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Abstract

Self-supervised learning (SSL) offers a powerful paradigm for medical image representation
learning, particularly in low-label regimes. However, standard pretext tasks often over-
look domain-specific cues vital for diseases like glaucoma—a leading cause of irreversible
blindness that manifests as subtle structural changes in the optic disc (OD) region. Un-
derstanding the broader retinal context is essential, yet traditional models tend to overfit
to localized features, limiting generalizability. We propose a glaucoma-aware SSL frame-
work using a Deconvolutional Masked Autoencoder (Deconv-MAE) with a ViT-B encoder,
trained to reconstruct clean fundus images from inputs degraded by Gaussian noise and
anatomically-aware ODmasking. This lesion-focused corruption compels the model to learn
robust, context-rich representations. Pretrained on EYEPACS and fine-tuned on ORIGA-
light, our method outperforms both standard MAE and supervised baselines, highlighting
the value of anatomically informed pretext tasks in retinal diagnostics.
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1. Introduction

Glaucoma is a leading cause of irreversible blindness (Kingman, 2004), making early detec-
tion critical. Retinal fundus imaging is the most accessible method for accurate diagnosis,
as glaucoma is characterized by an enlarged optic cup due to increased pressure on the
optic nerve. Various image processing and deep learning techniques have been developed
for glaucoma detection (Ashtari-Majlan et al., 2024), but they typically rely on large an-
notated datasets—making the labor-intensive annotation process a major bottleneck. Self-
Supervised Learning (SSL) (Chen et al., 2020; Grill et al., 2020; Caron et al., 2021) has
emerged as a promising approach to to mitigate the dependence on labeled data. Among
generative SSL methods, Masked Autoencoders (MAEs) (He et al., 2021)—which learn to
reconstruct masked portions of images—have demonstrated success in various vision tasks
(Zhang et al., 2022), their application to fundus imaging, particularly for glaucoma detec-
tion, remains limited. This limitation arises because many existing approaches do not fully
exploit the unique anatomical and pathological features inherent in fundus images (Yang
et al., 2024), such as the optic disc, which are critical for accurate glaucoma diagnosis.

To address this gap, we propose a domain-aware self-supervised learning framework
tailored for glaucoma detection from fundus images. Our method explicitly masks the
optic disc (OD)—the key region examined in clinical diagnosis—and introduces Gaussian
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Figure 1: Overview of the proposed framework: (1) A YOLOv11 model is trained on REFUGE2
and used to detect optic discs (OD) in EYEPACS. (2) OD regions are masked and
Gaussian noise is added for pretraining a Deconv-MAE with a ViT-B encoder. (3) The
pretrained encoder is fine-tuned on ORIGA light for glaucoma classification.

noise to simulate real-world image degradations. By training a Deconvolutional Masked
Autoencoder (Deconv-MAE) (Gao et al., 2022) to reconstruct clean images from these
corrupted inputs, we encourage the model to learn robust, context-rich representations
that are sensitive to the global retinal structure. The pretrained encoder is then fine-
tuned for glaucoma classification on a limited annotated dataset, demonstrating superior
performance over conventional supervised baselines and generic SSL models. This targeted
design leverages anatomical priors to enhance learning efficiency and transferability in low-
label regimes. Our approach is motivated by prior work (Huang et al., 2021; Kang et al.,
2023), which highlights that due to the significant domain gap between natural and medical
images, it is essential to leverage the distinctive characteristics of medical image modalities
to design effective SSL methods.

2. Methodology

We propose a three-stage pipeline for OD-aware SSL, tailored for glaucoma classification.
The framework emphasizes the optic disc —the anatomical region most indicative of early
glaucomatous changes—and comprises: (1) OD Detection, (2) Pretraining using an OD-
masked Deconv-MAE with noise-based corruption, and (3) Supervised Fine-tuning. Fig-
ure 1 illustrates the complete workflow.

(1) Optic Disc Detection: We train a YOLOv11 (Ultralytics, 2024) object detector
on the REFUGE2 dataset (Fang et al., 2022), which includes bounding box annotations for
the optic disc (OD). The model is trained for 100 epochs with a batch size of 16, image
resolution of 640×640, a learning rate of 0.01, and a warmup of 3 epochs. Post-training, this
detector is used on a filtered subset of the EYEPACS dataset (Gaid, 2023). Images with
low-confidence or failed OD detection are discarded to ensure consistent masking quality.

(2) OD-Aware SSL Pretraining: We adopt a Deconv-MAE, based on Deblurring-
MIM (Kang et al., 2023), using a ViT-B encoder. During pretraining, we apply two targeted
perturbations: (i) the OD region is masked by zeroing its pixels, and (ii) Gaussian noise
is added across the entire image to mimic real-world degradation. This setup encourages
the encoder to rely on global retinal structure rather than localized high-saliency regions.
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Table 1: Comparison of Supervised and SSL methods for glaucoma classification on ORIGA light.
Performance is reported across architectures using Accuracy, Weighted F1 Score, Preci-
sion, and Recall. Precision and Recall are reported specifically for the suspicious class.

Paradigm Method Architecture Accuracy Weighted F1 Score Precision Recall

Supervised

ResNet ResNet 101 75.38 75.81 52.63 58.55
ViT ViT-B 70.77 70.47 43.75 41.18

ConvNext ConvNext 73.85 71.34 50.00 29.41
Swin Transformer Swin L 75.38 73.47 54.55 35.29

SSL
MAE ViT-B 80.00 79.63 62.50 58.82
(Ours) ViT-B 84.62 83.42 81.81 52.94

Pretraining is conducted on 18,190 EYEPACS images (with 4,548 held out for testing),
using a 40% random patch masking ratio in addition to OD masking. Training runs for 500
epochs with a batch size of 96, using the AdamW optimizer (lr=1.5e-4, weight decay=0.05,
40-epoch warmup). Similar setup is used for MAE.

(3) Fine-tuning for Glaucoma Classification: The pretrained encoder is fine-tuned
on ORIGA-light (Zhang et al., 2010) for binary glaucoma classification using 520 train-
ing, 65 validation, and 65 test images. We use 224 × 224 resolution and the Adam opti-
mizer (lr=1e−4) with batch sizes of 32 (supervised) and 64 (SSL). To reduce distributional
shift—similar to DeblurringMIM—Gaussian noise is retained during SSL fine-tuning.

3. Experiments & Conclusion

We evaluate our approach using the ORIGA-light dataset (Zhang et al., 2010) for binary
glaucoma classification. Following pretraining on the filtered EYEPACS subset (Gaid,
2023), we fine-tune the encoder on ORIGA-light and compare performance with both su-
pervised models (ResNet101 (He et al., 2016), ViT-B (Dosovitskiy et al., 2021), ConvNext
(Liu et al., 2022), Swin Transformer (Liu et al., 2021)) pretrained on ImageNet (Deng et al.,
2009) and a standard ConvMAE baseline (Gao et al., 2022).

Our method outperforms all baselines across key metrics—achieving a 4.6% gain in ac-
curacy and a 3.8% improvement in F1-score over vanilla MAE (see Table 1). This highlights
the effectiveness of integrating lesion-aware masking and noise-based corruption during SSL
pretraining. Notably, our approach achieves significantly higher precision, indicating im-
proved confidence in positive glaucoma predictions, which is particularly valuable in clinical
triage. Despite a slight drop in recall compared to standard MAE, the improved precision
suggests that our model is more selective and robust in identifying glaucomatous cases. This
trade-off reflects a more cautious decision boundary, potentially reducing false positives.

In conclusion, we present a novel OD-aware denoising masked autoencoder tailored for
glaucoma classification from fundus images. By leveraging domain-specific priors—namely,
masking the optic disc and simulating image degradation—our approach enables more effec-
tive self-supervised representation learning. Unlike conventional MAE protocols, we omit a
separate linear probing stage to emphasize the value of end-to-end feature transfer in real-
istic downstream setups. Future work will explore extensions to multi-task settings such as
OD/OC segmentation and validate generalization across broader datasets.
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