in laboratories, such as the binding affinity of a newly designed therapeutics, or the physical properties of an innovative material. As such, to draw samples from Equation 1 in an efficient and unbiased manner to estimate Equation 2, will shed quantitative light on the understandings and discoveries spanning various domains, from chemistry, material science, to biophysics. Many machine learning pipelines in these disciplines can be seen as approximating (force field construction [3–10]) or minimizing (conformer generation [11], docking [12, 13], and protein folding [14–16]) the Boltzmann distribution. Nevertheless, if one wishes to rigorously sample such distribution till convergence, Monte Carlo methods are typically needed, known as molecular dynamics (MD) simulations [17–19], which is slow and biased towards the starting pose, due to the sequential nature.

Preliminaries. The aforementioned sampling process typically involves integrating a SDE (from $t = 0$ to 1 without loss of generality), using, for instance the overdamped Langevin dynamics,

$$dX = -\epsilon \nabla U_t dt + \sqrt{2\epsilon} dB, \quad X_{t=0} \sim q_0 \quad (3)$$

where ϵ denotes the volatility (inverse friction). $U_1 = U$ is required to target the correct Boltzmann distribution. A constant $U_{t \in [0,1]} = U$ with a static starting point $q_0 = \delta(\mathbf{x})$ represents the traditional

054 sampling process ubiquitously used by MD practitioners. Alternatively, a tractable starting point,
 055 such as a wide isotropic distribution $q_0 = \mathcal{N}(0, \sigma I)$, $\sigma >> 0$, together with a linearly annealing
 056 potential $U_t = tU + (1 - t)(-\log \mathcal{N})$, recovers the simulated annealing approach. When U_t is not
 057 constant, the quantity

$$058 \quad 059 \quad 060 \quad W(X) = \int_0^1 dt \partial_t U_t(X), \quad (4)$$

061 known as *generalized work* for physicists and *path weights* for statisticians, can be used as to correct
 062 for the bias introduced in this process when estimating arbitrary functions f (annealed importance
 063 sampling, AIS [20]), as well as to estimate the ratio of normalizing constants between k_0 and k_1
 064 (Jarzynski's equality [21], JE):

$$065 \quad 066 \quad 067 \quad \int dX f(X) k_1(X) = \frac{\mathbb{E}[e^W f(X_1)]}{\mathbb{E}[e^W]}, \quad \frac{Z_1}{Z_0} = \frac{\int dX_1 k_1(X_1)}{\int dX_0 k_0(X_0)} = \mathbb{E}[e^W]. \quad (5)$$

069 **Problem statement & related works.** To improve the convergence of X_1 to Equation 1, a non-
 070 equilibrium control [22] b_t can be added to the drift term in Equation 3, resulting in the *nonequilibrium*
 071 *annealing process*:

$$072 \quad d\vec{X} = -\epsilon \nabla U_t dt + \sqrt{2\epsilon} dB + \color{red}b_t dt, \quad (6)$$

074 with the corresponding path weights:

$$075 \quad 076 \quad 077 \quad W(X) = \int_0^1 dt (-\nabla \cdot b_t(X) + \nabla U_t(X) \cdot b_t(X) + \partial_t U_t(X)). \quad (7)$$

078 A perfect control term [23] exists so that X_0 can be transported to exactly match X_1 to Equation 1,
 079 mitigating the need of reweighting, i.e., $W \equiv 0$. We call the neural parametrization and optimization
 080 of b_t towards this goal *neural samplers*. For this purpose, the most obvious choice of objectives
 081 seeks to formulate this as a stochastic optimal control (SOC) problem [24–27] minimizing the
 082 control energy and the terminal reverse-KL divergence $D_{\text{KL}}[q_1 || k_1]$, where q_1 is governed by the law
 083 of Equation 6. These *online* approaches require the differentiation through the SDE integration, and
 084 can therefore be expensive or unstable. When $\epsilon = 0$, the deterministic counterpart of Equation 6
 085 reduces to a (continuous) normalizing flow [28–30], referred to as Boltzmann generators [31, 32] in
 086 our context. To speed up convergence and prevent mode-collapsing ubiquitous in reverse-KL-based
 087 methods requiring only the energy function (*energy-based training*), these types of approaches typi-
 088 cally requires samples from k_1 (*data-based training*) to evaluate the forward-KL $D_{\text{KL}}[k_1 || q_1]$, incurring
 089 an overhead. Overall, *offline* methods relying on neither samples nor differentiable trajectories
 090 seem theoretically attractive for scalability. Specifically, consider a backward SDE with $X_0 \sim k_1$:

$$091 \quad d\overleftarrow{X} = -\epsilon \nabla U_t dt + \sqrt{2\epsilon} d\overleftarrow{B} - b_t dt. \quad (8)$$

093 With Equation 7, the *controlled* [33] Crook's fluctuation theorem reads exactly like (and recovers,
 094 when $b \equiv 0$), the original Crook's fluctuation theorem (CLT [34]):

$$095 \quad 096 \quad d\vec{\mathbb{P}} / d\overleftarrow{\mathbb{P}} = \exp(W - Z_0 + Z_1), \quad (9)$$

097 where the derivative is taken in the Radon-Nikodym (RND) sense, and $\vec{\mathbb{P}}, \overleftarrow{\mathbb{P}}$ are the path measure
 098 associated with Equation 6, 8, respectively. This furthermore generalizes JE (5) since $\mathbb{E}[d\vec{\mathbb{P}} / d\overleftarrow{\mathbb{P}}] =$
 099 1. Although many divergences can be employed to find the perfect control term [35], such as
 100 the physics-inspired neural network (PINN [36]) or the action matching (AM [37]) loss, the most
 101 straightforward offline method [33, 38] minimizes the log-variance of the RND (9):

$$103 \quad 104 \quad \mathcal{L} = \mathbb{V}[\log[d\vec{\mathbb{P}} / d\overleftarrow{\mathbb{P}}]], \quad (10)$$

105 with can be taken w.r.t. any measure (hence the offline nature), albeit usually w.r.t. $\vec{\mathbb{P}}$ for mini-
 106 mal variance. When this approaches zero, b_t is perfect since $W \equiv 0$ and $\vec{\mathbb{P}}$ is exactly the time
 107 reversal [39] of $\overleftarrow{\mathbb{P}}$.

108 **Pathology: Why neural samplers fail in practice?** While the aforementioned formulation is simple
109 and elegant in theory (continuous-time), practically, when discretized, it fails to perform when
110 realistic physical systems are involved [26]. We postulate that this can be attributed to the limited
111 expressiveness of the discretized kernel, and its inability to bridge drastically distant distributions.
112 Slightly formally, if we do not consider the equilibrium part of the drift ∇U (corresponding to the
113 infinite-inertia scenario in physics), we observe that (proof in the Appendix):

114 *Remark 1.1* (Expressiveness of local kernels.). Let $(k_t)_{t=0}^{T-1}$ be Markov kernels of the form
115

$$116 \quad k_+(X_{t+\Delta t}|X_t) = \mathcal{N}(X_t + b_t(X_t)\Delta t, \sqrt{2\epsilon}I) \quad (11)$$

117 where each drift map $f_t(x) = x + b_t(x)\Delta t$ is L -Lipschitz. Let q_0 be the initial law and define
118 $q_T := q_0 k_0 k_1 \dots k_{T-1}$. Assume there exists a reference measure μ such that $W_1(q_0, \mu) \leq 1$ and
119 $W_1(q_1, \mu) = W_1$, for some target distribution q_1 with (normalized) 1-Wasserstein distance
120 $W_1 \gg 1$ from μ . If $q_T = q_1$, then necessarily $T \geq \log_L W_1$. In words, at least $\log_L W_1$
121 discrete kernels are needed to transport q_0 to q_1 using such local L -Lipschitz steps.
122

123 **Main contributions.** The aforementioned pathology tells us that the practical underwhelming performance
124 of neural samplers can be attributed to (1) the gap between the target distribution p and the tractable
125 distribution q_0 at $t = 0$, henceforth referred to as the *prior* of neural sampling, and the target distribution p ;
126 and (2) the inability for additive kernels in the form of Equation 11 to gap such gaps. Motivated by this, while keeping the SDE (Equations 6, 8) and the objective (Equation 9)
127 intact, we propose:

- 130 • A new prior called **Mint** (mixture of invariant densities, §2), where we achieve high
131 parametrized flexibility while respecting the symmetry of physical systems.
- 132 • A new discretized kernel termed **Julep** (Jacobian-unpreserving Langevin with explicit pro-
133 jection, §3), which adds additional expressiveness to each step by allowing not only additive
134 but also multiplicative transformations.

135 Further relating the discoveries to prior literature, we note that [40] also optimizes the prior of the
136 sequential Monte Carlo process while leaving the actual annealing dynamics invariant, albeit using
137 a much more detailed but expensive invertible flow model evaluated only once during the SDE
138 integration. Blessing et al. [41] also proposes Gaussian mixtures as the initial distribution of the
139 SDE of the diffusion process; the Mint prior can be seen as the orthogonally equivariant version of
140 this idea. The Julep kernel, on the other hand, can be regarded as a continuous stochastic normalizing
141 flow model [27] sandwiched by deterministic bijections built with matrix exponential [42], of which
142 the time-discretized integration on a graph manifold is inspired by [43]. In §4, we show that these
143 two innovations greatly enhance the feasibility of Boltzmann neural samplers, bringing us one step
144 closer to the efficient and scalable sampling of Boltzmann distributions for physical systems.
145

146 2 MINT PRIOR: MIXTURE OF ORTHOGONALLY INVARIANT DENSITIES

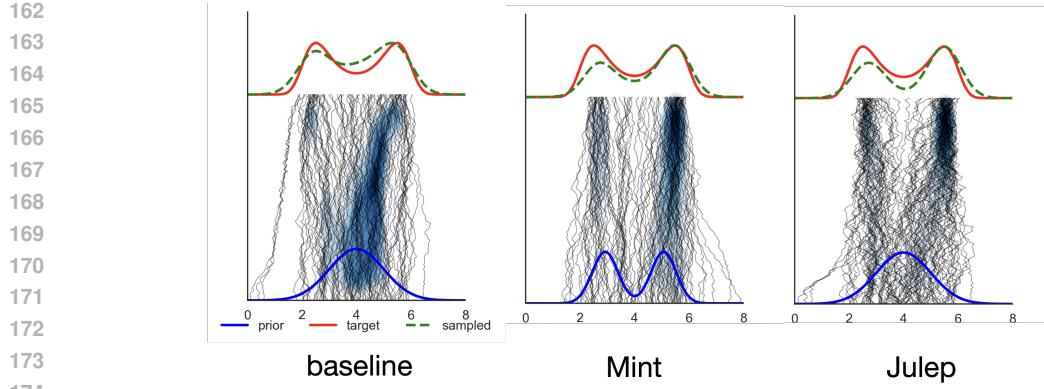
148 To model the highly irregular distributions defined by the force field u in Equation 1, which we
149 know very little except that it is orthogonally invariant (w.r.t. internal rotation or reflection, definition
150 above), we ask the question: whether it is possible to find a class of distribution that can approximate
151 any arbitrary distributions on $\mathbb{R}^{N \times n}$ up to the orthogonal symmetry group $O(n)$? Formally:

152 **Definition 2.1.** A function f is said to be orthogonally invariant on $\mathbb{R}^{N \times n}$ if $\forall X \in \mathbb{R}^{N \times n}, Q \in$
153 $\mathbb{R}^{d \times d}, QQ^\top = Q^\top Q = I$,

$$154 \quad f(X) = f(XQ). \quad (12)$$

155 A distribution is said to be orthogonally invariant if its density function satisfies Equation 12.
156

157 It is also worth noting that, while most of the force fields used by computational physicists and
158 chemists are actually $E(n)$ -, rather than $O(n)$ -invariant, we constrain the translational degrees of
159 freedom here and work with a radial, internal coordinate system. Practically, this can be done by
160 consistently placing one particle, termed *anchor atom* henceforth (See an illustration in Figure 2.), at
161 the origin of the coordinate system. In addition, although we are more interested in $n = 3$, all results
shown in this paper can be generalized to all $n \in \mathbb{Z}^+$, as we do not rely on any operators other than



175 **Figure 1: Semantic illustration.** Sampling trajectory of DW-2 with the DDS [25] baseline (left),
 176 Mint prior (middle), and Julep kernel (right). Mint accelerate the sampling by parametrizing a
 177 flexible kernel; Julep accelerate the sampling by employing non-local, cross-mode moves.

179 the dot product. In the following section, we firstly handle the angular degrees of freedom, before
 180 we proceed to the radial part and derive a parametric class of distribution capable of approximating
 181 any densities up to the defined symmetry.

183 **Pairwise von Mises-Fisher (PvMF) distribution:** $O(n)$ -invariant on $(\mathbb{S}^{n-1})^N$. To start, we pro-
 184 pose a new class of distribution termed the *pairwise von Mises-Fisher* distribution, on the manifold
 185 $(\mathbb{S}^{n-1})^N$, which is the N -product of \mathbb{S}^{n-1} spheres:

186 **Definition 2.2** (PvMF distribution).

$$188 \text{PvMF}(\Theta; \mu, \kappa) \propto \exp(\kappa \cos(\text{vec}(\Theta \Theta^\top), \text{vec}(\mu \mu^\top))), \quad (13)$$

189 where $\kappa \in \mathbb{R}^+$ and $\Theta, \mu \in (\mathbb{S}^{n-1})^N$. Simply put, the energy function measures the *cosine similarity*
 190 between the gram matrices defined respectively by the variable Θ and the parameter μ , both on
 191 the $(\mathbb{S}^{n-1})^N$ manifold, and prescribes the density similar to the vanilla von Mises-Fisher (vMF)
 192 distribution [44]. Since such a density peaks at the perfect alignment of X and μ up to an orthogonal
 193 transformation Q , with $\text{PvMF}(\mu Q, \mu) \propto \exp(\kappa) < \infty$, and therefore the integration over a finite-
 194 volume manifold $Z = \int_{\Theta \in (\mathbb{S}^d)^N} d\Theta \text{PvMF}(\Theta, \mu) < \infty$ is normalizable. Besides, the gram operator
 195 is $O(n)$ -invariant, so it naturally follows that:

196 *Remark 2.3.* $\text{PvMF}(\Theta; \mu, \kappa)$ is a valid probability distribution.

197 *Remark 2.4.* $\text{PvMF}(\Theta; \mu, \kappa) = \text{PvMF}(\Theta Q; \mu, \kappa), \forall Q^\top Q = I$ is orthogonally invariant.

199 Evidently, this probability density requires $\mathcal{O}(N^2)$ runtime complexity to evaluate.

201 **Mixture of PvMFLogNormal products: universally approximative.** Having the angular de-
 202 grees of freedom ($\Theta = X/\|X\| \in (\mathbb{S}^{n-1})^N$) taken care of, we pair the PvMF distribution with a
 203 simple LogNormal distribution on the radial axis ($r = \|X\| \in \mathbb{R}^N$) and can now define a distribution
 204 on the entire $X \in \mathbb{R}^{N \times d}$ space, called the PvMFLogNormal product, which stays orthogonally
 205 invariant:

$$206 \text{PvMFLogNormal}(\Theta, r; \mu, \kappa, \rho, \sigma) = \text{PvMF}(\Theta, \kappa) \text{LogNormal}(r; \rho, \sigma), \quad (14)$$

207 where $\Theta \in (\mathbb{S}^{n-1})^N, r \in \mathbb{R}^+$ and $\mu \in (\mathbb{S}^{n-1})^N, \kappa \in \mathbb{R}^+, \rho, \sigma \in \mathbb{R}^N$. We now arrive at the com-
 208 plete form of the family distribution used henceforth—the mixture of PvMFLogNormal products,
 209 followed by the expressive characterization.

210 **Definition 2.5** (Mixture definition).

$$212 q(X; \{\pi_i, \mu_i, \kappa_i, \rho_i, \sigma_i\}) = \sum_i \pi_i \text{PvMFLogNormal}(X/\|X\|, \|X\|; \mu_i, \kappa_i, \rho_i, \sigma_i), \quad (15)$$

214 **Theorem 2.6** (Universal approximator). *Mixture of PvMFLogNormal distributions with sufficient
 215 components can approximate any arbitrary Riemann-integrable orthogonally invariant distribu-
 tions on $\mathbb{R}^{N \times d}$ with arbitrarily small error.*

216 The proof, deferred to the Appendix, follows the first fundamental theorem of the orthogonal
 217 group [45] and the style of the universal approximation theorem of the Gaussian mixture mod-
 218 els [46].
 219

220 **Sampling and energy-based variational inference (VI).** While the family of distribution is de-
 221 fined, we realize that sampling from this distribution (or the PvMF distribution itself) is highly
 222 non-trivial. Recall that ([44] §3.5.22 and 9.3.15), for regular vMF distributions, in the high con-
 223 centration limit ($\kappa \rightarrow \infty$), its behavior converges to that of a projected normal distribution, which
 224 is easy to sample. Following the same procedure to Taylor-expand the density on the tangent space
 225 $I - \mu\mu^\top$, we see that our PvMF distribution, when concentrated, can also be approximated by a
 226 projected normal distribution rotated by an arbitrary angle Q (or reflection):
 227

$$\text{PvMF}(\Theta; \mu, \kappa) \approx \mathcal{P}\mathcal{N}(\Theta; \mu Q, 1/\sqrt{\kappa}), \forall Q, \kappa \rightarrow \infty. \quad (16)$$

228 This approximation efficiently generates samples from the PvMF distribution, which can be further
 229 corrected by a brief Langevin dynamics integration. If we are working with a problem where the
 230 loss function is also orthogonally invariant, as is in this paper, the rotation can also be practically
 231 emitted $Q = I$. In this case, although the proposal distribution $\mathcal{P}\mathcal{N}$ is not orthogonally equivariant,
 232 the resulting PvMF is. These samples are then used downstream to be multiplied by the radial
 233 components and blended into a mixture.
 234

235 Samples from q (Equation 15) at hand, we can easily fit this highly flexible function to arbitrary
 236 target densities p by optimizing, for instance, the reverse KL divergence $D_{\text{KL}}[q||p] = \mathbb{E}_q[\log q -$
 237 $\log p]$. Here, since we are dealing with particularly rugged energy landscape where the gradient of p
 238 can be numerically overwhelming, we adopt the trick from [40] and optimize the REINFORCE [47]
 239 policy gradient surrogate instead:
 240

$$\mathcal{L}_{\text{Mint}} = -\mathbb{E}_q \log q [\overline{\text{SoftMax}}(\log p - \log q)] \quad (17)$$

241 This objective fills the energy landscape with elliptical probability masses. The mode-seeking be-
 242 havior of the reverse KL-divergence is not problematic here as the multimodal nature of p can
 243 be captured by explicit discrete mixtures (which is one of the greatest challenges of neural sam-
 244 plers) [48]. We can also add an additional Stein VI [49]-style repulsion kernel among the gram
 245 matrix of the mixture components to encourage the diversification of modes.
 246

$$\mathcal{L}_{\text{Repulsion}} = \sum_i \sum_{j \neq i} \cos(\mu_i \mu_i^T, \mu_j \mu_j^T) \quad (18)$$

247 As such, we can view Mint as the *optimization* stage of neural sampler training, quickly and cheaply
 248 finding diverse minima on the energy landscape. In § 4, we see that Mint alone can achieve sat-
 249 isfactory results in terms of mode finding. Of course, despite of Theorem 2.6, in the finite limit
 250 of the number of mixtures, the elliptical density q cannot fill arbitrarily sophisticated shapes. This
 251 motivates the design of a highly expressive kernel in the following section.
 252

253

3 JULEP KERNEL: JACOBIAN-UNPRESERVING LANGEVIN WITH EXPLICIT 254 PROJECTION

255 We design a novel forward kernel k^+ to replace that in Remark 1.1, together with its corresponding
 256 backward kernel k^- :

$$k_{\pm}(X_{t \pm \Delta t} | X_t) = \mathcal{N} \left(\exp \left(\pm A_t(X_t) \Delta t \right) X_t \pm b_t(X_t) \Delta t + \partial U_t / \partial X \Delta t, 2\epsilon \Delta t \right), \quad (19)$$

257 where \exp denotes matrix exponential and $U = -\log p$ up to a constant. One can easily see that
 258 this is but a different discretization of Equation 6, now written as $d\vec{X} = -\epsilon \nabla U_t dt + \sqrt{2\epsilon} dB +$
 259 $(b_t(X_t) + \exp W_t(A_t)) dt$, with the last term omitted into b_t by considering the first-order Taylor
 260 expansion of the matrix exponential. Intuitively, our method affords the traditionally additive kernel
 261 a multiplicative structure, thus greatly enhancing the expressiveness of each step, allowing it to
 262 bridge faraway distributions. These intuitions can be formalized as the following remarks, with
 263 proofs in the Appendix.

264 *Remark 3.1* (Consistency of Julep kernels.). The discretized kernel k as defined in Equation 19 is a
 265 consistent solution to the SDE Equation 6, i.e. it recovers the original SDE when $\Delta t \rightarrow 0$.

Remark 3.2 (Julep kernel has the same strong convergence as Euler-Maruyama.). The discretized kernel k as defined in Equation 19 converges strongly to the SDE Equation 6 with order 1/2. In other words, if $b, \sigma, \exp(A)$ are L -Lipschitz and satisfies the linear growth condition, if X_t is a true solution to Equation 6 and \hat{X}_t is a discretized solution, there exists a constant C , such that

$$\sup_{0 \leq t \leq 1} |X_t - \hat{X}_t| \leq C\sqrt{\Delta t} \quad (20)$$

Remark 3.3 (Julep kernel breaks the expressiveness bottleneck.). Following the setting in Remark 1.1, except for the kernel definition in Equation 19, and if $b_t \Delta t$ and $\exp(A_t)$ are L -Lipschitz, the number of discretized kernels needed to transport q_0 to q_t is smaller than $\log_L W_1$.

Following [23, 27, 50, 51], the path weight (Equation 4) can be discretized as:

$$W \approx U_0(X_0) - U_1(X_1) + \sum_{t=0}^1 \log k^+(X_t | X_{t-\Delta t}) - \sum_{t=0}^1 \log k^-(X_{t-\Delta t} | X_t). \quad (21)$$

This relies on the assumption of the Gaussianity [33] of the reverse kernel, which is exact when $\Delta t \rightarrow 0$. Plugging this into the log-variance objective (Equations 9, 10) and omitting the constant $Z_0 - Z_1$, we arrive at the log-variance loss for training the Julep kernel:

$$\mathcal{L}_{\text{Julep}} = \mathbb{V}[W] = \mathbb{V}[U_0(X_0) - U_1(X_1) + \sum_i \log(k^+/k^-)], \quad (22)$$

where the variance is evaluated over q_0 and the law of the forward SDE.

Flexible neural parametrization. We stress that any arbitrary parametrization of $A(X, t), b(X, t)$ are all fair game, and the parametrization of $U(X, t)$ also does not break the mathematical framework as long as U_0 and U_1 stay invariant, which can be easily parametrized as $\widetilde{U}_t = (1-t)U_0 + tU_1 + t(1-t)U_t$, with a free-form U_t , which is significantly more flexible than pre-defined linear mixing schedule [36]. When it comes to the noise schedule, although it is possible to prescribe a state-heteroschedastic noise $\epsilon(X, t)$, doing so would require a divergence correction term $\Delta_X \epsilon$ for both the forward and backward SDE. We therefore only optimize ϵ as a function of t .

Preserving the orthogonal symmetry. With the amount of care taken to design an orthogonally invariant prior, we cannot afford to lose the $O(n)$ -symmetry in the integration stage. Fortunately, this is almost trivial thanks to the rich literature about designing $E(n)$ -equivariant force fields and generative models [3–10]—in a sense, we are merely building a *time-dependent* version of these models. Consider such a model $f_\theta : \mathcal{X} \times \mathcal{H} \rightarrow \mathcal{X} \times \mathcal{H}$ that map from and to the joint spaces of (n -dimensional) geometry $\mathcal{X} \in \mathbb{R}^n$ and semantic embedding $\mathcal{H} \in \mathbb{R}^C$ such that it is permutationally, rotationally, translationally, and reflectionally equivariant on \mathcal{X} and invariant on \mathcal{H} , i.e., $\mathbf{x} \in \mathcal{X}, h \in \mathcal{H}$ and $T : \mathcal{X} \rightarrow \mathcal{X}$ is rotation, translation, and reflection, we have:

$$\mathbf{x}_f, h_f \equiv f_\theta(\mathbf{x}, h) \iff T(\mathbf{x}_f), h_f = f_\theta(T(\mathbf{x}), h). \quad (23)$$

We can make this model $O(n)$ -equivariant (and time-dependent) by constructing an embedding combining the radial component of X , the time representation: $h = [t : ||X||]$. The output of this model is connected to Equation 19 as:

$$b_t = \mathbf{x}_f; U_t = \sum h_{f_0}; A = h_{f_1} h_{f_1}^\top, \quad (24)$$

where the control term reuses the equivariant output directly; the potential term aggregates invariant embeddings among the particles (ubiquitous in force field constructions); and the projection term are parametrized using low-rank form, where $h_{f_{0,1}}$ are channels of the invariant output h_f . Note that, the resulting projection term A is on the space of $\mathbb{R}^{N \times N}$, similar to that in graph diffusion [43], so we only linearly combine the positions of the particles without introducing internal rotation, thus easily preserving orthogonal symmetry. Although most of these architectures can be reduced to linear complexity, they require pre-specified graph structure (edge connection), which is not possible here. So this backbone also incurs a $\mathcal{O}(N^2)$ runtime complexity. In this paper, we used the simplest equivariant graph neural networks (EGNNs) [3] as the backbone f_θ , and leave more sophisticated architecture for future studies.

324 **Offline training with replay.** Since the log-variance objective (Equation 22) is an offline objective
 325 and can be taken w.r.t. any arbitrary reference path measure, we can simultaneously reduce the
 326 variance of the objective and speed up the training by conducting multiple gradient descend step
 327 with one sampled trajectory. Specifically, during training, we use one set of the parameters of the
 328 kernel θ_k to sample one trajectory $X_{0 \leq t \leq 1, \theta_k}$. For the next R steps, while we evaluate the log-variance
 329 objective and update its parameters to $\hat{\theta}_k$, we keep $X_{0 \leq t \leq 1, \theta_k}$ unchanged. We tune R as a
 330 hyperparameter and fixed $R = 5$ throughout this paper.
 331

332

333 **4 MINTJULEP RESULTS: SEPARATING OPTIMIZATION AND SAMPLING.**

334

335 Having defined the two components, we now put them in a coherent framework and provide a
 336 straightforward recipe to optimize them sequentially:
 337

338 **Algorithm 1:** MintJulep training.

339 **Input:** Energy function U .

340 **Input:** Randomly initialized Mint prior q and Julep kernel k^+ .

341 **Input:** Hyperparameters: Integration steps T , sample size S , and replay time R

342 **Output:** Samples from the Boltzmann distribution (Equation 1)

```

344    while  $\mathcal{L}_{\text{Mint}}(\cdot; q)$  not converging do
345     for  $i \sim \{1, \dots, S\}$  do
346       | sample  $X_i \sim q$  (Equation 15);
347       | end
348       | descent  $\mathcal{L}_{\text{Mint}}(X; q)$  (Equation 17) to optimize  $q$ 
349     end
350
351    while  $\mathcal{L}_{\text{Julep}}(\cdot; k^+)$  not converging do
352     for  $i \in \{1, \dots, S\}$  do
353       | sample  $X \sim q$  (Equation 15);
354       | sample  $t_i \sim \bar{U}(0, 1)$ ,  $i = 1, \dots, T$  and sort;
355       | for  $i \in \{1, \dots, T - 1\}$  do
356           | | sample  $X_{t_{i+1}} \sim k^+(\cdot | X_{t_i})$  (Equation 19)
357           | | end
358       | end
359       | for  $i \in \{1, \dots, R\}$  do
360           | | descent  $\mathcal{L}_{\text{Julep}}(\overline{\{X_t\}})$  (Equation 22) to optimize  $k^+$ 
361           | | end
362     end

```

363 Note that two stages are required in the training of the model. In the first stage, the Mint prior q is
 364 optimized to descend the surrogate KL divergence between q and $p \propto \exp(-U)$, so that it becomes
 365 already close to p . Next, the details of the distribution, which cannot be filled by elliptical probability
 366 mass, are refined in the second stage using the Julep kernel. Although it is also possible to optimize
 367 the parameter using the log-variance loss (Equation 22), we found that doing so harms the stability
 368 of the training process. Empirically, the training of the prior, due to the lack of SDE integration,
 369 only takes seconds on a GPU to converge.

370 Next, we test the performance of this formulation using synthesized and real-world energy land-
 371 scape. Again, it is worth emphasizing that we only have access to the target energy function, or
 372 probability density up to a constant, and do not have access to samples, which explains the seem-
 373 ingly slightly inferior numerical performance to methods which do require such access [52]—these
 374 are two different settings that are not comparable.

375 **Synthesized energy landscape** We first turn our attention to the time-tested synthetic energy func-
 376 tions defined pairwise distance among particles—Leonard Jones (LJ, Appendix Equation 41) and
 377 double wall (DW, Appendix Equation 40). Evidently, the LJ potential increases rapidly when $r \rightarrow 0$,
 which physically represents the strong repulsion among particles when they are about to collide,



Figure 2: **Mint minimizes; Julep samples**—Illustration of the DW4 experiment. (a) Modes discovered by Mint on the 2-dimensional space. The dot represents the *anchor atom*. Kernel density estimation (KDE) plots from samples taken from the prior. The probability masses, though constrained to be elliptical in shape, are already placed at the minima of the energy surface. (b) KDE plots of the distances among particles from the posterior $t = 1$, with modes of the prior $t = 0$ marked by vertical lines.

	DW-4	LJ-13	LJ-55
PIS [24]	46.2 ± 8.1	1.2 ± 1.1	0.1 ± 0.0
DDS [33]	46.1 ± 7.6	1.0 ± 1.1	0.1 ± 0.0
Mint only	52.0 ± 0.2	3.0 ± 0.1	0.1 ± 0.0
Julep only	48.4 ± 0.1	1.2 ± 0.1	0.1 ± 0.0
MintJulep	92.9 ± 0.5	47.2 ± 1.1	1.0 ± 0.6

Table 1: **MintJulep efficiently samples energy functions.** Effective sample size (ESS, %) normalized by the total sample size compared with state-of-the-art path-based models.

which contributes significantly to the *ruggedness* of the energy landscape. This poses a significant challenge for numerical optimization—when a linear path is used, the gradient soon causes overflow because of the 12-th power term. We therefore adopt a smooth annealing path:

$$\tilde{r} = r + \sigma(1 - t); \tilde{U}_{\text{LJ}} = \epsilon/\tau[(\tilde{r}/\sigma)^{-6} - (2 - t)^{-6}]^2, \quad (25)$$

which preserves the minima but slowly anneal the minimal distance among particles from σ to 0 as $t : 0 \rightarrow 1$. We reuse this annealing path in the real-world experiment as well.

We compare the sampling efficiency (noted by the effective sample size, ESS, Appendix Equation 42) with the path integral sampler (PIS) [24], which is an online model that propagates the gradient across the SDE, and the denoising diffusion sampler (DDS) [25], which proposes the log-variance objective. Both of these methods use an isotropic Gaussian distribution and an additive kernel, which might explain the drastic difference in the performance. In Figure 2, we show the compartmentalization and collaboration of the two parts of the model, with minima discovered firstly by Mint and refined by Julep. This trend is repeated in Figure 3 as well. Finally, we also conduct an ablation study where we only conduct one improvement at a step, to test the individual ability of the Mint prior and the Julep kernel. Overall, Mint provides more significant improvement across all tasks (compared to the baseline DDS method), but more drastic improvement is only observed when they work in tandem—the ten-fold ESS improvement on the most challenging task of LJ-55 is only observed when both methods were employed.

Real-world energy landscape: alanine dipeptide (AA). Having established the satisfactory performance on synthetic sandboxes, we move on to test if our model can achieve real world utility by accelerating molecular dynamics (MD) simulation of biomolecular systems. In such case, the energy function comes from a molecular mechanics (MM) force field (Appendix Equation 42); for a machine learning community-friendly explanation, see [53]). In our setting, we adopt the topology from an alanine dipeptide and uses the collection of parameters from [54]. The protocols of the experiments are detailed in the Appendix.

Reusing the annealing path (Equation 41), we notice a similar trend as the toy experiment—Mint captures the location of the minima quickly while Julep completes the fine detail of the energy landscape. It is worth noting that, since the chirality, which is an important trait of the biomolecules,

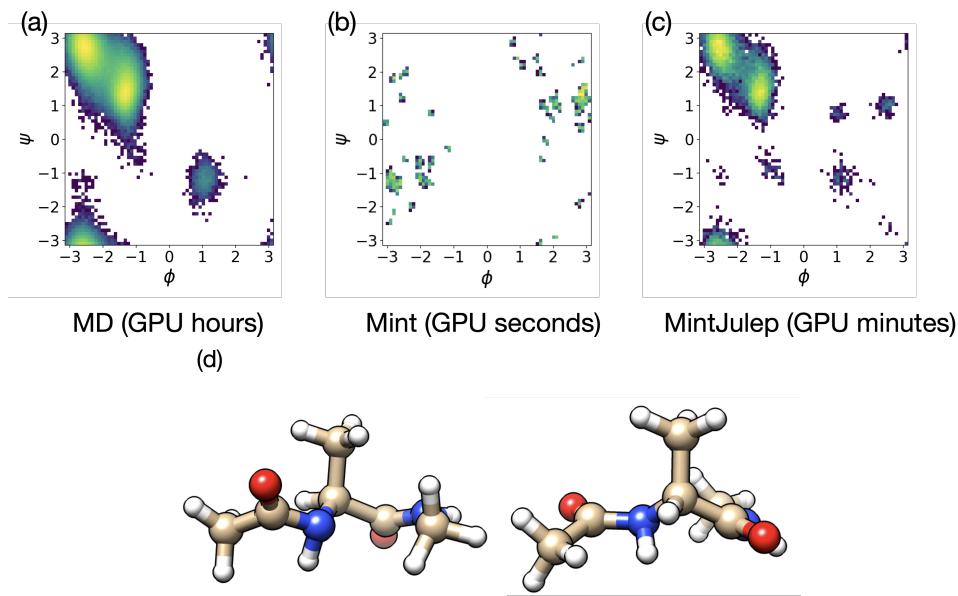


Figure 3: **MintJulep can be used to produce convergent molecular dynamics (MD) simulation trajectories.** Ramachandran plot (KDE plot of the dihedral angles of the molecule) of: (a) Reference equilibrium MD trajecotries of alanine dipeptide; (b) Samples generated from Mint, which captures the minima; (c) Samples generated from MintJulep, which contains finer detail. (d) Representative samples from MintJulep. Note that both chirality is possible since it is not specified in the energy function. The path ESS for MintJulep is $18.0 \pm 1.2\%$.

is not encoded in the energy function, the model may generate samples that has different chirality than those abundant in nature (Figure 3 (d)), which might also explain the additional minima on the Ramachandran plot. In sum, a very brief Mint training can already capture the minima of the energy landscape of alanine dipeptide, whereas MintJulep can recover most of the regions sampled by GPU-days-worth of MD trajectory in less than an hour of training.

5 CONCLUSION

If we were able to sample the Boltzmann distribution associated with various physical systems efficiently and accurately, we would be able to build a more reliable bridge between the microscopic and the macroscopic, with which we can gain a deeper quantitative understanding of such systems, thereby rationally designing better pharmaceuticals, materials, and other physicochemical entities with microscopic structure and macroscopic functions. The approach presented here, MintJulep, represents a meaningful step towards this goal.

Concretely, the Boltzmann distributions associated with physical systems can oftentimes be described as *rugged*, i.e. with isolated minima. Another feature of such functions is that they are almost always $O(n)$ –invariant. Starting from these two features of the realistic systems, as well as the failure mode of traditional neural samplers [55], we design a brand new class of distributions (Mint) and a powerful discretized kernel associated with the non-equilibrium annealing dynamics. These two practical improvements drastically increase the performance of the path-based neural samplers, allowing us to rapidly generate samples from the Boltzmann distributions associated with real systems given only the energy function. Informally, the Mint prior can be viewed as a minimization step (albeit still preserving the entropy structure), respecting the multimodality of the energy landscape with the mixture of component design. As such, the prior is close to the desired target energy function by KL divergence, leaving the training of the already powerful Julep kernel a breeze.

Limitations. As discussed in §2, 3, both Mint and Julep incur $\mathcal{O}(N^2)$ runtime complexity, and need further speed up before they can be efficiently used on realistic protein systems containing

486 thousands of atoms. Furthermore, the reduction from the $E(n)$ to $O(n)$ group requires a careful
487 choice of *anchor atom*, and the representation power of the internal coordinate system is sensitive
488 to such choices.
489

490 **Future directions.** We plan to investigate further methods to simplify and accelerate the optimization
491 of the Mint prior and the integration of the Julep kernel. This would allow us to model larger
492 protein systems, and unify the pipelines of docking, sampling, and folding within one method. In
493 addition, to make this model generalizable, in the style of [32], is a natural next step.
494

495 **Ethics statement.** We acknowledge and adhere to the Ethnics statement of the ICLR.
496

497 **Reproducibility statement.** The implementation of our method can be found at https://anonymous.4open.science/r/mint_julep-22D7/. Interestingly, our method only re-
498 quires an energy function and is therefore a *data-free* method, requiring no datasets or data-
499 processing.
500

501 **REFERENCES**
502

503 [1] Mark E Tuckerman. *Statistical mechanics: theory and molecular simulation*. Oxford university
504 press, 2023.
505 [2] Ludwig Boltzmann. Studien über das gleichgewicht der lebenden kraft. *Wissenschaftliche
506 Abhandlungen*, 1:49–96, 1868.
507 [3] Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. $E(n)$ equivariant graph neural
508 networks. In *International conference on machine learning*, pages 9323–9332. PMLR, 2021.
509 [4] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
510 Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. $E(3)$ -equivariant graph neural
511 networks for data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):
512 2453, 2022.
513 [5] Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace:
514 Higher order equivariant message passing neural networks for fast and accurate force fields.
515 *Advances in neural information processing systems*, 35:11423–11436, 2022.
516 [6] Yuanqing Wang, Kenichiro Takaba, Michael S Chen, Marcus Wieder, Yuzhi Xu, Tong Zhu,
517 John ZH Zhang, Arnav Nagle, Kuang Yu, Xinyan Wang, et al. On the design space between
518 molecular mechanics and machine learning force fields. *Applied Physics Reviews*, 12(2), 2025.
519 [7] Yuanqing Wang, Josh Fass, Benjamin Kaminow, John E Herr, Dominic Rufa, Ivy Zhang, Iván
520 Pulido, Mike Henry, Hannah E Bruce Macdonald, Kenichiro Takaba, et al. End-to-end differentiable
521 construction of molecular mechanics force fields. *Chemical Science*, 13(41):12016–
522 12033, 2022.
523 [8] Yuanqing Wang and John D Chodera. Spatial attention kinetic networks with $e(n)$ -
524 equivariance. In *ICLR 2023*, 2023.
525 [9] Kenichiro Takaba, Anika J Friedman, Chapin E Cavender, Pavan Kumar Behara, Iván Pulido,
526 Michael M Henry, Hugo MacDermott-Opeskin, Christopher R Iacovella, Arnav M Nagle,
527 Alexander Matthew Payne, John D Chodera, and Yuanqing Wang. Machine-learned molec-
528 ular mechanics force fields from large-scale quantum chemical data. *Chemical Science*, 2024.
529 [10] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
530 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural net-
531 work for modeling quantum interactions. *Advances in neural information processing systems*,
532 30, 2017.
533 [11] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry
534 prediction using a deep generative graph neural network. *Scientific Reports*, 9(1), December
535 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-56773-5. URL <http://dx.doi.org/10.1038/s41598-019-56773-5>.
536 [12] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
537 Diffusion steps, twists, and turns for molecular docking, 2023. URL <https://arxiv.org/abs/2210.01776>.
538

540 [13] Yuzhi Xu, Wei Xia, Chao Zhang, Xinxin Liu, Chengwei Ju, Xuhang Dai, Pujun Xie, Yuan-
541 qing Wang, Guangyong Chen, and John Zhang. Quantifying protein-protein interaction with a
542 spatial attention kinetic graph neural network. *bioRxiv*, pages 2025–06, 2025.

543 [14] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
544 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
545 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

546 [15] Gustaf Ahritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William
547 Gerecke, Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, et al. Open-
548 fold: Retraining alphafold2 yields new insights into its learning mechanisms and capacity for
549 generalization. *Nature methods*, 21(8):1514–1524, 2024.

550 [16] Chai Discovery team, Jacques Boitread, Jack Dent, Matthew McPartlon, Joshua Meier, Vini-
551 cius Reis, Alex Rogozhonikov, and Kevin Wu. Chai-1: Decoding the molecular interactions
552 of life. *BioRxiv*, pages 2024–10, 2024.

553 [17] Michael Levitt and Shneior Lifson. Refinement of protein conformations using a macromolec-
554 ular energy minimization procedure. *Journal of molecular biology*, 46(2):269–279, 1969.

555 [18] AT Hagler, E Huler, and Shneior Lifson. Energy functions for peptides and proteins. i. deriva-
556 tion of a consistent force field including the hydrogen bond from amide crystals. *Journal of*
557 *the American Chemical Society*, 96(17):5319–5327, 1974.

558 [19] J Andrew McCammon, Bruce R Gelin, and Martin Karplus. Dynamics of folded proteins.
559 *nature*, 267(5612):585–590, 1977.

560 [20] Radford M. Neal. Annealed importance sampling, 1998. URL <https://arxiv.org/abs/physics/9803008>.

561 [21] Christopher Jarzynski. Nonequilibrium equality for free energy differences. *Physical Review*
562 *Letters*, 78(14):2690, 1997.

563 [22] Suriyanarayanan Vaikuntanathan and Christopher Jarzynski. Escorted free energy simulations.
564 *The Journal of Chemical Physics*, 134(5), February 2011. ISSN 1089-7690. doi: 10.1063/1.
565 3544679. URL <http://dx.doi.org/10.1063/1.3544679>.

566 [23] Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler.
567 *arXiv preprint arXiv:2410.02711*, 2024.

568 [24] Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for
569 sampling, 2022. URL <https://arxiv.org/abs/2111.15141>.

570 [25] Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers, 2023.
571 URL <https://arxiv.org/abs/2302.13834>.

572 [26] Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram,
573 Brandon Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng
574 Liu, and Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via adjoint
575 matching, 2025. URL <https://arxiv.org/abs/2504.11713>.

576 [27] Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. *Advances in neural*
577 *information processing systems*, 33:5933–5944, 2020.

578 [28] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
579 differential equations. *CoRR*, abs/1806.07366, 2018. URL <http://arxiv.org/abs/1806.07366>.

580 [29] Avishek Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-
581 Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and
582 Alexander Tong. Se (3)-stochastic flow matching for protein backbone generation. *arXiv*
583 *preprint arXiv:2310.02391*, 2023.

584 [30] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le.
585 Flow matching for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

586 [31] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
587 equilibrium states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147,
588 2019.

589 [32] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
590 equilibrium states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147,
591 2019.

592 [33] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
593 equilibrium states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147,
594 2019.

594 [32] Leon Klein and Frank Noé. Transferable boltzmann generators, 2025. URL <https://arxiv.org/abs/2406.14426>.

595

596 [33] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets variational inference: Controlled monte carlo diffusions, 2025. URL <https://arxiv.org/abs/2307.01050>.

597

598 [34] Gavin E Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. *Physical Review E*, 60(3):2721, 1999.

599

600 [35] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. *arXiv preprint arXiv:2209.15571*, 2022.

601

602 [36] Bálint Máté and François Fleuret. Learning interpolations between boltzmann densities. *arXiv preprint arXiv:2301.07388*, 2023.

603

604 [37] Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning stochastic dynamics from samples. In *International conference on machine learning*, pages 25858–25889. PMLR, 2023.

605

606 [38] Lorenz Richter and Julius Berner. Improved sampling via learned diffusions, 2024. URL <https://arxiv.org/abs/2307.01198>.

607

608 [39] Edward Nelson. *Dynamical theories of Brownian motion*, volume 3. Princeton university press, 1967.

609

610 [40] Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. *arXiv preprint arXiv:2208.01893*, 2022.

611

612 [41] Denis Blessing, Xiaogang Jia, and Gerhard Neumann. End-to-end learning of gaussian mixture priors for diffusion sampler, 2025. URL <https://arxiv.org/abs/2503.00524>.

613

614 [42] Changyi Xiao and Ligang Liu. Generative flows with matrix exponential. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 10452–10461. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/xiao20a.html>.

615

616 [43] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi, and Michael M. Bronstein. Grand: Graph neural diffusion, 2021. URL <https://arxiv.org/abs/2106.10934>.

617

618 [44] Kanti V Mardia and Peter E Jupp. *Directional Statistics*. Wiley, 2000.

619

620 [45] Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are universal: Gauge-equivariant machine learning, structured like classical physics. *CoRR*, abs/2106.06610, 2021. URL <https://arxiv.org/abs/2106.06610>.

621

622 [46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. <http://www.deeplearningbook.org>.

623

624 [47] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. *Advances in neural information processing systems*, 12, 1999.

625

626 [48] Louis Grenioux, Maxence Noble, and Marylou Gabrié. Improving the evaluation of samplers on multi-modal targets, 2025. URL <https://arxiv.org/abs/2504.08916>.

627

628 [49] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm, 2019. URL <https://arxiv.org/abs/1608.04471>.

629

630 [50] Jiajun He, Yuanqi Du, Francisco Vargas, Yuanqing Wang, Carla P. Gomes, José Miguel Hernández-Lobato, and Eric Vanden-Eijnden. Feat: Free energy estimators with adaptive transport, 2025. URL <https://arxiv.org/abs/2504.11516>.

631

632 [51] Jerome P. Nilmeier, Gavin E. Crooks, David D. L. Minh, and John D. Chodera. Nonequilibrium candidate monte carlo is an efficient tool for equilibrium simulation. *Proceedings of the National Academy of Sciences*, 108(45), October 2011. ISSN 1091-6490. doi: 10.1073/pnas.1106094108. URL <http://dx.doi.org/10.1073/pnas.1106094108>.

633

634 [52] Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. *Advances in Neural Information Processing Systems*, 36:59886–59910, 2023.

635

636

637

638

639

640

641

642

643

644

645

646

647

648 [53] Yuanqing Wang, Kenichiro Takaba, Michael S. Chen, Marcus Wieder, Yuzhi Xu, John Z. H.
649 Zhang, Kuang Yu, Xinyan Wang, Linfeng Zhang, Daniel J. Cole, Joshua A. Rackers, Joe G.
650 Greener, Peter Eastman, Stefano Martiniani, and Mark E. Tuckerman. On the design space
651 between molecular mechanics and machine learning force fields. *Applied Physics Review*,
652 2025. URL <https://doi.org/10.1063/5.0237876>.

653 [54] David A Case, Thomas E Cheatham III, Tom Darden, Holger Gohlke, Ray Luo, Kenneth M
654 Merz Jr, Alexey Onufriev, Carlos Simmerling, Bing Wang, and Robert J Woods. The amber
655 biomolecular simulation programs. *Journal of computational chemistry*, 26(16):1668–1688,
656 2005.

657 [55] Jiajun He, Yuanqi Du, Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang,
658 Carla Gomes, and José Miguel Hernández-Lobato. No trick, no treat: Pursuits and challenges
659 towards simulation-free training of neural samplers, 2025. URL <https://arxiv.org/abs/2502.06685>.

660 [56] John Edward Jones. On the determination of molecular fields.—i. from the variation of the
661 viscosity of a gas with temperature. *Proceedings of the Royal Society of London. Series A,
662 containing papers of a mathematical and physical character*, 106(738):441–462, 1924.

663 [57] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
664 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
665 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

666 [58] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
667 <https://arxiv.org/abs/1412.6980>.

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **Proof of Remark 1.1**

704 *Proof.* For a single kernel k_t of the stated form, consider two input laws μ, ν and let

706
$$X_0 \sim \mu, \quad Y_0 \sim \nu$$

707 be an optimal coupling for $W_1(\mu, \nu)$, so that

709
$$\mathbb{E}\|X_0 - Y_0\| = W_1(\mu, \nu).$$

710 Let $Z \sim \mathcal{N}(0, 2\varepsilon I)$ be independent of (X_0, Y_0) and define

712
$$X_1 = f_t(X_0) + Z, \quad Y_1 = f_t(Y_0) + Z.$$

713 Then $\text{Law}(X_1) = \mu k_t$ and $\text{Law}(Y_1) = \nu k_t$, and by construction

714
$$X_1 - Y_1 = f_t(X_0) - f_t(Y_0).$$

716 Using the L -Lipschitz property of f_t ,

717
$$\mathbb{E}\|X_1 - Y_1\| = \mathbb{E}\|f_t(X_0) - f_t(Y_0)\| \leq L \mathbb{E}\|X_0 - Y_0\| = L W_1(\mu, \nu).$$

719 Since $W_1(\mu k_t, \nu k_t)$ is the infimum of $\mathbb{E}\|X_1 - Y_1\|$ over all couplings, this gives

720
$$W_1(\mu k_t, \nu k_t) \leq L W_1(\mu, \nu).$$

722 Thus each k_t is L -Lipschitz w.r.t. W_1 .

723 For the composition $k_{0:T-1} := k_{T-1} \circ \dots \circ k_0$, iterating the above bound yields

725
$$W_1(\mu k_{0:T-1}, \nu k_{0:T-1}) \leq L^T W_1(\mu, \nu).$$

727 Now apply this with $\mu = q_0$ and $\nu = \mu$ (the reference measure). By assumption $W_1(q_0, \mu) \leq 1$, and

728
$$q_T = q_0 k_{0:T-1} = q_1, \quad \mu_T := \mu k_{0:T-1}.$$

730 Then

731
$$W_1(q_1, \mu_T) = W_1(q_0 k_{0:T-1}, \mu k_{0:T-1}) \leq L^T W_1(q_0, \mu) \leq L^T.$$

732 Finally, by the triangle inequality,

733
$$W_1(q_1, \mu) \leq W_1(q_1, \mu_T) + W_1(\mu_T, \mu) \leq 2L^T,$$

735 so up to an inessential constant (absorbed into the normalization of W_1), the requirement
736 $W_1(q_1, \mu) = W_1$ implies

737
$$W_1 \leq L^T \Rightarrow T \geq \log_L W_1.$$

739 \square

740 **Proof of Theorem 2.6**

742 *Proof.* Suppose we have a probability density function p that is orthogonally invariant according to
743 Definition 2.1. It can be written as:

745
$$p(X) = \int dY \delta(X - Y), \quad (26)$$

747 which, since p is piecewise continuous, can be approximated arbitrarily well by a Riemann sum:

749
$$p(X) = \frac{1}{k} \sum k_i(X|\xi_i), \quad (27)$$

751 where ξ_i is a region in which k_i stays constant. Due to the first fundamental theorem of the orthog-
752 onal group, ξ can be embedded in any coordinate system up to the orthogonal transformation. As
753 such, the mixture component

754
$$k_i \text{PvMFLogNormal}(\cdot, \mu = \|\Xi\|, \kappa \rightarrow \inf, \rho = \|\Xi\|, \sigma \rightarrow 0), \quad (28)$$

755 where $\Xi Q \in \xi, \forall Q Q^\top = I$, can approximate any region ξ arbitrarily well. \square

756 **Proof of Remark 3.2** First, we denote the upper bound of the L2 discretization error by
757

$$758 \quad D(t) = \sup_{0 \leq s \leq t} \mathbb{E} |X_s - \hat{X}_s|^2. \quad (29)$$

760 Let us also denote the nearest discretization point less than t as τ_t ,
761

$$762 \quad D(t) = \sup_{0 \leq s \leq t} \mathbb{E} \left| \int_0^{\tau_s} du [b(X_u) - b(\hat{X}_u)] + \int_0^{\tau_s} dW [\sigma(X_u) - \sigma(\hat{X}_u)] \right| \quad (30)$$

$$765 \quad + \int_0^{\tau_s} du [\exp A(X_u)] - \tau_s \exp A(\hat{X}_u) + \int_{\tau_s}^1 du [b(X_u) + \exp A(X_u)] + \int_{\tau_s}^1 dW \sigma(X_u) \quad (31)$$

$$769 \quad \leq 5 \sup_{0 \leq s \leq t} \mathbb{E} \left| \int_0^{\tau_s} du [b(X_u) - b(\hat{X}_u)]^2 + \int_0^{\tau_s} dW [\sigma(X_u) - \sigma(\hat{X}_u)]^2 \right| \quad (32)$$

$$771 \quad + \left| \int_0^{\tau_s} du [\exp A(X_u)] - \tau_s \exp A(\hat{X}_u) \right|^2 + \left| \int_{\tau_s}^1 du [b(X_u) + \exp A(X_u)] \right|^2 + \left| \int_{\tau_s}^1 dW \sigma(X_u) \right|^2 \quad (33)$$

$$775 \quad \leq 5 \sup_{0 \leq s \leq t} \mathbb{E} \int_0^{\tau_s} [dub(X_u) - b(\hat{X}_u)]^2 + \mathbb{E} \int_0^{\tau_s} dW [\sigma(X_u) - \sigma(\hat{X}_u)]^2 + \mathbb{E} \int_0^{\tau_s} du [\exp A(X_u)]^2 + \tau_s^2 \exp(A(\hat{X}_u))^2 \quad (34)$$

$$778 \quad + \mathbb{E} \int_{\tau_s}^1 \Delta t du [b(X_u) + \exp A(X_u)]^2 + \mathbb{E} \int_{\tau_s}^1 du |\sigma(X_u)|^2 \quad (35)$$

$$781 \quad \leq 5 \sup_{0 \leq s \leq t} 2L^2 \mathbb{E} \int_0^{\tau_s} du |X_u - \hat{X}_u| + 2L^2 (\Delta t + 1) \mathbb{E} \int_{\tau_s}^1 du (1 + |X_u|^2) \quad (36)$$

$$783 \quad \leq 5(2L^2 \int_0^{\tau_s} du D(u) + 2L^2 (\Delta t^2 + \Delta t + 1)(1 + \sup_{0 \leq t \leq 1} \mathbb{E} |X_t|^2)), \quad (37)$$

785 where Cauchy–Schwarz’s inequality was used in the first two inequalities, Itô’s isometry used in the
786 second inequality, and the Lipschitz and linear growth condition used in the final relation. This can
787 be written as:

$$789 \quad D(t) \leq C \left(\int_0^t du D(u) + \Delta t \right) \quad (38)$$

792 Applying Grönwall’s inequality, we arrive at:

$$794 \quad D(t) \leq C \Delta t, \quad (39)$$

795 which recovers Remark 3.2 after taking the square root on both sides and applying Jensen’s inequality.
796

798 **Energy functions used as targets.** The synthetic energy functions studied in this paper are based
800 upon the pairwise distance $r_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$. Specific cases include double wall (DW):

$$802 \quad U_{\text{DW}}(r) = \frac{1}{\tau} [\lambda_2 (r - r_0)^2 + \lambda_4 (r - r_0)^4], \quad (40)$$

804 with $\lambda_2 = -4$, $\lambda_4 = 0.9$, $\tau = 1$, and Leonard-Jones (LJ) [56] potential:
805

$$806 \quad U_{\text{LJ}}(r) = \frac{\epsilon}{\tau} [(r/\sigma)^{12} - (r/\sigma)^6], \quad (41)$$

808 with $\sigma = 1$, $\tau = 1$, and an additional harmonic potential constraining particles to the center-of-mass
809 added [52] to prevent the dissolution of the system.

810 For real-world systems, we consider the molecular mechanics (MM) force field, typically expressed
 811 as:
 812

$$\begin{aligned}
 U_{\text{MM}}(\mathbf{x}; \Phi_{\text{FF}}) = & \sum_{\text{bond}} \frac{K_r}{2} (r_{ij} - r_0)^2 \\
 & + \sum_{\text{angle}} \frac{K_\theta}{2} (\theta_{ijk} - \theta_0)^2 \\
 & + \sum_{\text{torsion}} \sum_{n=1}^{n_{\text{max}}} K_{\phi,n} [1 + \cos(n\phi_{ijkl} - \phi_0)] \\
 & + \sum_{\text{Coulomb}} \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}} \\
 & + \sum_{\text{LJ}} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right],
 \end{aligned}$$

825 where the total potential energy U_{MM} as a function of the coordinates of the system \mathbf{x} and the collection
 826 of force field parameters $\Phi_{\text{FF}} = \{K_r, K_\theta, r_0, \theta_0, K_{\phi,n}, \phi_0, q, \sigma, \epsilon\}_i$ is modeled as the sum of
 827 bond, angle, torsion, and nonbonded energy.

828 **Sampling efficiency metric.** In this paper, we are primarily concerned about the sampling efficiency,
 829 characterized by the (normalized) effective sample size (ESS):
 830

$$\text{ESS} = \frac{1}{n} \mathbb{E}^{-1}[W] \approx \frac{1}{n} \frac{(\sum W_i)^2}{\sum W_i^2} = \frac{1}{n} \sum (\text{SoftMax}^2(W_i))^{-1}. \quad (42)$$

834 **Experimental details.** The architectures are implemented in JAX [57] and its eco-system. The
 835 random seed is fixed as 2666 everywhere in this paper. We use a 3-layer EGNN [3] with 64-units
 836 each and TanH activation everywhere in this paper. The Adam [58] optimizer with learning rate $1e-3$ and L2 regularization $1e-5$ was used. These choices are optimized based on simple experiments
 837 on the LJ-13 system. During training, we fix the number of integration step to be $1e2$ and the batch
 838 size to be $1e2$. For evaluation, $1e5$ samples are used to compute the ESS.
 839

840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863