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ABSTRACT

Optimization algorithms are fundamental to deep neural network training, where
exponential growth from millions to hundreds of billions of parameters has made
training acceleration a critical necessity. While adaptive methods like Adam
achieve remarkable success through element-wise learning rates, understanding
their continuous-time counterparts can provide valuable theoretical insights into
convergence guarantees beyond asymptotic rates. Recent advances in continuous-
time optimization have introduced fixed-time stable methods that promise finite-
time convergence independent of initial conditions. However, existing approaches
like FxTS-GF suffer from dimensional coupling, where coordinate updates de-
pend on global gradient norms, creating suboptimal scaling in high-dimensional
problems typical of deep learning. To address this issue, we introduce an element-
wise finite-time optimization framework that eliminates dimensional coupling
through coordinate-independent dual-power dynamics. Furthermore, we extend
the framework to momentum-enhanced variants for deep model training while
preserving convergence properties through continuous-time analysis. Under mild
assumptions, we establish rigorous finite-time and fixed-time convergence guaran-
tees. Notably, our framework reveals that widely-used sign-based optimizers like
SignSGD and Signum emerge as limiting cases, providing theoretical grounding
for their empirical effectiveness. Experiments on CIFAR-10/100 and C4 language
modeling demonstrate consistent improvements over existing methods.

1 INTRODUCTION

Optimization algorithms are the cornerstone of deep neural network training, determining both the
feasibility and efficiency of learning in large-scale models. As neural networks have grown expo-
nentially, training acceleration has evolved from a convenience to a critical necessity, where a single
large language model(LLM) can require thousands of GPU-hours and cost millions of dollars to
train. This computational reality has driven decades of intensive research into faster optimization
methods. The journey began with stochastic gradient descent (SGD), the foundational algorithm
that enabled neural network training, followed by momentum-based acceleration techniques like
heavy-ball momentum (Polyak, 1964) and Nesterov acceleration (Nesterov, 1983) that significantly
improved convergence rates.The development of adaptive methods marked a major breakthrough:
AdaGrad (Duchi et al., 2011) introduced coordinate-wise learning rates, RMSprop improved upon
this with exponential moving averages, while Adam (Kingma & Ba, 2014) combined both first and
second moment estimation and AdamW (Loshchilov & Hutter, 2017) which decouples weight de-
cay. More recent advances include second-order methods like Shampoo (Gupta et al., 2018) that use
full preconditioning matrices, and Sophia (Liu et al., 2023) which efficiently approximates Hessian
information for LLM training representing the current pinnacle of discrete optimization approaches.

However, the optimization methods described above are fundamentally designed from a discrete-
time perspective, focusing on iterative parameter updates with step-by-step convergence analysis.
While this discrete viewpoint has achieved remarkable practical success, it inherently limits the the-
oretical frameworks available for convergence analysis. In contrast, continuous-time optimization
theory offers fundamentally different analytical tools through dynamical systems theory that can
provide stronger convergence guarantees. Recent advances have introduced finite-time and fixed-
time stability concepts (Bhat & Bernstein, 2000; Polyakov, 2011), where systems reach equilibrium
exactly within bounded time horizons, with fixed-time variants providing bounds independent of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

initial conditions. The pioneering work by Budhraja et al. (2022) first applied these concepts to
optimization and deep learning model training, introducing fixed-time stable gradient flows (FxTS-
GF), employing dynamics of the form:

ẇ(t) = −c1
∇L(w)

∥∇L(w)∥
p1−2
p1−1

− c2
∇L(w)

∥∇L(w)∥
p2−2
p2−1

, (1)

where c1, c2 > 0, p1 > 2 and p2 ∈ (1, 2), which demonstrated superior performance than Adam
in solving the Rosenbrock function and training shallow neural networks model using the MNIST
dataset. While these methods provide elegant theoretical guarantees, the global norm ∥∇L(w)∥
creates dimensional coupling that becomes problematic in large-scale settings. In high-dimensional
networks, this global normalization is dominated by the largest gradient components, diminishing
updates for smaller but potentially crucial gradients. This limitation highlights a critical gap between
control-theoretic optimization and practical deep learning requirements. In contrast, the remarkable
success of Adam-family optimizers in deep learning stems from their element-wise adaptivity, where
each parameter maintains its own learning rate based on local gradient statistics. This design phi-
losophy naturally handles the heterogeneous optimization landscape and has proven essential for
training neural networks, especially for transformer-based models (Zhang et al., 2024a).

Motivated by this insight, we ask: Can we bring the theoretical rigor of finite/fixed-time optimization
to large-scale deep learning by adopting element-wise design principles?

We introduce an element-wise finite-time optimization framework specifically designed for the chal-
lenges of large-scale neural network training:

ẇ = −c1 sign(g)⊙ |g|p2 − c2 sign(g)⊙ |g|2−p1 , (2)

where g = ∇L(w) is the gradient of the objective function L(w), c1, c2 > 0, p1 < 2 and
p2 ∈ (0, 1), ⊙ denote the element-wise operations. This design eliminates dimensional coupling
by making each coordinate evolve independently, preserving the element-wise adaptivity crucial for
deep learning while maintaining rigorous convergence guarantees from control theory. Our frame-
work reveals a remarkable theoretical bridge between control-theoretic optimization and practical
deep learning methods. When parameters approach certain limits (p1 → 2, p2 → 0), our dy-
namics reduce to SignSGD (Bernstein et al., 2018). This connection suggests that successful sign-
based optimizers used in practice are actually principled approximations of theoretically grounded
finite/fixed-time gradient flows. Our contributions are as follows:

1. Element-wise finite/fixed-time optimization framework: We introduce the scalable
finite-time optimization method that eliminates dimensional coupling through coordinate-
independent dynamics, enabling rigorous finite-time convergence guarantees for high-
dimensional deep learning while preserving element-wise adaptivity.

2. Momentum-enhanced variants with theoretical guarantees: We extend our framework
to incorporate exponential moving averages and Polyak momentum for stochastic training,
establishing explicit finite-time and fixed-time convergence results under standard smooth-
ness and Polyak-Łojasiewicz conditions.

3. Theoretical unification of sign-based optimizers: We show that widely used distributed
training optimizers SignSGD and Signum emerge as limiting cases of our method, provid-
ing theoretical foundation for their empirical effectiveness in large-scale model training.

2 RELATED WORK

Deep Learning Optimization: The success of large-scale neural network training fundamentally
relies on adaptive optimization methods that adjust learning rates based on gradient statistics. This
paradigm began with AdaGrad (Duchi et al., 2011), which introduced coordinate-wise learning rates
by accumulating squared gradients, and was further developed by the Adam family of optimiz-
ers (Kingma & Ba, 2014; Loshchilov & Hutter, 2017). Adam combines first and second moment
estimation with exponential moving averages, while AdamW decouples weight decay from gradient-
based updates, and AdaBelief (Zhuang et al., 2020) refines second-moment estimation to better cap-
ture gradient predictability, leading to their widespread adoption across various deep learning appli-
cations. Adam’s widespread adoption across deep learning applications (Orvieto & Gower, 2025)
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reflects its consistent performance advantages over SGD, particularly pronounced in transformer ar-
chitectures. Recent theoretical work by Zhang et al. (Zhang et al., 2024a) explains this effectiveness
by analyzing transformer Hessian structures, revealing significant coordinate heterogeneity where
different parameters experience vastly different curvature properties. This heterogeneous structure
necessitates coordinate-specific learning rates, providing theoretical justification for element-wise
adaptive methods. Dong et al. (2025) further quantify this heterogeneous structure, establishing
rigorous mathematical foundations for adaptive optimization’s empirical success. The principle of
heterogeneity-aware optimization has manifested in various forms across the field’s development.
Earlier work like LAMB (You et al., 2019) recognized that different network depths require distinct
optimization strategies, extending adaptive principles to layer-wise normalization for effective large-
batch training of transformers. More recently, Adam-mini (Zhang et al., 2024b) explicitly exploits
the block-diagonal structure of neural network Hessians, assigning learning rates per dense sub-
block while maintaining computational efficiency. These methods demonstrate that the key insight
extends beyond simple element-wise adaptation to various forms of structured, heterogeneity-aware
optimization. More recent advances continue to push the boundaries of adaptive optimization. Ad-
vanced preconditioning methods like Shampoo (Gupta et al., 2018) and SOAP (Vyas et al., 2024) im-
plement block-diagonal preconditioning matrices, while ASGO (An et al., 2025) introduces adaptive
structured gradient optimization. Second-order approaches like Sophia (Liu et al., 2023) efficiently
approximate Hessian information specifically for large language model training. For distributed
training of large models, sign-based methods like SignSGD, Signum (Bernstein et al., 2018), and
Lion (Chen et al., 2023) maintain adaptive characteristics while providing communication efficiency.

Finite-Time and Fixed-Time Optimization Theory: The theory of finite-time stability has its
roots in control systems, where Bhat & Bernstein (2000) established fundamental results for sys-
tems that reach equilibrium in finite time rather than asymptotically. Polyakov Polyakov (2011)
extended this framework to fixed-time stability, providing uniform convergence bounds indepen-
dent of initial conditions, which is particularly valuable for control applications with strict timing
requirements. These theories are then extended to the optimization Garg & Panagou (2021), and
distributed optimization Chen & Li (2018), with applications on multi-agent system and ummaned
autonomus system Liu et al. (2022). In Nguyen et al. (2022), the fixed time convergence theory is
further extended to systems with time-varying coefficients. These methods demonstrate extraordi-
nary acceleration in small-scale continuous systems, whereas their application in the deep learning
field remains largely unexplored. Recently, these theoretical advances have recently been applied to
machine learning and deep learning problems. Budhraja et al. (2022) introduced fixed-time stable
gradient flows (FxTS-GF) for convex optimization , demonstrating how control-theoretic concepts
can provide stronger convergence guarantees than classical gradient descent.

3 PROBLEM FORMULATION AND THEORETICAL FRAMEWORK

Consider the unconstrained optimization problem:

min
w∈Rd

L(w) (3)

where L : Rd → R is continuously differentiable with global minimum w∗ and optimal value
L∗ = L(w∗). Classical approaches to solving problem (3) include first-order and second-order
methods. Gradient descent employs the update rule wk+1 = wk − η∇L(wk) and offers simplicity
but exhibits slow linear convergence rates under strong convexity. The discrete-time algorithms can
be interpreted as dynamical system, while its continuous-time counterparts, derived by considering
infinitesimal step sizes, take the form of differential equations, i.e.

ẇ(t) = −∇L(w(t)). (4)

Analyzing the continuous-time system can provide valuable theoretical insights, such as stabil-
ity properties and convergence rates, offering a complementary perspective to discrete optimiza-
tion analysis. Both classical discrete methods and their continuous-time counterparts provide only
asymptotic convergence guarantees: the objective function approaches the optimum as time or iter-
ations tend to infinity, but never reaches it exactly in finite time. Recent advances in optimization
theory have introduced stronger convergence concepts that go beyond asymptotic guarantees. These
developments draw from the stability theory of dynamical systems to provide finite-time and fixed-
time convergence guarantees, with definitions given as Definition 1, 2.
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Definition 1 (Finite-Time Stability Bhat & Bernstein (2000)). A dynamical system ẋ = f(x) with
equilibrium at x = 0 is finite-time stable if there exists a settling time function T : Rn → R+ such
that for any initial condition x(0) = x0, the solution satisfies x(t) = 0 for all t ≥ T (x0).
Definition 2 (Fixed-Time Stability Polyakov (2011)). A finite-time stable system is fixed-time stable
if the settling time function T (x0) is globally bounded: supx0∈Rn T (x0) < ∞.

(a)

0 500 1000 1500 2000 2500 3000
Iteration

10 2

10 1

100

||x
 - 

x*
||

SGD
Adam
FxTS-GF
FxTS-GF(M)

(b)

0 1000 2000 3000 4000 5000
Iteration

10 2

10 1

100

101

102

103

104

||
f(w

)||

SGD
Adam
FxTS-GF
FxTS-GF(M)

(c)

Figure 1: (a) Fixed time convergence vs asymptotic convergence, (b) Convergence result for mini-
mizing Rosenbrock function with various optimization methods, where fixed time methods converge
faster than SGD and Adam, (c) Convergence result for small-scale quadratic problem with various
optimization methods, where Adam converge faster than fixed time methods.

The key advantage of fixed-time stability is that convergence time is independent of initial condi-
tions, providing stronger guarantees than classical finite-time stability, as demonstrated in Figure 1a.
Designing finite/fixed time gradient flow normally involves the following lemmas:

Lemma 1 (Bhat & Bernstein (2000)). Let V (t) be absolutely continuous and satisfy V̇ (t) ≤
−αV (t)γ for α > 0 and γ ∈ (0, 1). Then V (t) reaches zero in finite time T ∗ < ∞ given by
T ∗ ≤ V (0)1−γ

α(1−γ) .

Lemma 2 ( Polyakov (2011)). Consider a Lyapunov function V (w) ≥ 0 with V (w) = 0 if and
only if w = w∗. If there exist constants a, b > 0, 0 < α < 1 < β such thatV̇ ≤ −aV α − bV β , then
the system is fixed-time stable with settling time bounded by T ≤ 1

a(1−α) +
1

b(β−1) .

Followed by Lemma 1, 2, different control laws are designed to achieve the finite time or fixed time
convergence. However, existing finite/fixed-time optimization methods, including FxTS-GF(M)
(shown in (1)), encounter fundamental scalability limitations due to dimensional coupling that
severely impede their adoption in large-scale machine learning. To demonstrate this property, we
adopt the set from (Budhraja et al., 2022) with Rosenbrock function f(x1, x2) = (1 − x1)

2 +
100(x2 − x2

1)
2,and analyze the generic quadratic minimization problem, f(x) = 1

2w
THw, where

H = diag(H1, H2, H3) is a block-diagonal, positive-definite matrix. Let Di = dim(wi) be the
number of parameters in block i. Specifially, theheterogeneity by drawing eigenvalues for H1, H2,
and H3 from {0.1, 0.2, 1.5, 3}, {49, 50, 51, 100}, and {1000, 1100, 2001, 2005}, respectively, the
size of each block is set to 50. Fig. 1b and 1c demonstrate that the FxTS-GF outperforms Adam and
SGD on Tiny Resenbrock function but fails with a small-scale quadratic problem with heterogeneous
eigenvalues.

4 METHODOLOGY

4.1 ELEMENT-WISE FINITE-TIME OPTIMIZATION FRAMEWORK

To address the dimensional coupling limitations of existing finite-time methods, we propose an
element-wise approach that enables coordinate-independent convergence analysis. Our core insight
is to replace global gradient norms with element-wise operations, yielding the dynamics:

ẇ = −c1 sign(g)⊙ |g|p2 − c2 sign(g)⊙ |g|2−p1 , (5)

where g = ∇L(w), constants c1, c2 > 0, exponents p2 ∈ (0, 1), p1 ∈ (0, 2), and ⊙ denotes
element-wise multiplication. This formulation eliminates the global coupling present in methods
like FxTS-GF while preserving the dual-power structure essential for finite-time convergence.

4
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The key theoretical advantage lies in the coordinate-wise nature of the dynamics: each parameter wi

evolves according to its local gradient information gi, avoiding the dimensional scaling issues that
plague globally-coupled approaches.

Assumption 1. The objective function L(w) satisfies:

1. L-smoothness: ∥∇L(w)−∇L(w′)∥ ≤ L∥w −w′∥

2. Polyak-Łojasiewicz condition: ∥∇L(w)∥2 ≥ 2µ(L(w)− L∗) for some µ > 0

4.2 MAIN CONVERGENCE RESULT

We now formalize the convergence guarantees of the proposed continuous-time dynamics. The
following theorem unifies both finite-time and fixed-time convergence regimes under a single pa-
rameterization.

Theorem 1. Consider the continuous-time dynamics equation 5 with parameters satisfying p2 ∈
(0, 1), p1 < 2, and c1, c2 > 0. Under Assumption 1: (i) Finite-time convergence: When p1 < 2,
there exists a finite time T ∗ < ∞ such that L(w(t)) = L∗ for all t ≥ T ∗. The convergence time is
bounded by: T ∗ ≤ (L(w0)−L∗)1−γ1

c1d−p2 (2µ)(1+p2)/2(1−γ1)
+ (L(w0)−L∗)1−γ2

c2dp1−2(2µ)(3−p1)/2(1−γ2)
where γ1 = 1+p2

2 ∈ (0.5, 1),

γ2 = 3−p1

2 . (ii) Fixed-time convergence: When p1 < 1, we have γ2 = 3−p1

2 > 1, and the
convergence time is further bounded by a constant independent of initial conditions: T ∗ ≤ Tmax =

1
α2(γ2−1) + 1

α1(1−γ1)
, where α1 = c1d

− 1−p2
2 (2µ)

1+p2
2 and α2 = c2d

p1−2(2µ)
3−p1

2 are positive
constants determined by problem parameters.

Proof. The Proof details are shown in Appendix. C

Remark 1. The proof reveals distinct convergence phases depending on p1: i)finite-time (1 ≤
p1 < 2): Both γ1, γ2 < 1, convergence time depends on initial conditions. (ii)Fixed-time (p1 < 1):
γ2 > 1 dominates as V (t) → 0, ensuring convergence time bounds independent of initial conditions
This characterization highlights the practical flexibility of the dynamics: by tuning p1, practitioners
can trade off between rapid convergence with initial-condition dependence and guaranteed uniform
convergence time.

By using the explicit Euler discretization scheme, it yeilds:

wk+1 = wk − η
[
c1 sign(gk)⊙ |gk|p2 + c2 sign(gk)⊙ |gk|2−p1

]
, (6)

where η is the stepsize, and ⊙ denotes element-wise multiplication. Therefore, the algorithm is
shown in Algorithm 1.

Algorithm 1 Element-wise Finite/Fixed-Time (EFT) Convegence algorithm

Require: Parameters β ∈ [0, 1), c1, c2 > 0, p1 < 2, p2 ∈ (0, 1), learning rate η > 0.
Require: Initial weights w0,

1: for k = 0, 1, 2, . . . do
2: Compute gradients: gk = ∇L(wk)
3: Compute EFT forces: Fk = c1 sign(gk)⊙ |gk|p2 + c2 sign(gk)⊙ |gk|2−p1

4: Update weights: wk+1 = wk − ηFk

5: end for

4.3 MOMENTUM-ENHANCED FINITE-TIME DYNAMICS

Modern deep learning optimization faces two critical challenges: stochastic variance from mini-
batch gradients and heterogeneous curvature across parameter space. We address these through two
complementary momentum mechanisms that preserve our finite-time convergence guarantees while
offering distinct computational advantages.

5
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Element-wise Finite/Fixed-Time with Momentum (EFToM) For variance reduction in stochas-
tic settings, we integrate exponential moving averages:

mk = β1mk−1 + (1− β1)gk, (7a)

wk+1 = wk − η
[
c1 sign(mk)⊙ |mk|p2 + c2 sign(mk)⊙ |mk|2−p1

]
. (7b)

where m ∈ Rd is the momentum vector. The continuous-time analysis reveals that EFToM achieves
momentum tracking through the system:

ẇ = −c1 sign(m)⊙ |m|p2 − c2 sign(m)⊙ |m|2−p1 , ṁ = −λ (m− g) , (8a)

where λ > 0 controls the momentum convergence rate.

Element-wise Finite/Fixed-Time with Polyak Momentum (PEFToM) While EFToM excels
in noisy environments, certain optimization landscapes benefit from accumulated gradient history.
Polyak momentum provides this through its natural continuous representation. The discrete update
vk = βvk−1 + gk can be unrolled as:

vk =

k∑
j=0

βjgk−j = gk + βgk−1 + β2gk−2 + . . . (9)

This discrete convolution has a natural continuous analog through the integral representation v(t) =∫ t

−∞ e−γ(t−s)g(s) ds, where γ > 0 controls the memory depth. Taking the time derivative yields:

dv

dt
= g(t)− γ

∫ t

−∞
e−γ(t−s)g(s) ds = g(t)− γv(t) (10)

Unlike EFToM’s instantaneous gradient tracking, PEFToM accumulates the complete gradient his-
tory, making it particularly effective for optimization problems with consistent gradient directions.
The complete PEFToM system becomes:

v̇ = g − γv, ẇ = −c1 sign(v)⊙ |v|p2 − c2 sign(v)⊙ |v|2−p1 . (11a)

Theorem 2 (EFToM Finite-/Fixed-Time Convergence). Consider the EFToM dynamics equation 8
with parameters p2 ∈ (0, 1), 0 < p1 < 2, and c1, c2, λ > 0. Under Assumption 1, choose λ ≥

λ⋆, where λ⋆ := max

{(
4K1

c1

)1−θ1
,
(

4K2

c2

)1−θ2
}

with θ1 = 2p2

1+p2
, θ2 = 2(2−p1)

3−p1
. Define the

exponents α := 1+p2

2 ∈ ( 12 , 1), β := 3−p1

2 , and constants â := 1
2c1d

− 1−p2

2 (2µ)α, b̂ :=

1
2c2d

− 1−p1

2 (2µ)β . Then the following convergence guarantees hold: (i) Finite-time convergence
(1 ≤ p1 < 2, equivalently β ≤ 1): For any initial state (w(0),m(0)), the convergence time
satisfies T ≤ Vtot(0)

1−α

â(1−α) + Vtot(0)
1−β

b̂(1−β)
, where Vtot(0) := L(w(0)) − L∗ + c1

2 ∥m(0) − g(0)∥2. (ii)
Fixed-time convergence If p1 < 1, every trajectory reaches the global optimum (w∗,0) within time
Tmax = 1

â(1−α) +
1

b̂(β−1)
.

Proof. The Proof details are shown in Appendix D

Theorem 3 (PEFToM Finite-/Fixed-Time Convergence). Consider the PEFToM dynamics equa-
tion 11 with the same parameter conditions as Theorem 2. Under Assumption 1, the conver-

gence guarantees are analogous to EFToM, with constants: â := γ
2 c1d

− 1−p2

2 (2µ)α, b̂ :=

γ
2 c2d

− 1−p1

2 (2µ)β .

Proof. See Appendix E for the complete proof.

Remark 2 (Momentum Mechanism Selection Guide). The theoretical analysis reveals distinct al-
gorithmic characteristics: (i) EFToM: Convergence rates independent of momentum parameter λ,
providing robustness to hyperparameter selection. The parameter λ only affects the admissibility
threshold λ⋆, making hyperparameter tuning less critical. (ii) PEFToM: Convergence constants

6
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scale linearly with damping parameter γ, offering direct control over convergence acceleration.
However, this requires careful γ selection to balance convergence speed with numerical stability.
The fundamental difference lies in parameter sensitivity: EFToM prioritizes robustness through
parameter-independent convergence rates, while PEFToM enables fine-tuned acceleration through
direct parameter control over convergence constants.

Discretizing equation 11 using explicit Euler methods, it yields

wk+1 = wk − η
(
c1 sign(vk)⊙ |vk|p2 + c2 sign(vk)⊙ |vk|2−p1

)
, (12a)

vk+1 = β vk + gk, (12b)

Based on (7) and (12), the EFToM and PEFToM are sumarized in Algorithm 2 and 3, respectively.

Algorithm 2 Element-wise Finite-Time with
Momentum (EFToM)

Require: Parameters β ∈ [0, 1), c1, c2 ≥ 0,
p1 < 2, p2 ∈ (0, 1), learning rate η > 0

Require: Initial weights w0, initial momentum
v0 = 0

1: for k = 0, 1, 2, . . . do
2: gk = ∇L(wk)
3: mk+1 = βmk + (1− β)gk.
4: Fk = c1 sign(mk) ⊙ |mk|p2 +

c2 sign(mk)⊙ |mk|2−p1

5: Update weights: wk+1 = wk − ηFk

6: end for

Algorithm 3 Element-wise Finite-Time with
Polyak Momentum (PEFToM)

Require: Parameters β ∈ [0, 1), c1, c2 ≥ 0,
p1 < 2, p2 ∈ (0, 1), learning rate η > 0

Require: Initial weights w0, initial momentum
v0 = 0

1: for k = 0, 1, 2, . . . do
2: gk = ∇L(wk)
3: vk+1 = βvk + gk.
4: Fk = c1 sign(vk) ⊙ |vk|p2 +

c2 sign(vk)⊙ |vk|2−p1

5: Update weights: wk+1 = wk − ηFk

6: end for

4.4 UNIFIED FRAMEWORK: SIGNSGD AND SIGNUM AS SPECIAL CASES

Our element-wise finite-time framework provides a unified theoretical foundation for sign-based
optimization methods. For instance, SignSGD corresponds to the limiting behavior when p1 → 2
and p2 → 0 in our EFT dynamics :limp1→2,p2→0 ẇ = −(c1+c2)sign(g). Under Euler discretization
with step size η, this yields: wk+1 = wk − η(c1 + c2)sign(gk). Similarly, Signum (Bernstein et al.,
2018) emerges from our EFToM under the same parameter limits. When p1 → 2 and p2 → 0:

mk = β1mk−1 + (1− β1)gk, wk+1 = wk − η(c1 + c2)sign(mk). (13)

5 NUMERICAL EXPERIMENTS

We empirically validate the proposed Element-wise Finite-Time Optimization (EFT) framework,
including its variants EFToM and PEFToM, on standard benchmarks across two domains. For com-
puter vision, we evaluate performance on image classification tasks with CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) . For natural language processing task, we pretrain the llama-60m on C4 (Muen-
nighoff et al., 2023) subset. We compare our methods against a comprehensive suite of optimization
baselines to demonstrate their effectiveness. All experiments are implemented in PyTorch and exe-
cuted on a single NVIDIA RTX 4090 GPU with 24 GB memory.

5.1 IMAGE CLASSIFICATION ON CIFAR DATASETS

Setup We evaluate on CIFAR-10 and CIFAR-100 using three CNN architectures: VGG-11,
ResNet-34, and DenseNet-121. Training proceeds for 200 epochs with batch size 128, learning
rate decay (×0.1 at epoch 150), and weight decay 5× 10−4. Baseline optimizers include SGD, SGD
with momentum (SGDM), AdamW, AdaBelief, SignSGD, Signum, Lion, and FxTS-GF(M). For
hyperparameters, we follow the setting in Zhuang et al. (2020), with details of the hyperparameters
used in the experiment given in Appendix F.
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Table 1: Test accuracy (%) on CIFAR-10 & CIFAR-100 at different epochs and architectures.

CIFAR10 CIFAR100
VGG-11 ResNet-34 DenseNet-121 VGG-11 ResNet-34 DenseNet-121

Epochs 200 200 200 200 200 200
SGD 86.97 92.69 91.77 62.86 75.95 77.92
SignSGD 48.13 92.86 92.9 29.59 67.38 68.88
EFT 88.78 94 94.33 64.0 75.74 77.72
FxTS-GF(M) 87.91 93.44 94.58 63.67 73.58 74.65
EFToM 89.01 94.33 94.64 65.39 75.78 77.31
Signum 88.04 94.19 94.64 58.53 73.51 75.43
Lion 87.02 94.25 94.44 57.21 72.99 75.23
AdamW 87.97 93.88 94.07 58.66 71.98 75.16
AdaBelief 87.86 94.26 94.06 58.37 72.08 74.01
SGDM 90.35 94.68 94.8 64.62 75.82 78.1
PEFToM 91.02 95.17 95.62 68.05 77.34 79.6
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Figure 2: Test accuracy for CIFAR10 with different optimizers and models: (a) VGG-11, (b)
DenseNet-121, (c) ResNet-34

.

Performance Analysis Table 1 presents final accuracies across architectures and datasets, while
Figure 2 and Figure 5.1 present the test accuracy of various optimizers at different training stage.
The proposed framework achieves consistent improvements, with PEFToM reaching 95.17% on
CIFAR-10 ResNet-34 and 79.6% on CIFAR-100 DenseNet-121. These results represent gains of
+0.49% and +1.5% over SGD with momentum. The progression from EFT → EFToM → PEFToM
demonstrates systematic enhancement through momentum integration. On CIFAR-100 ResNet-34:
EFT (75.74%) → EFToM (75.78%) → PEFToM (77.34%) shows incremental but meaningful im-
provements from each algorithmic component. Performance advantages become more pronounced
on the challenging CIFAR-100 dataset. PEFToM surpasses modern adaptive methods: +5.36% over
AdamW (77.34% vs 71.98%) and +5.26% over AdaBelief (77.34% vs 72.08%) on ResNet-34. This
pattern suggests finite-time optimization principles provide greater benefits as task complexity in-
creases. Our element-wise approach addresses instabilities observed in existing sign-based methods.
While SignSGD deteriorates significantly on CIFAR-100 (29.59% on VGG-11), EFToM maintains
robust performance across all configurations. Similarly, compared to FxTS-GF(M) which suffers
from dimensional coupling, our method shows superior consistency on CIFAR-100 ResNet-34.

5.2 LANGUAGE MODEL PRETRAINING

We pretrain Llama-60M on C4 subset (Muennighoff et al., 2023) for 30,000 steps with batch size
16. Table 2 reports training and validation losses at key checkpoints, and the traning loss curve are
demonstrated in Figure 4. EFToM achieves the lowest validation loss (3.929 at 30k steps), outper-
forming AdamW (4.045) and other baselines. The rapid convergence aligns with our finite-time
optimization theory. While AdamW exhibits smoother training curves, EFToM reaches better fi-
nal performance despite some oscillation. PEFToM shows different behavior with slower initial
progress but competitive endpoints (4.594), indicating momentum variants may suit different train-
ing phases. The language modeling results validate our framework’s applicability beyond computer
vision. EFToM’s validation performance significantly exceeds AdamW (+2.9% relative improve-
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Figure 3: Test accuracy for CIFAR100 with different optimizers and models: (a) VGG-11, (b)
DenseNet-121, (c) ResNet-34

.

ment) and AdaBelief (+5.5% relative improvement), demonstrating effectiveness for large-scale se-
quence modeling.
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Figure 4: Test loss on C4 dataset

Table 2: Train and validation loss on C4 at different iter-
ations.

Train Loss Test Loss
Optimizer 5k 10k 20k 30k 5k 10k 20k 30k
SGD 5.875 5.938 5.469 5.219 6.125 5.708 5.354 5.278
SignSGD 5.625 5.875 5.406 5.904 5.903 5.615 5.292 5.188
EFT 5.000 4.875 4.500 4.125 5.177 4.618 4.208 4.090
FxTS-GF(M) 5.531 5.594 5.188 4.844 5.729 5.319 4.983 4.858
EFToM 4.688 4.688 4.344 3.953 4.806 4.451 4.003 3.929
Signum 4.969 5.156 4.875 4.563 5.153 4.910 4.660 4.618
Lion 4.875 5.031 4.719 4.438 5.003 4.764 4.479 4.431
AdamW 4.531 4.500 4.406 4.031 4.604 4.2708 4.066 4.045
AdaBelief 4.656 4.656 4.500 4.156 4.764 4.410 4.186 4.160
SGDM 5.469 5.594 5.188 4.844 5.705 5.389 5.076 4.951
PEFToM 5.563 5.781 5.125 4.625 5.809 5.524 4.934 4.594

5.3 DISCUSSION

Our element-wise finite-time dynamics consistently improve performance across diverse architec-
tures while successfully integrating momentum mechanisms that preserve theoretical convergence
properties. Memory Efficiency: Our methods reduce memory overhead by approximately 33% com-
pared to Adam-family optimizers by requiring only first-order momentum buffers, making them
suitable for large-scale model training. Momentum Selection: PEFToM excels on vision tasks
while EFToM performs best for language modeling, indicating that momentum mechanism selection
should consider task-specific optimization characteristics.

6 CONCLUSION

We developed an element-wise finite-time optimization framework that addresses the scalability lim-
itations of control-theoretic methods in high-dimensional deep learning. By eliminating dimensional
coupling through coordinate-independent dynamics, our approach achieves rigorous finite/fixed-
time convergence guarantees while preserving the heterogeneity-aware adaptivity crucial for neural
network optimization. The theoretical framework unifies disparate optimization methods under a
principled foundation: SignSGD and Signum emerge as limiting cases, providing rigorous finite-
time theoretical justification for their empirical success. Our momentum-enhanced variants demon-
strate that classical acceleration techniques can be seamlessly integrated without compromising con-
vergence properties. Empirical validation across computer vision and language modeling confirms
both convergence acceleration and memory efficiency gains, positioning our methods as theoreti-
cally grounded yet practically viable alternatives to adaptive optimizers. This work establishes a
new paradigm connecting control-theoretic stability with large-scale machine learning.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide complete implementation details in Appendix F, theoretical
proofs in Appendices C–E, and experimental configurations in Section 5. All datasets used (CIFAR-
10/100, C4) are publicly available as described in Section 5. We will release the complete source
code upon acceptance of this paper.
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A LARGE LANGUAGE MODEL USAGE STATEMENT

Large Language Models (LLMs) were used in this research for the following purposes: (i) Writ-
ing assistance: LLMs were used to aid in polishing the manuscript, including grammar checking,
sentence structure improvement, and clarity enhancement of technical explanations. (ii)Literature
review support: LLMs assisted in discovering and organizing related work during the literature re-
view process, helping to identify relevant papers and research directions in optimization theory and
deep learning. All substantial intellectual contributions, including the element-wise finite-time op-
timization framework, experimental design, and analysis of results, were developed independently
by the authors.

B FOUNDATIONS OF FINITE-TIME AND FIXED-TIME STABILITY THEORY

This appendix provides a comprehensive foundation for finite-time and fixed-time stability theory,
establishing the mathematical framework underlying our element-wise optimization methods. We
present detailed proofs of the fundamental lemmas and establish all necessary mathematical tools
used throughout the paper.

B.1 NOTATION AND PRELIMINARY DEFINITIONS

Throughout this appendix, we consider autonomous dynamical systems of the form:

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn (14)

where f : Rn → Rn is locally Lipschitz continuous, and x = 0 is an equilibrium point (i.e.,
f(0) = 0).

Notation ∥ · ∥ is Euclidean norm in Rn, Br := {x ∈ Rn : ∥x∥ ≤ r} represents closed ball of
radius r, Bo

r := {x ∈ Rn : ∥x∥ < r} represents open ball of radius r, V : Rn → R+ is the
Lyapunov function candidate, V̇ (x) := ∇V (x)T f(x) represents time derivative of V along system
trajectories, R+ := [0,+∞) is non-negative real numbers.

B.2 CLASSICAL ASYMPTOTIC STABILITY VS. FINITE-TIME CONVERGENCE

Definition 3 (Asymptotic Stability Khalil & Grizzle (2002)). The equilibrium x = 0 is asymptoti-
cally stable if:

1. Stability: For any ϵ > 0, there exists δ > 0 such that ∥x0∥ < δ implies ∥x(t)∥ < ϵ for all
t ≥ 0

2. Attractivity: There exists δ > 0 such that ∥x0∥ < δ implies limt→∞ x(t) = 0

The fundamental limitation of asymptotic stability is that convergence occurs only as t → ∞. In
contrast, finite-time stability guarantees exact convergence in finite time, providing stronger conver-
gence guarantees essential for time-critical applications.

B.3 FINITE-TIME STABILITY THEORY

Definition 4 (Finite-Time Stability Bhat & Bernstein (2000)). The equilibrium x = 0 is finite-time
stable if:

1. It is asymptotically stable

2. For any initial condition x0 in a neighborhood of the origin, there exists a settling time
T (x0) < ∞ such that x(t) = 0 for all t ≥ T (x0)

The function T : Bo
r → R+ is called the settling time function.
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B.3.1 FUNDAMENTAL LEMMA FOR FINITE-TIME CONVERGENCE

Lemma 3 (Finite-Time Convergence via Fractional Powers Bhat & Bernstein (2000)). Let V (t) ≥ 0
be an absolutely continuous function satisfying the differential inequality:

V̇ (t) ≤ −αV (t)γ . (15)

for some constants α > 0 and γ ∈ (0, 1). Then V (t) reaches zero in finite time T ∗ < ∞ given by:

T ∗ ≤ V (0)1−γ

α(1− γ)
. (16)

Proof. We establish this result through direct integration using separation of variables. The differ-
ential inequality equation 15 gives us:

dV

dt
≤ −αV γ . (17)

For V (t) > 0 (which holds for t < T ∗), we can separate variables:

dV

V γ
≤ −αdt. (18)

Integrating both sides from 0 to t (where t < T ∗):∫ V (t)

V (0)

V −γdV ≤ −α

∫ t

0

ds = −αt. (19)

The left-hand side evaluates to:∫ V (t)

V (0)

V −γdV =

[
V 1−γ

1− γ

]V (t)

V (0)

=
V (t)1−γ − V (0)1−γ

1− γ
. (20)

Since γ ∈ (0, 1), we have 1− γ > 0, thus:

V (t)1−γ − V (0)1−γ

1− γ
≤ −αt. (21)

Rearranging:
V (t)1−γ ≤ V (0)1−γ − α(1− γ)t. (22)

The right-hand side becomes zero when:t = T ∗ := V (0)1−γ

α(1−γ) . For t ≥ T ∗, we must have V (t) = 0

(since V (t) ≥ 0 by assumption), establishing finite-time convergence.

Remark 3. The crucial insight is that the fractional power γ < 1 creates a ”super-linear” decay
rate near the equilibrium. As V (t) → 0, the term V (t)γ decays more slowly than V (t), leading to
finite-time convergence rather than asymptotic approach.

B.4 FIXED-TIME STABILITY THEORY

The limitation of finite-time stability is that the settling time T (x0) may grow unboundedly as
∥x0∥ → ∞. Fixed-time stability addresses this by providing uniform bounds independent of initial
conditions.

Definition 5 (Fixed-Time Stability Polyakov (2011)). A finite-time stable equilibrium x = 0 is
called fixed-time stable if the settling time function T (x0) is globally bounded: supx0∈Rn T (x0) <
∞.

13
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B.4.1 DUAL-POWER LEMMA FOR FIXED-TIME CONVERGENCE

Lemma 4 (Fixed-Time Convergence via Dual Powers Polyakov (2011)). Let V (t) ≥ 0 be an
absolutely continuous function satisfying:

V̇ (t) ≤ −aV (t)α − bV (t)β (23)
for constants a, b > 0, 0 < α < 1 < β. Then V (t) reaches zero in fixed time bounded by:

Tmax =
1

a(1− α)
+

1

b(β − 1)
. (24)

Proof. We analyze the convergence behavior in two distinct phases based on the magnitude of V (t).

Phase 1 (V (t) ≥ 1): When V (t) ≥ 1, since β > α, we have V (t)β ≥ V (t)α. The differential
inequality equation 23 becomes:

V̇ ≤ −aV α − bV β ≤ −(a+ b)V β . (25)

Applying the separation of variables technique:
dV

V β
≤ −(a+ b)dt. (26)

Integrating from V (0) to 1 (assuming V (0) > 1):∫ 1

V (0)

V −βdV ≤ −(a+ b)T1. (27)

Evaluating the integral: [
V 1−β

1− β

]1
V (0)

=
1− V (0)1−β

1− β
≤ −(a+ b)T1. (28)

Since β > 1, we have 1− β < 0, therefore:
V (0)1−β − 1

β − 1
≤ (a+ b)T1. (29)

This gives us:

T1 ≤ V (0)1−β − 1

(a+ b)(β − 1)
≤ 1

b(β − 1)
. (30)

Phase 2 (V (t) ≤ 1): When V (t) ≤ 1, since α < 1, we have V (t)α ≥ V (t)β . The differential
inequality becomes:

V̇ ≤ −aV α − bV β ≤ −(a+ b)V α. (31)

Following similar integration:

T2 ≤ 11−α

(a+ b)(1− α)
=

1

a(1− α)
. (32)

Total convergence time: The total time to reach V (t) = 0 is:

Tmax = T1 + T2 ≤ 1

b(β − 1)
+

1

a(1− α)
. (33)

Importantly, this bound is independent of the initial condition V (0).

Remark 4. The dual-power structure in equation 23 ensures optimal convergence characteristics:

• For large V (t): the V β term (with β > 1) dominates, providing rapid initial convergence

• For small V (t): the V α term (with α < 1) dominates, ensuring finite-time convergence to
zero

This mechanism guarantees both fast convergence and uniform settling time bounds.
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B.5 ESSENTIAL MATHEMATICAL TOOLS

This section establishes the key mathematical inequalities and lemmas used throughout our proofs.

Lemma 5 (Young’s Inequality (Hardy et al., 1952, Chap. I)). Let a, b ≥ 0 and let p, q > 1 be
Hölder conjugates, i.e. 1

p + 1
q = 1. Then ab ≤ a p

p + b q

q . More generally, for any ε > 0 one has

ab ≤ ε p

p a p + ε−q

q b q, which is often used to split mixed terms into pure powers.

Lemma 6 (Hardy et al. (1952)). For any x1, . . . , xm ∈ R and q > 0:

1. If 0 < q ≤ 1: (
∑m

i=1 |xi|)
q ≤

∑m
i=1 |xi|q

2. If q > 1: (
∑m

i=1 |xi|)
q ≤ mq−1

∑m
i=1 |xi|q

Throughout the appendix every vector operation (| · |q , sign, ⊙) is taken element-wise.

C CORRECTED PROOF OF ELEMENT-WISE FINITE-TIME CONVERGENCE

C.1 MAIN THEOREM

Proof. Recall the element-wise dynamics:

ẇ = −c1 sign(g)⊙ |g|p2 − c2 sign(g)⊙ |g|2−p1 (34)

where c1, c2 > 0, p2 ∈ (0, 1), p1 ∈ (0, 3), and g = ∇L(w). Consider the Lyapunov function
V (t) = L(w(t))− L∗, it yeilds:

V̇ (t) =

d∑
i=1

giẇi = −c1

d∑
i=1

gi · sign(gi)|gi|p2 − c2

d∑
i=1

gi · sign(gi)|gi|2−p1 (35)

= −c1

d∑
i=1

|gi|1+p2 − c2

d∑
i=1

|gi|3−p1 . (36)

First, we bound
∑d

i=1 |gi|1+p2 . Since p2 ∈ (0, 1), we have 1 + p2 ∈ (1, 2). Applying Lemma 6
with q = 1 + p2 > 1: (

d∑
i=1

|gi|

)1+p2

≤ dp2

d∑
i=1

|gi|1+p2 . (37)

Rearranging:
d∑

i=1

|gi|1+p2 ≥ d−p2

(
d∑

i=1

|gi|

)1+p2

. (38)

Next, we bound
∑d

i=1 |gi|3−p1 . Since p1 < 2, then 3− p1 > 1. Using Lemma 6 with q > 1:

d∑
i=1

|gi|3−p1 ≥ d−(3−p1−1)

(
d∑

i=1

|gi|

)3−p1

= dp1−2

(
d∑

i=1

|gi|

)3−p1

. (39)

Using the fundamental inequality
∑d

i=1 |gi| ≥ ∥g∥2 and the PL condition ∥g∥22 ≥ 2µV :

d∑
i=1

|gi| ≥ ∥g∥2 ≥
√
2µV . (40)

Combining the above results, it yeilds:

V̇ (t) ≤ −c1d
−p2(2µV )(1+p2)/2 − c2d

p1−2(2µV )(3−p1)/2, (41)
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Define: α1 := c1d
−p2(2µ)(1+p2)/2 > 0, α2 := c2d

p1−2(2µ)(3−p1)/2 > 0, γ1 := 1+p2

2 ∈
(
1
2 , 1
)
,

γ2 := 3−p1

2 , it yields:
V̇ (t) ≤ −α1V

γ1 − α2V
γ2 . (42)

Finite-time convergence: Since γ1 < 1, by finite-time stability theory (Lemma 3), the system
converges in finite time with settling time bound:

T ≤ V (0)1−γ1

α1(1− γ1)
+

V (0)1−γ2

α2(1− γ2)
. (43)

Fixed-time convergence: When p1 < 1, we have γ2 > 1, satisfying the dual-power condition. By
Lemma 4, system achieves fixed-time convergence with settling time:

Tmax =
1

α1(1− γ1)
+

1

α2(γ2 − 1)
. (44)

Remark 5. The proof establishes rigorous convergence guarantees while acknowledging dimen-
sional dependencies. The coefficients d−p2 and potentially dp1−2 may decrease with dimension, but
remain positive. This can be compensated by appropriately choosing c1, c2.

D EFTOM: DETAILED CONVERGENCE PROOF

This appendix provides a detailed and self-contained proof of finite-/fixed-time convergence for the
element-wise finite-/fixed-time optimizer with EMA momentum (EFToM) in continuous time.

Dynamics and notation. We study the EFToM system

ẇ = −c1 sign(m)⊙ |m|p2 − c2 sign(m)⊙ |m| 2−p1 , (45a)

ṁ = −λ
(
m− g

)
, g := ∇L(w), (45b)

with constants c1, c2, λ > 0 and exponents p2 ∈ (0, 1), p1 ∈ (0, 2). All pointwise operations (| · |q ,
sign(·), ⊙) are taken element-wise. To handle the non-smoothness at 0 (both for sign and the frac-
tional powers), solutions are understood in the Carathéodory/Filippov sense; Lyapunov derivatives
below are in the almost-everywhere (Filippov) sense.

Assumptions. We impose standard smoothness and Polyak-Łojasiewicz (PL) conditions, as stated
in Assumption 1.

Shorthand and exponents. Let := m− g denote the momentum tracking error, and define

S1 :=

d∑
i=1

|mi| 1+p2 , S2 :=

d∑
i=1

|mi| 3−p1 , α := 1+p2

2 ∈
(

1
2 , 1
)
, β := 3−p1

2 . (46)

D.1 IMPORTANT LEMMAS FOR EFTOM

We consider the Lyapunov function

V(w,m) := L(w)− L∗ + κ ∥e∥2, κ > 0 to be chosen. (47)

Clearly V ≥ 0, and V = 0 if L(w) = L∗ and e = 0. To prove the finite/fixed-time convergence,
several lemmas are introduced:
Lemma 7. Let H := ∇2L(w). Along equation 45,

V̇ = g⊤ẇ − 2κ e⊤H ẇ − 2κλ ∥e∥2. (48)

Proof. By the chain rule, d
dt (L(w)−L∗) = g⊤ẇ and d

dt∥e∥
2 = 2e⊤(ṁ− ġ) = 2e⊤(−λe−Hẇ).

Combine the two identities and multiply the second by κ.
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For sake of simplicity, we introduce the element-wise maps F (m) := sign(m) ⊙ |m|p2 and
G(m) := sign(m)⊙ |m| 2−p1 . Since g = m− e, it yeilds:

g⊤ẇ = −c1 m
⊤F − c2 m

⊤G + c1 e
⊤F + c2 e

⊤G

= −c1S1 − c2S2 + c1 e
⊤F + c2 e

⊤G. (49)

Now we will bound the e⊤F , e⊤G.

Lemma 8. For any λ > 0, we have c1|e⊤F | ≤ κλ
8 ∥e∥2 +

2c21
κλ

∑d
i=1 |mi|2p2 , c2|e⊤G| ≤

κλ
8 ∥e∥2 + 2c22

κλ

∑d
i=1 |mi|2(2−p1).

Proof. Apply Cauchy–Schwarz and Young’s inequality |ab| ≤ η
2a

2 + 1
2η b

2 with η = κλ/4 to
e⊤F =

∑
ei sign(mi)|mi|p2 and to e⊤G =

∑
ei sign(mi)|mi| 2−p1 .

Lemma 9. Let S1 :=
∑d

i=1 |mi| 1+p2 and S2 :=
∑d

i=1 |mi| 3−p1 with p2 ∈ (0, 1) and p1 < 2.
Define θ1 := 2p2

1+p2
∈ (0, 1), θ2 := 2(2−p1)

3−p1
. Then there exist constants C1, C2 > 0 depending

only on (d, p1, p2) such that
d∑

i=1

|mi| 2p2 ≤ d 1−θ1 Sθ1
1 , (50)

and
d∑

i=1

|mi| 2(2−p1) ≤

{
d 1−θ2 Sθ2

2 , if p1 ≥ 1 (θ2 ∈ (0, 1]),

Sθ2
2 , if p1 < 1 (θ2 > 1).

(51)

Proof. We use standard relations between ℓp quantities in Rd:

(i) For 0 < r ≤ q, ∥x∥r ≤ d
1
r−

1
q ∥x∥q; hence

∑
|xi| r ≤ d 1− r

q
(∑

|xi| q
) r

q .

(ii) For r ≥ q > 0, ∥x∥r ≤ ∥x∥q; hence
∑

|xi| r ≤
(∑

|xi| q
) r

q .

Apply (i) to equation 50 with q = 1 + p2, r = 2p2 (0 < r < q), giving
∑

|mi|2p2 ≤
d 1− 2p2

1+p2

(∑
|mi|1+p2

) 2p2
1+p2 = d 1−θ1Sθ1

1 . For equation 51, set q = 3 − p1, r = 2(2 − p1). If

p1 ≥ 1 then r ≤ q, by using (i), we have
∑

|mi|r ≤ d 1− r
q S

r
q

2 = d 1−θ2Sθ2
2 . If p1 < 1, then r > q.

By using (ii), we have
∑

|mi|r ≤ S
r
q

2 = Sθ2
2

Lemma 10. For the EFToM system, we have

−2κ e⊤Hẇ ≤ κλ

4
∥e∥2 + 8κL2c21

λ

d∑
i=1

|mi|2p2 +
8κL2c22

λ

d∑
i=1

|mi|2(2−p1). (52)

Proof. Since ∥H∥ ≤ L, we have | − 2κ e⊤Hẇ| ≤ 2κL∥e∥∥ẇ∥ ≤ κλ
4 ∥e∥2 + 4κL2

λ ∥ẇ∥2. Now
ẇ = −c1F (m)− c2G(m), hence

∥ẇ∥2 ≤ 2c21

d∑
i=1

|mi|2p2 + 2c22

d∑
i=1

|mi|2(2−p1). (53)

Substituting gives equation 52.

Combining equation 48, equation 49, Lemma 8, and Lemma 10, we obtain

V̇ ≤ −c1S1 − c2S2 − 3
2κλ∥e∥

2 +
K1

λ

d∑
i=1

|mi|2p2 +
K2

λ

d∑
i=1

|mi|2(2−p1), (54)

where K1 =
2c21
κ + 8κL2c21, K2 =

2c22
κ + 8κL2c22.
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Proposition 1 (Net dissipation inequality). There exists a constant λ∗ > 0 such that for all λ ≥ λ∗,
the Lyapunov derivative satisfies the following bounds.

1. If p1 ≥ 1 (so that θ2 ∈ (0, 1]), then

V̇ ≤ − c1
2 S1 − c2

2 S2 − κλ
2 ∥e∥2. (55)

2. If p1 < 1 (so that θ2 > 1), then there exists ĉ2 > 0 such that

V̇ ≤ − c1
2 S1 − min

{
c2
2 S2, ĉ2 S

θ2
2

}
− κλ

2 ∥e∥2, (56)

with ĉ2 = c2
4 .

Proof. Starting from Lemma 8 and Lemma 9, we obtain

V̇ ≤ −c1S1 − c2S2 − κλ∥e∥2 + K1

λ
Sθ1
1 +

K2

λ
Sθ2
2 , (57)

where K1 =
2c21
κ + 8κL2c21, K2 =

2c22
κ + 8κL2c22, θ1 = 2p2

1+p2
∈ (0, 1), θ2 = 2(2−p1)

3−p1
.

Case (i): p1 ≥ 1. Here θ2 ∈ (0, 1]. By Young’s inequality, for any ε > 0,

K1

λ
Sθ1
1 ≤ εS1 + C1(ε)λ

−ρ1 ,
K2

λ
Sθ2
2 ≤ εS2 + C2(ε)λ

−ρ2 , (58)

for some exponents ρ1, ρ2 > 0. Choosing ε = c1
2 ,

c2
2 respectively, and then taking

λ∗ = max

{(
4K1

c1

)1−θ1
,
(

4K2

c2

)1−θ2

}
, (59)

ensures that the small λ−1 remainders are absorbed, yielding equation 55.

Case (ii): p1 < 1 (so θ2 > 1). In this case, the remainder involves a superlinear power Sθ2
2 , −c2S2

as S2 → 0. We thus argue in two regimes.

(a) Small S2 regime. Choose λ ≥ λ∗ such that K2

λ ≤ c2/2. Then, for S2 ≤ 1,

−c2S2 +
K2

λ Sθ2
2 ≤ − c2

2 S2. (60)

(b) Large S2 regime. For S2 ≥ 1, since θ2 > 1, the term Sθ2
2 dominates the linear term, so that

−c2S2 +
K2

λ Sθ2
2 ≤ −ĉ2S

θ2
2 , (61)

for some ĉ2 := c2
4 > 0 (after enlarging λ∗ to ensure K2

λ ≤ ĉ2).

(c) Unified bound. Combining the two regimes, we obtain the global estimate

−c2S2 +
K2

λ Sθ2
2 ≤ −min

{
c2
2 S2, ĉ2S

θ2
2

}
. (62)

Substituting this into the Lyapunov derivative together with the absorption of the S1 remainder yields
equation 56.

Lemma 11. Let S1 :=
∑d

i=1 |mi| 1+p2 , S2 :=
∑d

i=1 |mi| 3−p1 , with p2 ∈ (0, 1) and p1 < 1.

Define the exponents α := 1+p2

2 ∈
(

1
2 , 1
)

,β := 2 − p1 > 1, θ2 := 2(2−p1)
3−p1

> 1., Then there exist
constants c̃1d, c̃2d > 0 (depending on d, p1, p2, µ, κ) such that

S1 ≥ c̃1d Vα − κλ
4 ∥e∥2, (63)

Sθ2
2 ≥ c̃2d Vβ − κλ

4 ∥e∥2. (64)
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Proof. Recall m = g + e, where g = ∇L(w) and e = m− g.

First, we bound S1. By ℓp–norm monotonicity and Jensen’s inequality, S1 ≥ ∥m∥ 1+p2 =
∥g + e∥ 1+p2 . If ∥e∥ ≤ 1

2∥g∥, then ∥m∥ ≥ ∥g∥ − ∥e∥ ≥ 1
2∥g∥, so

S1 ≥ 2−(1+p2)∥g∥ 1+p2 . (65)

From the PL inequality, it gives ∥g∥2 ≥ 2µ
(
V − κ∥e∥2

)
. To complete this proof, two cases are

considered:

1. If ∥e∥ ≤ 1
2∥g∥, the negative term −κ∥e∥2 can be absorbed into 1

2∥g∥
2, yielding ∥g∥2 ≥

2µ

1+
µκ
2

V. Therefore,

S1 ≥ 2−(1+p2)
( 2µ

1 + µκ
2

)α
Vα. (66)

2. If ∥e∥ ≥ 1
2∥g∥, then V ≥ κ∥e∥2 dominates, and the error term can be absorbed into the

existing −κλ
4 ∥e∥2 contribution in V̇ . Thus, in both regimes,

S1 ≥ c̃1d Vα − κλ
4 ∥e∥2, c̃1d := 2−(1+p2)

( 2µ

1 + µκ
2

)α
. (67)

Next, we will bound S2. By definition, Sθ2
2 = ∥m∥ 2(2−p1) = ∥g + e∥ 2β . If ∥e∥ ≤ 1

2∥g∥. Then
Sθ2
2 ≥ 2−2β ∥g∥2β . From PL condition we have ∥g∥2 ≥ 2µ

(
V−κ∥e∥2

)
. As before, the −κ∥e∥2

term can be absorbed into 1
2∥g∥

2, yielding ∥g∥2 ≥ 2µ

1+
µκ
2

V. Therefore,

Sθ2
2 ≥ 2−2β

( 2µ

1 + µκ
2

)β
Vβ . (68)

If ∥e∥ ≥ 1
2∥g∥. Here V ≥ κ∥e∥2, so that ∥e∥2β ≤ κ−βVβ . Thus any positive error terms of type

∥e∥2β can be absorbed into either Vβ or into the negative contribution −κλ
4 ∥e∥2 in V̇ . Combining

both regimes, we obtain

Sθ2
2 ≥ c̃2d Vβ − κλ

4 ∥e∥2, c̃2d := 2−2β
( 2µ

1 + µκ
2

)β
. (69)

This proves equation 63–equation 64.

D.2 FINITE-/FIXED-TIME CONVERGENCE OF EFTOM

Based on the above analysis, we give the formal convergence of the EFToM dynamic system (45).
Theorem 4 (Finite-/Fixed-time convergence of EFToM). Suppose Assumption 1 holds and choose
λ ≥ λ∗ from Proposition 1. Then every trajectory of equation 45 converges to the global optimum
in finite or fixed time, depending on p1.

1. Case A (p1 ≥ 1): Finite-time convergence. From Proposition 1 (case (i)) and Lemma 11,
there exist constants

a := c1
2 2−(1+p2)

(
2µ

1+
µκ
2

)α
, b := c2

2 2−(3−p1)
(

2µ

1+
µκ
2

)β
,

where α = 1+p2

2 ∈ ( 12 , 1), β = 3−p1

2 ∈ (0, 1]. Then for almost all t,

V̇(t) ≤ −aV(t)α − bV(t)β . (70)

Consequently, the settling time is finite and satisfies

T (V(0)) ≤ V(0) 1−α

a(1− α)
+ 1{β<1}

V(0) 1−β

b(1− β)
. (71)
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2. Case B (p1 < 1): Fixed-time convergence. If p1 < 1, then α = 1+p2

2 ∈ ( 12 , 1), β =
2− p1 > 1. Then for almost all t,

V̇(t) ≤ −aV(t)α − bV(t)β . (72)

Consequently, the settling time is bounded uniformly (independent of V(0)) by

Tmax ≤ 1

a(1− α)
+

1

b(β − 1)
. (73)

In both cases, convergence of V yields global optimality.

Proof of Theorem 4. We start from Proposition 1, which already gives for λ ≥ λ∗:

(Case A, p1 ≥ 1): V̇ ≤ − c1
2 S1 − c2

2 S2 − κλ
2 ∥e∥2, (74)

(Case B, p1 < 1): V̇ ≤ − c1
2 S1 −min

{
c2
2 S2, ĉ2S

θ2
2

}
− κλ

2 ∥e∥2, (75)

where ĉ2 = c2
4 and θ2 = 2(2−p1)

3−p1
.

For p1 < 1, Lemma 11 yields

S1 ≥ c̃1d Vα − κλ
4 ∥e∥2, (76)

Sθ2
2 ≥ c̃2d Vβ − κλ

4 ∥e∥2, (77)

with c̃1d = 2−(1+p2)
(

2µ

1+
µκ
2

)α
, c̃2d = 2−2β

(
2µ

1+
µκ
2

)β
, and exponents α = 1+p2

2 ∈ ( 12 , 1), β =

2− p1 > 1.

For p1 ≥ 1, a parallel argument (using the ℓp monotonicity as in Lemma 11) gives

S1 ≥ c̃1d Vα − κλ
4 ∥e∥2, S2 ≥ c̃2d Vβ − κλ

4 ∥e∥2, (78)

with the same c̃1d but now c̃2d = 2−(3−p1)
(

2µ

1+
µκ
2

)β
, β = 3−p1

2 ∈ (0, 1].

Case A (p1 ≥ 1). Substituting the lower bounds into equation 74 and absorbing the −κλ
4 ∥e∥2

contributions, we obtain

V̇ ≤ − c1
2 c̃1d Vα − c2

2 c̃2d Vβ . (79)

Thus equation 70 holds with a = c1
2 c̃1d, b = c2

2 c̃2d.

Case B (p1 < 1). In the large-S2 regime, equation 75 gives the −ĉ2S
θ2
2 dissipation. Using

Lemma 11, we convert this into

−ĉ2S
θ2
2 ≤ −ĉ2c̃2d Vβ + κλ

4 ∥e∥2. (80)

Absorbing the error term and combining with the S1 estimate, we obtain

V̇ ≤ − c1
2 c̃1d Vα − ĉ2c̃2d Vβ , (81)

so that equation 72 holds with a = c1
2 c̃1d, b = ĉ2 c̃2d.

Now V̇ ≤ −aVα − bVβ with explicit a, b > 0. If 0 < β ≤ 1 (Case A), Lemma 3 yields finite-time
convergence with settling time bounded as in equation 71. If β > 1 (Case B), Lemma 4 ensures
fixed-time convergence with a uniform bound equation 73. Finally, under the PL condition, V = 0
implies L(w) = L∗ and e = 0, hence global optimality is achieved.

E PROOF OF CONVERGENCE FOR PEFTOM

We provide a complete proof of finite-/fixed-time convergence for the Polyak momentum EFToM
(PEFToM) dynamics. Note that the proof process is quite like that of EFToM.
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E.1 PEFTOM DYNAMICS

The PEFToM dynamics are

v̇ = g − γv, g := ∇L(w), (82a)

ẇ = −c1 sign(v)⊙ |v|p2 − c2 sign(v)⊙ |v| 2−p1 , (82b)

with parameters c1, c2, γ > 0, p2 ∈ (0, 1), p1 ∈ (0, 2).

Define the scaled tracking error
e := v − 1

γg. (83)

Then
ė = −γe− 1

γHẇ, H := ∇2L(w). (84)

E.2 LYAPUNOV FUNCTION

We introduce the Lyapunov function: V(w,v) := L(w)−L∗+κ∥e∥2, for some κ > 0. Therefore:

V̇ = g⊤ẇ + 2κe⊤ė

= g⊤ẇ + 2κe⊤
(
− γe− 1

γHẇ
)
.

= g⊤ẇ − 2κγ∥e∥2 − 2κ
γ e⊤H (85)

Now we will bound g⊤ẇ. Let F (v) := sign(v) ⊙ |v|p2 , G(v) := sign(v) ⊙ |v|2−p1 . Then
ẇ = −c1F − c2G. Moreover g = γv − γe, hence

g⊤ẇ = (γv − γe)⊤ẇ

= −γc1v
⊤F − γc2v

⊤G+ γc1e
⊤F + γc2e

⊤G. (86)

Since v⊤F =
∑

i |vi|1+p2 and v⊤G =
∑

i |vi|3−p1 , we define S1 :=
∑d

i=1 |vi| 1+p2 , S2 :=∑d
i=1 |vi| 3−p1 , so that

g⊤ẇ = −γc1S1 − γc2S2 + γc1e
⊤F + γc2e

⊤G. (87)

Terms e⊤F and e⊤G can be bounded by Cauchy–Schwarz and Young,

γc1|e⊤F | ≤ γc1∥e∥∥F∥ ≤ κγ
8 ∥e∥2 + 2c21

κ ∥F∥2, (88)

γc2|e⊤G| ≤ κγ
8 ∥e∥2 + 2c22

κ ∥G∥2. (89)

Note that ∥F∥2 =
∑

|vi|2p2 , ∥G∥2 =
∑

|vi|2(2−p1).

Now we will bound − 2κ
γ e⊤Hẇ. Since ||H|| ≤ L, we have

− 2κ
γ e⊤Hẇ ≤ 2κL

γ ∥e∥∥ẇ∥ ≤ κγ
4 ∥e∥2 + 4κL2

γ2 ∥ẇ∥2. (90)

Since ẇ = −c1F − c2G, we have ∥ẇ∥2 ≤ 2c21∥F∥2 + 2c22∥G∥2. Substitute it to (90), it yields,

− 2κ
γ e⊤Hẇ ≤ κγ

4 ∥e∥2 + 4κL2

γ2 (2c21∥F∥2 + 2c22∥G∥2) (91)

Substitute (91), (88), (89), and (87) to (85), it yeilds:

V̇ ≤ −γc1S1 − γc2S2 − 3
2κγ∥e∥

2 + c̃1∥F∥2 + c̃2∥G∥2, (92)

where c̃1 =
2c21
κ + 8κL2

γ2 c21, c̃2 =
2c22
κ + 8κL2

γ2 c22.
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E.3 INTERPOLATION INEQUALITIES

Following the interpolation bounds in Lemma 9, we have

∥F (v)∥2 =

d∑
i=1

|vi|2p2 ≤ d 1−θ1Sθ1
1 , θ1 =

2p2
1 + p2

∈ (0, 1), (93)

∥G(v)∥2 =

d∑
i=1

|vi|2(2−p1) ≤

{
d 1−θ2Sθ2

2 , p1 ≥ 1,

Sθ2
2 , p1 < 1,

θ2 =
2(2− p1)

3− p1
. (94)

Substituting (93)–(94) into the bound

V̇ ≤ −γc1S1 − γc2S2 − 3
2κγ∥e∥

2 + c̃1∥F∥2 + c̃2∥G∥2, (95)
we obtain

V̇ ≤ −γc1S1 − γc2S2 − 3
2κγ∥e∥

2 + c̃1d
1−θ1Sθ1

1 + c̃2 ·

{
d 1−θ2Sθ2

2 , p1 ≥ 1,

Sθ2
2 , p1 < 1.

(96)

Proposition 2 (Net dissipation inequality for PEFToM). There exists a constant γ⋆ > 0 such that
for all γ ≥ γ⋆, the Lyapunov derivative along equation 82 satisfies:

1. If p1 ≥ 1 (so that θ2 ∈ (0, 1]), then

V̇ ≤ −γc1
2 S1 − γc2

2 S2 − κγ
2 ∥e∥2. (97)

2. If p1 < 1 (so that θ2 > 1), then there exists ĉ2 > 0 such that

V̇ ≤ −γc1
2 S1 −min

{
γc2
2 S2, ĉ2S

θ2
2

}
− κγ

2 ∥e∥2, (98)

with ĉ2 = γc2
4 .

Proof. Starting from equation 96, we have

V̇ ≤ −γc1S1 − γc2S2 − 3
2κγ∥e∥

2 + c̃1d
1−θ1Sθ1

1 + c̃2 ·

{
d 1−θ2Sθ2

2 , p1 ≥ 1,

Sθ2
2 , p1 < 1.

Case (i): p1 ≥ 1 (θ2 ∈ (0, 1]). By Young’s inequality, for any ε > 0,

c̃1d
1−θ1Sθ1

1 ≤ εS1 + C1(ε)γ
−ρ1 , c̃2d

1−θ2Sθ2
2 ≤ εS2 + C2(ε)γ

−ρ2 , (99)
for some exponents ρ1, ρ2 > 0. Choosing ε = γc1

2 and ε = γc2
2 , and taking γ sufficiently large to

absorb the remainders, we obtain
V̇ ≤ −γc1

2 S1 − γc2
2 S2 − κγ

2 ∥e∥2, (100)
which is equation 97.

Case (ii): p1 < 1 (θ2 > 1). In this case, the remainder term is superlinear in S2. We split the
analysis into two regimes:

(a) Small S2. Choose γ large enough so that c̃2 ≤ γc2
2 . Then, for S2 ≤ 1,

−γc2S2 + c̃2S
θ2
2 ≤ −γc2

2 S2. (101)

(b) Large S2. For S2 ≥ 1, since θ2 > 1, the term Sθ2
2 dominates S2, and hence

−γc2S2 + c̃2S
θ2
2 ≤ −ĉ2S

θ2
2 , (102)

for some ĉ2 := γc2
4 > 0, after possibly enlarging γ so that c̃2 ≤ ĉ2.

(c) Unified bound. Combining the two regimes, we obtain

−γc2S2 + c̃2S
θ2
2 ≤ −min

{
γc2
2 S2, ĉ2S

θ2
2

}
. (103)

Substituting into the Lyapunov derivative yields

V̇ ≤ −γc1
2 S1 −min

{
γc2
2 S2, ĉ2S

θ2
2

}
− κγ

2 ∥e∥2, (104)

which is equation 98.
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E.4 FINITE-/FIXED-TIME CONVERGENCE OF PEFTOM

The proof strategy is entirely analogous to that of EFToM (Theorem 4). In particular, starting from
the dissipation inequality (Proposition 2), and combining with the interpolation bounds (Lemma 9)
and Lemma 11, we obtain a Lyapunov decay of the form

V̇ ≤ −aVα − bVβ ,

with the same exponents (α, β) and constants (â, b̂) up to replacing λ by γ. Therefore, the finite-
/fixed-time convergence result for EFToM extends directly to PEFToM, with explicit constants sum-
marized below.
Theorem 5 (PEFToM Finite-/Fixed-Time Convergence). Consider the PEFToM dynamics equa-
tion 82 with parameters p2 ∈ (0, 1), 0 < p1 < 2, and c1, c2, γ > 0. Under Assumption 1, choose
γ ≥ γ⋆ with

γ⋆ := max

{(
4γ0K̃g

) 1
2−θ

,
4Cκ

γ0

}
, γ0 := c1

2 , θ := 2−qmax, qmax := max{p2, 2−p1},

(105)
where K̃g, Cκ > 0 are explicit constants given in the proof.

Define the exponents

α := 1+p2

2 ∈
(

1
2 , 1
)
, β :=

{
3−p1

2 , 1 ≤ p1 < 2,

2− p1, 0 < p1 < 1.

Then the following convergence guarantees hold:

(i) Finite-time convergence (1 ≤ p1 < 2, equivalently β ≤ 1): For any initial state
(w(0),v(0)), the trajectory converges within time

T ≤ Vtot(0)
1−α

â(1− α)
+

Vtot(0)
1−β

b̂(1− β)
, (106)

where Vtot(0) := L(w(0))− L∗ + γ0

∥∥∥v(0)− 1
γg(0)

∥∥∥2.
(ii) Fixed-time convergence (0 < p1 < 1, equivalently β > 1): Every trajectory reaches the

global optimum (w⋆,0) within a uniform bound

Tmax =
1

â(1− α)
+

1

b̂(β − 1)
, (107)

where â := 1
2c1γd

− 1−p2
2 (2µ)α, b̂ := 1

2γc2d
− 1−p1

2 (2µ)β .

Remark 6 (Role of γ versus λ). In EFToM, the negative dissipation terms are proportional to
λ0c1S1 and λ0c2S2, so that the effective constants â, b̂ do not explicitly depend on λ, and λ only
appears through the admissibility condition λ ≥ λ⋆. In contrast, for PEFToM the dissipation terms
scale as γc1S1 and γc2S2, so the convergence coefficients â, b̂ inherit a linear dependence on γ:
â = γ

2 c1d
− 1−p2

2 (2µ)α, b̂ = γ
2 c2d

− 1−p1
2 (2µ)β . Thus, in PEFToM, the choice of a larger γ not

only guarantees admissibility (γ ≥ γ⋆) but also strengthens the dissipation rate in the Lyapunov
inequality, leading to smaller convergence time bounds.

F HYPERPARAMETER

We follow the setting in Zhuang et al. (2020). For AdamW and AdaBelief, the default param-
eter are used: β1 = 0.9, β2 = 0.999, ϵ = 10−8, learning rate is 0.001, and the weight de-
cay is set to 5 × 10−4. For SignSGD, Signum and Lion, we search the learning rate among
η ∈ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}, and set β = 0.9 for Signum. For
SGD, SGDM we search the learning rate among η ∈ {0.001, 0.005, 0.01, 0.05, 0.1}. The model is
trained for 200 epochs with a batch size of 128, and the learning rate is multiplied by 0.1 at epoch
150. The details hyperparameters used in the experiment are given in Table 3, 4, 5.
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Remark 7. Our experimental evaluations primarily explore the finite-time convergence regime
(p1 ≥ 1) rather than the fixed-time regime (p1 < 1). While fixed-time convergence provides stronger
theoretical guarantees, we observed that p1 < 1 parameters exhibit higher sensitivity to discretiza-
tion effects and step size choices, potentially leading to training instability. This discretization gap
between continuous-time theory and discrete implementation represents a common challenge in
translating control-theoretic results to practical optimization algorithms. The finite-time variants
(p1 ≥ 1) demonstrate more robust behavior under standard stochastic training conditions while still
providing significant convergence acceleration.

Table 3: CIFAR10 Hyperparameters

Model optimizer batch size learning rate schedule p1 p2 β1 β2 λ
VGG11/Resnet34/Densenet121 SGD 128 0.01 step - - - - 5e-4
VGG11/Resnet34/Densenet121 SGDM 128 0.01 step - - 0.9 - 5e-4
VGG11/Resnet34/Densenet121 SignSGD 128 1e-4 step - - - - 5e-4
VGG11/Resnet34/Densenet121 Signum 128 1e-4 step - - 0.9 - 5e-4
Resnet34/Densenet121 Lion 128 5e-5 step - - 0.95 0.98 5e-4
Resnet34/Densenet121 EFT 128 0.01 step - 0.6 - - 5e-4
Resnet34/Densenet121 EFToM 128 0.01 step - 0.6 0.9 - 5e-4
VGG11/Resnet34/Densenet121 PEFToM 128 0.01 step - 0.9 0.9 - 5e-4
VGG11/Resnet34/Densenet121 FxTS-GF(M) 128 0.01 step 20 1.98 0.9 - 5e-4
VGG11/Resnet34/Densenet121 AdamW 128 0.001 step - - 0.9 0.999 5e-4
VGG11/Resnet34/Densenet121 AdaBelief 128 0.001 step - - 0.9 0.999 5e-4
VGG11 Lion 128 1e-5 step - - 0.95 0.98 5e-4
VGG11 EFT 128 0.01 step - 0.8 - - 5e-4
VGG11 EFToM 128 0.01 step - 0.8 0.9 - 5e-4

Table 4: CIFAR100 Hyperparameters

Model optimizer batch size learning rate schedule p1 p2 β1 β2 λ
VGG11/Resnet34/Densenet121 SGD 128 0.1 step - - - - 5e-4
VGG11/Resnet34/Densenet121 SGDM 128 0.01 step - - 0.9 - 5e-4
VGG11/Resnet34 SignSGD 128 5e-5 step - - - - 5e-4
VGG11/Resnet34 Signum 128 5e-5 step - - 0.9 - 5e-4
Resnet34/Densenet121 Lion 128 5e-5 step - - 0.95 0.98 5e-4
VGG11/Resnet34 EFT 128 0.1 step - 0.9 - - 5e-4
VGG11/Resnet34 EFToM 128 0.1 step - 0.9 0.9 - 5e-4
VGG11/Resnet34/Densenet121 PEFToM 128 0.01 step - 0.8 0.9 - 5e-4
VGG11/Resnet34/Densenet121 FxTS-GF(M) 128 0.05 step 20 1.98 0.9 - 5e-4
VGG11/Resnet34/Densenet121 AdamW 128 0.001 step - - 0.9 0.999 5e-4
VGG11/Resnet34/Densenet121 AdaBelief 128 0.001 step - - 0.9 0.999 5e-4
Densenet121 SignSGD 128 1e-4 step - - - - 5e-4
Densenet121 Signum 128 1e-4 step - - - - 5e-4
VGG11 Lion 128 1e-5 step - - 0.95 0.98 5e-4
Densenet121 EFT 128 0.1 step - 0.8 - - 5e-4
Densenet121 EFToM 128 0.1 step - 0.8 0.9 - 5e-4

Table 5: C4 Hyperparameters

Model optimizer batch size learning rate schedule p1 p2 β1 β2 λ
Llama 60M SGD 16 0.2 cosine - - - - 5e-4
Llama 60M SGDM 16 0.1 cosine - - 0.9 - 5e-4
Llama 60M SignSGD 16 0.001 cosine - - - - 5e-4
Llama 60M Signum 16 0.0001 cosine - - 0.9 - 5e-4
Llama 60M EFT 16 0.002 cosine 0.98 0.2 - - 5e-4
Llama 60M EFToM 16 0.002 cosine 0.98 0.2 0.9 - 5e-4
Llama 60M PEFToM 16 0.1 cosine - 0.8 0.9 - 5e-4
Llama 60M FxTS-GF(M) 16 0.1 cosine 20 1.98 0.9 - 5e-4
Llama 60M AdamW 16 0.001 cosine - - 0.9 0.999 5e-4
Llama 60M AdaBelief 16 0.001 cosine - - 0.9 0.999 5e-4
Llama 60M Lion 16 0.0001 cosine - - 0.95 0.98 5e-4
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G INFLUENCE OF PARAMETER p2

To investigate the impact of the finite-time parameter p2 on optimization performance, we
conduct comprehensive ablation studies across diverse tasks: CIFAR-10/100 using PEFToM
with p2 ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and C4 language modeling using EFToM with p2 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

The results reveal striking task-dependent parameter sensitivity patterns that illuminate the relation-
ship between theoretical predictions and practical performance. On vision tasks (Figures 5 and 6),
the empirical optimal range p2 ∈ [0.7, 0.8] contrasts with our theoretical prediction that smaller p2
values should yield faster convergence through the bound T ≤ V (0)1−γ1

α1(1−γ1)
where γ1 = 1+p2

2 . This
discrepancy reflects the inherent tension between theoretical acceleration and discrete-time stability
in stochastic settings.
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Figure 5: Test accuracy for CIFAR10 with different p2 using PEFToM
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Figure 6: Test accuracy for CIFAR100 with different p2 using PEFToM

Remarkably, C4 language modeling (Figure 7) exhibits the opposite pattern: smaller p2 values
achieve superior performance, with p2 = 0.2 reaching the lowest validation loss while p2 ≥ 0.4
show limited convergence. This aligns more closely with our theoretical predictions, suggesting that
optimal finite-time parameter selection depends critically on task-specific optimization landscape
characteristics.

The vision-language dichotomy may reflect fundamental differences in gradient structure: language
modeling’s sparse, structured gradients may benefit from aggressive finite-time dynamics (p2 =
0.2, 0.3), while vision tasks’ dense, homogeneous gradients require more conservative parameters
to balance acceleration with stability. On CIFAR-10, the simpler optimization surface tolerates
broader parameter ranges, while CIFAR-100’s complexity exposes sensitivity where p2 = 0.4, 0.5
exhibit volatility and p2 = 0.9 suffers late-stage instability.

Architecture-dependent responses provide additional insights into parameter sensitivity patterns.
DenseNet demonstrates relative robustness across parameter choices, which may relate to its connec-
tivity structure, while VGG shows pronounced sensitivity. These findings underscore the importance
of joint task-architecture-aware parameter selection in finite-time optimization methods.
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Figure 7: Test loss for C4 with different p2 using EFToM
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