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ABSTRACT

Testing conditional independence (CI) has many important applications, such as
Bayesian network learning and causal discovery. Although several approaches
have been developed for inferring CI relationships among observed variables,
these existing methods generally fail when the variables of interest cannot be
directly observed and only discretized values of those variables are available. For
example, if X1, X̃2 and X3 are the observed variables, where X̃2 is a discretization
of the latent variable X2, applying the existing methods to the observations of
X1, X̃2 and X3 would lead to a false conclusion about the underlying CI of
variables X1, X2 and X3. Motivated by this, we propose a CI test specifically
designed to accommodate the presence of discretization. To achieve this, a bridge
equation and nodewise regression are used to recover the precision coefficients
reflecting the conditional dependence of the latent continuous variables under
the nonparanormal model. We propose a test statistic and derive its asymptotic
distribution under the null hypothesis of CI. Theoretical analysis, along with
empirical validation on various datasets, rigorously demonstrates the effectiveness
of our testing methods. Our code implementation can be found in https://
github.com/boyangaaaaa/DCT.

1 INTRODUCTION

Independence and conditional independence (CI) are fundamental concepts in statistics. They are
leveraged for exploring queries in statistical inference, such as sufficiency, parameter identification,
and ancillarity (Dawid, 1979). They also play a central role in emerging areas such as causal discovery
(Koller and Friedman, 2009), graphical model learning, and feature selection (Xing et al., 2001).
Tests for CI have attracted increasing attention from both theoretical and application sides.

Formally, the problem is to test the CI of two variables Xi and Xj given a random vector (a set of
other variables) Z. In statistical notation, the null hypothesis is written as H0 : Xi ⊥⊥ Xj | Z, where
⊥⊥ denotes “independent from”. The alternative hypothesis is written as H1 : Xi ̸⊥⊥ Xj | Z, where
̸⊥⊥ denotes “dependent with”. The null hypothesis implies that once Z is known, the values of Xi

provide no additional information about Xj , and vice versa. Various tests have been designed to
address different scenarios, including Gaussian variables with linear dependence (Yuan and Lin, 2007;
Peterson et al., 2015; Mohan et al., 2012; Ren et al., 2015) and non-linear dependence (Fukumizu
et al., 2004; Zhang et al., 2012; Strobl et al., 2019; Sen et al., 2017; Aliferis et al., 2010) (For detailed
related work, please refer to App. E).

Given observations of Xi, Xj , and Z, the CI relationship can be effectively tested with the existing
methods. However, in many scenarios, accurately measuring continuous variables of interest is
challenging due to limitations in data collection. Sometimes the data obtained are approximations
represented as discretized values. For example, in finance, variables such as asset values cannot be
measured and are binned into ranges for assessing investment risks (e.g., sell, hold, and strong buy)
(Changsheng and Yongfeng, 2012; Damodaran, 2012). Similarly, in mental health, anxiety levels are
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often assessed using scales like the GAD-7, which categorizes responses into levels such as mild,
moderate, or severe (Mossman et al., 2017; Johnson et al., 2019). In the entertainment industry, the
quality of movies is typically summarized through viewer ratings (Sparling and Sen, 2011; Dooms
et al., 2013).

When discretization is present, existing CI tests can fail to determine the CI relationships of the
underlying variables. This issue arises because existing CI tests treat discretized observations as
observations of continuous variables, leading to incorrect conclusions about their CI relationships.
More precisely, the problem lies in the discretization process, which introduces new discrete variables.
Consequently, although the intent is to test the CI of the underlying continuous variables, what is
being tested is the CI involving a mix of both continuous and newly introduced discrete variables. In
general, this CI relationship is inconsistent with the one among the underlying continuous variables.

(a) (b) (c)

Figure 1: We illustrate data-generative processes
with causal graphical models. The discretization
process introduces new discrete variables indicated
by a tilde (∼).

As illustrated in Fig. 1, we show different data-
generative processes using causal graphical mod-
els (Pearl, 2000) in the presence of discretization.
A gray node indicates an observable variable,
while a white node indicates a latent variable.
Variables denoted by Xj (without a tilde ∼) rep-
resent continuous variables, which may not be
observed; while variables denoted by X̃j repre-
sent observed discretized variables derived from
Xj due to discretization. In Fig. 1(a), X2 is
latent, and only its discrete counterpart X̃2 is
observed. In this case, rather than observing X1,
X2, and X3, we only observe X1, X̃2, and X3.
Existing CI methods use these observations to test whether X1⊥⊥X3 | {X2}, but what is actually
being tested is whether X1⊥⊥X3 | {X̃2}. In fact, according to the causal Markov condition (Spirtes
et al., 2000), it can be inferred from Fig. 1(a) that X1⊥⊥X3 | {X2} and X1 ̸⊥⊥X3 | {X̃2}. This
mismatch leads to existing CI methods, that employ observations to check the CI relationships
between X1 and X3 given X2, to reach incorrect conclusions. Due to the same reason, checking the
CI also fails in Fig 1(b) and Fig 1(c).

In this paper, we design a CI test specifically for handling the presence of discretization. An appropri-
ate test statistic for the CI of latent continuous variables, based solely on discretized observations, is
derived. To develop this test, we first estimate the covariance between latent continuous variables and
discretized observations. This is achieved by constructing bridge equations that enable the estimation
of covariance using statistics derived from discretized observations. Subsequently, to utilize the
estimated covariance of latent continuous variables for testing CI relationships, we apply a node-wise
regression approach (Callot et al., 2019), which allows us to derive test statistics for CI based on the
estimated covariance. By assuming that the continuous variables follow a Gaussian distribution, we
can derive the asymptotic distribution of the test statistics under the null hypothesis of CI. Our major
contributions include:

• We develop a CI test for ensuring accurate analysis in scenarios where data has been discretized,
which are common due to limitations in data collection or measurement techniques.

• Our CI test can handle various scenarios including 1). Both variables Xi and Xj are discretized 2).
Both variables Xi and Xj are continuous. 3). One of the variables Xi or Xj is discretized.

• We compare our test with the existing methods on both synthetic and real-world datasets, confirm-
ing that our method can effectively estimate the CI of the underlying continuous variables and
outperform the existing tests applied on the discretized observations.

2 PROBLEM SETTING AND NEED FOR CORRECTION

Problem Setting Consider a set of independent and identically distributed (i.i.d.) p-dimensional
random vectors, denoted as X̃ = [X1, X2, . . . , X̃j , . . . , X̃p]. In this set, some variables, indicated
by a tilde (∼), such as X̃j , follow a discrete distribution. For each such variable, there exists a
corresponding latent Gaussian random variable Xj . The transformation from Xj to X̃j is governed
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by an unknown monotone nonlinear function gj and a thresholding function fj . The function
fj ◦ gj : X → X̃ maps the continuous domain of Xj onto the discrete domain of X̃j . Specifically,
for each variable Xj , there exists a finite constant vector dj = [dj,1, . . . , dj,M−1] characterized by
increasing elements such that

X̃j = fj(gj(Xj)) =


1 gj(Xj) < dj,1
m dj,m−1 < gj(Xj) < dj,m
M gj(Xj) > dj,M−1

(1)

This model is also known as the nonparanormal model (Liu et al., 2009). The cardinality of the
domain after discretization is at least 2 and smaller than infinity. Our goal is to assess both conditional
and unconditional independence among the variables of the vector X = [X1, X2, . . . , Xp]. In
our model, we assume X ∼ N(0,Σ), Σ only contain 1 among its diagonal, i.e., σj,j = 1 for all
j ∈ [1, . . . , p]. One should note this assumption is without loss of generality. We provide a detailed
discussion of our assumption in App. B.9.

Why the correction is needed? We aim to propose a CI test that serves as a correction to infer
the correct CI relationships among the latent continuous variables of interest. One question that
arises is whether the discretized variables exhibit the same conditional independence as their original
continuous counterparts, i.e., the correction is not needed. This concern becomes more significant
when the level of discretization is high. To show the effect of discretization, we present the following
theorem, using Gaussian random variables as an example, to demonstrate that discretization inevitably
introduces distortions. These distortions can lead to incorrect conclusions about CI relationships. The
proof can be found in Appendix B.1.
Theorem 2.1. Let X1, X2 and X3 be jointly Gaussian random variables that are mutually dependent,
such that X1 ⊥⊥ X3|X2, X̃2 = fj(gj(X2)) is the discretized observation as defined in equation 1.
Then the conditional independence between X1 and X3 given X̃2 doesn’t hold, i.e., X1 ̸⊥⊥ X3|X̃2.

3 DCT: A DISCRETIZATION-AWARE CI TEST

Notation Throughout this work, we use Xj to denote the j-th component of the vector of variables
X . We denote the sample mean of Xj by En[Xj ], and the expectation by E[Xj ]. The empirical
probability is represented by Pn whereas the true probability is denoted by P. For a matrix X, X−j

represents all columns of X except the j-th column, X−j,−j denotes the submatrix obtained by
removing both the j-th column and row, and X−j,j represents the j-th column of X with the j-th row
removed. For any parameter α, we use α̂ to denote its estimation. 1{condition} is 1 if the condition
holds true, 0 otherwise. For a full notation table, please refer to App. A.

To develop a CI test, we need to design a test statistic that can reflect the conditional dependence
relation and be computable using observations only. Next, it is essential to derive the underlying
distribution of this statistic under the null hypothesis that the tested variables are conditionally (or
unconditionally) independent. By calculating the value of the test statistic and assessing if this
statistic is likely to be drawn from the derived distribution (i.e., calculating the p-value and comparing
it with the significance level α), we can decide if the null hypothesis should be rejected.

Our objective is to deduce the independence and CI relationships within the original multivariate
Gaussian variable X , based on its discretized observations X̃ . In the context of a multivariate
Gaussian model, this challenge is directly equivalent to constructing statistical inferences for its
covariance matrix Σ = (σi,j) and its precision matrix Ω = (ωj,k) = Σ−1 (Baba et al., 2004).
The covariance matrix Σ captures the pairwise covariances, while the precision matrix Ω encodes
CI relationships. Specifically, the entry ωj,k represents the partial correlation coefficient between
variables Xj and Xk, which determines their CI given other variables. Technically, we are interested
in two things: (1) the calculation of the covariance σ̂i,j and the precision coefficient (or the partial
correlation coefficient) ω̂j,k, serving as the estimation of σi,j and ωj,k respectively; (2) the derivation
of the distribution of σ̂i,j − σi,j and ω̂j,k − ωj,k under the null hypothesis of independence and CI.

In the rest of this section, we discuss three key components: (1) we introduce bridge equations
to estimate the covariance σi,j ; (2) we derive the distribution of σ̂i,j − σi,j , showing it to be
asymptotically normal; and (3) we use nodewise regression to establish the relationship between
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the covariance matrix Σ and the precision matrix Ω. We show that the regression parameter βj,k

serves as a proxy for the precision matrix entry ωj,k. Leveraging the distribution of σ̂i,j − σi,j , we
demonstrate that β̂j,k − βj,k is also asymptotically normal.

3.1 ESTIMATING COVARIANCE THROUGH OBSERVATIONS

Our first task is to establish the connection between the underlying covariance σi,j of the continuous
pair Xi and Xj with their observed counterparts. Due to discretization, the sample covariance matrix
computed from X̃ is inconsistent with the covariance matrix of X . To obtain the estimation σ̂i,j

consistent with σi,j , the bridge equation is leveraged. In general, it takes the form:

τ̂i,j = T (σ̂i,j ; Λ̂), (2)

where σ̂i,j is the estimated covariance, τ̂i,j is a statistic that can also be estimated from observations,
and Λ̂ is a set of additional parameters required by the function T (·). The specific form of the
function T (·) will be derived later. Both τ̂i,j and Λ̂ should be able to be calculated purely relying
on observations. Then, given the calculated τ̂i,j and Λ̂, σ̂i,j can be obtained by solving the bridge
equation. As a result, the covariance matrix Σ ofX can be estimated, which contains information
about both unconditional independence and CI (which can be derived from its inverse).

To estimate the covariance of a latent multivariate Gaussian distribution, we need to design τ̂i,j , Λ̂,
and T (·). Notably, bridge equations have to be designed to handle the possible cases: C1. both
observed variables are discretized; C2. one variable is continuous while the other is discretized. For
C3. both variables remain continuous, we can easily take its sample covariance as the estimated
covariance. We will show that cases C1 and C2 can be merged into a single form of bridge equation
with different parameters and a binarization operation applied to the observations. Our bridge
equations are presented in Def. 3.1, Def. 3.2.

3.1.1 BRIDGE EQUATIONS FOR DISCRETIZED AND MIXED PAIRS

Let us first address the challenging cases where both observed variables are discretized or where one
variable is continuous while the other is discretized. In general, different bridge equations would need
to be designed to handle each case individually. However, in our analysis, we provide a unified bridge
equation that applies to both cases. This is achieved by binarizing the observed variables, thereby
unifying both cases into a binary case. As some information may be lost in the binarization process,
this unification may require more data samples compared to using tailored bridge functions for each
specific case. Improving sample efficiency with tailored bridge equations is left for future work.

Theoretically, continuous variables and discrete variables can be further discretized into binary
variables. Imagine we have the observed variable X̃i with the possible values “low”, “medium”,
“high”, we can create a dividing point: everything above becomes “very high”, everything below
becomes “very low”. This binarization process is also applicable to the continuous variable. Note
that X̃j is just the discretized version of its corresponding continuous variable Xj , this dividing
point directly responds to a specific value in the original continuous domain, which we denote as the
boundary hj . Multiple choices of hj are possible. In this paper, we define hj as the boundary in the
continuous domain that corresponds to the mean of its discretized counterpart X̃j . Mathematically,
we define hj as follows: for any single discretized variable X̃j , there exists a constant cj such that
hj = g−1

j (cj) satisfying

1{x̃l
j > E[X̃j ]} = 1{gj(xl

j) > cj} = 1{xl
j > hj},

where x̃l
j is the j-th sample of X̃j , and xj is the j-th sample of Xj .

Estimating the boundary Since the continuous variable Xj follows a normal distribution according
to our assumption, we can thus construct the relation P(X̃j > E[X̃j ]) = 1− Φ(hj), where Φ is the
cumulative distribution function (cdf) of a standard normal distribution. Although we do not have
access to the true probability, we can easily obtain its estimation by counting how many samples drop
in the region larger than its sample mean. Specifically,

ĥj = Φ−1(1− τ̂j), (3)
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where τ̂j = 1
n

∑n
l=1 1{x̃l

j > En[X̃j ]}, serving as the estimation of P(X̃j > E[X̃j ]). We further
denote Φ̄(·) = 1− Φ(·).

Intuition of estimating covariance The question now is to estimate the latent covariance σi,j for
the observed discrete pair (X̃i, X̃j) or mixed pair (X̃i, Xj). Leveraging the binarization process,
there exists boundaries hi, hj that partition the continuous variables pair Xi and Xj to a 2 × 2
contingency table. The area of each cell in this table represents the joint probability of the pair
(Xi, Xj) falling with a specific region defined by those boundaries. In this paper, we focus on
the top-right cell of the contingency table, which represents the joint probability of both variables
exceeding their respective boundaries.

Let Z1 and Z2 denote random variables. Mathematically, we denote Φ̄(z1, z2; ρ) = P(Z1 >
z1, Z2 > z2), where (Z1, Z2) follows a bivariate normal distribution with mean zero, variance one
and covariance ρ. For a discretized pair of observed variables (X̃i, X̃j), we define

τi,j := P(X̃i > E[X̃i], X̃j > E[X̃j ]) = Φ̄(hi, hj ;σi,j).

The above equation shows that the probability of discretized variables larger than their mean is a
function of underlying covariance. It serves as a key to estimating the covariance. The probability in
the above equation can be estimated by counting samples dropped into the region of both variables
exceeding their sample means as follows:

τ̂i,j := Pn(X̃i > En[X̃i], X̃j > En[X̃j)] =
1

n

n∑
l=1

1{x̃l
i > En[X̃i], x̃

l
j > En[X̃j ]}. (4)

Since Φ̄(hi, hj ;σi,j) is a function of σi,j , by substituting the parameters τi,j , hi, hj as their estimation,
we can construct the bridge equation as follows:
Definition 3.1 (Bridge Equation for A Discretized-Variable Pair). For discretized variables X̃i and
X̃j , the bridge equation is defined as:

τ̂i,j = T (σ̂i,j ; {ĥi, ĥj}),
where T (σ̂i,j ; {ĥi, ĥj}) =

∫
z1>ĥi

∫
z2>ĥj

ϕ(z1, z2; σ̂i,j) dz1 dz2, and ϕ is the probability density

function of a bivariate normal distribution with mean zero and covariance σ̂i,j , we note that ĥi, ĥj

can be simply calculated using equation 3 and τ̂i,j can be calculated using equation 4.

Following the same idea, we can apply the same bridge equation to estimate the covariance of mixed
pairs. The only difference is there is no need to estimate the boundary ĥj for the continuous variable.
Instead, we can incorporate its true mean of zero into the equation.
Definition 3.2 (Bridge Equation for A Continuous-Discretized-Variable Pair). For one continuous
variable Xi and one discretized variable X̃j , the bridge function is defined as:

τ̂i,j = Pn(Xi > 0, X̃j > En[X̃j ]) :=
1

n

n∑
l=1

1{xl
i > 0, x̃l

j > En[X̃j ]} = T (σi,j ; {0, ĥj}),

and the function T (·) has the same form of Def. 3.1.

3.1.2 CALCULATION OF ESTIMATED COVARIANCE

For the continuous case where there is no discretization transformation, the sample covariance
provides a consistent estimation of the true one. That is, for an observable pair of continuous variables
(Xi, Xj), we can simply obtain the analytic solution of estimated covariance:

σ̂i,j =
1

n

n∑
l=1

xl
ix

l
j −

1

n

n∑
l=1

xl
i

1

n

n∑
l=1

xl
j (5)

For the cases involving the discretized variable as proposed in Def. 3.1 and Def. 3.2, we can rely on
the property that variance Σ only contains 1 among the diagonal, which implies the covariance σi,j

should vary from −1 to 1. Thus, we can calculate the estimated covariance by solving the objective
σ̂i,j = argmin

σ′
i,j

||τ̂i,j − T (σ′
i,j ; {ĥi, ĥj})||2 s.t.− 1 < σ′

i,j < 1. (6)

The τ̂i,j is a one-to-one mapping with calculated σ̂i,j given ĥi and ĥj , which is proved in App. B.3
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3.2 UNCONDITIONAL INDEPENDENCE TEST

The estimation of covariance σ̂i,j can be effectively solved using the designed bridge equation. Now,
we focus on deriving the distribution of σ̂i,j − σi,j . These results are used as an unconditional
independence test in the presence of discretization. Moreover, Thm. 3.3, Lem. 3.4, Lem. 3.5
and Lem. 3.6 will be leveraged in the derivation process of the CI test in Section 3.3. The detailed
derivation steps for both the unconditional independence test and the CI test are relatively complicated,
therefore, we will provide a general intuition. For a complete derivation, please refer to the App. B.4.

Assume we are interested in the true parameter θ0, e.g., for discretized pairs, θ0 = (σi,j , hi, hj). We
denote θ̂ as its estimation which is close to θ0, and f(θ) is a continuous function. By leveraging
Taylor expansion, we have

f(θ̂) = f(θ0) + f ′(θ0)(θ̂ − θ0)+ . . . , (7)

where the second-order terms and more are omitted, which directly constructs the relationship
between the estimated parameter with the true one. Rearrange the term, we get θ̂ − θ0 = (f(θ̂)−
f(θ0))/f

′(θ0). If the denominator is a constant and the numerator can be expressed as a sum of i.i.d
samples, we can see θ̂ − θ0 will be asymptotically normal (Van der Vaart, 2000).

Let ψθ̂ = [f1
θ̂
(·), . . .]T contains a group of functions parameterized by θ̂. We define the functions

evaluated at one sample as ψl
θ̂

= ψθ̂(z
l), where zl denotes the l-th sample point. We define

the sample mean of these functions evaluated at n points as En[ψθ̂] = 1
n

∑n
l=1ψ

l
θ̂

, similarly,

En[ψθ̂ψ
T
θ̂
] = 1

n

∑n
l=1ψ

l
θ̂
ψl
θ̂

T and ψ′
θ̂

denotes the Jacobian matrix ∂ψθ̂

∂θ̂
. We now provide the main

result of derived distribution σ̂i,j − σi,j under the hull hypothesis that tested pairs are independent.
Theorem 3.3 (Independence Test). Under the null hypothesis that the Gaussian variables (Xi, Xj)
are statistically independent σi,j = 0, the test statistics σ̂i,j obtained according to Def. 3.1 for
discretized pairs (X̃i, X̃j), Def. 3.2 for mixed pairs (Xi, X̃j) and equation 5 for continuous pairs, is
asymptotically normal:

√
n(σ̂i,j − σi,j)

d→ N
(
0, ((En[ψ

′
θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ

′T
θ̂
])−1)1,1

)
, (8)

where the specific form of ψl
θ̂

are presented in Lem. 3.4,Lem. 3.5 and Lem. 3.6.

We now provide the specific forms of ψl
θ̂

. Since the variables being tested for independence can be
both discretized, only one being discretized, or neither being discretized—-the form of ψθ̂ varies
accordingly. The specific forms of ψθ̂ in these scenarios are defined as follows:

Lemma 3.4. (ψl
θ̂

for A Continuous-Variable Pair). For two continuous variables Xi and Xj , where

θ̂ = σ̂i,j , and their corresponding l-th samples xl
i, x

l
j:

ψl
θ̂
:= xl

ix
l
j − En[Xi]En[Xj ]− σ̂i,j ,

Lemma 3.5 (ψl
θ̂

for A Discretized-Variable Pair). For discretized variables X̃i and X̃j , where

θ̂ = (σ̂i,j , ĥi, ĥj), and their corresponding l-th samples x̃l
i, x̃

l
j:

ψl
θ̂
:=

τ̂ li,j − T (σ̂i,j ; {ĥi, ĥj})
τ̂ li − Φ̄(ĥi)

τ̂ lj − Φ̄(ĥj)

 ,

where τ̂ li,j = 1{x̃l
i > En[X̃i], x̃

l
j > En[X̃j ]}, τ̂ li = 1{x̃l

j > En[X̃i]}, and similarly for τ̂ lj .

Lemma 3.6 (ψl
θ̂

for A Continuous-Discretized-Variable Pair). For one discretized variable X̃j and

one continuous variable Xi, where θ̂ = (σ̂i,j , ĥj), and their corresponding l-th sample point x̃l
j , x

l
i:

ψl
θ̂
:=

(
τ̂ li,j − T (σ̂i,j ; {0, ĥj}

τ̂ lj − Φ̄(ĥj)

)
,

where τ̂ li,j = 1{xl
i > 0, x̃l

j > En[X̃j ]}, τ̂ lj = 1{x̃l
j > En[X̃j ]}.
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Derivation of forms of ψθ̂ for different cases and their corresponding distribution defined in Eq equa-
tion 8 can be found in App. B.5, App. B.6, App. B.7. Up to this point, our discussion has been
confined to the case of covariance σi,j , the indicator of unconditional independence. In the next
section, we will present the results of our CI test.

3.3 CONDITIONAL INDEPENDENCE (CI) TEST

To construct a CI test of our model, we are interested in two matters: calculation of the estimated
precision coefficient ω̂j,k and the derivation of the corresponding distribution ω̂j,k − ωj,k. While
obtaining ω̂j,k from the Σ̂ is straightforward, it leaves the inference problem unresolved. Thus, we
leverage nodewise regression and show the regression parameter βj,k serving as a surrogate of testing
for ωj,k = 0, we then construct the formulation of β̂j,k − βj,k as the combination of formulation of
σ̂i,j − σi,j and show it will also be asymptotically normal.

The following lemma formalizes the properties of nodewise regression that enable this approach:
Lemma 3.7. [Nodewise Regression Properties] For a p-dimensional multivariate normal variable
X = (X1, . . . , Xp) ∼ N(0,Σ) with covariance matrix Σ and precision matrix Ω = Σ−1 =
(ωj,k)1≤j,k≤p. For any j ∈ {1, . . . , p}, consider the nodewise regression where each Xj is regressed
on all other variables:

Xj =
∑
k ̸=j

Xkβj,k + ϵj ,

where βj,k is the regression coefficient of Xk in predicting Xj , βj = (βj,k)k ̸=j ∈ Rp−1 is the vector
of all coefficients, and ϵj is the residual term. Then the following relationships hold:

βj = Σ−1
−j,−jΣ−j,j ∈ Rp−1,

βj,k = −ωj,k

ωj,j
, j ̸= k.

(9)

The derivation can be found in App. B.8.1. The lemma establishes the deterministic relationships
between the regression coefficient βj,k and the entry of precision matrix ωj,k. Since ωj,j will never
be zero (due to the positive definiteness Ω), we can conclude βj,k serves as an effective surrogate of
ωj,k. Moreover, βj can be expressed in terms of the submatrices of the covariance matrix Σ. We
can further conduct its estimation β̂j = (β̂j,k)k ̸=j = Σ̂−1

−j,−jΣ̂−j,j , where the estimated covariance
terms can be obtained using Def. 3.1, 3.2 and equation 5.

Statistical Inference for βj,k Nodewise regression offers a direct solution for the estimation
problem. A pertinent inquiry pertains to the construction of the distribution of β̂j −βj . It is crucial to
recognize that the distribution of σ̂i,j −σi,j is already established. Therefore, if we can conceptualize
β̂j − βj as a linear combination of σ̂i,j − σi,j , the problem is directly solved, i.e., the β̂j − βj is
linear combination of dependent Gaussian variables. The underlying relationship between these
variables is as follows:

β̂j − βj = −Σ̂−1
−j,−j

(
(Σ̂−j,−j −Σ−j,−j)βj − (Σ̂−j,j −Σ−j,j)

)
.

The derivation is provided in App. B.8.2. For ease of notation, we further express the distribution of
the difference between the estimated covariance and the true covariance as

σ̂i,j − σi,j =
1

n

n∑
l=1

ξli,j . (10)

The specific form of ξli,j is given in App. B.5, B.6, B.7 for different cases, respectively. For notational
convenience, we express Σ̂−j,−j−Σ−j,−j =

1
n

∑n
l=1 Ξ

l
−j,−j and Σ̂−j,j−Σ−j,j =

1
n

∑n
l=1 Ξ

l
−j,j ,

where ξi,j is the element of the matrix Ξ at the position indexed by (i, j). We propose the statistic
and its asymptotic distribution for the CI test in the following theorem.
Theorem 3.8 (Conditional Independence test). Under the null hypothesis that Gaussian variables
Xj and Xk are conditional statistically independent given all other variablesX−{jk}, i.e., βj,k = 0,
the testing statistic

β̂j,k = (Σ̂−1
−j,−jΣ̂−j,j)[k], (11)

7
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Figure 2: Comparison of results of Type I and calibrated Type II error (1 − power) for all three
types of tested data (continuous, mixed, discrete) and different number of samples and cardinality of
conditioning set. The suffix attached to a test’s name denotes the cardinality of discretization; for
example, "Fisherz_4" signifies the application of the Fisher-z test to data discretized into four levels.
Chi-square test is only applicable for the discrete case.

where [k] denotes the element corresponding to the variable Xk in Σ̂−1
−j,−jΣ̂−j,j , has the asymptotic

distribution:
√
n(β̂j,k − βj,k)

d→ N(0,a[k]T 1

n

n∑
l=1

vec(Bl
−j)vec(B

l
−j)

Ta[k]),

whereBl =

[
Ξl

−j,j
T

Ξl
−j,−j

]
, a[k] =

[
−(Σ̂−1

−j,−j)
T
[k],:

vec
(
(Σ̂−1

−j,−j)
T
[k],:β̃

T
j

)] ,
and β̃j is βj whose βj,k = 0; vec is row-wise vectorization of a matrix, and (Σ̂−1

−j,−j)[k],: denotes
the row in Σ̂−1

−j,−j that corresponds to Xk.

In practice, we can plug in the estimation of regression parameter β̂j and set β̂j,k = 0 as the
substitution of β̃j to calculate the variance and do the CI test. Specifically, we can obtain the β̂j,k

using equation 11 where the estimated covariance terms can be calculated by solving the bridge
equation Eq. 2. Under the null hypothesis that βj,k = 0 (conditional independence), we can take
the calculated β̂j,k into the distribution defined in Thm. 3.8 and obtain the p-value. If the p-value is
smaller than the predefined significance level α (normally set at 0.05), we will infer the tested pairs
are conditionally dependent; otherwise, we do not. The detailed derivation of the Thm. 3.8 can be
found in App. B.8.2. The pseudocode of DCT is provided in App. D.

4 EXPERIMENTS

We applied the proposed method DCT to synthetic data to evaluate its practical performance and
compare it with Fisher-Z test (Fisher, 1921) (for all three data types) and Chi-Square test (F.R.S.,
2009) (for discrete data only) as baselines. Specifically, we investigated its Type I and Type II error
and its application in causal discovery. The experiments investigating its robustness, performance in
denser graphs and effectiveness in a real-world dataset can be found in App. H.

4.1 ON THE EFFECT OF THE CARDINALITY OF CONDITIONING SET AND THE SAMPLE SIZE

Our experiment investigates the variations in Type I and Type II error (1 minus power) probabilities
under two conditions. In the first scenario, we focus on the effects of modifying the sample size,

8
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denoted as n = (100, 500, 1000, 2000), while conditioning on a single variable. In the second, the
sample size is held constant at 2000, and we vary the cardinality of the conditioning set, represented
as D = (1, 2, . . . , 5). It is assumed that every variable within this conditioning set is effective, i.e.,
they influence the CI of the tested pairs. We repeat each test 1500 times.

We use Y,W to denote the variables being tested and use Z to denote the variables being conditioned
on. The discretized versions of the variables are denoted with a tilde symbol (e.g., Z̃). For both con-
ditions, we evaluate three distinct types of observations of tested variables: continuous observations
for both variables (Y,W ), discrete observations for both variables (Ỹ , W̃ ) and a mixed type (Ỹ ,W ).
The variables in the conditioning set will always be discretized observations (Z̃).

To see how well the derived asymptotic null distribution approximates the true one, we verify if
the probability of Type I error aligns with the significance level α preset in advance. We generate
true continuous multivariate Gaussian data Y,W from Zi (single i = 1 for the first scenario, and
summed over n for the second), structured as aiZi + E and

∑n
i=1 aiZi + E, where ai is sampled

from U(0.5, 1.5) and E follows a standard normal distribution, independent of all other variables.
This ensures Y ⊥⊥ W |Z. The data are then discretized into K = (2, 4, 8, 12) levels, with boundaries
randomly set based on the variable range. The first column in Fig. 2 (a) (b) shows the resulting
probability of Type I errors at the significance level α = 0.05 compared with other methods.

A good test should have as small a probability of Type II error as possible, i.e., a larger power.
To test the power of our DCT, we generate the continuous multivariate Gaussian data Zi from
Y,W ; constructed as Zi = aiY + biW + E, where ai, bi are sampled from U(0.5, 1.5) and E
follows a standard normal distribution independent with all others, i.e., Y ̸⊥⊥ W |Z. The same
discretization approach is applied here. One should note that directly comparing the p-value with
a common predefined significance level is unfair since all baselines tend to produce very small
p-values. Therefore, all tests are calibrated1 in this experiment. The second column in Fig. 2 (a) and
(b) correspondingly shows the calibrated Type II error as the number of samples and the cardinality
of the conditioning set change, compared to other methods.

From Fig. 2 (a), we note that the Type I error rates with our derived null distribution are well-
approximated at 0.05 across all three data types in both scenarios. In contrast, other testing methods
show significantly higher Type I error rates, increasing with the number of samples and the size of
the conditioning set. This indicates that such methods are more prone to erroneously concluding
that tested variables are conditionally dependent. Additionally, while alternative tests demonstrate
considerable power with smaller sample sizes, our approach requires a sample size of 1000 to achieve
satisfactory power, particularly in mixed and continuous cases. A possible explanation for this
phenomenon is that our method binarizes discretized data, which may not effectively utilize all
observations. This aspect warrants further investigation in future research. Moreover, our test shows
remarkable stability in response to changes in the number of conditioning sets.

4.2 APPLICATION IN CAUSAL DISCOVERY

Causal discovery aims at looking for the true causal structure from the data. Under the assumption of
causal Markov condition that the causal relationships among variables can be expressed by a Directed
Acyclic Graph (DAG) G and its statistical independence is entailed in this graphic model, faithfulness
ensures that the statistical independencies observed in the data can be reliably used to infer the
causal structure. Given both assumptions, constraint-based causal discovery, e.g., PC algorithm
(Spirtes et al., 2000) recovers the graph structure relying on testing the conditional independence
of observation. Apparently, in the presence of discretization, the failures of testing conditional
independence will seriously impair the resulting DAG.

To evaluate the efficacy of the DCT, we construct the true DAG G utilizing the Bipartite Pairing
(BP) model as detailed in (Asratian et al., 1998), with the number of edges being one fewer than the
number of nodes. The subsequent generation of true multivariate Gaussian data involves assigning
causal weights drawn from a uniform distribution U ∼ (0.5, 2) and incorporating noise via samples
from a standard normal distribution for each variable. Following this, we binarize the data, setting
the threshold randomly based on each variable’s range. Our experiment is divided into two scenarios:

1Calibration is the process of empirically finding the decision threshold to match the desired significance
level, ensuring accurate control of Type I error.
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(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 10000)

(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 3: Experimental result of skeleton discovery on synthetic data for changing sample size (a)
and changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous
data. We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).

In the first, we set the number of samples n = 5000, with the number of nodes p varying across 4,
6, 8, and 10. In the second scenario, we fix the number of nodes at p = 8 and explore sample sizes
n = (500, 1000, 5000, 10000).

A comparative analysis is performed using the PC algorithm integrated with various testing methods.
Specifically, we compare DCT against the Fisher-z test applied to discretized data, the Chi-Square
test, and the Fisher-z test on the original continuous data, the latter serving as a theoretical upper
bound. Since the PC algorithm only returns a completed partially directed acyclic graph (CPDAG),
we apply the same orientation rules from Dor and Tarsi (1992), as implemented by Causal-DAG
(Chandler Squires, 2018), to convert a CPDAG into a DAG for easier comparison. We evaluate both
the undirected skeleton and the directed graph using structural Hamming distance (SHD), F1 score,
precision, and recall as evaluation metrics. For each setting, we run 10 graph instances with different
seeds and report the mean and standard deviation for skeleton discovery in Fig. 3 and DAG discovery
in Fig. 4 in App. C.

According to the result, DCT exhibits performance nearly on par with the theoretical upper bound
across metrics such as F1 score, precision, and Structural Hamming Distance (SHD) when the number
of variables (p) is small and the sample size (n) is large. DCT significantly outperforms both the
Fisher-Z test and the Chi-square test. Notably, in almost all settings, the recall of DCT is lower than
that of the baseline tests, which is reasonable since these tests tend to infer conditional dependencies,
thereby retaining all edges given the discretized observations. For instance, a fully connected graph,
would achieve a recall of 1.

5 CONCLUSION

In this paper, we present a new testing method tailored for scenarios commonly encountered in
real-world applications, where variables, though inherently continuous, are only observable in their
discretized forms. Our method distinguishes itself from existing CI tests by effectively mitigating the
misjudgment introduced by discretization and accurately recovering the CI relationships of latent
continuous variables. We substantiate our approach with theoretical results and empirical validation,
underscoring the effectiveness of our testing methods.
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A NOTATION TABLE

Category Description
Number and Indices
n Number of samples
p Number of variables
i, j, k Index of a variable i, j, k ∈ (1, . . . , p)
l Index of a sample l ∈ (1, . . . , n)

Random Variables
X A vector of Gaussian variables
X̃ A vector of variables whose partial variables are discretized versions ofX
Σ Covariance ofX
Σ−j,−j Submatrix of Σ with j-th row and j-th column removed
Σ−j,j j-th column of X with j-th row removed
Ω Precision matrix ofX , equals to Σ−1

Xj j-th component of theX
X−{j,k} All other variables ofX with Xj and Xk removed
σi,j Covariance between Xi and Xj

ωj,k Precision coefficient ωj,k

xl
j l-th sample of Xj

x̃l
j l-th sample of X̃j

hj The boundary in the continuous domain that corresponds to the mean of X̃j

τj Probability of X̃j larger than its mean: P(X̃j > E[X̃j ])
βj,k Regression coefficient of Xk in predicting Xj

βj vector of all coefficients regressing Xj

ξli,j Influence function component, it represents the influence of the l-th obser-
vation on the covariance estimation error

Ξl Matrix form of ξl

Estimation of Variables
σ̂i,j Estimation of σi,j , calculated using equation 6, equation 5
Σ̂ Estimation of Σ, matrix form of σ̂i,j

ω̂j,k Estimation of ωj,k

ĥj Estimation of hj , calculated using equation 3
τ̂j Estimation of τj , calculated as 1

n

∑n
l=1 1{x̃l

j > En(X̃j)}
β̂j Estimation of β̂j , calculated as Σ̂−1

−j,−jΣ̂−j,j

Functions and Operators
P True probability
Pn Sample probability
E[Z] Expectation of a random variable Z
En[Z] Sample mean of a random variable Z over n samples
1 1 condition: is 1 if the condition is true, 0 otherwise
Φ(z) Cumulative distribution function of a standard normal distribution
Φ̄(z) 1− Φ(z), corresponding to the P(Z > z)
Φ̄(z1, z2; ρ) P(Z1 > z1, Z2 > z2), where (Z1, Z2) follows a bivariate normal distribu-

tion with mean zero, variance one and covariance ρ.
ψθ̂ A group of functions parametrized by θ̂
ψl
θ̂

ψθ̂ evaluated at sample l

ψ′
θ̂

Jacobian matrix of ∂ψθ̂

∂θ̂

For Discretized Pair X̃i, X̃j

τi,j Probability of both X̃i and X̃j larger than their mean: P(X̃i > E[X̃i], X̃j >

E[X̃j ])

τ̂i,j Estimation of τi,j : 1
n

∑n
l=1 1{x̃l

i > En[X̃i], x̃
l
j > En[X̃j ]}
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Category Description

τ̂ li,j A sample of τ̂i,j : 1{x̃l
i > En[X̃i], x̃

l
j > En[X̃j ]}

For Mixed Pair Xi, X̃j

τi,j Probability of both Xi and X̃j larger than their mean: P(Xi > 0, X̃j >

E[X̃j ])

τ̂i,j Estimation of τi,j : 1
n

∑n
l=1 1{xl

i > 0, x̃l
j > En[X̃j ]}

τ̂ li,j A sample of τ̂i,j : 1{x̃l
i > 0, x̃l

j > En[X̃j ]}
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B PROOF AND DERIVATIONS

B.1 PROOF OF THM.2.1

If the X1, X2 and X3 are jointly Gaussian and X1 ⊥⊥ X3|X2, we have

Cov(X1, X3|X2) = 0.

To test if X1, X3 are conditional independent given X̃2, we are interested if Cov(X1, X3|X̃2) equals
zero. Using the law of total covariance, we have

Cov(X1, X3|X̃2) = E[Cov(X1, X3|X2, X̃2)|X̃2] + Cov(E[X1|X2, X̃2],E[X3|X2, X̃2]|X̃2).
(12)

Since X̃2 is the deterministic function of X2, X̃2 will be conditional independent with X1 and X3

given X2. Therefore,

Cov(X1, X3|X2, X̃2) = Cov(X1, X3|X2) = 0.

The first term of equation 12 is zero. We now focus on the second term. Similarly, we have

E[X1|X2, X̃2] = E[X1|X2], E[X3|X2, X̃2] = E[X3|X2],

due to the conditional independence. One can see

Cov(X1, X3|X2, X̃2) = Cov(E[X1|X2],E[X3|X2]|X̃2).

Without loss of generality, we assume the mean of X1, X2 and X3 are zero. Then E[X1|X2] and
E[X3|X2] are scaled versions of X2. The original equation becomes

Cov(X1, X3|X2, X̃2) = c · V ar(X2|X̃2),

where c is a constant. We know that

V ar(X2|X̃2) = E[(X2 − E[X2|X̃2])
2|X̃2],

which will be zero if and only if X2 is almost surely a function of X̃2. That means given X̃2, the
value of X2 is determined exactly without any randomness, which clearly doesn’t hold true in our
discretization framework. Thus, X1 ̸⊥⊥ X3|X̃2, which completes the proof.

B.2 PROOF OF θ̂
p→ θ0

Lemma B.1. For the estimation θ̂ = (σ̂i,j , ĥi, ĥj), (σ̂i,j , ĥj), (σ̂i,j) for discretized pairs, mixed pairs
and continuous pairs respectively, calculated using bridge equation3 and equation6, will converge in
probability to θ0 = (σi,j , hi, hj), (σi,j , hj), (σi,j) respectively.

Proof According to the law of large numbers, for the estimated boundary ĥi and ĥj whose calculations
are defined as ĥj = Φ−1(1− τ̂j), we should have

n → ∞, τ̂j =
1

n

n∑
l=1

1{x̃l
j > En[X̃j ]}

p→ P(X̃j > E[X̃j ]).

Recall the definition P(X̃j > E[X̃j ]) = 1 − Φ(hj), according to continuous mapping theorem
(Vaart, 1998a), as long as the function Φ−1(1− ·) is continuous, we should have ĥj

p→ hj . And thus
ĥi

p→ hi, ĥj
p→ hj .

We further note that τ̂i,j = Φ̄(ĥi, ĥj , σ̂i,j) and the estimation σ̂i,j can be obtained through solving
the function. Similarly, we also have

n → ∞, τ̂i,j =
1

n

n∑
l=1

1{x̃l
i > En[X̃i]}1{x̃l

j > En[X̃j ]}
p→ P(x̃l

i > E[X̃i], x̃
l
j > E[X̃j ])

= τi,j .
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According to the continuous mapping theorem, we have σ̂i,j
p→ σi,j . Thus, the parameter

(σ̂i,j , ĥi, ĥj)
p→ (σi,j , hi, hj) for the discretized pair case.

Apparently, the result above could easily extend to the mixed case where we fix ĥi = hi = 0. Using
the same procedure, we should have (σ̂i,j , ĥj)

p→ (σi,j , hj).

For the continuous case whose estimated variance is calculated as σ̂i,j = 1
n

∑n
l=1 x

l
ix

l
j −

1
n

∑n
l=1 x

l
i
1
n

∑n
l=1 x

l
j , according to law of large numbers, we should have

n → ∞, σ̂i,j =
1

n

n∑
l=1

xl
ix

l
j −

1

n

n∑
l=1

xl
i

1

n

n∑
l=1

xl
j

p→ E[XiXj ]− E[Xi]E[Xj ] = σi,j .

B.3 PROOF OF ONE-TO-ONE MAPPING BETWEEN τ̂i,j AND σ̂i,j

Lemma B.2. For any fixed ĥi and ĥj , T (σ′
i,j ; {ĥi, ĥj}) =

∫
x1>ĥi

∫
x2>ĥj

ϕ(xi, xj ;σ
′
i,j)dxidxj , is

a strictly monotonically increasing function on σ′
i,j ∈ (−1, 1).

Proof To prove the lemma, we just need to show the gradient
∂T (σ′

i,j ;{ĥi,ĥj}
∂σ > 0 for σ′

i,j ∈ (−1, 1).

∂T (σi,j); {ĥi, ĥj}
∂σ′

i,j

==
1

2π
√
(1− σ′2

i,j)
exp

(
−
(ĥ2

i − 2σ′
i,j ĥiĥj + ĥ2

j )

2(1− σ′2
i,j)

)
,

which is obviously positive for σ′
i,j ∈ (−1, 1). Thus, we have one-to-one mapping between τ̂i,j with

the calculated σ̂i,j for fixed ĥi and ĥj .

B.4 PROOF OF THM. 3.3

In this section, we provide the proof of Thm. 3.3, which utilizes a regular statistical tool: Z-estimator
(Vaart, 1998b). Specifically, we are interested in the parameter θ and we have it estimation θ̂. Let
x1, . . . ,xn are sampled from some distribution, we can construct the function characterized by
the parameter θ related the x as ψθ(x). As long as we have n observations, we can construct the
function as follows

Ψn(θ) =
1

n

n∑
l=1

ψθ(xi) = En[ψθ].

We further specify the form

Ψ(θ) =

∫
ψθ(x)dx = E[ψθ].

Assume the estimator θ̂ is a zero of Ψn, i.e., Ψn(θ̂) = 0 and will converge in probability to θ0,
which is a zero of Ψ, i.e., Ψ(θ0) = 0. Expand Ψn(θ̂) in a Taylor series around θ0, we should have

0 = Ψn(θ̂) = Ψn(θ0) + (θ̂ − θ0)Ψ′
n(θ0) +

1

2
(θ̂ − θ0)2Ψ′′

n(θ0) + . . .

Rearrange the equation above, we have

θ̂ − θ0 = − Ψn(θ0)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)2Ψ′′

n(θ0)

= −
1
n

∑n
l=1ψθ(xi)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)2Ψ′′

n(θ0)
.

18
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According to the central limit theorem, the numerator will be asymptotic normal with variance
E[ψ2

θ0
]/n as the mean Ψ(θ0) = 0 is zero. The first term of denominator Ψ′

n(θ0) will converge in
probability to Ψ′(θ0) according to the law of large numbers. The second term θ̂ − θ0 = oP (1). 2

As long as the denominator converges in probability and the numerator converges in distribution,
according to Slusky’s lemma, we have

√
n(θ̂ − θ0)

d→ N

(
0,

E[ψ2
θ0
]

E[ψ′
θ0
]2

)
. (13)

Extend into the high-dimensional case we should have

θ̂ − θ0 = −Ψ′
n(θ0)

−1Ψn(θ0)

where the second order term is omitted, further assume the matrix E[ψ′
θ0
] is invertible, we have

√
n(θ̂ − θ0)

d→ N
(
0, (E[ψ′

θ0 ])
−1E[ψθ0ψT

θ0 ](E[ψ
′T
θ0 ])

−1
)
, (14)

Specifically, in our case θ0 = (σi,j ,Λ), where Λ is another parameter set influencing the estimation
of σi,j (will discuss case in case in later proof). In the practical scenario, we only have access
to the estimated parameter θ̂ and the empirical distribution Pn, which will converge to their true
counterparts. Thus, we have

σ̂i,j − σi,j
approx∼ N

(
0, ((En[ψ

′
θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ

′T
θ̂
])−1)1,1

)
.

Under the null hypothesis of independent, σi,j = 0. We provide the proof that θ̂
p→ θ0 of our case in

App. B.2. Thus, En[ψθ̂], the function parameterized by θ̂, should also converge in En[ψθ0 ] when
n → ∞. Besides, by the law of large numbers, En[ψθ̂0 ] will converge to E[ψθ̂0 ]. Thus, the equation
above will converge to equation 14 when n → ∞.

We note that the construction of Z-estimator above require two necessary ingredients: 1. The
estimated parameter θ̂ should be the zero of the sample mean of criterion function Ψn. 2. The
estimated parameter θ̂ should converge in probability to θ0, the zero of the true mean of criterion
function Ψ. For different cases (discretized, mixed, continuous), the construction of criterion function
varies. We provide their corresponding derivation in Lem. 3.5, 3.6, 3.4 respectively.

B.5 DERIVATION OF LEM. 3.5

Let’s first focus on the most challenging case where both variables are discretized observations and
our interested parameter will include θ̂ = (σ̂i,j , ĥi, ĥj) (Although we only care about the distribution
of σ̂i,j − σi,j , the estimation of boundary ĥiand ĥj will influence the estimation of σ̂i,j , thus we need
to consider all of them).

The next step will be to construct an appropriate criterion function ψ such that Ψn(θ̂) = 0. Given n
observations {x̃1, x̃2, . . . , x̃n}, which are discretized version of {x1,x2, . . . ,xn} we should have

Ψn(θ̂) =

Ψn(σ̂i,j)

Ψn(ĥi)

Ψn(ĥj)

 =
1

n

n∑
l=1

ψθ̂(x̃
l) =

1

n

n∑
l=1

τ̂ li,j − T (σ̂i,j ; {ĥi, ĥj})
τ̂ li − Φ̄(ĥi)

τ̂ lj − Φ̄(ĥj)

 = 0. (15)

Ψn(θ0) =

(
Ψn(σi,j)
Ψn(hi)
Ψn(hj)

)
=

1

n

n∑
l=1

ψθ0(x̃
l) =

1

n

n∑
l=1

τ̂ li,j − T (σi,j ; {hi, hj})
τ̂ li − Φ̄(hi)
τ̂ lj − Φ̄(hj)

 . (16)

2We will not provide proof of this in this paper; however, interested readers may refer to (Vaart, 1998b)
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The difference between the estimated parameter with the true parameter can be expressed as

θ̂ − θ0 =

σ̂i,j − σi,j

ĥi − hi

ĥj − hj

 = − 1

n

n∑
l=1


∂Ψn(σi,j)

∂σi,j

∂Ψn(σi,j)
∂hi

∂Ψn(σi,j)
∂hj

∂Ψn(hi)
∂σi,j

∂Ψn(hi)
∂hi

∂Ψn(hi)
∂hj

∂Ψn(hj)
∂σi,j

∂Ψn(hj)
∂hi

∂Ψn(hj)
∂hj


−1

·

τ̂ li,j − T (σi,j ; {hi, hj})
τ̂ li − Φ̄(hi)
τ̂ lj − Φ̄(hj)

 , (17)

where the specific form of each entry of the gradient matrix is expressed as

∂Ψn(σi,j)

∂σi,j
= − 1

2π
√
(1− σ2

i,j)
exp

(
−
(h2

i − 2σi,jhihj + h2
j )

2(1− σ2
i,j)

)
;

∂Ψn(σi,j)

∂hi
=

∫ ∞

hj

1

2π
√

1− σi,j
2
exp

(
−h2

i − 2σi,jhix2 + x2
2

2(1− σ2
i,j)

)
dx2;

∂Ψn(σi,j)

∂hj
=

∫ ∞

hi

1

2π
√

1− σi,j
2
exp

(
−h2

2 − 2σi,jhjx1 + x2
1

2(1− σi,j
2)

)
dx1;

∂Ψn(hi)

∂σi,j
= 0;

∂Ψn(hi)

∂hi
=

1√
2π

exp

(
−h2

i

2

)
;

∂Ψn(hi)

∂hj
= 0;

∂Ψn(hj)

∂σi,j
= 0;

∂Ψn(hj)

∂hi
= 0;

∂Ψn(hj)

∂hj
=

1√
2π

exp

(
−
h2
j

2

)
.

(18)

For simplicity of notation, we define

σ̂i,j − σi,j =
1

n

n∑
l=1

ξli,j ,

where the specific form is of {ξli,j} is defined in equation 17. We should note that {ξli,j} are i.i.d
random variables with mean zero (this property will be the key to the derivation of inference of CI).
As long as our estimation θ̂ converge in probability to θ0 as proved in B.2, we have

√
n(θ̂ − θ0)

d→ N
(
0, ((E[ψ′

θ0 ])
−1E[ψθ0ψT

θ0 ](E[ψ
′T
θ0 ])

−1)
)
,

where ψθ0 is defined in equation 16. However, in practice, we don’t have access to either θ0 or the
true expectation. In this scenario, we can plug in the sample mean of En[ψθ̂] to get the estimated
variance, i.e., the actual variance used in the calculation of σ̂i,j − σi,j is

1

n

(
(En[ψ

′
θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ

′T
θ̂
])−1

)
1,1

. (19)
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B.6 DERIVATION OF LEM. 3.6

Use the same procedure as in the derivation of Lem. 3.5, for mixed pair of observations where Xi is
continuous and X̃j is discrete, we can construct the criterion function

Ψn(θ̂) =

(
Ψn(σ̂i,j)

Ψn(ĥj)

)
=

1

n

n∑
l=1

ψθ̂(x̃
l) =

1

n

n∑
l=1

(
τ̂ li,j − T (σ̂i,j ; {0, ĥj})

τ̂ lj − Φ̄(ĥj)

)
= 0. (20)

Ψn(θ0) =

(
Ψn(σi,j)
Ψn(hj)

)
=

1

n

n∑
l=1

ψθ0(x̃
l) =

1

n

n∑
l=1

(
τ̂ li,j − T (σi,j ; {0, hj})

τ̂ lj − Φ̄(hj)

)
. (21)

The difference between the estimated parameter with the true parameter can be expressed as

θ̂ − θ0 =

(
σ̂i,j − σi,j

ĥj − hj

)
= − 1

n

n∑
l=1

(
∂Ψn(σi,j)

∂σi,j

∂Ψn(σi,j)
∂hj

∂Ψn(hj)
∂σi,j

∂Ψn(hj)
∂hj

)−1(
τ̂ li,j − T (σi,j ; {0, hj})

τ̂ lj − Φ̄(hj).

)
, (22)

where the specific form of each entry of the gradient matrix can be found in equation 18. Using exactly
the same procedure, we should have the same formation of the variance calculated as equation 19
with a different definition of ψθ0 and ψθ̂ defined in equation 21 equation 20.

B.7 DERIVATION OF LEM. 3.4

Use the same line of procedure as in the derivation of Lem. 3.5, for a continuous pair of variables, we
can construct the criterion function

Ψn(θ̂) = Ψn(σ̂i,j) =
1

n

n∑
l=1

xl
ix

l
j −

1

n

n∑
l=1

xl
i

1

n

n∑
l=1

xl
j − σ̂i,j = 0. (23)

Ψn(θ0) = Ψn(σi,j) =
1

n

n∑
l=1

xl
ix

l
j −

1

n

n∑
l=1

xl
i

1

n

n∑
l=1

xl
j − σi,j .

Denote 1
n

∑n
l=1 x

l
i as x̄i and 1

n

∑n
l=1 x

l
j as x̄j . We should have

σ̂i,j − σi,j =
1

n

n∑
l=1

xl
ix

l
j − x̄ix̄j − σi,j . (24)

According to equation 13, we have

√
n(σ̂i,j − σi,j)⇝ N

(
0,

E[ψ2
θ0
]

(E[ψ′
θ0
])2

)
.

where (E[ψ′
θ0
])2 = 1. In practical calculation, we have the variance

1

n
En[ψ

2
θ̂
]/(En[ψ

′
θ̂
])2 =

1

n2

n∑
l=1

(xl
ix

l
j − x̄ix̄j − σ̂i,j)

2.

B.8 PROOF OF THM. 3.8

B.8.1 PROOF OF LEM. 3.7

Consider our latent continuous variablesX = (X1, . . . , Xp) ∼ N(0,Σ) and do nodewise regression

Xj =X−jβj + ϵj ,
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whereX−j is the submatrix ofX with Xj removed. We can divide its covariance Σ and its precision
matrix Ω = Σ−1 into the predictor X−j and outcome variable Xj in our regression:

Σ =

(
Σj,j Σj,−j

Σ−j,j Σ−j,−j

)
Ω =

(
Ωj,j Ωj,−j

Ω−j,j Ω−j,−j

)
.

Just like regular linear regression, we can get

n → ∞, βj = Σ−1
−j,−jΣ−j,j .

From the invertibility of a block matrix[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

If A and D is invertible, we will have[
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
.

Thus, we can get:

Ωj,j = (Σj,j −Σj,−jΣ
−1
−j,−jΣ−j,j)

−1;

Ωj,−j = −
(
Σj,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)−1
Σj,−j(Σ−j,−j)

−1.

Move one step forward:
−Ω−1

j,jΩj,−j = Σj,−j(Σ−j,−j)
−1.

Take transpose for both sides, as long as Ω is a symmetric matrix and Ω−j,j = ΩT
j,−j , we will have

−Ω−1
j,jΩ−j,j = Σ−1

−j,−jΣ−j,j = βj .

We should note testing Ω−j,j = 0 is equivalent to testing βj = 0 as the Ωj,j will always be nonzero.
The variable Ω−j,j captures the CI of Xj with other variables. As long as the variable Ωj,j is just
one scalar, we can get

βj,k = −ωj,k

ωj,j

capturing the CI relationship between variable Xj with Xk conditioning on all other variables.

B.8.2 DETAILED DERIVATION OF INFERENCE FOR βj

Nodewise regression allows us to use the regression parameter βj as the surrogate of Ω−j,j . The
problem now transfers to constructing the inference for βj , specifically, the derivation of distribution
of β̂j − βj . The overarching concept is that we are already aware of the distribution of σ̂i,j − σi,j

and we know that there exists a deterministic relationship between βj with Σ. Consequently, we can
express β̂j − βj as a composite of σ̂i,j − σi,j to establish such an inference. Specifically, we have

β̂j − βj = Σ̂−1
−j,−jΣ̂−j,j −Σ−1

−j,−jΣ−j,j

= Σ̂−1
−j,−j

(
Σ̂−j,j − Σ̂−j,−jΣ

−1
−j,−jΣ−j,j

)
= −Σ̂−1

−j,−j

(
Σ̂−j,−jβj −Σ−j,−jβj +Σ−j,−jβj − Σ̂−j,j

)
= −Σ̂−1

−j,−j

(
(Σ̂−j,−j −Σ−j,−j)βj − (Σ̂−j,j −Σ−j,j)

)
,

where each entry in matrix (Σ̂−j,−j −Σ−j,−j) and (Σ̂−j,j −Σ−j,j) denotes the difference between
estimated covariance with true covariance.

For ease of notation, we further denote that

σ̂i,j − σi,j =
1

n

n∑
l=1

ξli,j ,
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where ξli,j are i.i.d random variables with specific form defined in equation 17 for discrete case,
equation 22 for mixed case and equation 24 in continuous case.

Suppose that we want to test the CI of the variable X1 with other variables, j = 1. We then have

Σ̂−1,−1 −Σ−1,−1 =

[
σ̂2,2 . . . σ̂2,p

. . .
σ̂p,2 . . . σ̂p,p

]
−

[
σ2,2 . . . σ2,p

. . .
σp,2 . . . σp,p

]
=

1

n

n∑
l=1

ξl2,2 . . . ξl2,p. . .
ξlp,2 . . . ξ

l
p,p

 ,

Σ̂−1,1 −Σ−1,1 =

[
σ̂2,1

. . .
σ̂p,1

]
−

[
σ2,1

. . .
σp,1

]
=

1

n

n∑
l=1

ξl2,1. . .
ξlp,1

 .

Put them together:

β̂1 − β1 =


β̂1,2 − β1,2

β̂1,3 − β1,3

. . .

β̂1,p − β1,p

 = −Σ̂−1
−1,−1

1

n

n∑
l=1



ξl2,2 ξl2,3 . . . ξl2,p
ξl3,2 ξl3,3 . . . ξl3,p
. . . . . . . . . . . .
ξlp,2 ξlp,3 . . . ξlp,p


β1,2

β1,3

. . .
β1,p

−


ξl2,1
ξl3,1
. . .
ξlp,1


 .

As 1
n

∑n
l=1 ξ

l
i,j is asymptotically normal, the who vector of β̂1 − β1 is a linear combination of

Gaussian distribution. However, We cannot merely engage in a linear combination of its variance as
they are dependent with each other. For example, if Y1, Y2 are dependent and we are trying to find
out V ar(aY1 + bY2), we should have

V ar(aY1 + bY2) = [a b]

[
V ar(Y1) Cov(Y1, Y2)

Cov(Y1, Y2) V ar(Y2)

] [
a
b

]
. (25)

Now, suppose we are interested in the distribution of β̂1,2 − β1,2, we have

β̂1,2 − β1,2 = − 1

n

n∑
l=1

(Σ̂−1
−1,−1)[2],:



ξl2,2 ξl2,3 . . . ξl2,p
ξl3,2 ξl3,3 . . . ξl3,p
. . . . . . . . . . . .
ξlp,2 ξlp,3 . . . ξlp,p


β1,2

β1,3

. . .
β1,p

−


ξl2,1
ξl3,1
. . .
ξlp,1


 ,

where (Σ̂−1
−1,−1)[2],: is the row of index of X2 of Σ̂−1

−1,−1 ([2] denotes the index of the variable, e.g.,
(Σ̂−1

−1,−1)[2],: represents the first row of Σ̂−1
−1,−1 since the row of first variable is removed. ). For ease

of notation, we define

Y l := Ξl
−1,−1 =


ξl2,2 ξl2,3 . . . ξl2,p
ξl3,2 ξl3,3 . . . ξl3,p
. . . . . . . . . . . .
ξlp,2 ξlp,3 . . . ξlp,p

 ∈ Rp−1×p−1, vl := Ξl
−1,1 =


ξl2,1
ξl3,1
. . .
ξlp,1

 ∈ Rp−1,

and

u := (Σ̂−1
−1,−1)

T
[2],: ∈ Rp−1 w :=

β1,2

β1,3

. . .
β1,p

 ∈ Rp−1.

We can rewrite the equation as

β̂1,2 − β1,2 = − 1

n

n∑
l=1

u(Y lw − vl).
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We note that Y l, vl are variables, and u,w are constants (just like the example aY1 + bY2). We
further let m = p− 1 to simplify the notation. We can thus write the equation above as vector form:

β̂1,2 − β1,2 = − 1

n

n∑
l=1

[u1, . . . , um, u1w1, u1w2, . . . , umwm]



−vl1
. . . ,
−vlm
Y l
11

Y l
12
. . .
Y l
mm


= − 1

n

n∑
l=1

[uT , vec(uwT )T ]

[
−vl

vec(Y )l

]
,

where ui represents the i-th element of vector u and Y l
ij represents the entry in i-th row and j-th

column of matrix Y l, vec represents the row-wise vectorization of a matrix, e.g,

vec(Y l) =


Y11

Y12

Y13

. . .
Ymm

 ∈ Rm2

.

Similar as equation 25, the variance is calculated as

V ar
(√

n(β̂1,2 − β1,2)
)
=

1

n

n∑
l=1

[uT , vec(uwT )T ]

[
−vl

vec(Y )l

] [
−vl

vec(Y )l

]T [
u

vec(uwT )

]
.

Now we go back to use the notations of ξ and Σ. Under the null hypothesis that X1 ⊥⊥ X2|Xothers,
i.e., β1,2 = 0. We thus use β̃1 to denote β1 where β1,2 = 0. Let

Bl
−1 =


ξl2,1 ξl3,1 . . . ξlp,1
ξl2,2 ξl2,3 . . . ξl2,p
ξl3,2 ξl3,3 . . . ξl3,p
. . . . . . . . . . . .
ξlp,2 ξlp,3 . . . ξlp,p

 =

[
Ξl

−1,1
T

Ξl
−1,−1

]
,

and

a[2] =

[
−(Σ̂−1

−1,−1)
T
[2],:

vec
(
(Σ̂−1

−1,−1)
T
[2],:β̃

T
1

)]
Similarly as equation 25, The variance is calculated as

V ar
(√

n(β̂1,2 − β1,2)
)
= a[2]T 1

n

n∑
l=1

vec(Bl
−1)vec(Bl

−1)
Ta[2],

Simply replace the index 1, 2 as general index j, k, the distribution of β̂j,k − βj,k is

β̂j,k − βj,k
d→ N(0,a[k]T 1

n2

n∑
l=1

vec(Bl
−j)vec(Bl

−j)
T )a[k]).

In practice, we can plug in the estimates of βj to estimate the interested distribution and do the CI
test by hypothesizing βj,k = 0.

24



Published as a conference paper at ICLR 2025

B.9 DISCUSSION OF ASSUMPTION

In this section, we first justify why the assumption of zero mean and identity variance can be made
without loss of generality. Then, we explain the rationale behind the linear Gaussian assumption.

B.9.1 ZERO MEAN AND IDENTITY VARIANCE

In this section, we engage in a more thorough discussion regarding our assumptions about X .
Specifically, we demonstrate that this assumption of mean and variance does not compromise the
generality. In other words, the true model may possess different mean and variance values, but we
proceed by treating it as having a mean of zero and identity variance.

The key ingredient allowing us to assume such a model is, the discretization function gj is an unknown
nonlinear monotonic function. Suppose the g′j maps the continuous domain to a binary variable, and
we have the "groundtruth" variable, denoted X ′

j , with mean a and variance b. Assume the cardinality
of the discretized domain is only 2, i.e., our observation X̃j can only be 0 or 1. We further have the
constant d′j as the discretization boundary such that we have the observation

X̃j = 1(g′j(X
′
j) > d′j) = 1(X ′

j > g′−1
j (dj)).

We can always produce our assumed variable Xj with mean 0 and variance 1, such that Xj =
1√
b
X ′

j − a√
b

and the same observation with a different nonlinear transformation gj and decision
boundary dj , such that

X̃j = 1(gj(Xj) > dj) = 1(Xj > g−1
j (dj)) = 1(X ′

j >
√
bg−1

j (dj) + a).

As long as the observation X̃j is the same, we should have
√
bg−1

j (dj)+a = g′−1
j (dj). Our assumed

model Xj clearly mimics the "groundtruth" X ′
j . Besides, according to Lem. B.3, we have one-to-one

mapping between τ̂i,j with the estimated covariance for fixed ĥi, ĥj . Thus, as long as the observation
is the same, the estimation of covariance σ̂i,j remains unaffected by our assumptions regarding the
mean and variance ofX , so do the following inference.

We further conduct casual discovery experiments to empirically validate our statement, which is
shown in App. H.3.

B.9.2 DISCUSSION OF LINEAR GAUSSIAN ASSUMPTION

Discretization of continuous variables inevitably leads to information loss in the original data.
Compared to the original distributional information, the recovered covariance matrix is naturally less
accurate. Given this, constructing a valid statistical inference procedure, rather than solely relying on
estimated covariance values for drawing conditional independence conclusions, is desirable.

One major limitation of DCT is its reliance on the assumption that latent continuous variables follow
a multivariate normal distribution. Violations of this assumption can lead to erroneous conclusions.
For instance, consider a scenario where the relationship between latent variables is nonlinear, such as
Xi = X2

j . In this case, the covariance σi,j equals zero despite a deterministic dependency between
Xi and Xj . Consequently, even if the correlation is perfectly estimated, the model fails to capture the
true underlying relationship, leading to incorrect inferences.

Nevertheless, although the theoretical framework of DCT requires latent continuous variables to
follow a multivariate Gaussian distribution, experimental results in various settings, even in situations
in which this assumption is violated, demonstrate the usefulness and robustness of DCT, suggesting
the development of this technique is essential to causal discovery from discretized continuous data.
Further details of the empirical validations are provided in Appendix H.
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C FIGURE OF MAIN EXPERIMENTS: CAUSAL DISCOVERY

(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 10000)
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(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 4: Experiment result of DAG discovery on synthetic data for changing sample size (a) and
changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous data.
We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).
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D PSEUDO CODE

Algorithm 1 DCT: Discretization-Aware CI Test
1: Require:

• Observed data matrix X̃ ′ ∈ Rn×d

• Tested pair indices i, j with i ̸= j
• Conditioning set S ⊆ {1, . . . , d} \ {i, j}
• Significance level α

2: Rearrange Data Matrix

X̃ =
[
X̃ ′[:, i], X̃ ′[:, j], X̃ ′[:,S]

]
∈ Rn×p, where p = 2 + |S|

3: Initialize Covariance Matrix

Σ̂← Ip (identity matrix of size p× p)

4: for q ← 1 to p do
5: for k ← q + 1 to p do
6: if both X̃[:, q] and X̃[:, k] are continuous then
7: Compute sample covariance σ̂q,k using equation 5
8: else
9: Compute covariance σ̂q,k using Equation equation 6

10: end if
11: Update covariance matrix:

Σ̂[q, k]← σ̂q,k

Σ̂[k, q]← σ̂q,k (ensuring symmetry)

12: end for
13: end for
14: Extract Submatrices (i and j correspond the first and second column of X̃ due to the regroup)

• Let Σ̂−1,−1 ∈ Rp−1×p−1← the submatrix of Σ̂ without 1st column and 1st row
• Let Σ̂−1,1 ∈ Rp−1 be the 1st column of Σ̂ with first row removed

15: Compute Test Statistics
β̂1,2 ← Σ̂−1

−1,−1Σ̂−1,1

16: Formulate Null Distribution

Φ(z)← Cumulative distribution function of the Normal Distribution defined in Thm. 3.8

17: Calculate P-value
p-value← 2 ·

(
1− Φ

(
|β̂1,2|

))
18: Make Decision
19: if p-value > α then
20: Conclude: Xi ⊥⊥ Xj | XS

21: else
22: Conclude: Xi ̸⊥⊥ Xj | XS

23: end if
24: return The conditional independence decision
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E RELATED WORK

Testing for CI is pivotal in the field of causal discovery (Spirtes et al., 2000), and a variety of
methods exist for performing CI tests (CI tests). An important group of CI test methods involves the
assumption of Gaussian variables with linear dependencies. For example, under this assumption,
Gaussian graphical models are extensively studied (Yuan and Lin, 2007; Peterson et al., 2015; Mohan
et al., 2012; Ren et al., 2015). To address CI test under Gaussian assumption, partial correlation
serves as a viable method for CI testing (Baba et al., 2004). To evaluate the independence of variables
X1 and X2 conditional on Z, The technique proposed by (Su and White, 2008) determines CI by
comparing the estimations of p(X1|X2,Z) and p(X1|X2).

Another approach involves discretizing Z and performing independent tests within each resulting bin
(Margaritis, 2005). Our work, however, diverges from these existing methods in two significant ways.
Firstly, we are equipped to handle data, where partial variables are discretized. Additionally, we
postulate that discrete variables are derived from the transformation of continuous variables in a latent
Gaussian model. With the same assumption, the most closely related study is by (Fan et al., 2017),
where the authors developed a novel rank-based estimator for the precision matrix of mixed data.
However, their work stops short of providing a CI test for this method. Our research fills this gap,
offering the ability to estimate the precision matrix for both discrete and mixed data and providing a
rigorous CI test for our methodology.

Recent advancements in CI testing have utilized kernel methods for continuous variables influenced
by nonlinear relationships. (Fukumizu et al., 2004) describes non-parametric CI relationships using
covariance operators in reproducing kernel Hilbert spaces (RKHS). KCI test (Zhang et al., 2012)
assesses the partial associations of regression functions linking x, y, and z, while RCI test (Strobl
et al., 2019) aims to enhance the KCI test’s efficiency. In KCIP test (Doran et al., 2014) employs
permutations of samples to emulate CI scenarios. CCI test (Sen et al., 2017) further reformulates
testing into a process that leverages the capabilities of supervised learning models. For discrete
variable analysis, the G2 test (Aliferis et al., 2010) and conditional mutual information (Zhang et al.,
2010) are commonly employed. However, their method cannot deal with our setting where only
discretized version of latent variables can be observed.

F RESOURCE USAGE

All the experiments are run using Intel(R) Xeon(R) CPU E5-2680 v4 with 55 processors. It costs 4
hours to run experiments in Section 3.1.

G LIMIATION AND BROADER IMPACTS

Limitation So far, the largest limitation of our method is to treat discretized variables as binary,
which wastes the available information. Besides that, the parametric assumption limits its generaliz-
ability. However, we need to point out this is pretty normal in CI test fields.

Broader Impacts The goal of our proposed method is to test the conditional independence relation-
ship given discretized observation. This task is essential and has broad applications. We are confident
that our method will be beneficial and will not result in negative societal impacts.
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H ADDITIONAL EXPERIMENTS

H.1 LINEAR NON-GAUSSIAN AND NONLINEAR

Our model requires that the original data must adhere to the hypothesis of following a multivariate
normal distribution, which appears to potentially limit the generalizability. Therefore, it is worthwhile
to explore its robustness when such assumptions are violated. In this regard, we conducted several
experiments, including scenarios involving linear non-Gaussian and nonlinear Gaussian.

For both cases, we follow the setting of our experiment where there are p = 8 nodes and p− 1 edges.
We explore the effect of changing sample size n = (100, 500, 2000, 5000). Specifically for linear
non-Gaussian case, we adhere to some of the settings outlined by (Shimizu et al., 2011), conducting
experiments where the original continuous data followed: (1) a Student’s t-distribution with 3 degrees
of freedom, (2) a uniform distribution, and (3) an exponential distribution. Each variable is generated
as Xi = f(PAi) + noise, where noise follows the distribution in (1), (2), (3) correspondingly and
f is an arbitrary linear function. The first three rows of Fig. 5 and Fig. 6 show the result of the linear
non-Gaussian case.

For the nonlinear cases, we follow setting in (Li et al., 2024), where every variable Xi is generated
as Xi = f(WPAi + noise), noise ∼ N(0, 1) and f is a function randomly chosen from (a)
f(x) = sin(x), (b) f(x) = x3, (c) f(x) = tanh(x), and (d) f(x) = ReLU(x). W is a linear
function. Similarly, we set the number of nodes at p = 8 and change the number of samples
n = (500, 2000, 5000). For both cases, we run 10 graph instances with different seeds and report the
result of skeleton discovery in Fig. 5 and DAG in Fig. 6 (The same orientation rules (Dor and Tarsi,
1992) used in the main experiment are employed to convert a CPDAG (Chandler Squires, 2018) into
a DAG). The last row of Fig. 5 and Fig. 6 shows the result of the nonlinear case.

Based on the experimental outcomes, DCT demonstrates marginally superior or comparable efficacy
in terms of the F1-score, precision, and SHD relative to both the Fisher-Z test and the Chi-square test
when dealing with small sample sizes. Nevertheless, as the sample size increases, DCT’s performance
clearly surpasses that of the aforementioned tests across all three evaluated metrics, especially in the
linear case. Consistent with observations from the main experiment, DCT exhibits a lower recall in
comparison to the baseline tests. This discrepancy can be attributed to the baseline tests being prone
to incorrectly infer conditional dependence and connect a large proportion of nodes. According to
the results, our test shows notable robustness under the case assumptions are violated, confirming its
practical effectiveness.

H.2 DENSER GRAPH

DCT primarily works on cases where CI is mistakenly judged as conditional dependence due
to discretization. Consequently, its efficacy is more pronounced in scenarios characterized by a
relatively sparse graph, as numerous instances are truly conditionally independent. Nevertheless, the
investigation of causal discovery with a dense latent graph is essential for evaluating the power of a
test, i.e., its ability to successfully reject the null hypothesis when the tested pairs are conditionally
dependent. Thus, we conduct the experiment where p = 8, n = 10000 and changing edges (p +
2, p + 4, p + 6). Similarly, the latent continuous data follows a multivariate Gaussian model and
the true DAG G is constructed using BP model. We run 10 graph instances with different seeds and
report the result of the skeleton discovery and DAG in Fig. 7.

According to the experiment results, DCT exhibits better performance in terms of the F1-score,
precision, and SHD relative to both the Fisher-Z test and the Chi-square test. As the graph becomes
progressively denser, the superiority of the DCT correspondingly diminishes as there are few condi-
tional independent cases in the true DAG. Due to the same reason, The recall remains lower than that
of other baseline methods.

H.3 MULTIVARIATE GAUSSIAN WITH NONZERO MEAN AND NON-UNIT VARIANCE

We employed a setting nearly identical to the main experiment, with the only difference being the
alteration in data generation: instead of using a standard normal distribution, we used a Gaussian
distribution with mean sampled from U(−2, 2) and variance sampled from U(0, 3). We fix the
number of variables as p = 8 and change the number of samples n = (100, 500, 2000, 5000). The
Fig. 8 shows the result and demonstrates the effectiveness of our method.
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(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 5: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on skeleton.

H.4 REAL-WORLD DATASET

To further validate DCT, we employ it on a real-world dataset: Big Five Personality
https://openpsychometrics.org/, which includes 50 personality indicators and over 19000 data sam-
ples. Each variable contains 5 possible discrete values to represent the scale of the corresponding
questions, where 1=Disagree, 2=Weakly disagree, 3=Neutral, 4=Weakly agree and 5=Agree, e.g.,
"N3=1" means "I agree that I worry about things". This scenario clearly suits DCT, where the degree
of agreement with a certain question must be a continuous variable while we can only observe the
result after categorization. We choose three variables respectively: [N3: I worry about things], [N10:
I often feel blue ], [N4: I seldom feel blue]. We then do the casual discovery using PC algorithm with
DCT and compare it with the Chi-square test and Fisher-Z test. The result can be found in Fig. 9.

Based on the experimental outcomes, despite the absence of a groundtruth for reference, we observe
that the results obtained via DCT appear more plausible than those derived from Fisher-Z and Chi-
square tests. Specifically, DCT suggests the relationship N3 ⊥⊥ N4|N10, which is reasonable as
intuitively, the answer of ’I often feel blue’ already captures the information of ’I seldom feel blue’.

30

https://openpsychometrics.org/_rawdata/


Published as a conference paper at ICLR 2025

(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 6: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on DAG.

As a comparison, both Fisher-Z and Chi-square return a fully connected graph. The results directly
correspond to our illustrative example shown in Fig. 1, substantiating the necessity of our proposed
test.
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Figure 7: Experimental comparison of causal discovery on synthetic datasets for denser graphs with
p = 8, n = 10000 and edges varying p+ 2, p+ 4, p+ 6. We evaluate F1 (↑), Precision (↑), Recall
(↑) and SHD (↓) on both skeleton and DAG.

Figure 8: Experimental comparison of causal discovery on synthetic datasets for multivariate Gaussian
model with p = 8, n = (100, 500, 2000, 5000) and where mean is not zero. We evaluate F1 (↑),
Precision (↑), Recall (↑) and SHD (↓) on both skeleton and DAG.
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[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(a) Fisher-Z test

[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(b) Chi-square test

[N3]

I seldom feel blue

[N10]

I often feel blueI worry about things

[N4]

(c) DCT

Figure 9: Experimental comparison of causal discovery on the real-world dataset.
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