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Abstract
Effective exploration in reinforcement learning requires keeping track not just of where
the agent has been, but also of how the agent thinks about and represents the world:
an agent should explore states that enable it to learn powerful representations. Tem-
poral representations can include the information required to solve any potential task
while avoiding the computational cost of reconstruction. In this paper, we propose an
exploration method that uses temporal contrastive representations to drive exploration,
maximizing coverage as seen through the lens of these temporal representations. We
demonstrate complex exploration behaviors in locomotion, manipulation, and embodied-
AI tasks, revealing previously unknown capabilities and behaviors once achievable only
via extrinsic rewards.
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Figure 1: C-TeC Achievements. C-TeC unlocks interesting achievements in Craftax-Classic; the
plot shows some unlocked achievements during an evaluation episode.
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1 Introduction

Exploration remains a key challenge in reinforcement learning (RL), especially in tasks that demand
reasoning over increasingly long horizons (Thrun, 1992) with high-dimensional observations (Stadie
et al., 2015; Burda et al., 2019b; Pathak et al., 2017). Perhaps the defining feature of RL, relative to
other areas of ML, is the ability to find new strategies. Realizing this benefit would unlock important
capabilities in robotics, LLM agents, and myriad other application domains.

A common approach to exploration in reinforcement learning (RL) is to estimate the density of
visited states. This estimated density is then used to construct an intrinsic reward function that
encourages agents to visit novel states, thereby promoting state coverage. To enhance exploration in
high-dimensional environments, prior work has proposed representation-based methods that learn
compact representations, those sufficient to predict actions (Pathak et al., 2017), entirely random
encodings (Burda et al., 2019b), or reconstructions of original observations (Stadie et al., 2015).
These methods guide exploration along the manifold of meaningful states by discarding irrelevant
information, as determined by the learned representations. However, identifying which aspects of the
observation space are truly relevant remains a fundamental challenge. As a result, recent research
has focused on learning representations that are aligned with the underlying task structure (Gelada
et al., 2019; Zhang et al., 2021). In this paper, we ask: How can we learn representations that
facilitate exploration and are provably linked to the RL objective, retaining task-relevant features
while excluding irrelevant ones?

For a representation to be suitable for exploration, it should satisfy several key properties. Most
importantly: (1) it should be invariant to uncontrollable aspects of the environment, (2) it should be
predictive of future states under the agent’s policy, (3) it should scale with the dimensionality of the
observation space, and (4) it should remain up to date with the agent’s ongoing experience.

One of the main challenges with previous works is the complexity of the representation learning
process Pathak et al. (2017); Burda et al. (2019b), which limits the agent’s ability to keep the
representation up-to-date with the agent’s current distribution (Castanyer et al., 2024). Our proposed
method aims to overcome these issues by building on temporal contrastive representations (Sermanet
et al., 2018; Qian et al., 2021; Eysenbach et al., 2022; Dave et al., 2022), which are closely related
to the successor representation (Dayan, 1993) and have been shown to be provably sufficient to
represent Q-values for any reward function (Mazoure et al., 2023). While prior work has primarily
leveraged these representations for encoding high-dimensional observations (Laskin et al., 2020)
and for learning goal-directed skills (Eysenbach et al., 2022), we take a different direction: we use
them to guide exploration. Specifically, we propose to reward the agent for visiting states that lie
farther along its future trajectory, thereby encouraging it to expand the boundaries of its current state
visitation and to explore less-visited regions of the environment.

This work makes two main contributions. The first is a new exploration algorithm that achieves state-
of-the-art state coverage across navigation, manipulation, and open-world environments. Second,
connections are made between this contrastive learning-based objective and information control
objectives; we show that C-TeC results in a min-max game that approximates a form of empowerment.

2 Related Work

Unsupervised RL. Prior work on unsupervised RL (Laskin et al., 2021) has proposed various task-
agnostic methods for learning behaviors. A key direction in this area is intrinsic motivation, which
encourages novelty-seeking behavior by maximizing state coverage or surprise. In low-dimensional
and/or discrete environments, count-based exploration methods (Gardeux et al., 2016; Bellemare et al.,
2016; Tang et al., 2017; Ostrovski et al., 2017; Martin et al., 2017; Xu et al., 2017; Machado et al.,
2020) have demonstrated effective exploration in Atari games. However, these methods often struggle
in high-dimensional or continuous state spaces. In such settings, prediction-error-based exploration
approaches (Pathak et al., 2017; Burda et al., 2019a;b; Lee et al., 2019) have been more effective,
both in video game environments and in continuous control tasks. Another line of research focuses on
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representation-based novelty, where a representation learning component is used to extract compact
features from raw state inputs. An entropy estimator is then applied to these learned representations
to assess state novelty Liu & Abbeel (2021); Laskin et al. (2022).

A different approach to unsupervised RL involves training the agent to control the environment by
either maximizing mutual information between states and actions (empowerment)(kly, 2005; Klyubin
et al., 2005) or minimizing surprise(Friston, 2010; Berseth et al., 2021; Rhinehart et al., 2021).
Empowerment-based methods (Biehl et al., 2015; Zhao et al., 2021; Mohamed & Jimenez Rezende,
2015; Karl et al., 2019; Hayashi & Takahashi, 2025; Levy et al., 2024; Jung et al., 2011; Du et al.,
2020; Myers et al., 2024) encourage the agent to take actions that exert significant influence over
future states, although solving the full problem remains intractable. In contrast, surprise minimization
drives the agent to regulate the environment and maintain an orderly niche, giving rise to complex
behaviors in both fully observed (Berseth et al., 2021; Hugessen et al., 2024) and partially observed
settings (Rhinehart et al., 2021).

Representation learning for RL. Prior work on representation learning for RL focuses on self-
supervised methods to improve the data efficiency of RL agents. A notable approach in this category
involves the use of unsupervised auxiliary tasks, where a pseudo-reward is added to the task reward to
shape the learned representations and provide an additional training signal. Examples of this approach
include (Jaderberg et al., 2017; Farebrother et al., 2023; Oord et al., 2018; Laskin et al., 2020;
Schwarzer et al., 2021). Another line of work focuses on forward-backward representations (Touati
& Ollivier, 2021; Touati et al., 2023), which aim to capture the dynamics under all optimal policies
and have been shown to exhibit zero-shot generalization capabilities. Moreover, contrastive learning
has been applied in various exploration settings, including goal-conditioned learning (Eysenbach
et al., 2022; Liu et al., 2025), skill discovery (Laskin et al., 2022; Yang et al., 2023; Zheng et al.,
2025), and state coverage or curiosity (Liu & Abbeel, 2021; Du et al., 2021; Yarats et al., 2021). In
the context of curiosity-driven exploration, Du et al. (2021); Yarats et al. (2021) employ contrastive
learning to learn visual representations in image-based environments, where the RL agent is trained to
maximize the error of the representation learner (similar in spirit to prediction-error approaches). We
consider C-TeC to fall under the state coverage category, while learning contrastive representations
that facilitate more efficient downstream learning.

3 Background

We consider a controlled Markov process (i.e., an MDP without a reward function), defined by
time-indexed states st and actions at. The initial state is sampled from p0(s0), and subsequent states
are sampled from the Markovian dynamics p(st+1 | st, at). Actions are selected by a stochastic,
parameterized policy π(at | st). Without loss of generality, we assume that episodes have an
infinite horizon; the finite-horizon problem can be incorporated by augmenting the dynamics with an
absorbing state. The key to C-TeC is to use a self-supervised, or intrinsic reward, built on temporal
contrastive representations. We detail the necessary preliminaries below.

Discounted state occupancy measure Formally, we define the γ-discounted state occupancy
measure conditioned on a state and an action (Ho & Ermon, 2016; Eysenbach et al., 2021; 2022) as

p(sf | s, a) ≜ (1− γ)
∞∑
t=0

γtp(st = sf | s, a), (1)

where p(st = sf | s, a) is the probability of being at future state sf at time step t conditioned on s, a.
In continuous settings, the future state distribution p(st = sf | s, a) is a probability density.

Traditionally, the discounted state occupancy measure is defined with respect to a policy as pπ(sf |
s, a). However, in this work, the intrinsic reward rintr is defined using a discounted state occupancy
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measure over the trajectory buffer T , which contains trajectories collected from a history of policies:

pT (sf | s, a) ≜ (1− γ)
∞∑
0

γtpT (st = sf | s, a).

To sample from the trajectory buffer distribution pT (st = sf | s, a), we first sample an offset
∆ ∼ GEOM(1 − γ), then set the future state sf = st+∆. Here, future state sf = st+∆ is the state
reached from (s, a) after executing ∆-number of actions within a sampled stored trajectory.

Contrastive learning Contrastive representation learning methods (cho, 2005; Oord et al., 2018;
Chen et al., 2020) train a critic function Cθ that takes as input pairs of positive and negative examples,
and learn representations so that positive pairs have similar representations and negative pairs have
dissimilar representations. To estimate the discounted state occupancy, positive examples are sampled
from a joint distribution pT ((s, a), sf ) = pT (s, a)pT (sf | st, at), while the negative examples are
sampled from the product of marginal distributions pT (s, a)pT (sf ). Here, pT (sf ) is the marginal
discounted state occupancy:

pτ (sf ) =

∫
pτ (sf | s, a)pT (s, a) ds da.

We use the infoNCE loss to train the contrastive learning model Oord et al. (2018). Let B =

{(si, ai, s(i)f )}Ki=1 be the sampled batch, where s(1)f is the positive example sampled from conditional

distribution pT (sf | si, ai) and {s(2:K)
f } are the K − 1 negatives sampled from the marginal

distribution pT (sf ) (independently from (si, ai)). In addition to the standard infoNCE objective,
prior work has shown that a LogSumExp regularizer is necessary to learn a critic function for control
Eysenbach et al. (2021). The full contrastive reinforcement learning (CRL) loss is as follows:

LCRL(θ) = −E (s,a)∼pT (s,a)

s
(1)
f ∼pT (sf |s,a)
s
(2:K)
f ∼pT (sf )

[
log

(
eCθ((si,ai),s

(i)
f )/τ

K∑
j=1

eCθ((si,ai),s
(j)
f )/τ

)
− 0.01 · log

 K∑
j=1

eCθ((si,ai),s
(j)
f )

2 ]
.

(2)

The optimal critic C∗((st, at), sf ) corresponds to the following log probability ratio (Ma & Collins,
2018)

C∗((st, at), sf ) ≈ log
pT (sf | st, at)

pT (sf )
,

where we use the following two parametrizations of the critic:

Cθ((st, at), sf )L2 = −||ϕθ(st, at)− ψθ(sf )||2 (3)
Cθ((st, at), sf )L1 = −||ϕθ(st, at)− ψθ(sf )||1. (4)

Conceptually, the critic Cθ gives a temporal similarity score between state-action pairs (s, a) and
future states sf via learned representation ϕθ and ψθ. A visual overview of the contrastive model
architecture is shown in Fig. 2. These representations are powerful yet simple tools that capture
complex temporal correlations between states-actions and goals. In our method C-TeC, we leverage
these learned temporal contrastive representations to do exploration.

4 Curiosity-Driven Exploration via Temporal Contrastive Learning

To improve exploration, we learn representations that encode the agent’s future state occupancy using
C-TeC. We begin by describing how contrastive representation learning can be used to estimate state
occupancy by learning a similarity function that assigns high scores to frequently visited future states
and low scores to rarely visited ones (Eysenbach et al., 2022; Oord et al., 2018). We then explain
how this similarity score can be leveraged to derive an intrinsic reward signal for exploration.
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Figure 2: Curiosity-Driven Exploration via Temporal Contrastive Learning The agent’s starting state is (s0). We train
a contrastive model such that the temporal similarity between the representation of ((s0, a0)) and (s2,3,4,...) is high, and we
reward the agent for visiting states that are further in the future. For example, the reward for visiting (s4) from (s0) should be
larger than the reward for visiting (s3) from the same (s0).

4.1 Training the contrastive model

As detailed in 3, the contrastive model Cθ(st, at, sf ) is trained on batches B of (st, at, sf ) tuples,
where each sf is sampled from the discounted future state distribution. Specifically, a geometric
offset ∆ ∼ GEOM(1− γ) is sampled, and the future state is set to sf = st+∆.

We use two parameterized encoders to define the contrastive model: ϕθ(st, at) for state-action pairs
and ψθ(sf ) for future states. A batch of state-action pairs {(s(i)t , a

(i)
t )}Ki=1 is passed through ϕθ, while

the corresponding batch of future states {s(i)f }Ki=1 is passed through ψθ. The resulting representations
are then normalized to have unit norm.

To compute the similarity between representations in practice, we found that using either the negative
L1 distance or the negative L2 distance was effective, depending on the environment. The contrastive
encoder is trained to minimize the infoNCE loss (Equation (2)) (Oord et al., 2018) . For each
batch sample, the positive examples of other samples are treated as negatives, following common
practice (Chen et al., 2020). The temperature parameter τ is learned during training as a learnable
parameter. Figure 2 illustrates the contrastive model architecture and the resulting intrinsic reward.
Implementation details are provided in Appendix X.

4.2 Extracting an exploration signal from the contrastive model

Given the contrastive model, a useful intrinsic reward can be constructed. We begin with intuition
for a proper intrinsic reward to encourage exploration behavior. In this method, our aim is to reach
unexpected but meaningful states. This is in contrast to, for example, surprise maximization, which
may prioritize unexpected but meaningless (i.e. random) states a la the noisy TV problem Gruaz et al.
(2024).

Recall from the background section that training the critic function with the infoNCE loss (Equa-
tion (2)) produces a similarity score between a state-action pair (st, at) and a future state sf . This
similarity score is proportional to the probability of reaching sf from (st, at) based on the trajectory
buffer. Negating this similarity score results in our exploration signal rintr: this signal encourages
the agent to visit states that, in expectation, have previously had unpredictable futures. Because the
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Algorithm 1 Curiosity-Driven Exploration via Temporal Contrastive Learning

1: Initialize: π, ϕθ, ψθ,trajectory buffer T
2: for each iteration do
3: for each environment step 1 ≤ t ≤ T do
4: at ∼ π(at | st)
5: st+1 ∼ p(st+1 | st, at)
6: τj ← τj ∪ {st, at, st+1}
7: T ← T

⋃
τj

8: Sample {(sit, ait)}
|B|
i=1 ∼ T ▷ Sample a batch of state,action pairs

9: Sample ∆i ∼ GEOM(1− γ) ∀i ∈ {1, 2, . . . , |B|} ▷ Sample a geometric offsets
10: Set sif = sit+∆i

∀i ∈ {1, 2, . . . , |B|} ▷ Set the future state sfi according to ∆i

11: Compute intrinsic rewards: ri = −Cθ((sit, ait), sif ) ▷ Eq. Equation (5)

12: Update representations: θ ← θ − η∇θLinfoNCE(B = {(sit, ait, sif )}
|B|
i=1; θ) ▷ Eq. Equation (2)

13: RL update using {(sit, ait, rit)}
|B|
i=1 ▷ Update the policy using PPO/SAC

intrinsic reward has stochasticity from the future state sampling procedure (see 4.1), we write the
expression for the expectation of rintr:

E[rintr(st, at)] = EpT (sf |st,at) [−Cθ((st, at), sf )] = EpT (sf |st,at) [||ϕθ(st, at)− ψθ(sf )||] . (5)

The norm can be taken to be the ℓ1 norm or ℓ2 norm (See Sec. 5.). This reward may seem coun-
terintuitive – we should, perhaps, prioritize reaching states with high empowerment or surprise
minimization. However, we claim that Eq. 5 rewards meaningful exploration: the reward can be
interpreted as identifying possible inconsistencies in the contrastive model, where the contrastive
model overestimates the distance between state-actions and their futures. If the policy were to easily
reach future states that the internal model wrongly believes are distant, this would lead to a stronger
update of the internal model. We expand on information-theoretic interpretations of rintr in 4.4.

After learning the contrastive representations that define the rintr, we train the parameterized policy
π(at | st) to maximize the discounted sum of rewards:

J(π) = Eπ(at|st)

[ ∞∑
t=0

γtrintr(st, at)

]
. (6)

The experiments use PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018b;a;c) for policy
training (pseudocode in Algorithm 1). In practice, we found that using a single sample future state to
approximate the expectation in Equation (5) works well, except in Craftax, where we used a Monte
Carlo estimate. Additional details are provided in Section 4.4 and Appendix Y.

4.3 Future states sampling

An important design choice is how to sample the future state when computing the intrinsic reward.
For example, consistent sampling from states far in the future could lead to a high variance reward
signal that might hinder the agent’s learning, and sampling from the nearby states can be inefficient
as the agent might already have a strong model over these states. One natural strategy is to sample
according to the discounted occupancy measure, as described in Equation (1). Alternatively, we can
sample uniformly from the future states (conditioned on the current state and action). We observe
that sampling from the according to the discounted occupancy measure yields good performance
across environments and we stick to this strategy in our experiments. We also show the performance
differences between these sampling strategies in the experiments section Section 5.3.
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4.4 Information-Theoretic Interpretation of C-TeC

In addition to quantifying temporal similarity, the converged infoNCE loss L∗
CRL provides a lower

bound on the mutual information Oord et al. (2018); Eysenbach et al. (2021):

I(Sf ;St, At) ≥ logK − L∗
CRL(B; θ).

Thus, we can think of contrastive learning as finding representations that maximize the possible
mutual information between current states and actions and future state distributions.

The intrinsic reward has a complementary information-theoretic interpretation as a minimizer of
the same mutual information, thus revealing C-TeC as a two-player information-theoretic game.
In expectation, the intrinsic reward evaluates to the negative of the KL-divergence between the
conditional future-state distribution pT (sf | st, at) and the marginal future-state distribution pT (sf ):

E[rintr(st, at)] = −EpT (sf |st,at)

[
log

pT (sf | st, at)
pT (sf )

]
= −DKL[pT (sf | st, at) || pT (sf )] ≤ 0. (DKL is always non-negative.)

This intrinsic reward leads to mode-seeking behavior: notably, the probability distribution pT (sf |
st, at) only has support where pT (sf ) has support, promoting a mode-seeking “coverage” over the
broader marginal state distribution.

While the KL-divergence itself has an information-theoretic interpretation, the effect of this reward is,
perhaps, more obvious in another form:

E[rintr(st, at)] = −DKL[pT (sf | st, at) || pT (sf )]
= H[Sf | st, at]︸ ︷︷ ︸

surprise

+ EpT (sf |st,at)[log pT (sf )]︸ ︷︷ ︸
“familiarity” term

,

where Sf denotes the future state random variable and sf ∼ pT (sf | st, at). The first term is
reminiscent of surprise, traditionally defined as H[S′ | st, at] and, at a high level, rewards diversity.
The latter term encourages “familiarity,” rewarding exploration over states that have been seen at any
point during training.

The crucial difference between this “surprise” term and traditional surprise is in the sampling scheme:
we reward the agent for state-action pairs that, according to a compressed internal model of the
trajectory buffer via representations, have led to unexpected future states. However, this internal
model also evolves with each iteration of C-TeC and seeks to correlate such diverse states. Viewed
differently, the policy and contrastive representations engage in a two-player game: the policy seeks
out states with futures that appear temporally distant under the current representations (expansion),
while the representations update to make these states (and their futures) appear temporally closer
(compression).

This two-player game becomes clearer after taking another expectation over states, revealing the
intrinsic reward as the negative of the mutual information:

Ep(st)Eπ(at|st)rintr(st, at, sf ) = −Ep(st)[DKL[pT (sf | st, at) || pT (sf )]]

= −Ep(st)
[
I(Sf ;At | st) +DKL[p(sf | st) || p(sf )]

]
= −I(Sf ;At | St)− I(Sf ;St)
= −I(Sf ;St, At), (by chain rule)

where p(st) is the discounted state-occupancy measure. Recalling the infoNCE preliminaries,
minimizing the objective is equivalent to maximizing a lower bound on the mutual information
I(Sf ;St, At). Because the distribution Sf is constantly expanding from round-to-round, this game
does not collapse to a degenerate point, and leads to strong exploration behavior.



Reinforcement Learning Journal 2025

Figure 3: Environments. Maze coverage, robotic manipulation, and the survival game Craftax.

5 Experiments

Our experiments show that contrastive representations can be used to reward the agent for visiting
less-occupied or distant future states. We then use the contrastive reward function for exploration in
robotic environments and Craftax. We mainly study the following questions: (Q1) How well does
C-TeC reward capture the agent’s future state distribution? (Q2) How effectively does C-TeC explore
in locomotion, manipulation, and Craftax environments compared to prior work? (Q3) How sensitive
is C-TeC to the future state sampling strategy?

Environments We use environments from the JaxGCRL codebase (Bortkiewicz et al., 2025).
Specifically, we evaluate C-TeC on the ant_large_maze, humanoid_u_maze, and
arm_binpick_hard environments, which require solving long directed plans to reach goal
states. In the maze-based environments, the agent’s objective is to reach a designated goal specified
at the start of each episode. Exploration in these settings corresponds to maze coverage: an agent
that visits more unique positions in the maze demonstrates better exploration capabilities. In the
arm_binpick_hard environment, which differs from the more navigation-themed tasks used in
prior work, the agent must pick up a cube from a blue bin and place it at a specified target location in
a red bin. This represents a challenging exploration task, as the agent must locate the cube, grasp it,
and successfully place it at the correct target location.

Our experiments with the ant and humanoid agents assess the method’s ability to achieve broad
state coverage using two complex embodiments. Meanwhile, the arm_binpick_hard task
evaluates the method’s effectiveness at exploration in an object manipulation setting. We also run C-
TeC on Craftax-Classic (Matthews et al., 2024), a challenging open-world survival game resembling
a 2D Minecraft. The agent’s goal is to survive by crafting tools, maintaining food and shelter, and
defeating enemies

In the locomotion and manipulation environments, we compare C-TeC to common prior methods for
exploration: Random Network Distillation (RND) (Burda et al., 2019b) and Intrinsic Curiosity
Module (ICM) (Pathak et al., 2017) which are both popular intrinsic motivation methods for explo-
ration. Active Pre-training (APT) (Liu & Abbeel, 2021): APT learns observation representations
using contrastive learning, where positives are augmentations of the same observation and negatives
are different observations. It uses the KNN distance between state representations as an exploration
signal, which correlates with state entropy. Unlike C-TeC, APT does not learn representations
predictive of the future. In Craftax, we compare against RND, ICM, and exploration via elliptical
episodic bonuses (E3B) (Henaff et al., 2022), a count-based exploration method. We found that using
the negative L1 distance (Equation (4)) as the critic function works best in the robotics environments,
while the negative L2 distance (Equation (3)) performs best in Craftax. A comparison of different
critic functions can be found in the appendix.

5.1 Capturing the future state distribution (Q1)

The goal of this experiment is to demonstrate that the C-TeC reward captures the future state distribu-
tion. As a result, it can be used to incentivize the agent to visit less-occupied and more distant future
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states. We visualize the C-TeC reward at different stages of training in the ant_hardest_maze
environment. The contrastive critic is defined as the negative L1 distance (Equation (4)), and the
policy is trained to maximize the intrinsic reward defined in Equation (5). Figure 4 shows the reward

3M 50M 400M 500M 0.0

0.2

0.4

0.6

0.8

1.0
Reward

Environment Steps

Figure 4: Evolution of the C-TeC reward during training. This figure shows how the intrinsic reward changes over the
course of training based on future state visitation. The black circle in the lower-left corner represents the starting state. Early
in training (3M steps), higher rewards are assigned to nearby states. As training progresses, the agent explores farther, and the
reward increases for more distant regions. All reward values are normalized for visualization.

values in a section of the maze, with the black circle in the lower-left corner indicating the starting
state. In the early stages of training (3M steps), the reward is highest for nearby states. As training
progresses, the agent explores farther, and the reward increases for more distant regions (e.g., at 400M
and 500M steps). Over time, the reward becomes increasingly aligned with the maze’s geometry.

5.2 Exploration results (Q2)

In this experiment, we evaluate C-TeC in the ant_large_maze, humanoid_u_maze, and
arm_binpick_hard environments. We run two variants of the experiment: (1) using the complete
state vector as the future state, which is common in exploration tasks where the agent is encouraged
to explore the entire state space; and (2) incorporating prior knowledge by restricting the future state
to specific components of the state vector. The latter allows us to assess whether C-TeC can flexibly
explore subspaces of the state space, which is often useful in practice. In ant_large_maze, we
define the future state as the future (x, y) position of the ant’s torso. In humanoid_u_maze, we use
the future (x, y, z) position of the humanoid’s torso. Finally, in arm_binpick_hard, we define
the future state as the future position of the cube.
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Figure 5: C-TeC explores more states than prior methods. We compare the state coverage of C-TeC to APT (Liu &
Abbeel, 2021), RND (Burda et al., 2019b) and ICM (Pathak et al., 2017). We include a uniform random policy as well.

As an evaluation metric, we count the number of unique discretized states covered by each agent.
In ant_large_maze, we count the number of unique (x, y) positions in the maze visited by each
agent. Similarly, in humanoid_u_maze, we count the number of visited (x, y, z) positions, and
in arm_binpick_hard, we count the number of unique cube positions. We compare C-TeC to
RND, ICM, APT, and a uniformly random policy. Figure 5 shows the learning curve when using the
complete future state vector while Figure 6 shows the performance when using subspace of the future
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Figure 6: State coverage when the future state is a subspace of the state vector. C-TeC outperforms
prior methods (Liu & Abbeel, 2021; Burda et al., 2018; Pathak et al., 2019) and can explore effectively
when we use a subspace of the future state. This shows the flexibility of C-TeC in incorporating prior
knowledge by restricting the exploration space. Prior work does not offer this flexibility, as shown in
the results.

state. Each agent is run with 5 random seeds, and we plot the mean and standard deviation (Patterson
et al., 2024).

Our agent outperforms the baselines in both variants of the experiment and learns interesting behaviors
in the challenging humanoid_u_maze environment. Figure 7 shows screenshots of C-TeC behavior
and more visuals are provided appendix E. This improvement can be the result of C-TeC’s consistent
reward properties. Methods like RND, ICM will eventually tend to a reward of 0 as the state
distribution is covered. A nice property of C-TeC is that it does not have zero reward in the limit.1

Figure 7: C-TeC behavior in humanoid-u-maze.C-TeC agent learns to escape the u-maze by jumping over the wall, none
of the baselines discovered this kind of unexpected novel behavior.

5.2.1 Learning complex behavior in Craftax

Can an RL policy learn complex behavior in Craftax without any task reward? To answer this
question, we run C-TeC on Craftax-Classic (Matthews et al., 2024), a complex survival game where
the agent’s goal is to survive by crafting tools, maintaining food and shelter, and defeating enemies.

In this experiment, we use the same PPO implementation as used in the baselines in the Craftax
paper (Matthews et al., 2024), adding the contrastive reward on top of it. We compare against RND,
ICM, and E3B. We found that using PPO with memory (PPO-RNN) yields the best performance.

Figure 8 shows the results. The Y-axis represents the achievement score, which measures how many
capabilities and useful objects the agent has discovered. C-TeC outperforms the baselines and unlocks
more achievements. Figure 1 visualizes some of the achievements of the C-TeC agent during an
evaluation episode.

5.3 Sensitivity to future state sampling strategy (Q3)

In this experiment, we investigate the sensitivity of C-TeC to the future state sampling strategy.
Specifically, we consider two variants in addition to the geometric sampling: (1) sampling uniformly
from the future. Unlike geometric sampling, uniform sampling does not prefer states that are sooner
in the future over later ones. (2) geometric sampling with an increasing γ value. The intuition behind

1Videos are in the project website: https://temp-contrastive-explr.github.io/

https://temp-contrastive-explr.github.io/
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Figure 8: Exploration in Craftax. C-TeC outperforms the baselines in discovering more achieve-
ments in Craftax-Classic, E3B (Henaff et al., 2022) is the most competitive baseline.
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Figure 9: Sensitivity to future state sampling strategy. We compare variants of C-TeC with different
future state sampling strategy, the method is robust to the choice of the sampling strategy and all the
variants outperform the baselines.

this strategy is that exploring nearby states is easier for the agent at the start of training, and as the
agent becomes better at exploring them, it can progressively explore farther states in the future. We
refer to this strategy as the γ-schedule, and we experiment with two different starting values of γ:
one ranging from γ = 0.9 to γ = 0.99, and another from γ = 0.1 to γ = 0.99.

The results are shown in Figure 9. First, we note that regardless of the future state sampling strategy,
the contrastive method explores better than the baselines in all three environments. However, the
best-performing strategy is environment-specific. For example, in ant_hardest_maze, sampling
according to the γ-schedule performs best, while in arm_binpick_hard, geometric sampling
tends to perform slightly better. Overall, the method appears robust to future state sampling strategies.

6 Conclusion

This work has shown how to learn contrastive representations for intrinsic exploration. These
representations over state action pairs and another model for future states can be combined to estimate
the distribution over state visitation. It is shown that constructing a reward function that seeks out
states with unexpected future states results in a significant performance gain over prior intrinsic
objectives that also aim to estimate the state visitation. This is also shown via visualization of the
state visitation distribution. These results are also demonstrated with different RL algorithms, and
across environments, illustrating that the benefits are robust. In the future, this representation learning
algorithm could be applied to image-based environments to better understand its capabilities on
partially observed environments.
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Supplementary Materials
The following content was not necessarily subject to peer review.

Broader Impact Statement

This work proposes an exploration method for deep RL agents that facilitates finding better solutions
across a broad range of sequential decision-making problems. Depending on the intended task and
the reward function, the resulting policy may lead to either positive or negative consequences.

A Training Details and Ablations

We summarize the hyperparameters and model architectures for all experiments. In Appendix A.1,
we provide the training details for the locomotion and manipulation experiments. In Appendix A.2,
we provide the details of the Craftax experiments. In Appendix A.3, we provide the details of all the
environments. In Appendix A.4, we include the codebase.

Finally, in Appendix A.5, we include the ablation experiments.

A.1 Robotics Environments

In the robotics environments, we used SAC as the RL algorithm. Table 1 shows the hyperparameters
that are shared across all methods. Tables 2 and 3 show the algorithm-specific hyperparameters for
C-TeC and the baselines, respectively.

Table 1: Hyperparameters for all methods in robotics environments

Hyperparameter Value

num_timesteps 500,000,000
max_replay_size 10,000
min_replay_size 1,000
episode_length 1,000
discounting 0.99
num_envs 1024 (256 for humanoid_u_maze)

batch_size 1024 (256 for humanoid_u_maze)
multiplier_num_sgd_steps 1

action_repeat 1
unroll_length 62
policy_lr 3e-4
critic_lr 3e-4

hidden layers (for both actor and critic) [256,256]

Table 2: Hyperparameters for C-TeC in robotics environments

Hyperparameter Value

contrastive_lr 3e-4
contrastive_loss_function infoNCE

similarity_function L1
logsumexp_penalty 0.1

hidden layers (for both encoders) [1024,1024]
representation dimension 64
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Table 3: Hyperparameters for baselines in robotics environments

Hyperparameter Value

rnd encoder lr 3e-4
rnd embedding dim 512

rnd encoder hidden layers [256, 256]

icm encoder lr (forward and inverse models) 3e-4
icm embeddings_dim 512

icm encoders hidden layers [1024, 1024]
icm weight on forward loss 0.2

apt contrastive lr 3e-4
apt similarity function L1

apt contrastive hidden layers [1024, 1024]
apt representation dimension 64

Augmentation type N (0, 0.5)

A.2 Craftax

In Craftax, we used PPO as the RL algorithm2. Table 4 shows the hyperparameters shared across all
methods. Tables 5 and 6 show the algorithm-specific hyperparameters for C-TeC and the baselines,
respectively.

Table 4: Hyperparameters for all methods in robotics environments

Hyperparameter Value

num_timesteps 1,000,000,000
num_steps 64

learning_rate 2e-4
anneal_learning_rate True

update_epochs 4
discounting 0.99
gae_lambda 0.8
clip_epsilon 0.2

ent_coef 0.01
max_grad_norm 1.0
activation tanh

action_repeat 1
RNN_layers (GRU) [512 (embedding dim),512 (hidden dim)]

hidden layers (both actor and value) [512, 512]

2https://github.com/MichaelTMatthews/Craftax_Baselines

https://github.com/MichaelTMatthews/Craftax_Baselines
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Table 5: Hyperparameters for C-TeC in Craftax

Hyperparameter Value

contrastive_lr 3e-4
contrastive_loss_function infoNCE

similarity_function L2
logsumexp_penalty 0.0

hidden layers (for both encoders) [1024,1024,1024]
representation dimension 64

Table 6: Hyperparameters for baselines in Craftax

Hyperparameter Value

rnd encoder lr 3e-4
rnd embedding dim 512

rnd encoder hidden layers [256, 256]

icm encoder lr (forward and inverse models) 3e-4
icm embeddings_dim 512

icm encoders hidden layers [256, 256]
icm weight on forward loss 1.0

e3b (icm) lambda 0.1

A.3 Environment Details

• Ant-hardest-maze The observation space of this environment has 29 dimensions, consisting
of joint angles, angular velocities, and the x,y position of the ant’s torso. The action space is
7-dimensional, representing the torque applied to each joint.

• Humanoid-u-maze The observation space of this environment has 268 dimensions, consisting of
joint angles, angular velocities, and the x,y position of the humanoid’s torso. The action space is
17-dimensional, representing the torque applied to each joint.

• Arm-binpick-hard The observation space of this environment has 18 dimensions, consisting of
joint angles, angular velocities, the cube position, and the end-effector position and offset. The
action space is 5-dimensional, representing the displacement of the end-effector.

• Craftax-Classic The observation space is a one-hot encoding of size 1345, capturing player
information (inventory, health, hunger, attributes, etc.) as well as the types of blocks and creatures
within the player’s visual field. The action space is discrete and consists of 17 actions.

A.4 Codebase

Our codebase for the robotics experiments and Craftax is provided below:

• Robotics Environments https://anonymous.4open.science/r/c-tec-DFE7/
README.md

• Craftax https://anonymous.4open.science/r/c-tec-5E12/README.md

A.5 Ablation Study

To understand the contribution of each component to the overall performance of C-TeC, we conduct
an ablation study on several key elements of the algorithm, illustraed in the following section.

https://anonymous.4open.science/r/c-tec-DFE7/README.md
https://anonymous.4open.science/r/c-tec-DFE7/README.md
https://anonymous.4open.science/r/c-tec-5E12/README.md
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A.5.1 Representation Normalization

Is it important to normalize the contrastive representations when computing the intrinsic reward? To
answer this question, we compare the exploration performance of C-TeC across all environments,
keeping all hyperparameters fixed except for the normalization of the representations.
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Figure 10: Normalizing the contrastive representations. Normalizing the representations is crucial
for effective exploration—using unnormalized representations significantly degrades exploration
performance.

A.5.2 Contrastive Losses

We compare the performance of C-TeC using different contrastive loss functions. Specifically, we
evaluate InfoNCE, symmetric InfoNCE, NCE (Hjelm et al.), FlatNCE (Chen et al., 2021), and
a Monte-Carlo version of the forward-backward (FB) Touati & Ollivier (2021) loss, as defined
in Equations [7–11]. Figure 11 presents the results. Overall, NCE leads to poorer exploration,
particularly in Craftax. InfoNCE and symmetric InfoNCE exhibit similar performance across all
environments. In general, the method is reasonably robust to the choice of contrastive loss.

LinfoNCE(θ) = −
K∑
i=1

log

 eCθ((si,ai),s
(i)
f )

K∑
j=1

eCθ((si,ai),s
(j)
f

 (7)

Lsymmetric_infoNCE(θ) = −
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log
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f )
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f )

+ log
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Figure 11: Comparison of Different Contrastive Losses. Overall, C-TeC is robust to the choice of
contrastive loss. A notable exception is the Binary NCE loss in Craftax, where it performs relatively
poorly.

A.5.3 Contrastive Critic Functions

We compare four critic similarity functions shown below:

Cθ((st, at), sf )L1 = −||ϕθ(st, at)− ψθ(sf )||1. (12)
Cθ((st, at), sf )L2 = −||ϕθ(st, at)− ψθ(sf )||2 (13)

Cθ((st, at), sf )L2−w/o−sqrt = −||ϕθ(st, at)− ψθ(sf )||22 (14)

Cθ((st, at), sf )dot = −ϕθ(st, at)⊤ψθ(sf ) (15)

Fig. 13 shows the results. In general, using the L1 distance yields the best performance across
the robotic environments, while L2 performs better in Craftax. This highlights the importance of
this design choice and suggests that some tuning may be required to select the most effective critic
function.
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Figure 12: Comparison of Critic function. Overall,the L1 distance yields the best performance
across the robotic environments, while L2 performs better in Craftax.

A.5.4 Contrastive Critic Architecture

In this ablation we compare two architectures of the contrastive critic, the separable architecture
(ϕθ(st, at), ψθ(sf )), which is the one we use in all of our experiment, and the monolithic critic fθ
i.e., a single model that takes
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Figure 13: Critic architecture Using a monolithic critic results in poor exploration performance,
while using the separable architecture results in much better exploration, this shows the importance
of the architecture choice and how it can affect exploration.

B Compute Resources

In all experiments, we use 2 CPUs, a single GPU, and 8 GB of RAM. The specific GPU type varies
depending on the job scheduling system, but most experiments run on NVIDIA RTX 8000 or V100
GPUs. Training in the robotics environments takes approximately 24 hours on average, while Craftax
experiments require around 30 hours.

C Exploration in Noisy TV setting

We investigate C-TeC performance in the presence of a noisy TV state, we run this experiment on a
modified grid environment from xland-minigrid (Nikulin et al., 2024) with a noisy TV region. We
did not observe any evidences of worse exploration performance namely the agent has covered all the
states in the grid world.

D C-TeC as an Info-Theoretic Two-Player Game

We formalize C-TeC as an approximate information-theoretic two-player game. See Section D.3 for
an extended discussion of comparisons with prior intrinsic motivation objectives.

Let Zπ = ϕ(Sπ, Aπ) be the random variable given by encoding a state–action pair with ϕ, where
Sπ, Aπ is drawn from the discounted state–action occupancy measure of policy π. Likewise, let
FT = ψ(Sf ) be the random variable given by encoding a state with ψ, where Sf is drawn from the
trajectory buffer T .

Then, maximizing Jπ and minimizing the InfoNCE loss corresponds to the following max/min
equations, in expectation:

min
π

I
(
Zπ ; FT

)
= min

π
I
(
ϕ(Sπ, Aπ); ψ(Sf )

)
, (16)

max
ϕ,ψ

[logK − Lϕ,ψ(ZT , FT )] ≤ max
ϕ,ψ

I
(
ϕ(ST , AT ); ψ(Sf )

)
. (17)

We note that this is not a min-max game, and should be thought of as a general two-player game. First,
the objectives that are being minimized and maximized are not exactly the same – the contrastive
objective gives a lower bound on the mutual information (MI), which is only tight at convergence.
Second, the actual random variables used to calculate the MI measures are different: one MI is
defined with respect to Zπ, while the other is defined with respect to ZT . Third, all the trajectories
collected by π is later added to the buffer – the objective continually changes. In words, the intrinsic
reward is prioritizing reaching a distribution of state-actions that minimize this MI with the buffer,
while the contrastive objective learns representations that maximizes (a lower bound of) the MI over
updated buffer state-actions and future states.
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D.1 No (Achievable) Trivial Fixed Points

One may ask: what is the fixed point of this game? Without additional simplifications, this problem
is intractable. Notably, standard analysis would fail to prove convergence due to the nonconvex-
ity/concavity of the objectives. While the zero-gradient condition for the InfoNCE objective is clear,
the zero-gradient condition for the objective is not obvious due to the complex relationship between
π and the state occupancy measure.

A more aggressive simplification that can yield analysis of the global optimum is to assume that
the policy optimization is done directly over Sπ and Aπ and that the representations are infinitely
expressive. In practice, these assumptions are very unrealistic; however, such simplifications have
been used in prior work on unsupervised RL to give a conceptual picture of similar games Pitis et al.
(2020).

With these simplifications, the InfoNCE objective reduces to:

max
ϕ,ψ

[logK − Lϕ,ψ(ZT , FT )] −→
K→∞

I
(
ST , AT ; Sf

)
.

Furthermore, because the “policy” optimization is fixed in P (Sf | Sπ, Aπ), the MI is concave in
P (Sπ, Aπ). Our objective has now reduced to a constrained optimization problem with conditions∑
s,a pπ(s, a) = 1 and pπ(s, a) ≥ 0 for all (s, a) ∈ S ×A. Clearly, a trivial global optimum is the

delta function at some (s, a).

However, we are generally uninterested in (and unable to achieve) this global optimum, assuming a
nontrivial transition kernel. Instead, consider the stationarity conditions given by the lagrangian. Let
λ and µ(s, a) denote the lagrange mutlipliers for the normalization and non-negativity conditions
respectively. Then, the full Lagrangian LLagrangian is as follows:

LLagrangian(pπ, λ, µ) = I(Sπ, Aπ;Sf ) + λ
(∑
s,a

pπ(s, a)− 1
)
−
∑
s,a

µ(s, a)pπ(s, a).

Note that by complementary slackness, we have µ(s, a)p(s, a) = 0. Taking the functional derivative
of LLagrangian with respect to distribution p(s, a) yields the KL-divergence:

δLLagrangian

δpπ
[s, a] = DKL[pT (sf | s, a)||pT (sf )]− 1 + λ− µ(s, a).

Thus, by the complementary slackness, the distribution pπ(s, a) is stationary local optima only if the
KL-divergence DKL[pT (sf | s, a)||pT (sf )] is constant for any (s, a) where pπ(s, a) has support.
Any deviation would lead to a non-zero gradient at that point (s, a). In other words, all conditional
trajectory future state distributions look equally “far” from the marginal.

In addition to the trivial, but unobtainable, case of the delta function, distributions that would satisfy
the stationarity condition include a uniform marginal and conditional distribution over future states,
for all reachable (s, a). However, in practice, this condition (and having fixed KL-divergence from
the marginal) is generally impossible. As an example, let us consider the limit γ ≪ 1 where the future
state is almost always the next state. Then, the conditional distribution p(sf | s, a) is approximately
the transition kernel T (sf | s, a) – meaning that transitions are the same for all states, a degenerate
MDP.

This analysis shows that there are no easily achievable trivial fixed points in this game for standard
MDPs even under aggressive simplifications.

D.2 Representation-Driven Expansion of Temporally-Distant Futures

We have shown that the optimization, even with aggressive simplifications, does not lead to easily
achievable trivial fixed points. However, this analysis still does not concretely explain the performance
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of the exploration method. Here, we outline a mathematical argument for the effectiveness of the
method.

Concretely, the below analysis shows that the method is incentivized to lower the temporal distance
predicted from state-action (s, a) pairs. The predicted temporal distance can be lowered in two
ways: (1) by reducing errors, or overestimates, of the predicted distance from (s, a) to future states
sf ∼ pT (sf | s, a) and/or (2) by effectively navigating towards the future states sf . We detail these
effects here.

We begin with notation. Let

Ctrue(s, a, sf ) = log
pT (sf | s, a)
pT (sf )

be the true relative density. Let

Cϕk,ψk
(s, a, sf ) = −||ϕk(s, a)− ψk(sf )|| ≈ log

pT (sf | s, a)
pT (sf )

be the estimated relative density at round k, where the (random variable) intrinsic reward at round k
is given by

rintr,k = ||ϕk(s, a)− ψk(sf )|| ≈ − log
pT (sf | s, a)
pT (sf )

for a randomly drawn sf from the conditional distribution pT (sf | s, a).

The expected representation error is as follows:

δk(s, a, sf ) = Ctrue(s, a, sf )− Cϕk,ψk
(s, a, sf )

= E[rintr,k(s, a)] + Ctrue(s, a, sf )

= ||ϕk(s, a)− ψk(sf )|| − log
pT (sf )

pT (sf | s, a)
.

The intrinsic reward is thus

E[rintr,k] = δk(s, a, sf ) + log
pT (sf )

pT (sf | s, a)
.

Therefore, the intrinsic reward encourages the agent to visit state-action pairs (s, a) where repre-
sentation error is high and/or lead to temporally-distant futures. If the intrinsic reward successfully
leads to a policy that reaches these states, the trajectory buffer T will now have more transitions
at these inconsistent, or distant states. Thus, the updated representations over this buffer T will, in
expectation (given successful reaching of these states under standard PPO/SAC), “relabel” the pair
(s, a) as temporally closer.

This leads the intrinsic reward to prioritize other states with more unpredictable futures, and the cycle
of exploration and updating representations repeats.

D.3 Comparison with Previous Methods

At a high level, C-TeC is related to other intrinsic exploration objectives that reward uncertainty.
Objectives such as RND Burda et al. (2019b) and Disagreement Pathak et al. (2019) explore unfamiliar
states, presumably leading to these states becoming more familiar in future rounds. Such methods
avoid trivial fixed points found in count-based (lose reward signal after reaching a uniform distribution,
not easily scalable) Ostrovski et al. (2017), curiosity (lose reward signal after perfectly capturing
local transitions) Gruaz et al. (2024), or empowerment objectives (focus in controllable, but not novel,
areas) kly (2005).

However, the key difference between prior methods and C-TeC lies in the prioritization of states
that have previously led to distant futures according to an internal contrastive model. Our method
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drives the agent to explore areas where future outcomes remain unpredictable. This objective is
markedly different from next-step prediction error Pathak et al. (2017); Burda et al. (2019a): C-TeC
does not use a decoder in latent or real space, relies on learned temporal correlations via a lightweight
contrastive objective, and is designed to leverage long-horizon relations between states beyond
next-step transitions. Importantly, our analysis in Sec. D.2 shows that these temporal representations
not only encourage the model to reach states that reduce error, but also naturally “compress” these
distant futures to appear closer: the error-reduction and exploration effects are contained in a single
term. Taken together, our analysis and results show that temporal contrastive representations are
simple yet powerful frameworks for intrinsic motivation.

E Emergent Exploration Behavior

Figure 15 shows some of the learned behaviors of C-TeC in the humanoid-u-maze, where the
agent learns to jump over the wall to escape the maze.

Figure 14: Emergent Exploration Behavior in humanoid-u-maze. C-TeC exhibits interesting
emergent behaviors; for example, in the humanoid-u-maze environment, the agent learns to jump
over the maze walls to escape the maze. Each row represents an independent evaluation epsidoe.



Reinforcement Learning Journal 2025

C-TeC (Ours)

APT

RND

Figure 15: Qualitative Comparison in humanoid-u-maze.


