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ABSTRACT

We tackle a challenge at the heart of the missions of computational chemistry and
biophysics—to sample a Boltzmann-type distribution

p(x|G) ∝ e−U(x|G) (1)

on RN×3 associated with some N -body system G, where U is an energy func-
tion (termed force field) with orthogonal invariance and deep, isolated minima.
Traditionally, this is sampled sequentially using Markov chain Monte Carlo meth-
ods, which can be so slow that one, for weeks of wall time, never breaks free
from the local minima defined by the starting pose. Neural samplers have been
designed to speed up this process by optimizing the dynamics, prescribed by a
stochastic differential equation (SDE). Though sound and elegant in continuous
time, they can be practically unstable and inefficient when discretized. In this
paper, we attribute this phenomena to the limited expressiveness of the finite ad-
ditive transition kernels, and their inability to bridge distant distributions. To rem-
edy this, we design a new type of highly flexible prior by mixing orthogonally
invariant densities (Mint), as well as a new discretized non-volume-preserving
kernel, termed Jacobian-unpreserving Langevin with explicit projection (Julep).
Together, MintJulep greatly improve the practical performance of neural samplers,
while keeping the underlying SDE intact.

1 INTRODUCTION: BOLTZMANN DISTRIBUTION AND NEURAL SAMPLERS

Statistical mechanics, some [1] say, bridges the microscopic and the macroscopic world,

Ō =

∫
dxO(x)p(x), (2)

with the probability distribution p, conditioned on some N -body system G, adopting the Boltz-
mann [2] form (Equation 1), known up to a constant. On one end of the bridge are per-frame
(x ∈ RN×3) computable quantities O(x); on the other, Ō, some ensemble observable tangibly
measurable in laboratories, such as the binding affinity of a newly designed therapeutics, or the
physical properties of an innovative material. As such, to draw samples from Equation 1 in an effi-
cient and unbiased manner to estimate Equation 2, will shed quantitative light on the understandings
and discoveries spanning various domains, from chemistry, material science, to biophysics. Many
machine learning pipelines in these disciplines can be seen as approximating (force field construc-
tion [3–10]) or minimizing (conformer generation [11], docking [12, 13], and protein folding [14–
16]) the Boltzmann distribution. Nevertheless, if one wishes to rigorously sample such distribution
till convergence, Monte Carlo methods are typically needed, known as molecular dynamics (MD)
simulations [17–19], which is slow and biased towards the starting pose, due to the sequential nature.

Preliminaries. The aforementioned sampling process typically involves integrating a SDE (from
t = 0 to 1 without loss of generality), using, for instance the overdamped Langevin dynamics,

dX = −ϵ∇Utdt+
√
2ϵdB, Xt=0 ∼ q0 (3)

where ϵ denotes the volatility (inverse friction). U1 = U is required to target the correct Boltzmann
distribution. A constant Ut∈[0,1] = U with a static starting point q0 = δ(x) represents the traditional

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

sampling process ubiquitously used by MD practitioners. Alternatively, a tractable starting point,
such as a wide isotropic distribution q0 = N (0, σI), σ >> 0, together with a linearly annealing
potential Ut = tU + (1− t)(− logN ), recovers the simulated annealing approach. When Ut is not
constant, the quantity

W (X) =

∫ 1

0

dt∂tUt(X), (4)

known as generalized work for physicists and path weights for statisticians, can be used as to correct
for the bias introduced in this process when estimating arbitrary functions f (annealed importance
sampling, AIS [20]), as well as to estimate the ratio of normalizing constants between k0 and k1
(Jarzynski’s equality [21], JE):∫

dXf(X)k1(X) =
E[eW f(X1)]

E[eW ]
;
Z1

Z0
=

∫
dX1k1(X1)∫
dX0k0(X0)

= E[eW ]. (5)

Problem statement & related works. To improve the convergence of X1 to Equation 1, a non-
equilibrium control [22] bt can be added to the drift term in Equation 3, resulting in the nonequilib-
rium annealing process:

d
−→
X = −ϵ∇Utdt+

√
2ϵdB + btdt, (6)

with the corresponding path weights:

W (X) =

∫ 1

0

dt(−∇ · bt(X) +∇Ut(X) · bt(X) + ∂tUt(X)). (7)

A perfect control term [23] exists so that X0 can be transported to exactly match X1 to Equation 1,
mitigating the need of reweighting, i.e., W ≡ 0. We call the neural parametrization and optimiza-
tion of bt towards this goal neural samplers. For this purpose, the most obvious choice of objectives
seeks to formulate this as a stochastic optimal control (SOC) problem [24–27] minimizing the con-
trol energy and the terminal reverse-KL divergence DKL[q1||k1], where q1 is governed by the law
of Equation 6. These online approaches require the differentiation through the SDE integration, and
can therefore be expensive or unstable. When ϵ = 0, the deterministic counterpart of Equation 6
reduces to a (continuous) normalizing flow [28–30], referred to as Boltzmann generators [31, 32] in
our context. To speed up convergence and prevent mode-collapsing ubiquitous in reverse-KL-based
methods requiring only the energy function (energy-based training), these types of approaches typi-
cally requires samples from k1 (data-based training) to evaluate the forward-KL DKL[k1||q1], incur-
ring an overhead. Overall, offline methods relying on neither samples nor differentiable trajectories
seem theoretically attractive for scalability. Specifically, consider a backward SDE with X0 ∼ k1:

d
←−
X = −ϵ∇Utdt+

√
2ϵd
←−
B − btdt. (8)

With Equation 7, the controlled [33] Crook’s fluctuation theorem reads exactly like (and recovers,
when b ≡ 0), the original Crook’s fluctuation theorem (CLT [34]):

d
−→
P /d
←−
P = exp(W − Z0 + Z1), (9)

where the derivative is taken in the Radon-Nikodym (RND) sense, and
−→
P ,
←−
P are the path measure

associated with Equation 6, 8, respectively. This furthermore generalizes JE (5) since E[d
−→
P /d
←−
P ] =

1. Although many divergences can be employed to find the perfect control term [35], such as
the physics-inspired neural network (PINN [36]) or the action matching (AM [37]) loss, the most
straightforward offline method [33, 38] minimizes the log-variance of the RND (9):

L = V[log[d
−→
P /d
←−
P ]], (10)

with can be taken w.r.t. any measure (hence the offline nature), albeit usually w.r.t.
−→
P for mini-

mal variance. When this approaches zero, bt is perfect since W ≡ 0 and
←−
P is exactly the time

reversal [39] of
−→
P .
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Pathology: Why neural samplers fail in practice? While the aforementioned formulation is sim-
ple and elegant in theory (continuous-time), practically, when discretized, it fails to perform when
realistic physical systems are involved [26]. We postulate that this can be attributed to the limited
expressiveness of the discretized kernel, and its inability to bridge drastically distant distributions.
Slightly formally, if we do not consider the equilibrium part of the drift ∇U (corresponding to the
infinite-inertia scenario in physics), we observe that (proof in the Appendix):

Remark 1.1 (Expressiveness of local kernels.). Let (kt)T−1
t=0 be Markov kernels of the form

k+(Xt+∆t|Xt) = N (Xt + bt(Xt)∆t,
√
2ϵI) (11)

where each drift map ft(x) = x + bt(x)∆t is L-Lipschitz. Let q0 be the initial law and de-
fine qT := q0k0k1 · · · kT−1. Assume there exists a reference measure µ such that W1(q0, µ) ≤
1 and W1(q1, µ) = W1, for some target distribution q1 with (normalized) 1-Wasserstein dis-
tance W1 ≫ 1 from µ. If qT = q1, then necessarily T ≥ logL W1. In words, at least logL W1

discrete kernels are needed to transport q0 to q1 using such local L-Lipschitz steps.

Main contributions. The aforementioned pathology tells us that the practical underwhelming per-
formance of neural samplers can be attributed to (1) the gap between the target distribution p and
the tractable distribution q0 at t = 0, henceforth referred to as the prior of neural sampling, and
the target distribution p; and (2) the inability for additive kernels in the form of Equation 11 to gap
such gaps. Motivated by this, while keeping the SDE (Equations 6, 8) and the objective (Equation 9)
intact, we propose:

• A new prior called Mint (mixture of invariant densities, §2), where we achieve high
parametrized flexibility while respecting the symmetry of physical systems.

• A new discretized kernel termed Julep (Jacobian-unpreserving Langevin with explicit pro-
jection, §3), which adds additional expressiveness to each step by allowing not only additive
but also multiplicative transformations.

Further relating the discoveries to prior literature, we note that [40] also optimizes the prior of the
sequential Monte Carlo process while leaving the actual annealing dynamics invariant, albeit using
a much more detailed but expensive invertible flow model evaluated only once during the SDE
integration. Blessing et al. [41] also proposes Gaussian mixtures as the initial distribution of the
SDE of the diffusion process; the Mint prior can be seen as the orthogonally equivariant version of
this idea. The Julep kernel, on the other hand, can be regarded as a continuous stochastic normalizing
flow model [27] sandwiched by deterministic bijections built with matrix exponential [42], of which
the time-discretized integration on a graph manifold is inspired by [43]. In §4, we show that these
two innovations greatly enhance the feasibility of Boltzmann neural samplers, bringing us one step
closer to the efficient and scalable sampling of Boltzmann distributions for physical systems.

2 MINT PRIOR: MIXTURE OF ORTHOGONALLY INVARIANT DENSITIES

To model the highly irregular distributions defined by the force field u in Equation 1, which we
know very little except that it is orthogonally invariant (w.r.t. internal rotation or reflection, definition
above), we ask the question: whether it is possible to find a class of distribution that can approximate
any arbitrary distributions on RN×n up to the orthogonal symmetry group O(n)? Formally:
Definition 2.1. A function f is said to be orthogonally invariant on RN×n if ∀X ∈ RN×n, Q ∈
Rd×d, QQ⊤ = Q⊤Q = I ,

f(X) = f(XQ). (12)

A distribution is said to be orthogonally invariant if its density function satisfies Equation 12.

It is also worth noting that, while most of the force fields used by computational physicists and
chemists are actually E(n)-, rather than O(n)-invariant, we constrain the translational degrees of
freedom here and work with a radial, internal coordinate system. Practically, this can be done by
consistently placing one particle, termed anchor atom henceforth (See an illustration in Figure 2.), at
the origin of the coordinate system. In addition, although we are more interested in n = 3, all results
shown in this paper can be generalized to all n ∈ Z+, as we do not reply on any operators other than
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Figure 1: Semantic illustration. Sampling tarjectory of DW-2 with the DDS [25] baseline (left),
Mint prior (middle), and Julep kernel (right). Mint accelerate the sampling by parametrizing a
flexible kernel; Julep accelerate the sampling by employing non-local, cross-mode moves.

the dot product. In the following section, we firstly handle the angular degrees of freedom, before
we proceed to the radial part and derive a parametric class of distribution capable of approximating
any densities up to the defined symmetry.

Pairwise von Mises-Fisher (PvMF) distribution: O(n)-invariant on (Sn−1)N . To start, we pro-
pose a new class of distribution termed the pairwise von Mises-Fisher distribution, on the manifold
(Sn−1)N , which is the N -product of Sn−1 spheres:
Definition 2.2 (PvMF distribution).

PvMF(Θ;µ, κ) ∝ exp(κ cos⟨vec(ΘΘ⊤), vec(µµ⊤)⟩), (13)

where κ ∈ R+ and Θ, µ ∈ (Sn−1)N . Simply put, the energy function measures the cosine similarity
between the gram matrices defined respectively by the variable Θ and the parameter µ, both on
the (Sn−1)N manifold, and prescribes the density similar to the vanilla von Mises-Fisher (vMF)
distribution [44]. Since such a density peaks at the perfect alignment of X and µ up to an orthogonal
transformation Q, with PvMF(µQ, µ) ∝ exp(κ) < ∞, and therefore the integration over a finite-
volume manifold Z =

∫
Θ∈(Sd)N dΘPvMF(Θ, µ) <∞ is normalizable. Besides, the gram operator

is O(n)-invariant, so it naturally follows that:
Remark 2.3. PvMF(Θ;µ, κ) is a valid probability distribution.
Remark 2.4. PvMF(Θ;µ, κ) = PvMF(ΘQ;µ, κ),∀Q⊤Q = I is orthogonally invariant.

Evidently, this probability density requires O(N2) runtime complexity to evaluate.

Mixture of PvMFLogNormal products: universally approximative. Having the angular de-
grees of freedom (Θ = X/∥X∥ ∈ (Sn−1)N ) taken care of, we pair the PvMF distribution with a
simple LogNormal distribution on the radial axis (r = ∥X∥ ∈ RN ) and can now define a distribu-
tion on the entire X ∈ RN×d space, called the PvMFLogNormal product, which stays orthogonally
invariant:

PvMFLogNormal(Θ, r;µ, κ, ρ, σ) = PvMF(Θ, κ)LogNormal(r; ρ, σ), (14)

where Θ ∈ (Sn−1)N , r ∈ R+ and µ ∈ (Sn−1)N , κ ∈ R+, ρ, σ ∈ RN . We now arrive at the com-
plete form of the family distribution used henceforth—the mixture of PvMFLogNormal products,
followed by the expressive characterization.
Definition 2.5 (Mixture definition).

q(X; {πi, µi, κi, ρi, σi}) =
∑
i

πiPvMFLogNormal(X/∥X∥, ∥X∥;µ, κ, ρ, σ), (15)

Theorem 2.6 (Universal approximator). Mixture of PvMFLogNormal distributions with sufficient
components can approximate any arbitrary Riemann-integratable orthogonally invariant distribu-
tions on RN×d with arbitrarily small error.
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The proof, deferred to the Appendix, follows the first fundamental theorem of the orthogonal
group [45] and the style of the universal approximation theorem of the Gaussian mixture mod-
els [46].

Sampling and energy-based variational inference (VI). While the family of distribution is de-
fined, we realize that sampling from this distribution (or the PvMF distribution itself) is highly
non-trivial. Recall that ([44] §3.5.22 and 9.3.15), for regular vMF distributions, in the high con-
centration limit (κ → ∞), its behavior converges to that of a projected normal distribution, which
is easy to sample. Following the same procedure to Taylor-expand the density on the tangent space
I − µµ⊤, we see that our PvMF distribution, when concentrated, can also be approximated by a
projected normal distribution rotated by an arbitrary angle Q (or reflection):

PvMF(Θ;µ, κ) ≈ PN (Θ;µQ, 1/
√
κ),∀Q, κ→∞. (16)

This approximation efficiently generates samples from the PvMF distribution, which can be further
corrected by a brief Langevin dynamics integration. If we are working with a problem where the
loss function is also orthogonally invariant, as is in this paper, the rotation can also be practically
emitted Q = I . In this case, although the proposal distribution PN is not orthogonally equivariant,
the resulting PvMF is. These samples are then used downstream to be multiplied by the radial
components and blended into a mixture.

Samples from q (Equation 15) at hand, we can easily fit this highly flexible function to arbitrary
target densities p by optimizing, for instance, the reverse KL divergence DKL[q||p] = Eq[log q −
log p]. Here, since we are dealing with particularly rugged energy landscape where the gradient of p
can be numerically overwhelming, we adopt the trick from [40] and optimize the REINFORCE [47]
policy gradient surrogate instead:

LMint = −Eq log q[SoftMax(log p− log q)] (17)

This objective fills the energy landscape with elliptical probability masses. The mode-seeking be-
havior of the reverse KL-divergence is not problematic here as the multimodal nature of p can
be captured by explicit discrete mixtures (which is one of the greatest challenges of neural sam-
plers) [48]. We can also add an additional Stein VI [49]-style repulsion kernel among the gram
matrix of the mixture components to encourage the diversification of modes.

LRepulsion =
∑
i

∑
j ̸=i

cos(µiµ
T
i , µjµ

T
j ) (18)

As such, we can view Mint as the optimization stage of neural sampler training, quickly and cheaply
finding diverse minima on the energy landscape. In § 4, we see that Mint alone can achieve sat-
isfactory results in terms of mode finding. Of course, despite of Theorem 2.6, in the finite limit
of the number of mixtures, the elliptical density q cannot fill arbitrarily sophisticated shapes. This
motivates the design of a highly expressive kernel in the following section.

3 JULEP KERNEL: JACOBIAN-UNPRESERVING LANGEVIN WITH EXPLICIT
PROJECTION

We design a novel forward kernel k+ to replace that in Remark 1.1, together with its corresponding
backward kernel k−:

k±(Xt±∆t|Xt) = N
(
exp

(
±At(Xt)∆t

)
Xt ± bt(Xt)∆t+ ∂Ut/∂X∆t, 2ϵ∆t

)
, (19)

where exp denotes matrix exponential and U = − log p up to a constant. One can easily see that
this is but a different discretization of Equation 6, now written as d

−→
X = −ϵ∇Utdt +

√
2ϵdB +(

bt(Xt) + expWt(At)
)
dt, with the last term omitted into bt by considering the first-order Taylor

expansion of the matrix exponential. Intuitively, our method affords the traditionally additive kernel
a multiplicative structure, thus greatly enhancing the expressiveness of each step, allowing it to
bridge faraway distributions. These intuitions can be formalized as the following remarks, with
proofs in the Appendix.
Remark 3.1 (Consistency of Julep kernels.). The discretized kernel k as defined in Equation 19 is a
consistent solution to the SDE Equation 6, i.e. it recovers the original SDE when ∆t→ 0.
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Remark 3.2 (Julep kernel has the same strong convergence as Euler-Maruyama.). The discretized
kernel k as defined in Equation 19 converges strongly to the SDE Equation 6 with order 1/2. In
other words, if b, σ, exp(A) are L-Lipschitz and satisfies the linear growth condition, if Xt is a true
solution to Equation 6 and X̂t is a discretized solution, there exists a constant C, such that

sup
0≤t≤1

|Xt − X̂t| ≤ C
√
∆t (20)

Remark 3.3 (Julep kernel breaks the expressiveness bottleneck.). Following the setting in Re-
mark 1.1, except for the kernel definition in Equation 19, and if bt∆t and exp(At) are L-Lipschitz,
the number of discretized kernels needed to transport q0 to qt is smaller than logL W1.

Following [23, 27, 50, 51], the path weight (Equation 4) can be discretized as:

W ≈ U0(X0)− U1(X1) +

1∑
t=0

log k+(Xt|Xt−∆t)−
1∑

t=0

log k−(Xt−∆t|Xt). (21)

This relies on the assumption of the Gaussianality [33] of the reverse kernel, which is exact when
∆t → 0. Plugging this into the log-variance objective (Equations 9, 10) and omitting the constant
Z0 − Z1, we arrive at the log-variance loss for training the Julep kernel:

LJulep = V[W ] = V[U0(X0)− U1(X1) +
∑

log(k+/k−)], (22)

where the variance is evaluated over q0 and the law of the forward SDE.

Flexible neural parametrization. We stress that any arbitrary parametrization of A(X, t), b(X, t)
are all fair game, and the parametrization of U(X, t) also does not break the mathematical frame-
work as long as U0 and U1 stay invariant, which can be easily parametrized as Ũt = (1 − t)U0 +
tU1 + t(1 − t)Ut, with a free-form Ut, which is significantly more flexible than pre-defined linear
mixing schedule [36]. When it comes to the noise schedule, although it is possible to prescribe a
state-heteroschedastic noise ϵ(X, t), doing so would require a divergence correction term ∆Xϵ for
both the forward and backward SDE. We therefore only optimize ϵ as a function of t.

Preserving the orthogonal symmetry. With the amount of care taken to design an orthogonally
invariant prior, we cannot afford to lose the O(n)-symmetry in the integration stage. Fortunately,
this is almost trivial thanks to the rich literature about designing E(n)-equivariant force fields and
generative models [3–10]—in a sense, we are merely building a time-dependent version of these
models. Consider such a model fθ : X ×H → X ×H that map from and to the joint spaces of (n-
dimensional) geometry X ∈ Rn and semantic embedding H ∈ RC such that it is permutationally,
rotationally, translationally, and reflectionally equivariant on X and invariant onH, i.e., x ∈ X , h ∈
H and T : X → X is rotation, translation, and reflection, we have:

xf , hf = fθ(x, h)⇐⇒ T (xf ), hf = fθ(T (x), h). (23)

We can make this model O(n)-equivariant (and time-dependent) by constructing an embedding
combining the radial component of X , the time representation: h = [t : ||X||]. The output of this
model is connected to Equation 19 as:

bt = xf ;Ut =
∑

hf0 ;A = hf1h
⊤
f1 , (24)

where the control term reuses the equivariant output directly; the potential term aggregates invariant
embeddings among the particles (ubiquitous in force field constructions); and the projection term
are parametrized using low-rank form, where hf0,1 are channels of the invariant output hf . Note
that, the resulting projection term A is on the space of RN×N , similar to that in graph diffusion [43],
so we only linearly combine the positions of the particles without introducing internal rotation,
thus easily preserving orthogonal symmetry. Although most of these architectures can be reduced to
linear complexity, they require pre-specified graph structure (edge connection), which is not possible
here. So this backbone also incurs aO(N2) runtime complexity. In this paper, we used the simplest
equivariant graph neural networks (EGNNs) [3] as the backbone fθ, and leave more sophisticated
architecture for future studies.
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Offline training with replay. Since the log-variance objective (Equation 22) is an offline objec-
tive and can be taken w.r.t. any arbitrary reference path measure, we can simultaneously reduce the
variance of the objective and speed up the training by conducting multiple gradient descend step
with one sampled trajectory. Specifically, during training, we use one set of the parameters of the
kernel θk to sample one trajectory X0≤t≤1,θk . For the next R steps, while we evaluate the log-vari-
ance objective and update its parameters to θ̂k, we keep X0≤t≤1,θk unchanged. We tune R as a
hyperparameter and fixed R = 5 throughout this paper.

4 MINTJULEP RESULTS: SEPARATING OPTIMIZATION AND SAMPLING.

Having defined the two components, we now put them in a coherent framework and provide a
straightforward recipe to optimize them sequentially:

Algorithm 1: MintJulep training.
Input: Energy function U .
Input: Randomly initialized Mint prior q and Julep kernel k+.
Input: Hyperparameters: Integration steps T , sample size S, and replay time R
Output: Samples from the Boltzmann distribution (Equation 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

while LMint(·; q) not converging do
for i ∼ {1, . . . , S} do

sample Xi ∼ q (Equation 15;
end
descent LMint(X; q)(Equation 17) to optimize q

end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

while LJulep(·; k+) not converging do
for i ∈ {1, . . . , S} do

sample X ∼ q (Equation 15;
sample ti ∼ U(0, 1), i = 1, . . . , T and sort;
for i ∈ {1, . . . , T − 1} do

sample Xti+1
∼ k+(·|Xti) (Equation 19)

end
end
for i ∈ {1, . . . , R} do

descent LJulep({Xt})(Equation 22) to optimize k+

end
end

Note that two stages are required in the training of the model. In the first stage, the Mint prior q is
optimized to descend the surrogate KL divergence between q and p ∝ exp(−U), so that it becomes
already close to p. Next, the details of the distribution, which cannot be filled by elliptical probability
mass, are refined in the second stage using the Julep kernel. Although it is also possible to optimize
the parameter using the log-variance loss (Equation 22), we found that doing so harms the stability
of the training process. Empirically, the training of the prior, due to the lack of SDE integration,
only takes seconds on a GPU to converge.

Next, we test the performance of this formulation using synthesized and real-world energy land-
scape. Again, it is worth emphasizing that we only have access to the target energy function, or
probability density up to a constant, and do not have access to samples, which explains the seem-
ingly slightly inferior numerical performance to methods which do require such access [52]—these
are two different settings that are not comparable.

Synthesized energy landscape We first turn our attention to the time-tested synthetic energy func-
tions defined pairwise distance among particles—Leonard Jones (LJ, Appendix Equation 41) and
double wall (DW, Appendix Equation 40). Evidently, the LJ potential increases rapidly when r → 0,
which physically represents the strong repulsion among particles when they are about to collide,

7
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Figure 2: Mint minimizes; Julep samples—Illustration of the DW4 experiment. (a) Modes dis-
covered by Mint on the 2-dimensional space. The dot represents the anchor atom. Kernel density
estimation (KDE) plots from samples taken from the prior. The probability masses, though con-
strained to be elliptical in shape, are already placed at the minima of the energy surface. (b) KDE
plots of the distances among particles from the posterior t = 1, with modes of the prior t = 0
marked by verticle lines.

DW-4 LJ-13 LJ-55
PIS [24] 46.2± 8.1 1.2± 1.1 0.1± 0.0

DDS [33] 46.1± 7.6 1.0± 1.1 0.1± 0.0
Mint only 52.0± 0.2 3.0± 0.1 0.1± 0.0
Julep only 48.4± 0.1 1.2± 0.1 0.1± 0.0
MintJulep 92.9± 0.5 47.2± 1.1 1.0± 0.6

Table 1: MintJulep efficiently samples energy functions. Effective sample size (ESS, %) nor-
malized by the total sample size compared with state-of-the-art path-based models.

which contributes significantly to the ruggedness of the energy landscape. This poses a significant
challenge for numerical optimization—when a linear path is used, the gradient soon causes overflow
because of the 12-th power term. We therefore adopt a smooth annealing path:

r̃ = r + σ(1− t); ŨLJ = ϵ/τ [(r̃/σ)−6 − (2− t)−6]2, (25)

which preserves the minima but slowly anneal the minimal distance among particles from σ to 0 as
t : 0→ 1. We reuse this annealing path in the real-world experiment as well.

We compare the sampling efficiency (noted by the effective sample size, ESS, Appendix Equa-
tion 42) with the path integral sampler (PIS) [24], which is an online model that propagates the
gradient across the SDE, and the denoising diffusion sampler (DDS) [25], which proposes the log-
variance objective. Both of these methods use an isotropic Gaussian distribution and an additive
kernel, which might explain the drastic difference in the performance. In Figure 2, we show the
compartimentalization and collaboration of the two parts of the model, with minima discovered
firstly by Mint and refined by Julep. This trend is repeated in Figure 3 as well. Finally, we also
conduct an ablation study where we only conduct one improvement at a step, to test the individual
ability of the Mint prior and the Julep kernel. Overall, Mint provides more significant improvement
across all tasks (compared to the baseline DDS method), but more drastic improvement is only ob-
served when they work in tandem—the ten-fold ESS improvement on the most challenging task of
LJ-55 is only observed when both methods were employed.

Real-world energy landscape: alanine dipeptide (AA). Having established the satisfactory per-
formance on synthetic sandboxes, we move on to test if our model can achieve real world utility
by accelerating molecular dynamics (MD) simulation of biomolecular systems. In such case, the
energy function comes from a molecular mechanics (MM) force field (Appendix Equation 42); for a
machine learning community-friendly explanation, see [53]). In our setting, we adopt the topology
from an alanine dipeptide and uses the collection of parameters from [54]. The protocols of the
experiments are detailed in the Appendix.

Reusing the annealing path (Equation 41), we notice a similar trend as the toy experiment—Mint
captures the location of the minima quickly while Julep completes the fine detail of the energy
landscape. It is worth noting that, since the chirality, which is an important trait of the biomolecules,
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Figure 3: MintJulep can be used to produce convergent molecular dynamics (MD) simulation
trajectories. Ramachandran plot (KDE plot of the dihedral angles of the molecule) of: (a) Reference
equilibrium MD trajecotries of alanine dipeptide; (b) Samples generated from Mint, which captures
the minima; (c) Samples generated from MintJulep, which contains finer detail. (d) Representative
samples from MintJulep. Note that both chirality is possible since it is not specified in the energy
function. The path ESS for MintJulep is 18.0± 1.2%.

is not encoded in the energy function, the model may generate samples that has different chirality
than those abundant in nature (Figure 3 (d)), which might also explain the additional minima on
the Ramachandran plot. In sum, a very brief Mint training can already capture the minima of the
energy landscape of alanine dipeptide, whereas MintJulep can recover most of the regions sampled
by GPU-days-worth of MD trajectory in less than an hour of training.

5 CONCLUSION

If we were able to sample the Boltzmann distribution associated with various physical systems
efficiently and accurately, we would be able to build a more reliable bridge between the microscopic
and the macroscopic, with which we can gain a deeper quantitative understanding of such systems,
thereby rationally designing better pharmaceuticals, materials, and other physicochemical entities
with microscopic structure and macroscopic functions. The approach presented here, MintJulep,
represents a meaningful step towards this goal.

Concretely, the Boltzmann distributions associated with physical systems can oftentimes be de-
scribed as rugged, i.e. with isolated minima. Another feature of such functions is that they are
almost always O(n)−invariant. Starting from these two features of the realistic systems, as well as
the failure mode of traditional neural samplers [55], we design a brand new class of distributions
(Mint) and a powerful discretized kernel associated with the non-equilibrium annealing dynamics.
These two practical improvements drastically increase the performance of the path-based neural
samplers, allowing us to rapidly generate samples from the Boltzmann distributions associated with
real systems given only the energy function. Informally, the Mint prior can be viewed as a minimiza-
tion step (albeit still preserving the entropy structure), respecting the multimodality of the energy
landscape with the mixture of component design. As such, the prior is close to the desired target
energy function by KL divergence, leaving the training of the already powerful Julep kernel a breeze.

Limitations. As discussed in §2, 3, both Mint and Julep incur O(N2) runtime complexity, and
need further speed up before they can be efficiently used on realistic protein systems containing
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thousands of atoms. Furthermore, the reduction from the E(n) to O(n) group requires a careful
choice of anchor atom, and the representation power of the internal coordinate system is sensitive
to such choices.

Future directions. We plan to investigate further methods to simplify and accelerate the optimiza-
tion of the Mint prior and the integration of the Julep kernel. This would allow us to model larger
protein systems, and unify the pipelines of docking, sampling, and folding within one method. In
addition, to make this model generalizable, in the style of [32], is a natural next step.

Ethics statement. We acknowledge and adhere to the Ethnics statement of the ICLR.

Reproducibility statement. The implementation of our method can be found at https://
anonymous.4open.science/r/mint_julep-22D7/. Interestingly, our method only re-
quires an energy function and is therefore a data-free method, requiring no datasets or data-
processing.
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Proof of Remark 1.1

Proof. For a single kernel kt of the stated form, consider two input laws µ, ν and let

X0 ∼ µ, Y0 ∼ ν

be an optimal coupling for W1(µ, ν), so that

E∥X0 − Y0∥ = W1(µ, ν).

Let Z ∼ N (0, 2εI) be independent of (X0, Y0) and define

X1 = ft(X0) + Z, Y1 = ft(Y0) + Z.

Then Law(X1) = µkt and Law(Y1) = νkt, and by construction

X1 − Y1 = ft(X0)− ft(Y0).

Using the L-Lipschitz property of ft,

E∥X1 − Y1∥ = E∥ft(X0)− ft(Y0)∥ ≤ LE∥X0 − Y0∥ = LW1(µ, ν).

Since W1(µkt, νkt) is the infimum of E∥X1 − Y1∥ over all couplings, this gives

W1(µkt, νkt) ≤ LW1(µ, ν).

Thus each kt is L-Lipschitz w.r.t. W1.

For the composition k0:T−1 := kT−1 ◦ · · · ◦ k0, iterating the above bound yields

W1(µk0:T−1, νk0:T−1) ≤ LT W1(µ, ν).

Now apply this with µ = q0 and ν = µ (the reference measure). By assumption W1(q0, µ) ≤ 1, and

qT = q0k0:T−1 = q1, µT := µk0:T−1.

Then
W1(q1, µT ) = W1(q0k0:T−1, µk0:T−1) ≤ LTW1(q0, µ) ≤ LT .

Finally, by the triangle inequality,

W1(q1, µ) ≤W1(q1, µT ) +W1(µT , µ) ≤ 2LT ,

so up to an inessential constant (absorbed into the normalization of W1), the requirement
W1(q1, µ) = W1 implies

W1 ≤ LT ⇒ T ≥ logL W1.

Proof of Theorem 2.6

Proof. Suppose we have a probability density function p that is orthogonally invariant according to
Definition 2.1. It can be written as:

p(X) =

∫
dY δ(X − Y ), (26)

which, since p is piecewise continuous, can be approximated arbitrarily well by a Riemann sum:

p(X) =
1

k

∑
ki(X|ξi), (27)

where ξi is a region in which ki stays constant. Due to the first fundamental theorem of the orthog-
onal group, ξ can be embedded in any coordinate system up to the orthogonal transformation. As
such, the mixture component

kiPvMFLogNormal(·, µ = ||Ξ||, κ→ inf, ρ = ||Ξ||, σ → 0), (28)

where ΞQ ∈ ξ,∀QQ⊤ = I , can approximate any region ξ arbitrarily well.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Proof of Remark 3.2 First, we denote the upper bound of the L2 discretization error by

D(t) = sup
0≤s≤t

E|Xs − X̂s|2. (29)

Let us also denote the nearest discretization point less thant t as τt,

D(t) = sup
0≤s≤t

E|
∫ τs

0

du[b(Xu)− b(X̂u)] +

∫ τs

0

dW [σ(Xu)− σ(X̂u)] (30)

+

∫ τs

0

du[expA(Xu)]− τs expA(X̂u) +

∫ 1

τs

du[b(Xu) + expA(Xu)] +

∫ 1

τs

dWσ(Xu)|

(31)

≤ 5 sup
0≤s≤t

E|
∫ τs

0

dub(Xu)− b(X̂u)|2 + |
∫ τs

0

dWσ(Xu)− σ(X̂u)|2 (32)

+ |
∫ τs

0

du[expA(Xu)]− τs expA(X̂u)|2 + |
∫ 1

τs

du[b(Xu) + expA(Xu)]|2 + |
∫ 1

τs

dWσ(Xu)|2

(33)

≤ 5 sup
0≤s≤t

E
∫ τs

0

[dub(Xu)− b(X̂u)]
2 + E

∫ τs

0

dW [σ(Xu)− σ(X̂u)]
2 + E

∫ τs

0

du[expA(Xu)]
2 + τ2s exp(A(X̂u))

2

(34)

+ E
∫ 1

τs

∆tdu[b(Xu) + expA(Xu)]
2 + E

∫ 1

τs

du|σ(Xu)|2 (35)

≤ 5 sup
0≤s≤t

2L2E
∫ τs

0

du|Xu − X̂u|] + 2L2(∆t+ 1)E
∫ 1

τs

du(1 + |Xu|2) (36)

≤ 5(2L2

∫ τs

0

duD(u) + 2L2(∆t2 +∆t+ 1)(1 + sup
0≤t≤1

E|Xt|2)), (37)

where Cauchy–Schwarz’s inequality was used in the first two inequalities, Itô’s isometry used in the
second inequality, and the Lipschitz and linear growth condition used in the final relation. This can
be written as:

D(t) ≤ C(

∫ t

0

duD(t) + ∆t) (38)

Applying Grönwall’s inequality, we arrive at:

D(t) ≤ C∆t, (39)

which recovers Remark 3.2 after taking the square root on both sides and applying Jensen’s inequal-
ity.

Energy functions used as targets. The synthetic energy functions studied in this paper are based
upon the pairwise distance rij = ||xi − xj ||. Specific cases include double wall (DW):

UDW(r) =
1

τ
[λ2(r − r0)

2 + λ4(r − r0)
4], (40)

with λ2 = −4, λ4 = 0.9, τ = 1, and Leonard-Jones (LJ) [56] potential:

ULJ(r) =
ϵ

τ
[(r/σ)12 − (r/σ)6], (41)

with σ = 1, τ = 1, and an additional harmonic potential constraining particles to the center-of-mass
added [52] to prevent the dissolution of the system.
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For real-world systems, we consider the molecular mechanics (MM) force field, typically expressed
as:

UMM(x; ΦFF) =
∑

bond
Kr

2
(rij − r0)

2

+
∑

angle
Kθ

2
(θijk − θ0)

2

+
∑

torsion

nmax∑
n=1

Kϕ,n [1 + cos(nϕijkl − ϕ0)]

+
∑

Coulomb
1

4πϵ0

qi qj
rij

+
∑

LJ 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
,

where the total potential energy UMM as a function of the coordinates of the system x and the collec-
tion of force field parameters ΦFF = {Kr,Kθ, r0, θ0,Kϕ,n, ϕ0, q, σ, ϵ}i is modeled as the sum of
bond, angle, torsion, and nonbonded energy.

Sampling efficiency metric. In this paper, we are primarily concerned about the sampling effi-
ciency, characterized by the (normalized) effective sample size (ESS):

ESS =
1

n
E−1[W ] ≈ 1

n

(
∑

Wi)
2∑

W 2
i

=
1

n

∑
(SoftMax2(Wi))

−1. (42)

Experimental details. The architectures are implemented in JAX [57] and its eco-system. The
random seed is fixed as 2666 everywhere in this paper. We use a 3-layer EGNN [3] with 64-units
each and TanH activation everywhere in this paper. The Adam [58] optimizer with learning rate 1e−
3 and L2 regularization 1e− 5 was used. These choices are optimized based on simple experiments
on the LJ-13 system. During training, we fix the number of integration step to be 1e2 and the batch
size to be 1e2. For evaluation, 1e5 samples are used to compute the ESS.
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