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Abstract
Graph-based social recommendation (SR) mod-
els suffer from various noises of the social
graphs, hindering their recommendation perfor-
mances. Either graph-level redundancy or graph-
level missing will indeed influence the social
graph structures, further influencing the message
propagation procedure of graph neural networks
(GNNs). Generative models, especially diffusion-
based models, are usually used to reconstruct and
recover the data in better quality from original
data with noises. Motivated by it, a few works
take attempts on it for social recommendation.
However, they can only handle isotropic Gaus-
sian noises but fail to leverage the anisotropic
ones. Meanwhile the anisotropic relational struc-
tures in social graphs are commonly seen, so
that existing models cannot sufficiently utilize
the graph structures, which constraints the capac-
ity of noise removal and recommendation per-
formances. Compared to the diffusion strategy,
the flow matching strategy shows better ability
to handle the data with anisotropic noises since
they can better preserve the data structures dur-
ing the learning procedure. Inspired by it, we
propose RecFlow which is the first flow-based
SR model. Concretely, RecFlow performs flow-
based method on the structure representations of
social graphs. Then, a conditional learning pro-
cedure is designed for optimization. Extensive
performances prove the promising performances
of our RecFlow from six aspects, including su-
periority, effectiveness, robustnesses, sensitivity,
convergence and visualization. Code are available
at https://github.com/AfraThroneUp/RecFlow.
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1. Introduction
As online content continues to grow exponentially, the chal-
lenges of managing information sensitivity and urgency
have become increasingly pressing (Lin et al., 2025; Wang
et al., 2024), driving the rise of recommendation systems
(Liu et al., 2023b). Despite advancements, recommendation
systems still face challenges such as collaborative infor-
mation sparsity. The rise of social media has shifted their
focus from user-item interactions to integrating social net-
works to enhance recommendations. By leveraging social
relationships as auxiliary information, social recommenda-
tion (SR) systems can mitigate these issues, making SR
a key research area (Liang et al., 2023). Early models of
SR relied on matrix factorization (Salakhutdinov & Mnih,
2007; Yang et al., 2013), which drew upon social theories
to exploit the influence of nearby or connected users on
individual preferences. Additionally, social relationships
naturally form graph-structured data, making graph neural
networks (GNNs) an effective tool for graph representa-
tion learning (Wang et al., 2023a; Dai et al., 2023). GNNs
have demonstrated exceptional performance in aggregating
neighborhood information of nodes and have been widely
applied in the social recommendation domain, enabling the
deep exploration and effective utilization of more valuable
information (Huang et al., 2021a; Liang et al., 2023).

Despite advancements in social recommendation systems,
current approaches often struggle to effectively mitigate two
critical graph structural issues: redundancy and incomplete-
ness (Lin et al., 2023). These limitations primarily stem
from noisy social connections in real-world data, where low-
quality relationships inject interference that significantly
degrades recommendation performance (Lin et al., 2024c;a).
Graph neural networks (GNNs) exhibit particular vulnera-
bility to such noise due to their inherent reliance on message
propagation mechanisms across social edges, a character-
istic that amplifies error transmission through the network
(Wang et al., 2023a; Lin et al., 2024b). Recent studies have
extended diffusion models to graph-based recommendation
systems. DiffRec (Wang et al., 2023b) applies continu-
ous diffusion by adding Gaussian noise to user/item em-
beddings and optimizes them through a denoising process.
RecDiff (Li et al., 2024b) introduces a multi-step diffusion
and denoising framework for modeling complex social con-
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Figure 1. Illustration of denoising diffusion probabilistic models
(DDPM) and flow matching based models where blue and red
nodes represent normal and noisy data. Compared to DDPM, flow-
based models can get better discriminative capacity, further leading
to better denoise performance.

nections. These efforts build upon the growing success of
diffusion models in various domains (Liu et al., 2024; Lee
et al., 2024; Jiang et al., 2024; Deng et al., 2024).

Social data often exhibit strong anisotropy, as shown by
the directional distribution of vector fields in our prelimi-
nary analysis (Figure 4). This conflicts with the isotropic
Gaussian noise (where noise is modeled as ϵ ∼ N (0, σ2I))
assumption in conventional denoising diffusion probabilistic
models (DDPM), leading to two key issues: representation
degradation, as isotropic noise blurs user embedding dis-
tinctiveness, and unstable training, as DDPM’s iterative de-
noising undermines convergence consistency (Kingma et al.,
2023). To address these limitations, we adopt Flow Match-
ing, a generative approach that learns continuous velocity
fields to construct direct sampling paths and model an ODE
flow, enabling it to handle non-isotropic noise(modeled by
ϵ ∼ N (µ,Σ) with µ ̸= 0 or non-diagonal Σ) (Zhao et al.,
2024; Lipman et al., 2022). Figure 1 illustrates the differ-
ences between these generative approaches: DDPM injects
isotropic noise without directional awareness, while Flow
Matching guides data towards clean distributions in a more
discriminative manner, improving denoising performance
on graph-structured data (Lipman et al., 2022). Building
on this, we propose RecFlow, a flow-based social recom-
mendation model that leverages Flow Matching to capture
the directional dynamics of user interactions, enabling more
stable training, better denoising, and improved recommen-
dation accuracy. Building on this, we propose RecFlow,
a flow-based social recommendation model that leverages
Flow Matching to capture the directional dynamics of user
interactions, enabling more stable training, better denoising,
and improved recommendation accuracy.

In summary, we makes the following contributions:

• We propose RecFlow, a novel social recommendation
model that explicitly captures anisotropy in social net-
works through velocity fields, addressing the limita-
tions of isotropic noise assumptions in conventional
diffusion models.

• By integrating flow matching with social recommenda-
tion, RecFlow models directional data dynamics more
effectively, leading to improved user preference repre-
sentations.

• Extensive experiments on benchmark datasets demon-
strate the effectiveness of RecFlow, with significant
performance gains. A visualization experiment further
visualizes the evolution of velocity fields over time,
highlighting the impact of our approach.

2. Related Work
In this section, we provide a comprehensive review of re-
lated studies in the areas of social recommendation and
generative models, and clarify how our work aligns with
and builds upon the existing research.

2.1. Graph-based Social Recommendation

Graph-based Social Recommendation has gained signifi-
cant attention for incorporating social relationships. Early
works like DiffNet(Wu et al., 2019b) used Graph Con-
volutional Networks (GCNs) to model social influence,
while later models like GraphRec(Fan et al., 2019) and
DANSER(Wu et al., 2019c) added attention mechanisms
to account for varying influence levels. More recent ap-
proaches, such as MHCN(Yu et al., 2021b) and HOSR(Liu
et al., 2020), capture higher-order relationships and dis-
tant influences. Models like RecoGCN(Xu et al., 2019),
DGRec(Song et al., 2019b), TGRec(Bai et al., 2020), and
KCGN(Huang et al., 2021b) integrate diverse data sources,
including agent, temporal, and knowledge graph informa-
tion. To address noisy social relations, recent methods like
DSL(Wang et al., 2023a) and GDMSR(Quan et al., 2023)
focus on denoising by identifying and removing irrelevant
or redundant social connections, thus improving recommen-
dation quality and efficiency. These methods struggle with
noisy or irrelevant social connections. Flow matching mod-
els, by modeling influence spread and denoising, provide a
promising solution, refining user representations to enhance
the robustness and accuracy of recommendations.

2.2. Diffusion Model-based Recommenders

Generative recommenders have attracted interest in recent
studies. Some studies focused on leveraging diffusion mod-
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els to enhance data representation and mitigate noise inher-
ent in social connections. For instance, RecDiff(Li et al.,
2024a) employed a latent diffusion paradigm to denoise user
representations derived from social networks, demonstrating
improved robustness in handling the diverse noisy effects
of user social contexts. Similarly, DiffuASR(Liu et al.,
2023a) proposed a diffusion-based pseudo sequence genera-
tion framework, and fills in the gap between the generations
of continuous images and discrete sequences. CGSoRec(He
et al., 2024) proposed a condition-guided social recommen-
dation model, leveraging a conditional constraint in the
diffusion process to incorporate social connections. This
allows the model to refine user preferences based on their
social connections. Similarly, DIEXRS(Guo et al., 2023)
uses a diffusion framework to model user preferences, and
then trains a textual decoder to generate explanations based
on the denoised user representation, enhancing the inter-
pretability of diffusion recommenders. In contrast to these
established approaches, our proposed Recflow introduces
a novel methodology by leveraging flow matching models
(Liu et al., 2022), making it more effective in capturing
intricate patterns.

3. Preliminary
In this section, we briefly introduce the preliminaries of
flow-matching models. A flow-matching model is a type of
generative model that bridges the gap between a source dis-
tribution px and a target distribution pz by learning a neural
network to parameterize the velocity field of an Ordinary
Differential Equation (ODE). The ODE is defined as:

dxt = vθ(xt, t)dt, (1)

where vθ denotes the learnable velocity field parameterized
by a neural network. The ODE ensures that the intermediate
distributions xt remain consistent with the learned proba-
bility path for all t ∈ [0, 1], and the velocity field vθ directs
the flow from the initial state x to the target state z, effec-
tively transforming the source distribution into the target
distribution over time.

Forward Process: This process converts samples from
x ∼ px to align with pz . The interpolation between x and
z is defined through the linear blend xt = tz + (1 − t)x,
satisfying the ODE:

dxt = (z − x)dt (2)

Reverse Process: Conversely, this process generates sam-
ples starting from z ∼ pz and reverses the flow dynamics.
The reverse ODE, mirroring the forward process, is defined
as:

dxt = (x− z)dt (3)

The effectiveness of the rectified flow depends on the precise
estimation of velocity v. To align v with the direction (z −

x), the model solves a least squares regression problem,
optimizing the velocity field vθ to closely match the ideal
flow between x and z.

The training of the neural network involves minimizing the
loss function L, defined as:

L2 =

∫ 1

0

Ex,z

[
∥(z − x)− vθ(xt, t)∥2

]
dt (4)

This loss quantifies the discrepancy between the ideal and
predicted velocities over the time interval [0, 1], enabling
the flow to follow the desired trajectory by accurately pre-
dicting the velocity at any point t. The parameterized neural
network vθ is thus trained to minimize L, facilitating an
efficient and accurate modeling of transitions from x to z.

4. Proposed Model
As illustrated in Figure 2, we integrated collaborative and
social signals within a unified flow-based generative frame-
work, the overall architecture of RecFlow consists of three
key components: Graph-based Collaborative Pattern Encod-
ing, the RecFlow Module, and a Joint Optimization Module.

4.1. Problem Setting

Users and items are defined as the sets U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}, respectively.
Interactions between users and items are represented by the
matrix R ∈ R|U |×|V |, where the element ru,v = 1 indicates
that user u interacts with item v, and ru,v = 0 otherwise. So-
cial relationships between users are described by the matrix
S ∈ R|U |×|U |, where su,u′ = 1 signifies a social interaction
between user u and user u′, and su,u′ = 0 otherwise. Based
on these interaction matrices, the following graph structures
are constructed:

• Collaborative Graph Gr = (U, V,Er), where the
edge set Er = { (u, v) | ru,v = 1 } represents interac-
tions between users and items.

• Social Graph Gs = (U,Es), where the edge set Es =
{ (u, u′) | su,u′ = 1 } represents social relationships
between users.

Our RecFlow leverages both collaborative and social graphs
specifically, the collaborative graph Gr generates node em-
beddings denoted as Er and the social graph Gs generates
node embeddings denoted as Es. The predicted user-item
interaction value r̂u,v is computed as:

r̂u,v = Pred(eu, ev), (5)

where eu and ev are the embeddings of the user u and item
v, respectively.
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Figure 2. The overall framework of our RecFlow.

Algorithm 1 RecFlow Training
Input: Users’ social interaction embedding Es

Output: The reconstructed embedding which is denoted as
ê0

1: while not converged do
2: t ∼ U(0, 1) # Sample time
3: x ∼ px # Sample data
4: z ∼ pz # Sample noise
5: xt = Ψt(z|x) # Conditional flow
6: Gradient step: ∇θ∥vθt (xt)− x̂t∥2
7: end while

4.2. Graph-based Collaborative Pattern Encoding

Drawing inspiration from the effectiveness of simpli-
fied Graph Neural Networks (GNNs), we incorporated a
lightweight Graph Convolutional Network (lightGCN) as
the graph encoder in our RecFlow architecture (Jiang et al.,
2023). LightGCN is widely recognized as a robust graph
recommender for modeling implicit interactions in top-k
recommendations. we construct a collaborative graph to
encode user-item interactions using the Rec Encoder, and a
user-user graph to capture social relationships among users
using the Social Encoder. On the user-item graph Gr, the
embeddings are propagated across layers using the follow-
ing equation:

E(l)
r = (Lr + I) · E(l−1)

r , (6)

The computation of Lr is given by:

Lr = D
− 1

2
r ArD

− 1
2

r , (7)

Algorithm 2 RecFlow Inference
Input: Users’ interaction vectors xu, u = 1, 2, . . . , |U |;
optimized parameter θ
Output: Predicted user embeddings or interaction out-
comes

1: for u ∈ U do
2: Let x0 ← xu # Initialize with user data
3: Sample t ∼ pt # Time step sampling
4: Calculate xt ← fθ(x0, t) # Run learned model
5: if needsPostProcessing then
6: ŷ ← Process(xt) # Final prediction
7: end if
8: end for

where Ar ∈ R(|U|+|V|)×(|U|+|V|) is the adjacency matrix
of the bipartite graph Gr, the embedding matrix E

(l)
r ∈

R(|U|+|V|)×d captured the embeddings in the l-th iteration
of the GCNs. The initial embeddings Er

0 are randomly gen-
erated learnable parameters. And Dr is the corresponding
diagonal degree matrix, defined as:

Ar =

[
0 R
R⊤ 0

]
. (8)

where Lr is the normalized Laplacian matrix of Gr, and I
is the identity matrix. For the user’s social graph Gs, the
embedding propagation follows a similar process:

E(l)
s = (Ls + I) · E(l−1)

s , (9)

where Ls is the normalized Laplacian matrix, computed as:

Ls = D
− 1

2
s SD

− 1
2

s , (10)
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S being the adjacency matrix of the social graph Gs. After
propagating through L layers, the final embedding for each
user-item pair is obtained by aggregating embeddings across
all layers as follows:

êu,u′ =
1

L+ 1

L∑
l=0

e
(l)
u,u′ , (11)

where e
(l)
u,u′ represents the l-th layer embedding between

user u and u′.

Similarly, for a user-item pair (u, v), the predicted embed-
ding is:

êu,v =
1

L+ 1

L∑
l=0

e(l)u,v. (12)

4.3. RecFlow Module

In the forward process, the RecFlow module begins by sam-
pling a time step t from a uniform distribution U(0, 1). This
time step is then encoded into a time embedding vector Et,
which is concatenated with the user representation Es ob-
tained from the social encoder. The perturbed input xt is
defined as a linear interpolation between Gaussian noise z
and the socially-informed embedding Es:

xt = tz + (1− t)Es (13)

Unlike conventional flow-matching methods that typically
treat z as the origin and interpolate toward data samples, our
formulation conditions the diffusion trajectory on the social
embedding Es, enabling the model to incorporate social
context into the forward process.

In the reverse process, we train a vector field estimator
vθ(xt, t) to approximate the velocity field. Here, θ denotes
the set of learnable parameters. The estimator is defined as:

vθ(xt, t) = FC2(Es ∥Et), FC(x) = σ(Wx+ b) (14)

where Et is the time embedding at step t, ∥ denotes vector
concatenation, and FC2 represents two consecutive fully
connected layers. The function σ(·) denotes a non-linear
activation (e.g., ReLU or GELU), and W , b are the weight
matrix and bias vector of each linear transformation.

Specifically, starting from xt, the model integrates the
reverse-time flow using an ODE solver to obtain the clean
embedding x0, which approximates the original user pref-
erence vector in the latent space. The reverse integration is
performed as:

x0 = xt +

∫ 0

t

vθ(xτ , τ) dτ (15)

During inference, the model fixes the optimized parameters
θ, and no further training is performed, then we sample a
latent representation z ∼ N (0, I) and timestep t and then
applies the learned v to reconstruct the user embedding eu.

4.4. Joint Optimization

To integrate social relationships with encoded user-item
interaction patterns, RecFlow employs a hidden-space re-
flow mechanism to generate the final user embeddings for
prediction. This process is defined as:

r̂u,v = ẽ⊤u e
′
v, ẽu = e′u + êθ(e

′
u, t), (16)

where t denotes a sampled diffusion time step for user u, e′u
and e′v represent the initial embeddings of the user and item
obtained from the respective graph encoders, and êθ(·, t)
denotes the learned reflow adjustment from the vector field
estimator.

The model is optimized by minimizing a joint loss function
that combines recommendation and diffusion objectives:

L =
∑

(u,v+,v−)

− log σ(r̂u,v+ − r̂u,v−) + λ1

∑
t

Lfm (17)

Here, (u, v+, v−) denotes a user with a positive and a nega-
tive item in a pairwise training setup following the Bayesian
Personalized Ranking (BPR) paradigm (Rendle et al., 2012).
The flow-matching loss Lfm, computed over sampled diffu-
sion steps t, guides the learning of the reverse-time vector
field. Additionally, L2 regularization (weight decay) with
coefficient λ1 is applied to all trainable parameters Θ to pre-
vent overfitting. The form of LCFM follows the definition in
Eq. (3) and the flow estimation process illustrated in Figure
2.

4.5. Disucssion and Analysis

In this section, we present a detailed analysis of the time and
space complexity of our RecFlow model. Besides, we fur-
ther provide the theoretical analysis between our RecFlow
and original DDPM methods to better illustrate the effi-
ciency of the flow matching strategy.

Time Complexity. Initially, RecFlow performs graph-level
information propagation on both the holistic collaborative
graph Gr and the social graph Gs, this process requires
O((|Er|+ |Es|)× d) calculations for message passing. The
overall time complexity of RecFlow during training is dom-
inated by the graph-level propagation and the gradient up-
dates, resulting in:

O((|Er|+ |Es|)× d) (18)

for each iteration of training. And complexity of flow match-
ing is O(N), eliminating multi-step iterations and requiring
only one global optimization.

Space Complexity. The space complexity is primarily de-
termined by the storage required for the graphs and em-
beddings. The collaborative graph Gr requires storing the
adjacency matrix of the user-item interactions, which has
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a space complexity of O(|U | × |V |), the social graph Gs
requires storing the adjacency matrix of the user-user inter-
actions, which has a space complexity ofO(|U |2), assuming
a dense representation. Thus, the overall space complexity
of RecFlow is:

O(|U | × |V |+ |U |2 + (|U |+ |V |)× d) (19)

This accounts for the storage of the graph structures and the
user and item embeddings. And space complexity is O(D),
dependent solely on data dimensionality and independent
of timesteps.

Theoretical Analysis. In the context of generative model-
ing, Flow Matching and DDPM both aim to generate data
through controlled transformations of noise. As illustrated
in Figure 3, FM constructs a linear interpolation between
X0 and X1, leading to a continuous and deterministic path.
Mathematically, this is described as:

Xt = (1− t)X0 + tX1 (20)

where Xt follows a simple ODE-driven trajectory. In con-
trast, DDPM follows a stochastic diffusion process:

Xt =
√
αtX0 +

√
βtϵ (21)

where ϵ is sampled from a Gaussian prior. The nonlin-

Figure 3. Theoretical comparison between DDPM and Flow
Matching.

ear and stochastic nature of DDPM results in higher vari-
ance in sampling paths, leading to inefficiencies. And FM
is governed by an Ordinary Differential Equation (ODE),
which enables continuous time evaluation and faster sam-
pling via adaptive solvers. In contrast, DDPM relies on
discrete Stochastic Differential Equations (SDEs), requiring
a large number of steps for accurate generation. Empiri-
cally, FM achieves comparable quality with fewer function
evaluations, reducing computational overhead.

Figure 4. A illustration of anisotropic attributes of two typical
datasets, i.e., Ciao and Epinions.

5. Experiment
In this section, we present a series of experiments conducted
to evaluate the performance of our RecFlow method, focus-
ing on the following six questions:

• Q1: How does RecFlow perform in comparison to
other state-of-the-art social recommendation methods?

• Q2: What are the key contributions of RecFlow’s main
modules?

• Q3: Is RecFlow robust enough to effectively handle
noisy and sparse data in social recommendation (SR)?

• Q4: How do different settings impact the performance
of RecFlow?

• Q5: How does RecFlow efficiently capture and repre-
sent the anisotropy of social data in different timesteps?

• Q6: How does the complexity of our method compare
to that of alternative approaches?

Before showing and analyzing the experimental results, we
first present the experimental settings below.

5.1. Experiment Settings

Datasets and Evaluation Metrics. We conducted exper-
iments on three publicly available social recommendation
datasets: Ciao, Yelp and Epinions. Detailed statistics for
these datasets are provided in Table 2.

We conducted a preliminary analysis of the Ciao and Epin-
ions dataset. Figure.4 shows the distribution of social data in
the Ciao and Epinions dataset. After reducing the data from
high-dimensional space to two dimensions using Principal
Component Analysis (PCA), it can be observed that the data
points are more spread out along Component 1, while the
distribution is more concentrated and less variable along
Component 2. This aligns with the characteristics of social
network data, where there are often dominant relational pat-
terns, while others are secondary or sparse. In the social
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Table 1. Statistics of experimental datasets
Data Ciao Yelp Epinions
# Users 1,925 99,262 14,680
# Items 15,053 105,142 233,261
# Interactions 23,223 672,513 447,312
# Social Ties 65,084 1,298,522 632,144

graph, certain user groups with strong internal connections
form tightly-knit social clusters, reflecting prominent rela-
tional patterns in the data. Additionally, the presence of
a dominant direction in the data causes the vector field to
display a clear anisotropic distribution, indicating that user
interactions are more concentrated along specific directions.

Evaluation Protocols. To evaluate, we ultilized 2 com-
monly used metrics: Hit Ratio HR@N and Normalized Dis-
counted Cumulative Gain (NDCG)@N as metrics, where
N represents the number of items recommended to the user,
widely ultilized in Top-N recommendations.

Compared Baselines. We compared RecFlow with 12 base-
line models representing the latest social recommendation
research approaches, including: PMF (Salakhutdinov &
Mnih, 2007), TrustMF (Yang et al., 2013), GraphRec (Fan
et al., 2019), DiffNet (Wu et al., 2019a), DGRec (Song
et al., 2019a), NGCF (Wang et al., 2019), MHCN (Yu
et al., 2021a), KCGN (Huang et al., 2021a), SMIN (Long
et al., 2021), GDMSR(Quan et al., 2023), DSL (Wang et al.,
2023a), RecDiff (Li et al., 2024a).

Implementation Details. All experiments are conducted
on a machine with an RTX A800 for a fair comparison.
The experimental settings and hyper-parameters details of
our RecFlow framework are elaborated in. The learning
rate was tuned within [5e−4, 1e−3, 5e−3] with a 0.96 decay
factor per epoch. Batch sizes were selected from [1024,
2048, 4096, 8192], and hidden dimensions from [64, 128,
256, 512]. The parameter γ was set according to the γpct-
percentile of node embedding distances for each dataset.
The optimal number of GNN layers was chosen from [1,
2, 3, 4]. The Timestep embedding size is selected from
4,8,16,32. And the batch size for Ciao is 2048, while for
Yelp and Epinions is 4096. Regularization weights λ1 were
selected from [1e−3, 1e−2, 1e−1, 1e0, 1e1].

5.2. Performance Comparison (RQ1)

Table 2 summarizes the experimental results across three
datasets, with RecFlow’s metrics bolded and top base-
lines underlined. RecFlow demonstrates marked improve-
ments over existing approaches, more specifically, on Ciao,
RecFlow achieves 0.725 Recall (+2.0%) and 0.438 NDCG
(+4.5%) over RecDiff. For Yelp and Epinions, it maintains
robust gains: 0.618 vs. 0.597 Recall(+3.5%) and 0.341 vs.
0.308 NDCG (+10.7%) on Yelp; 0.486 vs. 0.460 Recall

Table 2. Overall performance analysis.
Ciao Yelp Epinions

Method Recall NDCG Recall NDCG Recall NDCG
TrustMF 0.539 0.343 0.371 0.193 0.265 0.195

SAMN 0.604 0.384 0.403 0.208 0.329 0.226

DiffNet 0.528 0.328 0.557 0.292 0.384 0.273

GraphRec 0.540 0.335 0.419 0.201 0.334 0.246

DGRec 0.517 0.319 0.410 0.209 0.326 0.236

NGCF 0.559 0.363 0.450 0.230 0.353 0.243

MHCN 0.621 0.378 0.567 0.292 0.438 0.321

KCGN 0.602 0.350 0.460 0.234 0.2201 0.1456

SMIN 0.588 0.354 0.485 0.251 0.333 0.228

GDMSR 0.560 0.355 0.513 0.246 0.368 0.241

DSL 0.606 0.389 0.504 0.259 0.365 0.267

RecDiff 0.712 0.419 0.597 0.308 0.460 0.336

RecFlow 0.725 0.438 0.618 0.341 0.486 0.341

(+ 5.6%) on Epinions, demonstrating adaptability to vary-
ing data densities. Notably, methods with self-supervised
learning (SSL)—MHCN (local-global contrast), KCGN,
SMIN (hierarchical relations), and DSL (predictive con-
sistency)—consistently outperform traditional approaches.
SSL mitigates noise propagation and interaction sparsity by
extracting latent relational patterns, enabling stable repre-
sentation learning. RecFlow’s denoising process, guided by
a velocity field, directly optimizes trajectories toward clean
data distributions, suppressing noise during refinement. This
explains its 5.6–10.7% improvements over diffusion-based
RecDiff on sparse datasets.

5.3. Ablation Study (RQ2)

To evaluate the impact of different components in the
RecFlow framework, we performed an ablation study using
three benchmark datasets: Ciao, Yelp, and Epinions. The
results are presented in Table 4.

• w/o Flow-Matching: This configuration excludes the
holistic flow-matching module, leaving only the GNN
for learning user-item and social relations. As shown in
Table 4, the absence of the flow module results in a sig-
nificant decrease in both Recall and NDCG across all
datasets. Specifically, Recall drops by approximately
13% (Ciao), 7% (Yelp), and 12% (Epinions), while
NDCG decreases by about 13% (Ciao), 16% (Yelp),
and 31% (Epinions). This emphasizes the importance
of the denoising mechanism in our model.

• w/o CL: In this configuration, we remove the condi-
tional learning (CL) guidance for flow matching. The
results show a notable performance decline, particu-
larly in NDCG across all datasets, with a decrease of
around 8% (Ciao), 11% (Yelp), and 12% (Epinions).
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Table 3. Comparison of different sampling methods
Ciao Yelp Epinions

Method Recall NDCG Recall NDCG Recall NDCG

ODE-Solver 0.725 0.438 0.618 0.341 0.486 0.341
Multistep Heun 0.710 0.411 0.594 0.322 0.460 0.325
RK4 0.699 0.403 0.590 0.317 0.453 0.320
Heun 0.683 0.399 0.581 0.319 0.449 0.318
Euler 0.670 0.383 0.570 0.311 0.438 0.305

Figure 5. Robustness Analysis.

This demonstrates the critical role of Conditional
Learning in improving model accuracy.

• w/o both: In this case, both the flow module and the
CL label guidance are removed. The performance ex-
periences a significant drop, with Recall decreasing
by about 14% (Ciao), 5% (Yelp), and 7% (Epinions),
and NDCG dropping by approximately 7% (Ciao), 9%
(Yelp), and 15% (Epinions). This highlights the essen-
tial contributions of both the flow-matching process
and label guidance in enhancing the model’s ability to
learn effective user-item and social relationships.

The choice of sampling method creates a clear trade-off
between computational cost and model accuracy (see Table
3): the basic Euler method, with its single first-order step,
yields the lowest Recall and NDCG, while Heun’s two-
stage predictor–corrector boosts both metrics modestly at
only twice the cost. Leveraging history, the multistep Heun
scheme further raises performance, and the four-stage RK4
delivers similar gains by reducing local error through fourth-
order updates. Finally, an adaptive ODE solver such as
Dormand–Prince, which dynamically adjusts its step size
to satisfy error tolerances, consistently achieves the highest
Recall and NDCG on Ciao (and likewise leads on Yelp and
Epinions), demonstrating that, when resources allow, more
precise integration yields the strongest recommendation
quality.

5.4. Robustness Analysis (RQ3)

This section examines the effect of the noise scale factor
(τ ) on the noising process. By scaling the minimum and
maximum noise in the scheduler to τ · s̄min and τ · s̄max,
respectively, we test the model’s performance at different

Table 4. Different solver of sampling
Ciao Yelp Epinions

Method Recall NDCG Recall NDCG Recall NDCG

RecFlow 0.725 0.438 0.618 0.341 0.486 0.341
RecFlow w/o Flow 0.633 0.380 0.573 0.301 0.429 0.297
RecFlow w/o CL 0.692 0.401 0.597 0.320 0.443 0.312
RecFlow w/o CL of both 0.621 0.407 0.589 0.312 0.417 0.302

noise scales (1, 0.1, 0.01, 0.001). The results, shown in
Figure 5, reveal the following:

• Increasing the noise scale improves model perfor-
mance, with higher Recall@20 and NDCG@20 values
for both Yelp and Epinions as the noise scale decreases
from 1 to 0.1. This demonstrates the effectiveness of
the RecDiff framework’s denoising mechanism.

• Excessive noise beyond a threshold leads to perfor-
mance degradation, especially for Yelp and Epinions.
As noise scales reach 10−2 and 10−3, a noticeable
decline in NDCG@20 suggests that too much noise
interferes with the model’s ability to retain important
user-item data.

5.5. Sensitivity Analysis (RQ4)

This section explores the influence of key hyperparame-
ters on model performance, including the dimensionality of
hidden representations (d), timestep embedding (d’), and
maximum diffusion steps (T) on all datasets. On the Ciao
dataset, Recall@20 and NDCG@20 show fluctuations as
embedding dimensions, timestep embedding sizes, and dif-
fusion steps change. More specifically, when the embedding
dimension is d=64, Recall@20 is 0.725 and NDCG@20 is
0.438, which are the best values compared to other settings.
On the Yelp dataset, all settings yield relatively low and
similar values for Recall@20 and NDCG@20. The best
performance is achieved with an embedding dimension of
d=120 and a timestep embedding size of T=50. On the
Epinions dataset, the best performance occurs with embed-
ding dimension d=64, and performance improves as the
timestep embedding size increases. These results reveal the
following:

• Embedding dimensionality (d): For the Ciao and
Epinions datasets, embedding dimensions of d=64 give
the best results, whereas for the Yelp dataset, increasing
the dimension to d=120 provides optimal performance.
This shows the importance of adapting the dimension-
ality based on the dataset’s characteristics and size.
Increasing d generally improves performance, except
for Ciao and Epinions, where larger values cause slight
degradation due to overfitting.
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Figure 6. Convergence of the velocity field direction over different epochs.

Figure 7. Convergence comparison of loss curves

• Time step embedding size (d’): On the Ciao and
Yelp datasets, the timestep embedding size plays a cru-
cial role in optimizing performance, with values of 50
giving the best results for Yelp. For Epinions, larger
timestep embeddings improve performance progres-
sively, indicating that the model benefits from higher
temporal granularity. Larger dimensions boost diffu-
sion’s positive impact on denoising. However, exces-
sively large sizes reduce diffusion effectiveness, lower-
ing performance.

5.6. Convergence Analysis (RQ5)

In Figure.7, Flow Matching exhibits a faster convergence
speed compared to DDPM, as the horizontal axis represents
the diffusion model’s time steps, ranging from 0 to 1. The
vertical axis indicates the residual error at each time step. It
is evident that the residual error of Flow Matching decreases
rapidly in the early time steps, demonstrating a significantly
faster convergence trend. In contrast, DDPM’s error de-
creases at a slower pace, highlights the advantage of Flow
Matching in modeling vector fields and achieving efficient
convergence, making it more suitable for handling complex
distributions and data scenarios.

5.7. Visualization of Flow matching velocity field
direction over different epochs(RQ6)

To better understand how the velocity field evolves during
training, we design an experiment that visualizes the di-
rection of the flow-matching vector field across different
epochs. In Figure.6, the data points are unevenly distributed,
showing clear directionality and concentration, which high-
lights the anisotropy of social data. The model captures
this anisotropy within the velocity field, represented by ar-
rows that dynamically adjust direction as the epoch evolves,
demonstrates the convergence dynamics of velocity field
directions. In early stages (Epoch 0–38), directions exhibit
high dispersion (-0.50 to +0.50), reflecting unstable param-
eter adjustments. As training progresses (Epoch 59–99),
directions progressively cluster near the origin (range: -0.25
to +0.25), indicating stabilized optimization trajectories.
Notably, post-Epoch 78, data density intensifies with di-
rectional similarity, signifying unified parameter updates.

6. Conclusion
In this paper, we propose RecFlow, a novel flow-matching
generative model tailored for social recommendation. Our
approach leverages flow matching on user-user graphs to en-
hance recommendation accuracy. To evaluate the effective-
ness of RecFlow, we conduct extensive experiments against
several strong baselines, and the results clearly demonstrate
the superior performance and robustness of our method.
Looking forward, future work will explore more efficient
and scalable extensions of to explore its practicality and
effectiveness in real-world recommendation scenarios.

Impact Statement
This paper introduces RecFlow, a flow-based social recom-
mendation model that captures anisotropic in user interac-
tions. By leveraging flow matching, RecFlow enhances rep-
resentation learning and denoising efficiency, emphasizes
the practical benefits for personalized recommendation. We
also acknowledge potential societal risks, such as bias ampli-
fication, and highlight the need for fairness and robustness
in future recommendation systems.
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