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Abstract

Pan-sharpening aims to generate a spatially and spectrally enriched multi-spectral
image by integrating information from low-resolution multi-spectral image and
texture-rich panchromatic counterpart. In this work, we propose a WKV-
sharing embraced random shuffle RWKV high-order modeling paradigm for pan-
sharpening from Bayesian perspective, coupled with random weight manifold
distribution training strategy derived from Functional theory to regularize the so-
lution space adhering to the following principles: 1) Random-shuffle RWKV.
Recently, the Vision RWKV model, with its inherent linear complexity in global
modeling, has inspired us to explore its untapped potential in pan-sharpening tasks.
However, its attention mechanism, relying on a recurrent bidirectional scanning
strategy, suffers from biased effects and demands significant processing time. To
address this, we propose a novel Bayesian-inspired scanning strategy called Ran-
dom Shuffle, complemented by a theoretically-sound inverse shuffle to preserve
information coordination invariance, effectively eliminating biases associated with
fixed sequence scanning. The Random Shuffle approach mitigates preconceptions
in global 2D dependencies in mathematical expectation, providing the model with
an unbiased prior. In line with similar spirit of Dropout, we introduce a testing
methodology based on Monte Carlo averaging to ensure the model’s output aligns
more closely with expected results. 2) WKV-sharing high-order. Regarding KV’s
attention score calculation in spatial mixer of RWKV, we leverage WKV sharing
mechanism to transfer WKV activations across RWKV layers, achieving lower la-
tency and improved trainability, and revisit the channel mixer in RWKV, originally
a first-order weighting function, and redevelop its high-order potential by shar-
ing the gate mechanism across RWKV layer. Comprehensive experiments across
pan-sharpening benchmarks demonstrate our model’s effectiveness, consistently
outperforming state-of-the-art alternatives.

1 Introduction
RWKV modeling. Transformer-based methods have surpassed traditional CNNs in pan-sharpening
performance, yet their global attention mechanisms-softmax(qi,kj),∀i, j ∈ {mn ×mn} incur
quadratic computational complexity O((mn)2), rendering them impractical for large-scale applica-
tions in Fig. 1. The Vision RWKV model, with its linear complexity in global modeling, has recently
emerged as a promising alternative for pan-sharpening.

Spatial-mixer:wkv = Re-WKV(Ks,Vs), (1)
Os = Mapping(σ(Rs)⊙ wkv), (2)
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Figure 1: Comparison of Memory, FLOPs, and Inference Time across different scales for Transformer,
Restore-RWKV, and our proposed Random-Shuffle RWKV. Unlike traditional transformers, our
proposed Random-Shuffle RWKV significantly reduces both memory usage and FLOPs, especially
at larger scales where transformers encounter out-of-memory issues. In terms of inference time, our
design outperforms the standard RWKV architecture, achieving several-fold reductions in runtime.

Channel-mixer:Xc = Omni-Shift(LN(Os)), (3)
Rc,Vc = Mapping, γ(Mapping)(Xc), (4)

Oc = Mapping((σ(Rc)⊙Vc)), (5)

where Mapping(.) denotes the non-lineally equipped multi-layer perception, σ and γ indicate sigmoid
and squared ReLU activations respectively. Nonetheless, its attention mechanism, which employs
a recurrent bidirectional scanning strategy Re-WKV(.), suffers from biased effects and requires
substantial processing time, underscoring the need for further refinement to fully leverage its potential
in multi-modal image fusion domain, as indicated in Fig. 2.

Random shuffle. To address this, we propose a novel Bayesian-inspired Random Shuffle scanning
strategy, complemented by a theoretically-sound inverse shuffle to preserve information coordination
invariance, effectively eliminating biases associated with fixed sequence scanning.

Spatial-mixer:(Ks,Vs) = RS(Ks,Vs), (6)
wkv = WKV(Ks,Vs), (7)
Os = Mapping(σ(Rs)⊙ wkv), (8)
Os = IS(Os) (9)

where RS(.)(.) is the random shuffle function and IS(.) is the corresponding inverse shuffle function.
The Random Shuffle approach mitigates preconceptions in global 2D dependencies in mathematical
expectation, providing the model with an unbiased prior. In line with similar spirit of Dropout, we
introduce a testing methodology based on Monte Carlo averaging to ensure the model’s output aligns
more closely with expected results in Fig. 6.

Expectation :Os = ES [RS, WKV], (10)

Monte-Carlo estimation:Os ≈
1

M

M∑
i=1

[RS, WKV] (11)

High-order. Despite the remarkable progress, existing methods primarily employ the spatial cross-
attention and channel-wise scaling mechanisms, which only exploit second-order properties in a
cascaded manner, thereby limiting higher-order interaction capabilities. Furthermore, the cascaded
second-order interaction paradigm only captures multiple second-order interactions and struggles
to balance commendable performance with resource-intensive computations, posing challenges for
practical applications, as illustrated in Fig. 1. To address these challenges, our investigation reveals
that attention fundamentally operates as a first-order linear weight function

Oj = sigmoid(Rc) ·Vc, (12)
Os = sigmoid(Rs)⊙ wkv, (13)

0 < sigmoid(Rc(i)) < 1,
∑
i

sigmoid(Rc(i)) = 1, ∀i (14)

Mathematically, for any function p(x) satisfying two constraints of 0 ≤ p(x) ≤ 1,
∑

x p(x) = 1
and acting as first-order statistic calculating, it equals to

p(Rc) ∝ sigmoid(Rc(i)), (15)
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Figure 2: Comparison between previous transformer, Vision Re-RWKV and our proposed random
shuffle high-order RWKV paradigm. The typical (a) transformer architecture suffers from quadratic
complexity, often resulting in out-of-memory errors when processing high-resolution scenes. Addi-
tionally, (b) Vision Re-RWKV performs horizontal and vertical interactions over W and K through
m iterations, which, from a Bayesian perspective, can lead to biased effects and incomplete global
modeling. The recursive computation process further introduces increased latency. In contrast, (c)
our proposed Random RWKV retains the benefits of theoretically incomplete global modeling but
operates with linear complexity, offering a more globally effective receptive field. This approach
eliminates the issues of memory overload and latency while ensuring efficient modeling.

Oj =

∫ 1

0

p(Rc)Vcdv ≈ E(vc), (16)

where E(·) signifies first-order expectation calculating. This insight enables us to replace the
conventional cascaded second-order interaction sequence with efficient high-order modeling through
tailored attention sharing.

Gate potential:g(i−1) = sigmoid(Rc(i)), (17)

g(i) ← g(i−1). (18)

Regarding KV’s attention score calculation in spatial mixer, we leverage WKV-sharing mechanism
to transfer KV activations across RWKV layers, achieving lower latency and improved trainability,
and revisit the channel mixer in RWKV, originally a first-order weighting function, and redevelop its
high-order potential by sharing the gate mechanism across RWKV layer.

WKV sharing:wkv(i−1) = WKV(Ks,Vs), (19)

wkv(i) ← wkv(i−1). (20)

Solutions. In this work, we introduce a WKV-sharing embraced random shuffle RWKV high-order
modeling paradigm for pan-sharpening, integrating a Bayesian-inspired Random Shuffle scanning
strategy to eliminate biases associated with traditional fixed-sequence scanning in Fig. 3. This
approach is complemented by a WKV-sharing mechanism that transfers KV activations across
RWKV layers, enhancing trainability and reducing latency while unlocking high-order potential in
the channel mixer. Additionally, we implement a random weight, based on Functional theory, to
effectively regularize the optimization space, surpassing the limitations of traditional fixed-point loss
functions. Extensive experiments across pan-sharpening benchmarks—demonstrate that our model,
by harnessing high-order RWKV modeling, significantly enhances the ability to exploit multi-modal
synergies, leading to superior performance compared to state-of-the-art methods.

2 Proposed Method

In this section, we begin by reviewing the overview of the proposed pan-sharpening network, as
depicted in Fig. 3. We then delve into the core building blocks of our approach, which comprise three
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Figure 3: The detailed framework of the proposed Random Shuffle high-order RWKV paradigm (RS-
RWKV). RSRWKV treats each feature as a dynamic entity, leveraging a Random Shuffle mechanism,
which dynamically alters scanning sequences to enhance global contextual awareness and reduce
biases inherent in traditional sequential approaches. By integrating a Bayesian-inspired scanning
strategy, the framework effectively addresses the limitations of fixed sequence processing, promoting
a more robust understanding of feature relationships. Additionally, the design incorporates a WKV-
sharing mechanism that allows for efficient sharing of key-value activations across layers, significantly
reducing latency while improving the model’s ability to capture intricate inter-dependencies. This
synergistic design not only optimizes computational efficiency but also enriches feature representation.
critical components: (a) random shuffle scanning strategy within RWKV’s spatial mixer, coupled with
Monte-Carlo expectation estimation during inference, (b) high-order potential of gate mechanism
within RWKV’s channel mixer, and (c) WKV-sharing embraced spatial mixer modeling.

2.1 Overview Framework
Structure Flow. Given an PAN image, IP ∈ RH×W×1, and a low-resolution multi-spectral image,
IM ∈ Rh×w×C, we adopt the separate dual-branch modality-aware encoders to project IP and
the up-sampled IM, yielding FP ∈ RH×W×C and FM ∈ RH×W×C. Subsequently, the extracted
modality-aware shallow-level features are passed through the proposed core RWKV high-order
paradigm in a sequential manner as

FP ,FM = EP(IP),EM(IM) (21)

Where EP(·) and EM(·) signify the feature extraction encoders for the PAN and multi-spectral
modalities, respectively. Then, we employ the successively designed KV-cache embraced random
shuffle RWKV high-order modeling, yielding across modality-aware features FP and FM

F
(1)
M ,F

(1)
P = RSRWKV(i−1)(FP ,FM), (22)

F
(i)
M,F

(i)
P = RSRWKV(i)(F

(i−1)
M ,F

(i−1)
P ), i ∈ {1, L} (23)

where L indicates the iteration number of our RSRWKV. Finally, the transformed deep-level features
are projected back into the image space to generate the fused result, IF ∈ RH×W×C from the encoder
in conjunction with the 1× 1 convolution unit as

IF = DC(FH) + Up(IM) (24)

where Up(.) and DC(·) represent the up-sampling and the corresponding decoder, respectively.

Supervision Flow. In this study, we introduce a novel loss function for optimizing the pan-sharpening
process and enhancing results, independent of the structure design. Our proposed loss function com-
prises two components: spatial domain loss Ls and implicit frequency-decomposition manifold
loss Lm, as illustrated in Fig. 5. Prior pan-sharpening methods typically employ pixel losses with
local guides in the spatial domain. However, our approach incorporates an additional frequency-
decomposition manifold loss, utilizing random weight derived Taylor’s unfolding manifold to regu-
larize the optimization space, resulting in improved pan-sharpening performance.

Structure loss:Ls = L1(IF , IH), (25)
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Figure 4: The detailed flowchart of RSRWKV modeling. The square box sequences, denoted as R, K,
and V, represent the three components within the RWKV framework and are linked to the circular
numbers generated by the random distribution generator, which indicate the random shuffle guidance
as order. This guidance facilitates the implementation of the Bayesian-inspired scanning strategy
and the theoretically sound inverse shuffle.

Figure 5: Comparison between Point Loss and Our Customized Manifold Loss. Traditional frequency
point losses, such as those based on Fourier and wavelet transforms, aim to constrain the reconstructed
output to possess richer textures.

Manifold loss:Lm = Taylor’s(IF , IH; θe), (26)
θe ∼ {Xavier, Kaiming init, Gaussian(0, 1)} (27)

where IH represent the ground truth, L1 indicates the 1-norm, and θe denotes the random weights for
each epoch within Taylor’s unfolding manifold plane. The total loss function is remarked as

L = Ls + λLm (28)

2.2 Random shuffle RWKV
Preliminaries of RWKV. Vision RWKV consists of a spatial-mixer module and a channel-mixer
module. Given the feature F

(i)
M , F (i)

P and flattened to a one-dimensional sequence XM ∈ RT×C

and XP ∈ RT×C, where T = H ×W represents the number of tokens, XP and XM are initially
processed by a layer normalization operation, followed by an Token shift layer

Spatial-mixer:wkv = Re-WKV(Ks,Vs), (29)
Os = Mapping(σ(Rs)⊙ wkv), (30)

Subsequently, XM and XP are processed by three parallel projected linear modules, yielding outputs
receptance Rs, key Ks, and value Vs:

Rs = XMWR, Ks = XPWK, Vs = XPWV (31)

where WR,WK and WV denote the linear layer. Ks and Vs serve as inputs to the Re-WKV attention
mechanism. Nonetheless, its attention mechanism, which employs a recurrent bidirectional scanning
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strategy Re-WKV(.). To enhance the global receptive field of the WKV attention, the Bi-WKV layer
is applied iteratively Q times, as detailed as following:

wkvt = Re-WKV(Ks,Vs)t =

∑T−1
i=0,i̸=t e

−(|t−i|−1)/T ·w+kivi + eu+ktvt∑T
i=1,i̸=t e

−(|t−i|−1)/T ·w+ki + eu+kt

, (32)

wkv = Re-WKV(Q)(Ks,Vs). (33)

Here, wkvt denotes the attention for the t-th token, u and w serve as hyperparameters within
the attention mechanism. The ki and vi represent the i-th spatial tokens derived from Ks and
Vs, respectively. The resulting wkv is then passed through a Sigmoid function and subsequently
multiplied by Rs. This product is added to F

(i)
M to obtain the final spatially mixed output:

Osf = Os + F
(i)
M . (34)

Followed, the enriched MS feature Osf from spatial-mixer’s output concatenated with PAN feature
F

(i)
P is feed into channel-mixer as

Channel-mixer:Osc = Concate(Osf , F
(i)
P ), (35)

Xc = Omni-Shift(LN(Osc)), (36)
Rc,Vc = Mapping, γ(Mapping)(Osc), (37)
Oc = Mapping((σ(Rc)⊙Vc)), (38)

Nonetheless, its attention mechanism, which employs a recurrent bidirectional scanning strategy
Re-WKV(.), suffers from biased effects and requires substantial processing time.

Figure 6: Testing RS-WKV with Monte Carlo Aver-
aging. The random generator operates on a uniform
distribution to produce integer values that serve as po-
sition information within the shuffling strategy. This
position information is used to shuffle the input data
accordingly. The shuffled input is then processed by
RS-WKV to capture long-range cross-modality depen-
dencies. To maintain information invariance, we apply
an inverse shuffle using the cached position informa-
tion to obtain the weighted output.

Spatial mixer. To address this, we propose
a novel Bayesian-inspired scanning strat-
egy called Random Shuffle, complemented
by a theoretically-sound inverse shuffle to
preserve information coordination invari-
ance, effectively eliminating biases associ-
ated with fixed sequence scanning.

Spatial-mixer:(Ks,Vs) = RS(Ks,Vs),
(39)

wkv = WKV(Ks,Vs), (40)
Os = Mapping(σ(Rs)⊙ wkv), (41)
Os = IS(Os) (42)

The Random Shuffle approach mitigates pre-
conceptions in global 2D dependencies in
mathematical expectation, providing model
with an unbiased prior in Fig. 4. In line with
similar spirit of Dropout, we introduce a test-
ing methodology based on Monte Carlo av-
eraging to ensure the model’s output aligns
more closely with expected results through
layered expectations. Therefore, the compu-
tation of the random shuffle during testing
can be expressed as follows, where

Expectation:Os = ES [RS, WKV], (43)

Monte-Carlo estimation:Os ≈
1

M

M∑
i=1

[RS, WKV] (44)

It seems that the testing time will be scaled by M, which is the number of averaged forward passes.
However, the multiple forward passes can be conducted concurrently with modern accelerators,
which significantly reduces the testing time in Fig. 2. Specifically, this acceleration can be done
by transferring an input to GPU(s) and setting a mini-batch comprising the same input multiple
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times. WKV shuffles independently along the batch dimension. After one forward pass through WKV,
averaging over the mini-batch yields the Monte-Carlo estimation.

High-order channel mixer. However, existing methods primarily employ the spatial cross-attention
and channel-wise scaling mechanism, which only exploits second-order properties in a cascaded
manner, thereby limiting higher-order interaction capabilities. Furthermore, the cascaded second-
order interaction paradigm only captures multiple second-order interactions and struggles to balance
commendable performance with resource-intensive computations. To address this, our investigation
reveals that attention fundamentally operates as a first-order linear weight function

Oj = sigmoid(Rc) ·Vc, (45)
Os = sigmoid(Rs)⊙ wkv, (46)

0 < sigmoid(Rc(i)) < 1,
∑
i

sigmoid(Rc(i)) = 1, ∀i (47)

In mathematically, for any function p(x) satisfying two constraints of 0 ≤ p(x) ≤ 1,
∑

x p(x) = 1
and acting as first-order statistic calculating, it equals to

p(Rc) ∝ sigmoid(Rc(i)), (48)

Oj =

∫ 1

0

p(Rc)Vcdv ≈ E(vc), (49)

This insight enables us to replace the conventional cascaded second-order interaction sequence with
efficient high-order modeling through tailored attention sharing.

Gate potential:g(i−1) = sigmoid(Rc(i)), (50)

g(i) ← g(i−1). (51)
In the context of first-order statistical expectation of a variance tensor, referring to the definition, we
assume any probability distribution p(v) that satisfies two constraints: 0 ≤ p(v) ≤ 1,

∑
i p(v) =

1. Given this, the expectation of vj can be expressed as

E(vj) =

∫ 1

0

p(v)vjdv (52)

Referring to the definition above, we consider the sigmoid(.) function, which satisfies the constraints,
as a special case of a probability sampling distribution. This allows us to deduce that our investigation
reveals attention fundamentally operates as a first-order linear weight function and can be constituted
by the simple 1-dimension convolution Conv1. By leveraging the matrix associative property,

g(i) = Conv1(g
(i−1)), Oj = vc · g(i) (53)

Gate potential:Oj = vc · Conv1(g(i−1)), (54)

g(i) ← g(i−1), Oj = Conv1(vc · g(i)) (55)
Mathematically equivalent transformation is capable of further mitigating attention collapse.

Similar to high-order channel interactions, we extend the wkv calculating within spatial mixer to
achieve high-order spatial interactions:

Os = sigmoid(Rs)⊙ wkv, (56)
the above process signifies first-order expectation calculating.

WKV-sharing RWKV high-order modeling. Regarding WKV’s attention score calculation in
spatial mixer, we leverage WKV-sharing mechanism to transfer WKV activations across RWKV
layers and revisit the channel mixer in RWKV, originally a first-order weighting function, and
redevelop its high-order potential by sharing the gate mechanism across RWKV layer.

WKV sharing:wkv(i−1) = WKV(Ks,Vs), (57)

wkv(i) ← wkv(i−1). (58)
To facilitate cross-order information integration, we enhance the representation of cross-modality
interactions by incorporating diverse information in a cross-order manner. This enhancement enables
the generation of more informative representations by leveraging the observation that different orders
tend to capture diverse and complementary patterns.

Vb ← Conv(concat[V1,V2, . . . ,Vn]). (59)
where Vn denotes the n-th order spatial and channel-wise information within the tailored high-order.
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Figure 7: The Effective Receptive Field (ERF) visualization for various models. Our proposed
RS-RWKV achieves the most extensive global ERF, demonstrating its superior capacity.

Table 1: Comparison on the WordView-II, WordView-III and GaoFen2 datasets.

WordView-II WordView-III GaoFen2Method
PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓

SFIM 34.1297 0.8975 0.0439 2.3449 21.8212 0.5457 0.1208 8.9730 36.9060 0.8882 0.0318 1.7398
GS 35.6376 0.9176 0.0423 1.8774 22.5608 0.5470 0.1217 8.2433 37.2260 0.9034 0.0309 1.6736

Brovey 35.8646 0.9216 0.0403 1.8238 22.5060 0.5466 0.1159 8.2331 37.7974 0.9026 0.0218 1.3720
IHS 35.2962 0.9027 0.0461 2.0278 22.5579 0.5354 0.1266 8.3616 38.1754 0.9100 0.0243 1.5336

GFPCA 34.558 0.9038 0.0488 2.1400 22.3400 0.4826 0.1294 8.3964 37.9443 0.9204 0.0314 1.5604
PNN 40.755 0.9624 0.0259 1.0646 29.9418 0.9121 0.0824 3.3206 43.1208 0.9704 0.0172 0.8528

PANNet 40.8176 0.9626 0.0257 1.0557 29.6840 0.9072 0.0851 3.4263 43.0659 0.9685 0.0178 0.8577
MSDCNN 41.3355 0.9664 0.0242 0.9940 30.3038 0.9184 0.0782 3.1884 45.6874 0.9827 0.0135 0.6389
SRPPNN 41.4538 0.9679 0.0233 0.9899 30.4346 0.9202 0.0770 3.1553 47.1998 0.9877 0.0106 0.5586
GPPNN 41.1622 0.9684 0.0244 1.0315 30.1785 0.9175 0.0776 3.2593 44.2145 0.9815 0.0137 0.7361

INNformer 41.6903 0.9704 0.0227 0.9514 30.5365 0.9225 0.0747 3.0997 47.3528 0.9893 0.0102 0.5479
MutNet 41.6773 0.9705 0.0224 0.9519 30.4907 0.9223 0.0749 3.1125 47.3042 0.9892 0.0102 0.5481
SFINet 41.7244 0.9725 0.0220 0.9506 30.5971 0.9236 0.0741 3.0798 47.4712 0.9901 0.0102 0.5462

PanFlowNet 41.8548 0.9712 0.0224 0.9335 30.4873 0.9221 0.0751 3.1142 47.2533 0.9884 0.0103 0.5512
Ours 42.0945 0.9721 0.0214 0.9081 30.9665 0.9266 0.0726 2.9247 47.7144 0.9896 0.0098 0.5229

3 Experiments over pan-sharpening
To evaluate the performance, we conduct comparative analysis against pan-sharpening. The traditional
methods included SFIM [1], Brovey [2], GS [3], IHS [4], and GFPCA [5]. Additionally, we include
various deep learning-based techniques, such as PNN [6], PANNET [7], MSDCNN [8], SRPPNN [9],
GPPNN [10], MutNet [11], INNformer [12], SFINet [13], and PanFlowNet [14].

Figure 8: Visual comparisons between other pan-sharpening methods on WorldView-III satellite.
Comparisons with SOTA. To assess the performance , we employed a diverse set of metrics, with
the results systematically presented in Table 1. These results highlight the outstanding performance
of our techniques, clearly demonstrating their superiority over benchmark algorithms across all
evaluation criteria. Due to page limit, we present visual comparisons of representative samples from
the WorldView-II and WorldView-III datasets in supplementary materials.
Effect of the Number L of RSRWKV: To investigate the impact of model size, we conducted
ablation studies by varying the number of RSRWKV layers. As illustrated in Table 2, performance
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Table 3: Ablation studies on the proposed core designs over the WorldView-II datasets.

Config KV-cache Channel-mixer cache Random shuffle Random mainfold loss PSNR↑ SSIM↑ SAM↓ ERGAS↓
(I) # ! ! ! 41.9967 0.9715 0.0222 0.9344
(II) ! # ! ! 41.9478 0.9715 0.0221 0.9427
(III) ! ! # ! 41.9172 0.9713 0.0224 0.9274
(IV) ! ! ! # 41.9394 0.9713 0.0219 0.9293
(V) ! ! ! ! 42.0945 0.9721 0.0214 0.9081

improved significantly as the number of RSRWKV components increased, demonstrating a clear
benefit from incorporating additional layers. However, it can be observed that this performance
enhancement plateaued beyond three components, with only marginal improvements noted upon
further increases. To balance performance gains with computational efficiency, we selected L = 9 as
the default configuration with the model efficacy while maintaining computational load.
Effect of the core designs: We conducted a series of ablation studies to systematically investigate the
impact of each proposed core designs in Table 3: KV-cache, Channel-mixer cache, Random Shuffle,
and Random Manifold Loss. Each experiment involved the removal of one core design from the
framework to assess its contribution to overall performance. The results indicate that the absence of
any single core design consistently leads to a decline in model performance. Specifically, removing the
KV-cache increased latency due to inefficient cross-layer information sharing. Excluding the Channel-
mixer cache weakened cross-modal dependency modeling, degrading fusion quality. Removing
Random Shuffle introduced fixed-sequence biases, reducing feature diversity. Omitting the Random
Manifold Loss destabilized training convergence via unregularized optimization.
Table 2: Comparison on the WorldView-II datasets as
the number of RSRWKV increases.

Number (L) PSNR↑ SSIM↑ SAM↓ ERGAS↓
tiny (L=3) 41.9596 0.9715 0.0220 0.9133

small (L=7) 41.9972 0.9716 0.0218 0.9184
regular (L=9) 42.0945 0.9721 0.0214 0.9081
Large (L=11) 42.0976 0.9722 0.0213 0.9076

Effect of ERF: ERF visualization for var-
ious models in Fig. 7. The dark regions
in the visualizations represent the extent of
the ERF, with a more widespread distribu-
tion of darker areas indicating a larger and
more effective receptive field. A larger ERF
suggests that the model can capture more
global context and long-range dependencies.

Among the models compared, our proposed RS-RWKV achieves the most extensive global ERF,
demonstrating its superior capacity to integrate information across both local and distant regions,
contributing to deep understanding of complex patterns.

Figure 9: Monte Carlo averaging over random shuffle in-
ference within spatial mixer.

Effect of Monte Carlo sampling: Due
to the Monte Carlo averaging imple-
mented in our RWKV framework, we
explored the effect of varying the sam-
pling number from 1 to 32 on perfor-
mance, visualized in Fig. 9. Our
findings indicated that performance re-
mained remarkably stable across this
range, suggesting that utilizing a single
sample is sufficient for achieving reli-
able results. This decision not only min-
imizes processing time but also simpli-
fies the implementation, making it more
efficient for practical applications. Con-
sequently, we adopted a sampling num-

ber of one, which allows for quicker model iterations without compromising output quality. This
optimization enhances the overall efficiency, making it more suitable for real-world scenarios.

4 Conclusion
We propose RS-RWKV, a novel pan-sharpening framework that synergizes multi-modal data through
three core innovations: (1) a Random Shuffle strategy to eliminate fixed-scanning bias and enhance
global modeling; (2) a KV-cache mechanism for efficient cross-layer activation sharing, reducing
latency while improving trainability; and (3) a Random-weight manifold loss to regularize the
optimization landscape. Extensive evaluations across pan-sharpening demonstrate our method’s
superior performance against state-of-the-art baselines.
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A Technical Appendices and Supplementary Material

A.1 Manifold loss.

Inspired by our previous work, pan-sharpening aims to reconstruct the missing middle and high
frequencies. Existing approaches often rely on fixed-point frequency domain loss functions, such
as those based on the Discrete Wavelet Transform (DWT) and Discrete Fourier Transform (DFT),
which employ fixed orthogonal basis transformations in Fig. 5. These methods can introduce
bias into the network’s predictions, as the loss functions do not capture the full complexity of the
error distribution between network predictions and ground truth from a Bayesian perspective. This
complexity makes model optimization challenging and can lead to biased predictions. To address
this, we build on Functional Theory to demonstrate that random weight networks, structured within a
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strict mathematical manifold, can be formulated as a manifold loss function plane. This formulation
effectively regularizes the optimization space, providing an advantage over traditional fixed-point loss
functions. Prior research finds the main part and the derivative part of Taylor’s Approximations take
the same effect as the two competing goals of high-level contextualized information and spatial details
of image fusion respectively. Drawing inspiration from image frequency-level decomposition, we
leverage Taylor’s unfolding manifold, with the weights randomly initialized in each training iteration
epoch, to formulate the manifold loss function plane while accounting for the implicit frequency
decomposition constraint.

Taylor’s unfolding:Lm = Taylor’s(IF , IH ; θe), (60)
θe ∼ {Xavier, Kaiming init, Gaussian(0, 1)} (61)

In summary, the contributions of this work are as follows.

• Random Shuffle RWKV for Pan-Sharpening: We propose a novel Random Shuffle scanning
strategy within the RWKV framework, inspired by Bayesian principles, to mitigate biases
inherent in fixed-sequence scanning. This method enhances global 2D dependency modeling
by providing an unbiased prior, improving pan-sharpening performance.

• KV-Cache High-Order Modeling: We introduce a WKV-sharing mechanism to share KV
activations across RWKV layers, significantly reducing latency and enhancing trainability.
Additionally, we extend the channel mixer in RWKV from a first-order to a high-order
function, further boosting the model’s capacity to capture complex inter-dependencies.

• Random Weight Manifold Loss: We develop a random weight manifold loss function
grounded in Functional theory, which effectively regularizes the optimization space. This
approach overcomes the limitations of traditional fixed-point loss functions, leading to better
convergence and improved performance in pan-sharpening.

• Extensive Experimental Validation: We conduct comprehensive experiments, demonstrating
that our model consistently outperforms state-of-the-art alternatives, establishing a new
standard for performance.

A.2 Limitation & broader impact

A potential limitation is that the proposed framework has not been extensively tested across diverse
remote sensing tasks, for example hyperspectral and multi-spectral image fusion. Future studies
should validate its generalizability in broader remote sensing application scenarios.

Remote sensing fusion integrates multi-modal data to produce enhanced observations, critical for
environmental monitoring (e.g., forest loss), disaster response (wildfire/flood tracking), and sustain-
able development (agriculture, urban heat analysis). By enabling cost-effective access to precise
data, it democratizes global resources—helping developing nations tackle climate and food security
challenges—while advancing cross-disciplinary geoscience research.

A.3 Related work

Traditional pan-sharpening methods are typically classified into three primary categories: Com-
ponent Substitution (CS), Multi-resolution Analysis (MRA), and Variational Optimization (VO)
approaches. CS methods, such as intensity hue-saturation (IHS) fusion, principal component analysis
(PCA), Brovey transforms, and Gram-Schmidt (GS) orthogonalization, are widely used [15, 16].
Enhancements to these methods include nonlinear IHS (NIHS) to reduce spectrum distortion and
adaptive techniques like the GSA method [17, 18]. Despite their practicality, CS and MRA methods
often introduce artifacts into the fused images. VO methods have emerged as alternatives to address
spectral distortion and improve the spatial resolution of multi-spectral images. For example, P+XS
pan-sharpening posits that the PAN image can be modeled as a linear combination of high-resolution
multi-spectral (HRMS) bands, with the upsampled low-resolution multi-spectral (LRMS) image
approximating a blurred HRMS image [19]. VO approaches incorporate constraints such as dynamic
gradient sparsity (SIRF), local gradient constraints (LGC), and group low-rank constraints for texture
similarity (ADMM) [20, 21, 22]. Despite their sophistication, VO methods often require manual
parameter tuning and may struggle to capture structural relationships within images, potentially
leading to suboptimal performance.
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Figure 10: The illustration of high-order WKV sharing and channel mixer cache mechanism at
adjacent steps. The calculated values from the previous step within the spatial mixer are shared with
the subsequent step, facilitating the implementation of the WKV sharing and replacing the complex
computation of wkv. Similarly, the channel-wise distribution within the channel mixer employs
an analogous high-order sharing mechanism. Each stage adheres to a consistent random shuffle
guidance, ensuring cohesive integration across the framework.

Convolutional Neural Networks (CNNs) have transformed computer vision with their prowess in
nonlinear fitting and feature extraction, making them crucial for hyperspectral and remote sensing
image analysis. Recent advancements in pan-sharpening focus on CNN-based approaches [23, 24].
Masi et al. [6] were among the first to apply CNNs to pan-sharpening, demonstrating superior results
compared to traditional methods. Yang et al. [7] extended this work by incorporating residual blocks
[25] into a deeper CNN architecture, while Wu et al. [26] introduced a multi-scale module to enhance
the CNN structure. Cai et al. [9] further improved performance by utilizing multi-scale image inputs
within the backbone network. A new category of model-driven CNNs has recently gained traction,
integrating physical insights into optimization-based tasks. Xu et al. [10] applied distinct priors for
PAN and MS images within a structured CNN framework, enhancing interpretability. Xie et al. [27]
incorporated an optimization algorithm into a CNN architecture, while Tian et al. [28] and Wu et
al. [29] combined VO techniques with deep residual CNNs. Zhou et al. [11] introduced a novel
pan-sharpening framework driven by mutual information, which enhances information representation
through complementary learning between PAN and MS modalities, thereby reducing redundancy and
significantly improving pan-sharpening performance.

A.4 Feature Visualization

To verify the contributions of the proposed random shuffle RWKV high-order modeling mechanism,
we analyze the feature maps corresponding to the input, the Random shuffled features within
the RS-RWKV framework, the Output from the inverse shuffled component, and the Enhanced
feature generated by summing the input with the Output. As detailed in Section 2.2, the randomly
shuffled feature Random shuffled exhibits a chaotic state, aligning with theoretical expectations.
Fig. 12 demonstrates that the Output from the inverse shuffled component effectively captures global
information while emphasizing cross-modality detail. By integrating the extracted detailed infor-
mation into the input, the final Enhanced feature provides a more informative and comprehensive
representation of the input image. These findings indicate that the designed random shuffle RWKV
high-order modeling mechanism successfully fuses global information from multiple modalities,
leading to improved model performance.

Furthermore, we conducted a visualization of the key components within the RWKV framework in
Fig. 11, specifically R, K, and V, while systematically varying the stage-wise RS-RWKV from bottom
to top. The results indicate that with an increase in stages, a progressively larger number of features
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Figure 11: The key fundamental factors of RSRWKV over pan-sharpening by varying stages.

are activated. Notably, the features corresponding to V and K exhibit a complementary relationship,
which is advantageous for the extraction of salient features. This phenomenon is consistent with the
design principles of the RWKV framework, reinforcing its capacity to effectively harness high-order
interactions for improved performance.

14



Figure 12: The feature visualization within RS-RWKV over pan-sharpening on the WorldView-III
satellite.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
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• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See page 1-3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See A.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16



Justification: See page 3-7 and page 13-17.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See page A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [TODO]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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