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ABSTRACT

In recent years, non-convex optimization problems are more often described by
generalized (L0, L1)-smoothness assumption rather than standard one. Mean-
while, severely corrupted data used in these problems has increased the demand
for methods capable of handling heavy-tailed noises, i.e., noises with bounded
κ-th moment. Motivated by these real-world trends and challenges, we explore
sign-based methods in this setup and demonstrate their effectiveness in com-
parison with other popular solutions like clipping or normalization. In theory,
we prove the first-known high probability convergence bounds under (L0, L1)-
smoothness and heavy-tailed noises with mild parameter dependencies. In the
case of standard smoothness, these bounds are novel for sign-based methods
as well. In particular, SignSGD with batching achieves sample complexity
Õ
((

∆L0

ε2 + ∆L1

ε

) [
1 +

(
σ
ε

) κ
κ−1

])
, κ ∈ (1, 2]. Under the assumption of symmet-

ric noises, SignSGD with Majority Voting can robustly work on the whole range of
κ ∈ (0, 2] with complexity Õ

((
∆L0

ε2 + ∆L1

ε

) [
1
κ2 + σ2

ε2

])
. We also obtain results

for parameter-free methods, Polyak-Lojasiewicz functions and momentum-based
methods (in expectation). Our theoretical findings are supported by the superior
performance of sign-based methods in training Large Language Models compared
to clipping and normalization.

1 INTRODUCTION

1.1 PROBLEM STATEMENT.

Consider a stochastic optimization problem of a smooth non-convex function f : Rd → R:

min x∈Rdf(x) := Eξ[f(x, ξ)], (1)

where the random variable ξ can only be sampled from an unknown distribution. The main goal is
to find a point with the smallest gradient norm. To achieve this, we are able to sample an unbiased
estimate ∇f(x, ξ) ∈ Rd. For example, in machine learning, f(x, ξ) can be interpreted as a loss
function on a sample ξ (Shalev-Shwartz & Ben-David, 2014). The backbone of all popular stochastic
first-order methods for solving (1) is Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951):

xk+1 = xk − γk · gk, gk := ∇f(xk, ξk).
Huge success of these methods in the rapidly developing neural networks field (Bottou, 2012; Kingma
& Ba, 2014) has sparked numerous works studying their convergence under various assumptions
on noise corrupting true gradients. For SGD, the optimal sample complexity bound O(ε−4) in
expectation (Arjevani et al., 2023) is obtained for sub-Gaussian noise (Nemirovski et al., 2009) and
for noise with bounded variance (BV) (Ghadimi & Lan, 2013). These results are derived under classic
assumptions. However, motivated by real-world complex Machine Learning applications (Zhang
et al., 2020b), modern theoretical papers focus on relaxed assumptions and settings. Below, we give
three important stories that are relevant to this paper.

(L0, L1)-smoothness. Usually, for the objective function f , standard L0-smoothness is assumed, i.e.,
∥∇f(x)−∇f(y)∥2 ≤ L0∥x− y∥2,∀x, y ∈ Rd. However, a new generalized (L0, L1)-smoothness
assumption was recently proposed and motivated for Large Language Models (LLM) in (Zhang
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et al., 2020b). This assumption describes objective functions with a linearly growing Hessian norm:
∥∇2f(x)∥2 ≤ L0 + L1∥∇f(x)∥2,∀x ∈ Rd. In ongoing research, other variants of this assumption
were introduced: for only once differentiable functions (Chen et al., 2023), for symmetrically and
asymmetrically growing powers of norms (Chen et al., 2023), and for sub-quadratic polynomially
growing norms (Li et al., 2023a). Generalized smoothness applications can be found not only in
LLM training (Zhang et al., 2020b; Liu et al., 2023a), but also in distributionally robust optimization
(Levy et al., 2020; Jin et al., 2021), multitask learning (Zhang et al., 2024a), federated learning (Liu
et al., 2022b), and bilevel optimization (Hao et al.; Gong et al.). The convergence of the most popular
optimization algorithms Adam (Kingma & Ba, 2014) and SGD was explored under various noise
and generalized smoothness assumptions in works (Li et al., 2023b; Zhang et al., 2024b; Wang et al.,
2024b;a) and (Li et al., 2023a), respectively.

High probability bounds. Due to the expensive training of large deep learning models (Davis et al.,
2021), high probability (HP) bounds have gained even more attention than bounds in expectation
describing the behavior of stochastic methods over several runs. HP bounds provide convergence
guarantees that hold true with probability at least 1 − δ, δ ∈ (0, 1). The bound in expectation can
be reduced to the HP bound using Markov’s inequality; however, it leads to a dominant 1/δ factor.
Meanwhile, much milder log 1/δ factors can be achieved. For SGD, HP bound O(ε−4 log 1/δ) under
sub-Gaussian noise is obtained in (Li & Orabona, 2020). However, already under BV noise, SGD has
1/

√
δ dependence under standard (Sadiev et al., 2023) and (L0, L1)−smoothness (Li et al., 2023a).

Heavy-tailed noise. Moreover, it is shown that the BV assumption cannot describe noises in loss
functions in modern deep learning problems. In Transformer models, stochasticity tends to have a
rather heavy-tailed (HT) distribution (Zhang et al., 2020c; Gurbuzbalaban et al., 2021). This means
that the noise has bounded κ-th moment for some κ ∈ (1, 2], that is, Eξ[∥∇f(x, ξ)−∇f(x)∥κ2 ] ≤ σκ.
The desire to obtain better δ-dependence in HP bounds and to consider HT noise motivated the
development of more robust modifications of SGD, e.g. SGD with clipping or normalization of the
input gradient estimates. In this work, we show that applying a simple sign operator to the gradient
estimates is an effective and comparable solution to cope with heavy-tailed noise as well.

1.2 RELATED WORKS

Clipping. The idea of clipping the norm of the gradient estimate to reduce heavy noise demonstrates
significant empirical results (Pascanu et al., 2013; Goodfellow et al., 2016) and helps achieve log 1/δ
dependence under BV noise and standard smoothness (Nazin et al., 2019; Gorbunov et al., 2020).
The clipping operator is defined as clip(gk, λk) := min{1, λk/∥gk∥2} ·gk and SGD with clipping is
called ClipSGD. Clipping can also be applied to convex optimization, variational inequalities (Sadiev
et al., 2023), non-smooth optimization (Zhang et al., 2020c), zeroth-order optimization (Kornilov
et al., 2024), robust aggregation (Karimireddy et al., 2021), distributed optimization (Liu et al., 2022b;
Qin et al., 2025) and ensuring differential privacy (Andrew et al., 2021).

For standard smoothness, let us list the latest results on the HP convergence of ClipSGD under HT
noise. First, for non-convex functions, the authors of (Zhang et al., 2020c) proved lower bounds
O(ε−(3κ−2)/(κ−1)) for sample complexity in expectation. As shown in (Nguyen et al., 2023), with
fixed proper clipping levels and stepsizes, ClipSGD achieves the complexity Õδ(ε

−(3κ−2)/(κ−1)).
Remarkably, this complexity can be achieved via both small and large batchsizes. ClipSGD can also
work with an infinite horizon resulting in extra log 1/ε factors in complexity (Nguyen et al., 2023).
In (Sadiev et al., 2023), the authors apply ClipSGD to Polyak-Lojasiewicz functions and obtain
faster convergence Õδ,ε(ε

−κ/2(κ−1)). In a number of works (Chen et al., 2020; Puchkin et al., 2024),
the authors work with symmetric HT noise to eliminate the dependence on κ, expand the range of
feasible κ for κ ∈ (0, 1] and break the actual lower bounds from (Zhang et al., 2020c).

For (L0, L1)−smoothness, only BV noise is considered. Unlike the case of standard smoothness, the
possibility of fast convergence of ClipSGD with small batchsizes remains unclear. In (Koloskova
et al., 2023), the authors show that ClipSGD with constant clipping levels and stepsizes unavoidably
requires either decreasing of the noise level via batching or significant increasing of the clipping
levels. ClipSGD with the small batchsizes convergences slowly with rates O(L0ε

−4 + L1ε
−5) in

expectation. Meanwhile, large batchsizes help to achieve faster rates O(L0ε
−4 + L1ε

−3). Another
solution for small batchsizes is ClipSGD with momentum called M-ClipSGD (Zhang et al., 2020a)
which achieves the fast rates O(ε−4) when the noise in the gradient estimates is bounded.
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Despite the effectiveness of clipping, it requires careful tuning, which depends on the iteration and
the characteristics of the optimization problem (Sadiev et al., 2023, Theorem. 3.1).

Normalization. A natural simplification of clipping with a profound level schedule is the permanent
normalization of the gradient estimate, i.e., norm(gk) := gk

/∥gk∥2. SGD with normalization is called
NSGD (Hazan et al., 2015; Zhao et al., 2021). Since normalization does not provide such subtle
control over the noise like clipping, NSGD requires large batchsizes to soften it. For small batches,
one can use NSGD with momentum called M-NSGD (Jin et al., 2021; Cutkosky & Mehta, 2020).

For standard smoothness, the HP convergence of vanilla NSGD under HT noise is proved in (Hübler
et al., 2024a). The authors show that its complexity isO(ε−(3κ−2)/(κ−1) log 1/δ) for optimal parameters
and O(ε−2κ/(κ−1) log 1/δ) for parameter-agnostic tuning. The same complexities hold for M-NSGD,
but only in expectation. In (Liu et al., 2023b; Cutkosky & Mehta, 2021), normalization is combined
with clipping which helps cope with HT noise and obtain suboptimal Õδ,ε(ε

−(3κ−2)/(κ−1)).

For (L0, L1)-smoothness, in expectation convergence of M-NSGD with rates
O
(
(L0ε

−(3κ−2)/(κ−1) + L1ε
−(2κ−1)/(κ−1)

)
is the first known convergence result established si-

multaneously under HT noise and generalized smoothness (Liu & Zhou, 2024). However, it is only
in expectation bounds. In addition, parameter-free tuning over an infinite horizon for M-NSGD is
derived only for BV noise achieving the rates Õε(ε

−4).

Sign operator. There is one more promising modification of SGD which behavior under heavy-
tailed noise has not yet been studied. Originally proposed in (Bernstein et al., 2018a) for distributed
optimization, SignSGD takes only a sign of each coordinate of gradient estimate sign(gk). There
is one peculiarity in bounds for sign-based methods: they are proved w.r.t. the ℓ1-norm instead of
smaller ℓ2-norm. As a consequence, additional d dependent factors appear.

For standard smoothness, SignSGD achieves sample complexity O(d2ε−4) in expectation under BV
noise (Bernstein et al., 2018a). Similar to NSGD, SignSGD requires aggressive batching, which can
be substituted by SignSGD with momentum (M-SignSGD) with bound O(d4ε−4)(Sun et al., 2023).
The alternative solution is to add error feedback mechanism that additionally fixes the biased nature
of the sign operator and allows using convex functions (Seide et al., 2014; Karimireddy et al., 2019).

For (L0, L1)−smoothness, the authors of (Crawshaw et al., 2022) propose generalized SignSGD
with Adam-like structure and, in particular, prove bound O(ε−4 log(d/ε)) for M-SignSGD under
almost surely bounded noise. For the same bounded noise, in (Crawshaw & Liu, 2025), the authors
study the behavior of various adaptive gradient algorithms and derive lower bounds for them with
explicit parameter dependencies.

The main motivation for the original SignSGD is communication effectiveness and empirical
robustness in distributed optimization (Bernstein et al., 2018b), since sending sign vector costs O(d)
operations. In theory, the O(d2ε−4) effectiveness is proved only under additional assumptions on
noise, e.g., symmetry and unimodality. Other expansions of SignSGD are the following: (Safaryan &
Richtárik, 2021) proposes an updated theory for a wider class of noises in the distributed setup, (Liu
et al., 2019) generalizes SignSGD to zeroth-order oracle, (Jin et al., 2020) studies federated learning
with compression, (Chzhen & Schechtman, 2023; Jiang et al., 2024) explore variance reduction.

1.3 CONTRIBUTIONS

Theory. Using sign-based methods, we prove the first-known high probability bounds for non-
convex (L0, L1)-smooth optimization under heavy-tailed noise. These bounds are valid for all
possible problem parameters, have mild dependencies on them, and match the optimal bounds in the
case of standard smoothness. Moreover, the HP results for sign-based methods in case of standard
L0-smoothness are novel as well. Among momentum and adaptive methods, our in expectation
bounds are the first to consider together heavy-tailed noise and (L0, L1)-smoothness. In addition, we
consider special cases of Polyak-Lojasiewicz functions, symmetric noises, and parameter-free tuning.
The summarized results and comparisons with related works are presented in Table 1.

Experiments. To validate our findings in real-world scenarios with heavy-tailed noise and gen-
eralized smoothness, in Section 3 we evaluate the sign-based methods on Transformer models,
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Table 1: Convergence guarantees for non-convex optimization. The metrics are Avr. ℓ1 :
1
T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε, Avr. ℓ2: 1

T

∑T
k=1 ∥∇f(xk)∥2 ≤ ε, Avr. ℓ22: 1

T

∑T
k=1 ∥∇f(xk)∥22 ≤ ε2,

Min ℓ2: mink ∥∇f(xk)∥2 ≤ ε, Func. acc. : f(xT )−f(x∗) ≤ ε. HP stands for bounds with probabil-
ity at least 1− δ, E stands for in expectation bounds. The note ’small batches’ means O(1) batchsizes,
and ’large batches’ means polynomial growth of batchsizes in 1/ε. Noise with parameter κ satisfies
Eξ[|∇f(x, ξ)i−∇f(x)i|κ] ≤ σκ

i , and ’Bounded’ noise is almost surely |∇f(x, ξ)i−∇f(x)i| ≤ σi.

Method Complexity Bound Smoothness Noise (As. 3) Metric

Basic methods
minibatch-NSGD (Hübler et al., 2024a)
large batches O

(
∆L0
ε2

[
1 +

( ∥σ⃗∥2
ε

) κ
κ−1

])
L0 κ ∈ (1, 2] HP Avr. ℓ2

ClipSGD (Nguyen et al., 2023)
small batches

O

( ||σ⃗||κ2 log 1
δ√

∆L0

) 3κ−2
κ−1

(√
∆L0 log 1

δ
ε2

) 3κ−2
2κ−2

 L0 κ ∈ (1, 2] HP Avr. ℓ22

ClipSGD (Koloskova et al., 2023)
small batches

O

(
∆L1∥σ⃗∥42

ε5
+

∆∥σ⃗∥22(L0+L1ε)

ε4

)
(L0, L1) κ = 2 E Min ℓ2

ClipSGD (Koloskova et al., 2023)
large batches O

((
∆L0
ε2

+
∆L1

ε

) [
1 +

( ∥σ⃗∥2
ε

)2])
. (L0, L1) κ = 2 E Min ℓ2

minibatch-SignSGD
(Th. 1), large batches O

((
∆L0d

ε2
+

∆L1d
ε

) [
1 +

( ∥σ⃗∥1
ε

) κ
κ−1

]
log 1

δ

)
(L0, L1) κ ∈ (1, 2] HP Avr. ℓ1

Momentum and adaptive methods, small batches

M-NSGD (Liu & Zhou, 2024) O

((
∆L0
ε2

+
∆L1

ε

)(
1 +

( ∥σ⃗∥2
ε

) κ
κ−1

))
(L0, L1) κ ∈ (1, 2] E Avr. ℓ2

M-ClipSGD (Zhang et al., 2020a) O

(
∆L0∥σ⃗∥22

ε4

)
(L0, L1) Bounded E Avr. ℓ2

D-AdaGrad (Crawshaw & Liu, 2025) Ω̃

(
∆2L2

0∥σ⃗∥22
ε4

+
∆2L2

1∥σ⃗∥22
ε2 log(1+∆L2

1/L0)

)
(L0, L1) Bounded HP Avr. ℓ2

AdaGrad-Norm (Wang et al., 2023) Õ

(
∆2L2

1∥σ⃗∥22
ε4

+
∆L0∥σ⃗∥22

ε4
+

∥σ⃗∥62
δ4ε4

)
(L0, L1) κ = 2

affine
HP Avr. ℓ2

M-SignSGD (Th. 3) O

((
∆L0d

ε2
+

∆L1d
ε

) [
1 +

( ∥σ⃗∥1
ε

) κ
κ−1

])
(L0, L1) κ ∈ (1, 2] E Avr. ℓ1

Polyak-Lojasiewicz functions (As. 4, µ > 0)

ClipSGD (Sadiev et al., 2023)
large batches Õ

(
L0
µ

[
1 +

(
L0∥σ⃗∥22

µ2ε

) κ
2(κ−1)

])
L0 κ ∈ (1, 2] HP Func. acc.

Restarted-SignSGD
(Th. 10), large batches Õ

((
L0d
µ

+
L1d

√
∆√

µ

)[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])
(L0, L1) κ ∈ (1, 2] HP Func. acc.

Symmetric and unimodal noise
MajorityVote-SignSGD
(Bernstein et al., 2018a;b), large batches O

(
∆L0d

ε2

[
1 +

( ∥σ⃗∥1
ε

)2])
L0 κ = 2

symmetric
E Avr. ℓ1

MajorityVote-SignSGD
(Th. 2), large batches O

((
∆L0d

ε2
+

∆L1d
ε

) [
1
κ2 +

( ∥σ⃗∥1
ε

)2]
log 1

δ

)
(L0, L1) κ ∈ (0, 2]

symmetric
HP Avr. ℓ1

specifically on pre-training LLaMA(Touvron et al., 2023) family models of sizes up to 1.3B on
the C4 dataset (Raffel et al., 2020) and the Switch Transformer (Fedus et al., 2022) Mixture of
Experts (MoE) model on the FineWeb dataset (Penedo et al.). Results demonstrate the effectiveness
of sign-based methods compared to other commonly considered techniques to cope with heavy-tailed
noise, namely, clipping and normalization. Surprisingly, our results also show that M-SignSGD
demonstrates competitive performance and slight improvements compared to AdamW, which is the
de facto optimizer for language model training.

2 HIGH PROBABILITY BOUNDS FOR SIGN-BASED METHODS UNDER
HEAVY-TAILED NOISE AND (L0, L1)-SMOOTHNESS

In this section, we present our novel non-convex convergence guarantees with high probability for
SignSGD with batching and majority voting. We prove them for (L0, L1)-smooth objective functions
with heavy-tailed noise in gradient estimates. We provide the best convergence rates and optimal
parameters or rates parameter-free tuning. All proofs are located in Appendix B.

2.1 ASSUMPTIONS AND NOTATIONS.

The notation 1, n represents the set of natural numbers {1, 2, . . . , n}. We define ℓp-norm p ∈ [1,+∞]

as (∥x∥p)p :=
∑d

i=1 |xi|p, x ∈ Rd. The notation ⟨x, y⟩ :=
∑d

i=1 xiyi denotes the standard scalar
product for x, y ∈ Rd. The sign operator sign(·) returns the sign of a scalar input and can also be
applied element-wise to a vector. The notation Õ without index omits all logarithmic factors or, if it
has an index, omits only the logarithmic factors on the variables from its index.
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Assumption 1 (Lower bound). The objective function f is lower bounded by f∗ > −∞.

We use the following formulation of (L0, L1)-smoothness from (Gorbunov et al., 2024).
Assumption 2 ((L0, L1)-smoothness). The objective function f is differentiable and (L0, L1)-smooth,
i.e., for the non-negative constants (L0, L1) and x, y ∈ Rd, it holds

∥∇f(x)−∇f(y)∥2 ≤ (L0 + L1 sup u∈[x,y]∥∇f(u)∥2)∥x− y∥2.

For examples of (L0, L1)-smooth functions and their properties, we refer the reader to Appendix B.1.
Assumption 3 (Heavy-tailed noise in gradient estimates). The unbiased estimate ∇f(x, ξ) has
bounded κ-th moment κ ∈ (1, 2] for each coordinate, i.e., ∀x ∈ Rd:

Eξ[∇f(x, ξ)] = ∇f(x), Eξ[|∇f(x, ξ)i −∇f(x)i|κ] ≤ σκ
i , i ∈ 1, d, (2)

where σ⃗ = [σ1, . . . , σd] are non-negative constants.

2.2 HP CONVERGENCE PROPERTIES OF THE BACKBONE SignSGD METHOD

We begin our analysis with the simplest of sign-based methods, namely SignSGD (Alg. 1) and prove
a general lemma on its convergence with high probability.

Algorithm 1 SignSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1.
1: for k = 1, . . . , T do
2: Sample ξk and compute estimate xk+1 = xk − γk · sign(∇f(xk, ξk));
3: end for

Output: uniformly random point from {x1, . . . , xT } .

Lemma 1 (SignSGD Convergence Lemma). Consider lower-bounded (L0, L1)-smooth function f
(As. 1, 2) and HT gradient estimates σ⃗k (As. 3). Then Alg. 1 after T iterations with non-increasing
stepsizes γk ≤ 1/(48L1d

3
2 log 1

δ ) achieves with probability at least 1− δ:

T∑
k=1

γk
16

∥∇f(xk)∥1 ≤ ∆+L0d

T∑
k=1

γ2k +2

T∑
k=1

γk∥σ⃗k∥1 +6d(γ1∥∇f(x1)∥1 +2CTL0) log
1

δ
, (3)

where CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ and ∆ = f(x1)− f∗.

The bound (3) resembles the convergence bound in expectation for SignSGD for κ = 2 (Bernstein
et al., 2018a). The difference is the last term with linear dependence on log 1

δ . Remarkably, L1

constant affects only the upper bound for the largest possible stepsizes γk ≤ 1/(48L1d
3
2 log 1

δ ). In
the case of small L0, this is the only condition that prevents us from increasing the stepsize too much.
We provide synthetic experiments verifying dependencies in bound (3) in Appendix D.

2.3 NEW HP BOUNDS FOR (L0, L1)-SMOOTHNESS FOR SignSGD WITH AVERAGE BATCHING

In order to upper bound an average accuracy norm from (3) by ε, the noise ∥σ⃗∥1 has not to exceed ε.
The first way to lower the noise is to use batch averaging.

Algorithm 2 minibatch-SignSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1, batchsizes {Bk}Tk=1.
1: for k = 1, . . . , T do
2: Sample {ξki }

Bk
i=1 and compute xk+1 = xk − γk · sign(

∑Bk

i=1
∇f(xk,ξki )/Bk);

3: end for
Output: uniformly random point from {x1, . . . , xT } .
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Theorem 1 (HP complexity for minibatch-SignSGD). Consider lower-bounded (L0, L1)-smooth
function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 2 requires the sample complexity
N to achieve 1

T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε with probability at least 1− δ for:

Optimal tuning: T = O
(

∆Lδ
1d

ε

)
, γk ≡ 1

48Lδ
1d
, Bk ≡

(
16∥σ⃗∥1

ε

) κ
κ−1

for ε ≥ 8L0

L1
and T =

O
(

Lδ
0d
ε2

)
, γk ≡

√
∆

20Lδ
0dT

, Bk ≡
(

16∥σ⃗∥1

ε

) κ
κ−1

for ε ≤ 8L0

L1
:

N = O

((
∆L0d

ε2
+

∆L1d

ε

)[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

]
log 1/δ

)
, (4)

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

The proof of Theorem 1 and parameter-free method version are located in Appendices B.4 and A.

2.3.1 DISCUSSION

Optimal tuning bounds. From Theorem 1, we can clearly distinguish two phases of algorithm
convergence: fast initial phase with rate Õδ

(
ε−2κ−1/κ−1

)
before threshold ε ≥ 8L0/L1

√
d and slower

one with rate Õδ

(
ε−3κ−2/κ−1

)
after. We provide synthetic experiments verifying two stage con-

vergence and batching effectiveness in Appendix D. In the case of L0 ≈ 0 (e.g. for logistic
regression (Gorbunov et al., 2024) and deep neural networks (Zhang et al., 2020b)), minibatch-
SignSGD runs in the fast regime the whole time and can work with large constant stepsizes.
Otherwise, under standard smoothness L1 = 0, the bound (4) matches the lower in expectation bound
Ω
(
∆L0/ε2 + ∆L0/ε2 (∥σ⃗∥2/ε)

κ
κ−1

)
for first-order stochastic optimization (Zhang et al., 2020c). We

also highlight the linear dependence of (4) on ∆, L0, L1, log 1/δ and the mild dependence on ∥σ⃗∥1.

Extra d factors. In bound (4) for ℓ1-norm, there are extra d factors that are missing in bounds for
ℓ2-norm (Table 1). There are no existing lower bounds for the ℓ1-norm to the best of our knowledge.
Hence, it is difficult to state whether the d dependence is optimal. In practice (Bernstein et al.,
2018a), gradients and noise vector during DL model training via minibatch-SignSGD actually
keep high density, i.e., their norms are related by ∥ · ∥1 ≈

√
d∥ · ∥2. Hence, we can substitute

ε→ ε′
√
d, ||σ⃗||1 →

√
d||σ⃗||2, dL1 →

√
dL1 (the last transition follows from the proofs, where we

can use equality instead of ∥ · ∥2 ≤ ∥ · ∥1) in (4) and see that all extra factors are gone.

We would like to highlight that the d linear factor in the bounds arises from the generalized smoothness
(As. 2) defined in the ℓ2-norm. We can restate it in ℓ1-norm as

||∇f(x)−∇f(y)||1 ≤ (L̃0 + L̃1 · supu||∇f(u)||1)||x− y||∞.
With this assumption, all d factors from the bounds will be gone. In the worst case, the relation
between new and old constants L̃0 = dL0, L̃1 = dL1 makes factor d unavoidable.

Comparison under standard smoothness. According to the HP analysis of ClipSGD from
(Nguyen et al., 2023), it achieves the rates from Table 1. These rates have optimal Õδ

(
ε−3κ−2/κ−1

)
dependence on ε, however, dependencies on ∆, L0, σ⃗ are much worse than ours. Moreover, we
are not aware of any works proposing arbitrary tuning for clipping methods. ClipSGD requires
careful clipping level scheduling which allows it to converge with small batchsizes. On the contrary,
minibatch-SignSGD needs only large batchsizes. In (Hübler et al., 2024a), the authors analyze
minibatch-NSGD and obtain the HP sample complexity w.r.t. to the ℓ2-norm (Table 1), the only
difference from (4) is the absence of d factors. As explained before, this difference comes from the
different norms in the bounds. From a practical point of view, sign-based methods can be applied
to distributed optimization (Appendix G) where normalization does not fit. Besides, one can use
majority voting as a powerful alternative to batching.

Comparison under generalized smoothness. Under BV noise, the only existing results for
CLipSGD in expectation with large batches (Koloskova et al., 2023) match our HP bound (4)
(see Table 1). Unlike minibatch-SignSGD, CLipSGD can converge with small batches, but much
with slower O(∆L1∥σ⃗∥42ε−5) rates instead of our Õδ(∆L1d

3
2 ∥σ⃗∥21ε−3).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

2.3.2 POLYAK-LOJASIEWICZ FUNCTIONS.

The minibatch-SignSGD algorithm can be accelerated for the special class of generalized smooth
functions that satisfy the Polyak-Lojasiewicz condition.
Assumption 4 (Polyak-Lojasiewicz (PL)). The objective function f satisfies the PL condition, i.e.,
for the non-negative constant µ and x ∈ Rd, it holds

∥∇f(x)∥22 ≥ 2µ(f(x)− f(x∗)).

For example, µ-strongly convex functions satisfy the PL condition. A similar behavior has also
been observed in over-parameterized models (Liu et al., 2022a). For these functions, we use restarts
on minibatch-SignSGD to achieve the HP function accuracy f(xT ) − f(x∗) ≤ ε. The explicit
algorithm and parameters are presented in Theorem 10, Appendix C, and it achieves the bounds

N = Õδ,ε

((
L0d

µ
+
L1d

√
∆

√
µ

)[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])
. (5)

For the standard smoothnessL1 = 0, we compare our method with the most related ClipSGD with the

complexity bound Õδ,ε

(
L0

µ

[
1 +

(
L0∥σ⃗∥2

2

µ2ε

) κ
2(κ−1)

])
(Sadiev et al., 2023). In contrast, minibatch-

SignSGD does not require adjusting the clipping schedule and has better L0/µ dependence.

2.4 SignSGD WITH MAJORITY VOTING FOR SYMMETRIC HT NOISE

The second approach to noise reduction inherent to sign-based methods is majority voting.

Majority voting and additional noise assumption. As mentioned above, the original motivation
of SignSGD is fast communication in distributed optimization (Bernstein et al., 2018b; Jin et al.,
2020). In the literature, various types of communication were studied, but the most effective one
turned out to be majority voting. For sign vectors sign(gki ), i ∈ 1,M , the resulting update vector is
the majority of the received signs gk = sign(

∑M
i=1 sign(g

k
i )). To be effective, majority voting must

decrease the probability of failure of the resulting vector with the growth of M. However, for very
skewed or bimodal random variables, it might not be true. Choosing the most frequent value from
the sign sequence {sign(gki )}Mi=1 is actually M Bernoulli trials. In these trials, the probability of
choosing a correct answer grows only if the probability of failure of a single worker is less than 1

2 ,
i.e.: P

[
sign(∇f(xk)) ̸= sign(gki )

]
< 1

2 ,∀i ∈ 1,M. For example, this condition is satisfied if the
noise of the gradient estimate for each coordinate is unimodal and symmetric about its true value.
We use this assumption, but other assumptions (Safaryan & Richtárik, 2021) are valid as well.

Algorithm 3 MajorityVote-SignSGD

Input: Starting point x0 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1, batchsizes {Mk}Tk=1.
1: for k = 1, . . . , T do
2: Sample {ξki }

Mk
i=1 and compute xk+1 = xk − γk · sign

(∑Mk

i=1 sign(∇f(xk, ξki ))
)

;
3: end for

Output: uniformly random point from {x1, . . . , xT } .

Theorem 2 (HP complexity for MajorityVote-SignSGD). Consider lower-bounded (L0, L1)-
smooth function f (As. 1, 2) and the gradient estimates corrupted by unimodal and symmet-
ric HT noise with κ > 0 (As. 3). Then Alg. 3 requires the sample complexity N to achieve
1
T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε with probability at least 1− δ for:

Optimal tuning: T = O
(

∆Lδ
1d

ε

)
, γk ≡ 1

48Lδ
1d
,Mk ≡ max

{
160
κ2 ,

216∥σ⃗∥2
1

ε2

}
for ε ≥ 8L0

L1
and

T = O
(

∆Lδ
0d

ε2

)
, γk ≡

√
∆

80Lδ
0dT

,Mk ≡ max
{

160
κ2 ,

216∥σ⃗∥2
1

ε2

}
for ε ≤ 8L0

L1
:

N = O

((
∆L0d

ε2
+

∆L1d

ε

)[
1

κ2
+

(
∥σ⃗∥1
ε

)2
]
log 1/δ

)
, (6)
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where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

The proof of Theorem 2 and parameter-free method version are located in Appendices B.5 and A.
For PL functions, we use the restart technique and achieve bounds similar to (5) as if κ = 2. The
results are presented in Theorem 11 in Appendix C.

Related works and discussion. Works (Jakovetic et al., 2023; Armacki et al., 2023; 2024) analyze
online non-linear SGD without batching for convex and non-convex functions under HT symmetric
noise and standard smoothness. It includes a wide range of non-linear transformations of gradient
estimates such as clipping, normalization, and sign operator. The authors of (Armacki et al., 2024)
propose a unified theoretical framework and prove bounds which are arbitrarily close to O(ε−4)
for all κ > 0. In works (Compagnoni et al., 2024; 2025), the authors derive continuous SDE with
Student’s noise describing SignSGD dynamics and obtain the O(ε−4) HP bound from it.

Similar to these works, the severity of the corrupting noise (the value of κ) has much milder effect on
convergence of MajorityVote-SignSGD in comparison with minibatch-SignSGD and its bound
(4). It was known for the standard smoothness, while we show it for the generalized one. Under
standard smoothness, the bound (6) with log 1/δ factor matches the optimal bound Ω

(
∆L0∥σ⃗∥2

2/ε4
)

in
expectation for first-order methods under BV noise (Arjevani et al., 2023).

2.5 SignSGD WITH MOMENTUM AND SMALL BATCHES

Both minibatch-SignSGD and MajorityVote-SignSGD methods require increasing batchsizes
comparable to the number of iterations. In order to use small batches, one can utilize the momentum
technique, resulting in the same total sample complexity. The proof is located in Appendix B.7.

Algorithm 4 M-SignSGD

Input: Starting point x1 ∈ Rd, number of iterations K, stepsizes {γk}Tk=1, momentums {βk}Tk=1.
1: for k = 1, . . . , T do
2: Sample ξk and compute mk = βkm

k−1 + (1− βk)∇f(xk, ξk);
3: Set xk+1 = xk − γk · sign(mk);
4: end for

Output: uniformly random point from {x1, . . . , xT } .

Theorem 3 (Complexity for M-SignSGD in expectation). Consider a lower-bounded (L0, L1)-
smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then, Alg. 4 requires T iterations to
achieve 1

T

∑T
k=1 E

[
∥∇f(xk)∥1

]
≤ ε starting with ∆ = f(x1)− f∗:

Optimal tuning: βk ≡ 1 −min

{
1,
(

∆L1

√
d

T∥σ⃗∥κ

) κ
2κ−1

}
, γk ≡ 1−βk

8
1

L1d
for ε ≥ 3L0

L1
and 1 − βk ≡

1−min

{
1,
(

∆L0

T∥σ⃗∥2
κ

) κ
3κ−2

}
, γk ≡

√
∆(1−βk)
TL0d

for ε ≤ 3L0

L1
:

T = O

((
∆L0d

ε2
+

∆L1d

ε

)(
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

))
. (7)

Related works. As we mentioned before, vanilla ClipSGD, NSGD and SignSGD cannot effec-
tively handle small constant batchsizes under (L0, L1)-smoothness. Hence, here we compare with
the works dedicated to theoretical analysis of more powerful modifications for noise control.

In (Liu & Zhou, 2024), the authors analyze M-NSGD under the same assumptions and derive the rates
identical to ours in (7) up to d factors which are inherent to sign-based methods. In comparison with
adaptive methods (Wang et al., 2023; Crawshaw & Liu, 2025), our results remain valid for all possible
values of parameters L0, L1, ∥σ⃗∥2,∆ ≥ 0 and accuracy ε. Moreover, our bounds demonstrate a
milder dependence on ε,∆, L0, L1 and allow HT noise. Although the rates in (Wang et al., 2023;
Crawshaw & Liu, 2025) are formally proved with high probability, they are derived either under
restrictive a.s. bounded noise or under BV noise with suboptimal polynomial δ dependence.
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Parameter-free tuning. In practice, the characteristics of the optimized function and corrupting
noise are usually unavailable. To address this challenge, we propose a special parameter-agnostic
tuning for our most applicable method, M-SignSGD, and analyze its convergence guarantees.

Theorem 4 (Complexity for Parameter-Free M-SignSGD in expectation). Consider a lower-
bounded (L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then, Alg. 4
requires T iterations to achieve min k∈1,TE∥∇f(xk)∥1 ≤ ε starting with ∆ = f(x1)− f∗:

Paramer-free tuning: β1 = 1, βk = 1− 1/
√
k, γk = γ0k

−3/4, γ0 ≤ 1
90L1d

:

T = Õ

((
(∆/γ0 + L0γ0d)

ε

)4

+

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
. (8)

Although parameter-free tuning has a worse polynomial dependence on parameters L0, L1,∆ and
non-optimal rates in ε for κ ̸= 2, it does not require any knowledge about the optimization problem.
The parameter-free tunings for other our methods and their discussion are located in Appendix A.

3 EXPERIMENTS

Table 2: Comparison of validation perplexity for various
optimization methods across LLaMA model scales trained
on C4

Method Perplexity ↓
Model size 130M 350M 1.3B

M-SignSGD 18.37±.01 13.73 11.56
M-NSGD 19.28±.03 14.60 12.62

M-ClippedSGD 18.95±.03 14.30 12.30
AdamW 18.67±.00 13.78 11.57

Training tokens 10B 30B 30B
Number of iterations 100k 300k 300k

In this section, we present experimental
results for sign-based methods described
in Section 2. To demonstrate the effec-
tiveness of sign-based methods, we fo-
cus on language model training tasks.
This choice is motivated by two factors:
first, these tasks are known to exhibit
heavy-tailed noise Zhang et al. (2020c)
and generalized smoothness Zhang et al.
(2020b); Liu et al. (2023a) characteris-
tics, and second, they represent an impor-
tant real-world application domain.

To evaluate the performance of M-
SignSGD (Algorithm 4) we adopt the
established experimental setup from Lialin et al. (2023), training LLaMA-like models (Touvron
et al., 2023) of various sizes — up to 1.3B parameters — on the Colossal Clean Crawled Corpus
(C4) dataset (Raffel et al., 2020). The C4 dataset represents a colossal, cleaned version of Common
Crawl’s web corpus, specifically designed for pre-training language models and word representations.

For our comparison, we focus on two key techniques for handling heavy-tailed noise and small batches:
gradient clipping with momentum and gradient normalization with momentum. As representative
methods, we choose M-ClippedSGD Zhang et al. (2020a) and M-NSGD Cutkosky & Mehta (2020),
respectively. We also compare to AdamW Loshchilov (2017), as a de-facto method for the first-order
optimization algorithm for deep learning. To ensure a fair comparison, we conduct an extensive grid
search over key hyperparameters, including learning rate, weight decay, and clipping level. Detailed
information on the final hyperparameters and experimental setup is provided in Appendix F.1.

Table 2 presents final validation perplexity for each method. M-SignSGD demonstrates superior
performance over other heavy-tail mitigating baselines, aligning with our theoretical results. Fur-
thermore, to our surprise, we discovered that M-SignSGD outperforms the strong AdamW baseline,
despite careful hyperparameter tuning of the latter. These findings highlight the significant potential
of M-SignSGD for language model pretraining. Given these promising results on smaller LLaMA
models, we invite the research community to further explore sign-based optimization methods for
large-scale LLM training and other computationally demanding applications of practical importance.

To ensure the generalizability of our findings, we complemented our experiments with a new setup
— new architecture and data. We have switched model to the Switch Transformer MoE architec-
ture (Fedus et al., 2022), and data to the FineWeb dataset (Penedo et al.), a popular corpus for LLM
pre-training. Further details on experimental setup and results can be found in Appendix E.
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A PARAMETER-FREE METHODS

In this section, we provide parameter-free tunings for all our methods and discuss them.

Theorem 5 (HP complexity for minibatch-SignSGD, infinite horizon). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 2 requires the
sample complexity N to achieve min

k∈1,T
∥∇f(xk)∥1 ≤ ε with probability at least 1− δ for:

Parameter-free tuning: Until plateau γk = γ0 ≤ 1
48Lδ

1d
, Bk = B0k

2, after γk = γ0√
k
, Bk = B0k:

ε ≥ 8L0

L1
⇒ N = Õ

(
B0

(
∆

γ0ε

)3

+
1

B2
0

(
∥σ⃗∥1
ε

) 3κ
2(κ−1)

)
,

ε≪ 8L0

L1
⇒ N = Õ

(
B0(L

δ
0γ0d+∆/γ0)

4

ε4
+

1

B0

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
,

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

The proof is located in the second part of Appendix B.4.

Theorem 6 (HP complexity for MajorityVote-SignSGD, infinite horizon). Consider lower-
bounded (L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates corrupted by unimodal
and symmetric HT noise with κ > 0 (As. 3). Then Alg. 3 requires the sample complexity N to
achieve min

k∈1,T
∥∇f(xk)∥1 ≤ ε with probability at least 1− δ for:

Parameter-free tuning: Until plateau γk = γ0 ≤ 1
48Lδ

1d
,Mk = M0k

2/κ2, after γk = γ0√
k
,Mk =

M0k/κ
2:

ε ≥ 8L0

L1
⇒ N = Õ

(
M0(∆/γ0)

3 + ∥σ⃗∥31/M2
0

κ2ε3

)
,

ε≪ 8L0

L1
⇒ N = Õ

(
M0(L

δ
0γ0d+∆/γ0)

4 + ∥σ⃗∥41/M0

κ2ε4

)
.

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

The proof is similar to the proof of Theorem 5 with κ = 2 and additional condition Mk ≥ 160/κ2.

The parameter-free tuning for our M-SignSGD (Algorithm 4) is presented in Theorem 4.

Parameter-free tuning bounds. For our methods, we use dynamic parameter-free tuning. We start
with the largest stepsize γ0 for which the method converges and continue until it reaches the plateau
observed in the convergence bounds. After that, we begin to decrease the stepsizes. Parameter-free
tuning does not require any knowledge about the optimization problem, but it has worse polynomial
dependence on parameters L0, L1,∆ and slower (for asymmetric noise κ ̸= 2) non-optimal rates.

The works (Hübler et al., 2024a;b) were the first to introduce this approach for building parameter-free
tunings. They study it only for normalized methods and proposed tunings for NSGD and M-NSGD.
However, these tunings were built either only under the assumption of standard smoothness and
heavy-tailed noise, or under generalized smoothness and BV noise. That is, we are the first to build
a tuning under both assumptions simultaneously. Under HT noise, the authors also observe that
parameter-free tuning leads to the same slower non-optimal rates. In (Hübler et al., 2024b), they
apply simple parameter-free tuning to M-NSGD and obtain in BV expectation bound Õε((∆/γ0 +

γ0L0)e
(γ0L1)

2

+ ∥σ⃗∥2)4/ε4). Unlike our methods, M-NSGD works with any stepsize γ0 and , but
has exponential dependence on L1 due to it. Moreover, we explicitly divide convergence into two
stages, what helps us to get accelerated rates during the initial training phase.
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Practical heuristics justification. Using parameter-free tuning bounds, we can explain why popular
practical heuristics for training neural networks such as grid search of hyperparmaters and decreasing
stepsizes successfully work in real-world problems.

First, one can grid search hyperparameters (e.g., initial stepsize γ0) and choose the best ones
according to the achieved final accuracy. Parameter-free Tuning Theorems guarantee convergence to
any accuracy for almost all γ0, B0, and the only difference is the convergence speed. Hence, trying
various values reveals which values pair better with the unknown problem parameters L0, L1, σ⃗.

Second, one can start to decrease stepsizes at any moment before the oscillating plateau, even from
the beginning of the training. In this case, the initial fast convergence phase is not fully utilized, and
the slower speed comes earlier for all accuracies ε > 0.

B PROOFS

B.1 (L0, L1)-SMOOTHNESS

Standard L-smoothness assumes that the gradient of a function is globally Lipschitz continuous.
However, this condition can be too restrictive in practice. Many functions arising in optimization,
especially in Machine Learning and statistics, either do not satisfy L-smoothness or satisfy it with a
very large constant L0, leading to overly pessimistic theoretical guarantees. (L0, L1)-smoothness
(Assumption 2) is weaker than L-smoothness and allows finer control over the smoothness behavior
of functions with rapidly growing curvature in regions where the gradient is large.

Importantly, many functions satisfy (L0, L1)-smoothness with significantly smaller constants L0 and
L1 compared to the L required for global Lipschitz smoothness. As a result, optimization algorithms
tailored for (L0, L1)-smooth functions can achieve better convergence guarantees, especially in
settings involving large gradients or heavy-tailed noise. The examples of practically used (L0, L1)-
smooth functions include:
Example 1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is convex
and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ≥ 2 and any L ≥ 0.
Example 2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is convex,
(0, ∥a∥)-smooth, but not L-smooth for a ̸= 0 and any L ≥ 0.

Example 3 (Logistic Function). Consider logistic function: f(x) = log
(
1 + exp(−a⊤x)

)
, where

a ∈ Rd is some vector. It is known that this function is L-smooth and convex with L = ∥a∥2. However,
one can show that f is also (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and
L1 are much smaller than L.
Example 4 (Quadratic Function with Linear Term.). Let f(x) = 1

2x
⊤Ax+ b⊤x, where A ∈ Rd×d is

symmetric positive semi-definite, and b ∈ Rd. Then f is convex and (L0, 0)-smooth with L0 = ∥A∥.
This function is also L-smooth with the same L, but here (L1 = 0) shows the gradient is Lipschitz
regardless of gradient size.

The condition of (L0, L1)-smoothness from Assumption 2 can be formulated in terms of inequalities
without sup operator, similar to the case of standard smoothness.
Lemma 2. ((L0, L1)-smoothness properties (Gorbunov et al., 2024)) For (L0, L1)-smooth function
f (As. 2) and x, y ∈ Rd, it holds

∥∇f(x)−∇f(y)∥2 ≤ (L0 + L1∥∇f(y)∥2) exp(L1∥x− y∥2)∥x− y∥2,

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L0 + L1∥∇f(x)∥2
2

exp(L1∥x− y∥2)∥x− y∥22. (9)

B.2 TECHNICAL LEMMAS AND PROPOSITIONS

We use the following facts from the linear algebra and convex analysis (Boyd, 2004):
Proposition 1 (Norm Relation). For two norms ℓp and ℓq with 1 ≤ p ≤ q ≤ 2, the following relation
holds true:

∥x∥q ≤ ∥x∥p ≤ d
1
p−

1
q ∥x∥q, ∀x ∈ Rd. (10)
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Proposition 2 (Jensen’s Inequality). For scalar random variable ξ with bounded κ-th moment
κ ∈ (1, 2], the following inequality holds true:

E[|ξ|] ≤ (E[|ξ|κ])
1
κ . (11)

Proposition 3 (Markov’s Inequality). For scalar random variable ξ with bounded first moment, the
following inequality holds true for any a > 0:

P(|ξ − E[ξ]]| ≥ a) ≤ E[|ξ|]
a

. (12)

To prove the HP bounds with the logarithmic dependence, we use the following measure concentration
result (see, for example, (Li & Orabona, 2020, Lemma 1).

Lemma 3 (Measure Concentration Lemma). Let {Dk}Tk=1 be a martingale difference sequence
(MDS), i.e., E[Dk|Dk−1, . . . , D1] = 0 for all k ∈ 1, T . Furthermore, for each k ∈ 1, T , there exists

positive σk ∈ R, s.t. E
[
exp

(
D2

k

σ2
k

)
|k
]
≤ e. Then the following probability bound holds true:

∀λ > 0, δ ∈ (0, 1) : P

(
T∑

k=1

Dk ≤ 3

4
λ

T∑
k=1

σ2
k +

1

λ
log(1/δ)

)
≥ 1− δ. (13)

To control error reduction during batching, we use the following batching lemma for HT variables.
Its modern proof for d = 1 was proposed in (Cherapanamjeri et al., 2022, Lemma 4.2) and then
generalized for the multidimensional case in (Kornilov et al., 2024; Hübler et al., 2024a).

Lemma 4 (HT Batching Lemma). Let κ ∈ (1, 2], and X1, . . . , XB ∈ Rd be a martingale difference
sequence (MDS), i.e., E[Xi|Xi−1, . . . , X1] = 0 for all i ∈ 1, B. If all variables Xi have bounded
κ−th moment, i.e., E[∥Xi∥κ2 ] < +∞, then the following bound holds true

E

[∣∣∣∣∣
∣∣∣∣∣ 1B

B∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
κ

2

]
≤ 2

Bκ

B∑
i=1

E[∥Xi∥κ2 ]. (14)

We generalize the following lemma about changes after one update step of sign-based momentum
methods from (Sun et al., 2023, Lemma 1).

Lemma 5 (Sign Update Step Lemma). Let x,m ∈ Rd be arbitrary vectors, A = diag(a1, . . . , ad)
be diagonal matrix and f be (L0, L1)-smooth function (As. 2). Then for the update step

x′ = x− γ ·A · sign(m)

with ϵ := m−∇f(x), the following inequality holds true

f(x′)−f(x) ≤ −γ∥A∇f(x)∥1+2γ∥A∥F ∥ϵ∥2+
L0 + L1∥A∇f(xk)∥2

2
exp (γL1∥A∥F )γ2∥A∥2F .

(15)
and in particular, if A = I for the ℓ1 and ℓ2 norms:

f(x′)− f(x) ≤ −γ∥∇f(x)∥1 + 2γ∥ϵ∥1 +
L0 + L1∥∇f(x)∥2

2
exp(γL1

√
d)γ2d. (16)

Proof. Using (L0, L1)-smoothness of f (Lemma 2) between points x and x′, we have

f(x′) ≤ f(x) + ⟨∇f(x), x′ − x⟩+ L0 + L1∥x′ − x∥
2

∥x′ − x∥2 exp(L1∥x′ − x∥).

Substitute x′ − x = −γAsign(m) gives us:

⟨∇f(x), x′ − x⟩ = −γ⟨∇f(x), Asign(m)⟩.

Next, we decompose the inner product:

⟨∇f(x), Asign(m)⟩ = ⟨∇f(x), Asign(∇f(x))⟩+ ⟨∇f(x), A(sign(m)− sign(∇f(x)))⟩.
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We use the identity:
⟨∇f(x), Asign(∇f(x))⟩ = ∥A∇f(x)∥1,

and define [∇f(x)]i =: gi, then the second term becomes
d∑

i=1

aigi (sign(mi)− sign(gi)) .

Now we analyze two cases for each i:

• If sign(mi) = sign(gi), then the term is equal to zero.

• Otherwise, gi ·mi ≤ 0, hence |gi−mi| ≥ |gi|, and we have the following with ϵi := mi−gi:
aigi (sign(mi)− sign(gi)) ≤ 2ai|gi| ≤ 2ai|ϵi|.

In total, we have:

⟨∇f(x), Asign(∇f(x))−Asign(m)⟩ ≤ 2

d∑
i=1

ai|ϵi| ≤ 2∥A∥F ∥ϵ∥2,

⟨∇f(x), x′ − x⟩ ≤ −γ∥A∇f(x)∥1 + 2γ∥A∥F ∥ϵ∥2.
Finally, we observe that

∥x′ − x∥ = γ∥Asign(m)∥2 ≤ γ∥A∥F ,
and derive the upper bound:

f(x′)− f(x) ≤ −γ∥A∇f(x)∥1 + 2γ∥A∥F ∥ϵ∥2 +
L0 + L1∥A∇f(x)∥2

2
exp(γL1∥A∥F )γ2∥A∥2F .

For the A = I part, substitute x′ − x = −γsign(m), so:

⟨∇f(x), x′ − x⟩ = −γ⟨∇f(x), sign(m)⟩.
The inner product decomposition and analysis of ⟨∇f(x), sign(m)⟩ follow the previous part, leading
to:

⟨∇f(x), sign(∇f(x))− sign(m)⟩ ≤ 2

d∑
i=1

|ϵi| = 2∥ϵ∥1,

⟨∇f(x), x′ − x⟩ ≤ −γ∥∇f(x)∥1 + 2γ∥ϵ∥1.
Substituting into the smoothness bound:

f(x′)− f(x) ≤ −γ∥∇f(x)∥1 + 2γ∥ϵ∥1 +
L0 + L1∥∇f(x)∥2

2
exp(γL1

√
d)γ2d.

From (Hübler et al., 2024b) we use the following lemma:
Lemma 6 (Technical Lemma). Let q ∈ (0, 1), p ≥ 0 and k > 0. Further let a, b ∈ N≥2 with a ≤ b.
Then the following statements are true.

i) We have
b∏

i=a

(1− i−q) ≤ exp

(
1

1− q
(a1−q − b1−q)

)
.

ii) If p ≥ q, then

N∑
i=a

i−p
i∏

τ=a

(1− τ−q) ≤
(a− 1)q−p exp

(
a1−q−(a−1)1−q

1−q

)
−Nq−p exp

(
a1−q−N1−q

1−q

)
1 + (p− q)Nq−1

,

and in particular,
N∑
i=a

i−p
i∏

τ=a

(1− τ−q) ≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
= O(aq−p).
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iii) If a ≥ p
1

1−q and a ≥
(
p−q
2

) 1
1−q , then

b∑
i=a

i−p
b∏

τ=i+1

(1− τ−q) ≤ 2 exp

(
1

1− q

)
(b+ 1)q−p.

Note that these requirements are always fulfilled for p ≤ 1.

B.3 PROOF OF SignSGD GENERAL CONVERGENCE LEMMA 1

For beginning, we prove general lemma about SignSGD convergence with HT gradient estimates gk
with σ⃗, κ ∈ (1, 2]. This proof considerably relies on proof techniques for NSGD from (Hübler et al.,
2024a).

Proof. Consider the k-th step of SignSGD. We use (L0, L1) smoothness of function f (Lemma 2)
to estimate:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥2
2

exp(L1∥xk+1 − xk∥2)∥xk+1 − xk∥22

= −γk
⟨∇f(xk), sign(gk)⟩

∥∇f(xk)∥1
· ∥∇f(xk)∥1 +

L0dγ
2
k

2
exp(L1

√
dγk)

+
L1dγk exp(L1

√
dγk)

2
· γk∥∇f(xk)∥2

≤ −γk
⟨∇f(xk), sign(gk)⟩

∥∇f(xk)∥1
· ∥∇f(xk)∥1 +

L0dγ
2
k

2
exp(L1

√
dγk)

+
L1dγk exp(L1

√
dγk)

2
· γk∥∇f(xk)∥1.

Let us choose γk ≤ 1
4L1d

, then we have L1dγk exp(L1

√
dγk) ≤ 1

4 and

f(xk+1)− f(xk) ≤ −γk
⟨∇f(xk), sign(gk)⟩

∥∇f(xk)∥1
· ∥∇f(xk)∥1 + L0dγ

2
k +

γk
4
∥∇f(xk)∥1.

Consequently, after summing all T steps, we obtain:
T∑

k=1

γk

[
⟨∇f(xk), sign(gk)⟩

∥∇f(xk)∥1
− 1

4

]
· ∥∇f(xk)∥1 ≤ f(x1)− f(x∗)︸ ︷︷ ︸

=∆

+ L0d

T∑
k=1

γ2k. (17)

We introduce the following terms ϕk := ⟨∇f(xk),sign(gk)⟩
∥∇f(xk)∥1

∈ [−1, 1], ψk := E[ϕk|xk] and
Dk := −γk(ϕk − ψk)∥∇f(xk)∥1. We note that Dk is a martingale difference sequence
(E[Dk|Dk−1, . . . , Dk] = 0) and satisfies

exp

(
D2

k

4γ2k∥∇f(xk)∥21

)
= exp

(
(ϕk − ψk)

2

4

)
≤ e.

Applying Measure Concentration Lemma 3 to MSD Dk with σ2
k = 4γ2k∥∇f(xk)∥21, we derive the

bound for all λ > 0 with probability at least 1− δ:
T∑

k=1

γk(ψk − 3λγk∥∇f(xk)∥1 − 1/4)∥∇f(xk)∥1 ≤ ∆+ L0d

T−1∑
k=0

γ2k +
1

λ
log(1/δ).

We use norm relation (10) and (L0, L1)-smoothness to estimate maximum gradient norm for all
k ∈ 2, T + 1 :

∥∇f(xk)∥1/
√
d ≤ ∥∇f(xk)∥2 = ∥∇f(xk)−∇f(xk−1) +∇f(xk−1)∥2

≤ ∥∇f(xk)−∇f(xk−1)∥2 + ∥∇f(xk−1)∥2
≤ (L0 + L1∥∇f(xk−1)∥2) exp(L1∥xk − xk−1∥2)∥xk − xk−1∥2 + ∥∇f(xk−1)∥2
≤ (L0 + L1∥∇f(xk−1)∥2) exp(L1

√
dγk)

√
dγk + ∥∇f(xk−1)∥2.
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At this point, we take γk ≤ 1
48L1d log 1

δ

to obtain

∥∇f(xk)∥1/
√
d ≤ 2L0

√
dγk +

∥∇f(xk−1)∥2
48

√
d log 1

δ

+ ∥∇f(xk−1)∥2

≤ 2L0

√
d

k−1∑
τ=1

γτ +

k−1∑
τ=1

∥∇f(xτ )∥2
48

√
d log 1

δ

+ ∥∇f(x1)∥2

≤ 2L0

√
d

k−1∑
τ=1

γτ +

k−1∑
τ=1

∥∇f(xτ )∥1
48

√
d log 1

δ

+ ∥∇f(x1)∥1,

γk∥∇f(xk)∥1 ≤ 2L0d · γk
k−1∑
τ=1

γτ + γk

k−1∑
τ=1

∥∇f(xτ )∥1
48 log 1

δ

+
√
dγk∥∇f(x1)∥1.

Since stepsizes γk are non-increasing, we have

γk

k−1∑
τ=1

∥∇f(xτ )∥1
48 log 1

δ

≤
k−1∑
τ=1

γτ∥∇f(xτ )∥1
48 log 1

δ

,

γk∥∇f(xk)∥1 ≤ 2L0d · γk
k−1∑
τ=1

γτ +

k−1∑
τ=1

γτ∥∇f(xτ )∥1
48 log 1

δ

+
√
dγk∥∇f(x1)∥1.

Hence, the choice λ := 1

6d(γmax∥∇f(x1)∥1+
∑T

k=1

γk∥∇f(xk)∥1
48d log 1

δ

+2CTL0)
where CT := max

k∈1,T
γk ·

k−1∑
τ=1

γτ

and γmax := max
k∈1,T

γk yields with probability at least 1− δ:

T∑
k=1

γk

(
ψk − 1

2
− 1

4

)
∥∇f(xk)∥1 ≤ ∆+ L0d

T∑
k=1

γ2k + 6
√
d(γmax∥∇f(x1)∥1 + 2CTL0) log(1/δ)

+
6

48

T∑
k=1

γk∥∇f(xk)∥1,

T∑
k=1

γk

(
ψk − 1

2
− 1

4
− 1

8

)
∥∇f(xk)∥1 ≤ ∆+ L0d

T∑
k=1

γ2k + 6
√
d(γmax∥∇f(x1)∥1 + 2CTL0) log(1/δ),

Next, we estimate each term ψk∥∇f(xk)∥1 in the previous sum:
ψk∥∇f(xk)∥1 = E

[
⟨∇f(xk), sign(gk)⟩|xk

]
= ∥∇f(xk)∥1 −

d∑
i=1

2|∇f(xk)|i · P(sign(∇f(xk))i ̸= sign(gk)i|xk). (18)

For each coordinate, we have a bound derived from Markov’s inequality (12) followed by Jensen’s
inequality (11):

P(sign(∇f(xk))i ̸= sign(gk)i|xk) ≤ P(|∇f(xk)i − gki | ≥ |∇f(xk)i||xk) ≤
Eξk [|∇f(xk)i − gki |]

|∇f(xk)i|

≤
(Eξk [|∇f(xk)i − gki |κ])

1
κ

|∇f(xk)i|
≤ σk,i

|∇f(xk)i|
. (19)

Hence, the whole sum can be bounded as
d∑

i=1

2|∇f(xk)|i · P(sign(∇f(xk))i ̸= sign(gk)i|xk) ≤ 2∥σ⃗k∥1.

Finally, we put this bound in (18) and obtain:

1

16

T∑
k=1

γk∥∇f(xk)∥1 ≤ ∆+ L0d

T∑
k=1

γ2k + 2

T∑
k=1

γk∥σ⃗k∥1

+ 6d(γmax∥∇f(x1)∥1 + 2CTL0) log(1/δ). (20)
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B.4 PROOF OF minibatch-SignSGD COMPLEXITY THEOREM 1

The proof of Theorem 1 is divided into two parts: for finite horizon with optimal tuning (Theorem 7)
and for infinite horizon with parameter-free tuning (Theorem 5).
Theorem 7 (HP complexity for minibatch-SignSGD, finite horizon, full version). Consider
lower-bounded (L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg.
2 requires the sample complexity N to achieve 1

T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε with probability at least

1− δ for:

Optimal tuning for ε ≥ 8L0

L1
: T = O

(
∆Lδ

1d
ε

)
, γk ≡ 1

48Lδ
1d
, Bk ≡

(
16∥σ⃗∥1

ε

) κ
κ−1

:

N = O

(
∆Lδ

1d

ε

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
,

Optimal tuning for ε ≤ 8L0

L1
: T = O

(
∆Lδ

0d
ε2

)
, γk ≡

√
∆

20Lδ
0dT

, Bk ≡
(

16∥σ⃗∥1

ε

) κ
κ−1

:

N = O

(
∆Lδ

0d

ε2

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
,

Parameter-free tuning for ε ≥ 8L0

L1
: T, γk ≡ γ0 ≤ 1

48Lδ
1d
, Bk ≡ max{1, B0T

2}:

N = O

(
B0

(
∆

εγ0

)3

+
1

B2
0

(
∥σ⃗∥1
ε

) 3κ
2(κ−1)

)
,

Parameter-free tuning for ε ≤ 8L0

L1
: T, γk ≡ γ0√

T
, Bk ≡ max{1, B0T}:

N = O

(
B0(∆/γ0 + Lδ

0dγ0)
4

ε4
+

1

B0

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
,

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

Proof. Plugging in constant stepsizes γk ≡ γ ≤ 1
48L1d log 1

δ

in (20) implies CT = Tγ2, γmax = γ:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 4∆

Tγ
+ 80L0dγ log(1/δ) + 8∥σ⃗k∥1 + 24

d∥∇f(x1)∥1
T

log(1/δ).

Due to Batching Lemma 4, we can estimate the κ−th moment of the batched estimate for constant
batchsizes Bk ≡ B as ∥σ⃗k∥1 ≤ 2∥σ⃗∥1

B
κ−1
κ

and derive:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 4∆

Tγ
+ 80L0dγ log(1/δ) + 8

∥σ⃗∥1
B

κ−1
κ

+ 24
d∥∇f(x1)∥1

T
log(1/δ).

We can omit the last term since its dependence on T has the largest power.

Case ε ≥ 8L0

L1
, parameter-free tuning: We use parameters T, γk = γ0, Bk = max{1, B0T

2} to
get:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 4∆

Tγ0
+ ε+ 16

∥σ⃗∥1
B

κ−1
κ

0 T
2(κ−1)

κ

+ 24
d∥∇f(x1)∥1

T
log(1/δ).

Setting such T that the first two terms become less than ε, we obtain the final complexity N =
T ·B0T

2.

Case ε ≥ 8L0

L1
, optimal tuning: We use stepsize γ = 1

48L1d log 1
δ

⇒ 80L0dγ log(1/δ) ≤ ε/2 and

batchsize 8 ∥σ⃗∥1

B
κ−1
κ

≤ ε/2 ⇒ Bk ≡ max

{
1,
(

16∥σ⃗∥1

ε

) κ
κ−1

}
. The number of iterations T is chosen

to bound the first term:
4∆

Tγ
=

192∆L1 log
1
δd

T
≤ ε

2
⇒ T = O

(
∆L1 log

1
δd

ε

)
.
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The total number of oracle calls is:

ε ≥ 8L0

L1
⇒ N = O

(
∆L1 log(1/δ)d

ε

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
.

Case ε < 8L0

L1
, parameter-free tuning: We use parameters T, γk = γ0√

T
, Bk = max{1, B0T} to

get:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 4∆√
Tγ0

+ 80
L0dγ0√

T
log(1/δ) + 8

∥σ⃗∥1
B

κ−1
κ

0 T
κ−1
κ

+ 24
d∥∇f(x1)∥1

T
log(1/δ).

Setting such T that the first two terms become less than ε, we obtain the final complexityN = T ·B0T.

Case ε < 8L0

L1
, optimal tuning: We set the same batchsize 8 ∥σ⃗∥1

B
κ−1
κ

≤ ε/2 ⇒ Bk ≡

max

{
1,
(

16∥σ⃗∥1

ε

) κ
κ−1

}
. The stepsize γ is set to minimize the sum:

min
γ

[
4∆

Tγ
+ 80L0dγ log(1/δ)

]
= 2

√
320∆L0d log(1/δ)

T
,

it means that the stepsize γ =
√

4∆
80TL0 log(1/δ)d . The number of iterations T is chosen to satisfy

2

√
320∆L0 log(1/δ)d

T
≤ ε

2
⇒ T = O

(
∆L0 log(1/δ)d

ε2

)
.

We only need to check whether condition γ ≤ 1
48L1d log 1

δ

holds:

γ =

√
4∆

80TL0 log(1/δ)d
=

√
4∆

T

1

80L0 log(1/δ)d

≤ ε

4

1

80L0 log(1/δ)d
≤ 8L0

4L1

1

80L0 log(1/δ)d

≤ 1

48L1d log
1
δ

.

Hence, we have the following bound for sample complexity

ε <
8L0

L1
⇒ N = O

(
∆L0 log(1/δ)d

ε2

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
. (21)

Proof. Proof of Parameter-free Tuning Theorem 5 First, we derive upper bound for new min metric
with non-constant parameters:

min
k∈1,T

∥∇f(xk)∥1 ≤

T∑
k=1

γk∥∇f(xk)∥1

T∑
k=1

γk

=
∆

T∑
k=1

γk

+ L0d

T∑
k=1

γ2k

T∑
k=1

γk

+

2
T∑

k=1

γk∥σ⃗∥1/B
κ−1
κ

k

T∑
k=1

γk

+ 6d(γmax∥∇f(x1)∥1 + 2CTL0)
log(1/δ)

T∑
k=1

γk

.
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Case ε ≥ 8L0

L1
, optimal tuning. If we consider only first T ≤ 64∆Lδ

1L1d
2

L0
steps with constant

stepsizes γk = 1
48Lδ

1d
and increasing batchsizes Bk = (16k)

κ
κ−1 , we get

T∑
k=1

γk =
T

48Lδ
1d
,

T∑
k=1

γ2k =
T

(48Lδ
1d)

2
, γmax =

1

48Lδ
1d
,CT =

T

(48Lδ
1d)

2
,

T∑
k=1

1

B
κ−1
κ

k

=

T∑
k=1

1

16k
≤ lnT

16
,

min
k∈1,T

∥∇f(xk)∥1 ≤ 48∆Lδ
1d

T
+

24Lδ
0d

48Lδ
1d

+
2∥σ⃗∥1
T

lnT

16
≤ ε.

The term 24Lδ
0d

48Lδ
1d

≤ ε
16 is bounded by condition, and the number of iterations T = Õ

(
(∆Lδ

1d+∥σ⃗∥1)
ε

)
is enough to bound the other terms. The total sample complexity is

T∑
k=1

Bk =

T∑
k=1

(16k)
κ

κ−1 ≤ (16T )
2κ−1
κ−1 = Õ

( (∆Lδ
1d+ ∥σ⃗∥1)
ε

) 2κ−1
κ−1

 . (22)

Case ε≪ 8L0

L1
, optimal tuning. In this case, the first 64L1L

δ
1d

2

L0
steps can be neglected, and we use

decreasing stepsizes γk =
√

∆
20dLδ

0k
and increasing batchsizes Bk = (16k)

κ
2(κ−1) to get

T∑
k=1

γk = 2

√
∆T

20Lδ
0d
,

T∑
k=1

γ2k =
∆ lnT

20Lδ
0d
, γmax =

1

48Lδ
1d
,CT =

∆

20Lδ
0d
,

T∑
k=1

γk

B
κ−1
κ

k

=

√
∆

20Lδ
0d

T∑
k=1

1√
k

1

4
√
k
≤

√
∆

256Lδ
0d

lnT,

min
k∈1,T

∥∇f(xk)∥1 ≤
√

80Lδ
0d

T
+

√
∆Lδ

0d

20T
lnT + 2

∥σ⃗∥1 lnT√
T

+

√
∆Lδ

0d

20T
≤ ε.

Hence, the number of iterations T = Õ
(

(∆Lδ
0d+∥σ⃗∥2

1)
ε2

)
is enough to bound the sum. The total

sample complexity is

T∑
k=1

Bk =

T∑
k=1

(16k)
κ

2(κ−1) ≤ (16T )
3κ−2

2(κ−1) = Õ

( (∆Lδ
0d+ ∥σ⃗∥21)
ε2

) 3κ−2
2(κ−1)

 . (23)

Case ε ≥ 8L0

L1
, parameter-free tuning. If we consider only first T steps until plateau 8L0

L1
, we use

constant stepsizes γk = γ0 ≤ 1
48Lδ

1d
and increasing batchsizes Bk = B0k

2 to get

T∑
k=1

γk = Tγ0,

T∑
k=1

γ2k = Tγ20 , γ
max = γ0, CT = Tγ0,

T∑
k=1

1

B
κ−1
κ

k

=

T∑
k=1

1

(
√
B0k)

2(κ−1)
κ

≤ T
2−κ
κ lnT

B
κ−1
κ

0

,

min
k∈1,T

∥∇f(xk)∥1 ≤ ∆

γ0T
+ 24Lδ

0dγ0 +
2∥σ⃗∥1

(T
√
B0)

2(κ−1)
κ

lnT ≤ ε.

The term 24Lδ
0dγ0 ≤ ε

16 is bounded by condition, and the number of iterations T =

Õ

((
∆
γ0ε

)
+ 1

B0

(
∥σ⃗∥1

ε

) κ
2(κ−1)

)
is enough to bound the other terms. The total sample complexity is

T∑
k=1

Bk =

T∑
k=1

B0k
2 ≤ B0T

3 = Õ

(
B0

(
∆

γ0ε

)3

+
1

B2
0

(
∥σ⃗∥1
ε

) 3κ
2(κ−1)

)
.
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Case ε≪ 8L0

L1
, parameter-free tuning. In this case, the first 64∆L1L

δ
1d

2

L0
steps can be neglected, and

we use decreasing stepsizes γk = γ0√
k

and increasing batchsizes Bk = B0k to get

T∑
k=1

γk = γ0
√
T ,

T∑
k=1

γ2k = γ20 lnT, γ
max = γ0, CT = γ20 ,

T∑
k=1

γk

B
κ−1
κ

k

=
γ0

B
κ−1
κ

0

T∑
k=1

1

k
3κ−2
2κ

≤ γ0

B
κ−1
κ

0

T
2−κ
2κ lnT,

min
k∈1,T

∥∇f(xk)∥1 ≤ ∆

γ0
√
T

+ Lδ
0dγ0

lnT√
T

+
∥σ⃗∥1 lnT

B
κ−1
κ

0 T
κ−1
κ

≤ ε.

Hence, the number of iterations T = Õ

(
(Lδ

0γ0d+∆/γ0)
2

ε2 + 1
B0

(
∥σ⃗∥1

ε

) κ
κ−1

)
is enough to bound the

sum. The total sample complexity is

T∑
k=1

Bk =

T∑
k=1

B0k ≤ B0T
2 = Õ

(
B0(L

δ
0γ0d+∆/γ0)

4

ε4
+

1

B0

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
. (24)

B.5 PROOF OF MajorityVote-SignSGD COMPLEXITY THEOREM 2

We start this section with a general lemma on convergence of MajorityVote-SignSGD. The proof
of Theorem 2 is located after the lemma and divided into two parts: for finite horizon with optimal
tuning (Theorem 8) and for infinite horizon with parameter-free tuning (Theorem 6).

Lemma 7 (MajorityVote-SignSGD Convergence Lemma). Consider lower-bounded (L0, L1)-
smooth function f (As. 1, 2) and HT unimodal and symmetric gradient estimates κ > 0 (As. 3).
Then Alg. 3 after T iterations with non-increasing stepsizes γk ≤ 1/(48L1d log

1
δ ) and batchsizes

Mk ≥ 160/κ2 achieves with probability at least 1− δ:

T∑
k=1

γk
16

∥∇f(xk)∥1 ≤ ∆+L0d

T∑
k=1

γ2k+2

T∑
k=1

γk
∥σ⃗∥1√
Mk

+6d(γ1∥∇f(x1)∥1+2CTL0) log
1

δ
, (25)

where CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ and ∆ = f(x1)− f∗.

Proof. The beginning of this proof exactly copies the proof of SignSGD Convergence Lemma
(Appendix B.3) until equality (18). We have to estimate the probability of failure of majority voting
for each coordinate j conditioned on xk, namely,

P

sign(∇f(xk))j ̸= sign

[
Mk∑
i=1

sign(gki )

]
j

 , gki = ∇f(xk, ξki ).

We use the generalized Gauss’s Inequality about distribution of unimodal symmetric random variables
(Dharmadhikari & Joag-Dev, 1986, Theorem 1).

Lemma 8 (Gauss’s Inequality). Let a random variable ξ be unimodal symmetric with mode ν and
bounded κ-th moment, κ > 0. Then the following bounds hold:

P [|ξ − ν| ≥ τ ] ≤


(

κ
κ+1

)κ E[|ξ−ν|]κ
τκ , τκ ≥ κκ

(κ+1)κ−1 · E[|ξ − ν|κ],

1−
[

τκ

(κ+1)E[|ξ−ν|]κ

] 1
κ

, τκ ≤ κκ

(κ+1)κ−1 · E[|ξ − ν|κ].
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We use Gauss’s Inequality for each variable gki,j = ∇f(xk, ξki )j satisfying the symmetry requirement

from the theorem’s statement. We denote Sj :=
|∇f(xk)j |

σj
and bound

P
[
sign(∇f(xk)j) ̸= sign(gki,j)

]
= P

[
gki,j −∇f(xk)j ≥ |∇f(xk)j |

]
=

1

2
P
[
|gki,j −∇f(xk)j | ≥ |∇f(xk)j |

]
≤


1
2

(
κ

κ+1

)κ σκ
j

|∇f(xk)j |κ , |∇f(xk)j |κ ≥ κκ

(κ+1)κ−1 · σκ
j ,

1
2 − 1

2

[
|∇f(xk)j |κ
(κ+1)σκ

j

] 1
κ

, |∇f(xk)j |κ ≤ κκ

(κ+1)κ−1 · σκ
j ,

≤


1
2

(
κ

κ+1

)κ
1
Sκ
j
, Sκ

j ≥ κκ

(κ+1)κ−1 ,

1
2 − 1

2
Sj

(κ+1)
1
κ
, Sκ

j ≤ κκ

(κ+1)κ−1 ,

We denote probability of failure of a single estimate by

qj := P
[
sign(∇f(xk)j) ̸= sign(gki,j)

]
≤


1
2

(
κ

κ+1

)κ
1
Sκ
j
, Sκ

j ≥ κκ

(κ+1)κ−1 ,

1
2 − 1

2
Sj

(κ+1)
1
κ
, Sκ

j ≤ κκ

(κ+1)κ−1 ,

=: q̃j(Sj). (26)

Moreover, this probability qj ≤ q̃j(Sj) <
1
2 , and the deviation of qj from 1

2 can be bounded by

εj :=
1

2
− qj ≤

1

2
− q̃j(Sj) =: ε̃j(Sj).

The probability of getting the wrong sign can be restated as the probability of failing half out of Mk

Bernoulli trials with fail probability qj :

P

[
sign(∇f(xk)j) ̸= sign

[
Mk∑
i=1

sign(gki,j)

]]
≤ 1

1 + Mk
1

4ε2
j

−1

<
1

1 + Mk
1

4ε̃2
j
(Sj)

−1

. (27)

• First, we consider the case Sj ≥ κ

(κ+1)
κ−1
κ

:

ε̃2j (Sj) =

(
1

2
− 1

2

(
κ

κ+ 1

)κ
1

Sκ
j

)2

≥ 1

4

κ2

(κ+ 1)2
,

1

4ε̃2j (Sj)
− 1 ≤ (κ+ 1)2

κ2
− 1 ≤ 5

κ2
.

If we set Mk ≥ 160
κ2 , then the fail probability is upper bounded by

P

[
sign(∇f(xk)j) ̸= sign

[
Mk∑
i=1

sign(gki,j)

]]
<

1

1 + Mk
1

4ε̃2
j
(Sj)

−1

≤ 1

32
. (28)

• For the case Sj <
κ

(κ+1)
κ−1
κ

, we derive the bound:

1

4ε̃2j (Sj)
− 1 =

(κ+ 1)
2
κ

S2
j

− 1 ≤ 4

S2
j

. (29)

And we use the inequality 1
1+x2 ≤ 1

2x , x > 0 on (27):

(27) ≤

√
1

4ε̃2j (Sj)
− 1

2
√
Mk

≤ 1√
Mk

· 1

Sj
. (30)
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Combining (28) and (30) together, we obtain the bound for each coordinate:

P

[
sign(∇f(xk)j) ̸= sign

[
Mk∑
i=1

sign(gki,j)

]]
≤ 1

32
+

1√
Mk

· 1

Sj
=

1

32
+

1√
Mk

σj
|∇f(xk)j |

. (31)

The rest of this proof is copying the proof of SignSGD Convergence Lemma (Appendix B.3) until
the equality (18). There we replace probability of single estimate with the majority voting and obtain:

d∑
j=1

|∇f(xk)|j · P

[
sign(∇f(xk)j) ̸= sign

[
Mk∑
i=1

sign(gki,j)

]]
≤ ∥∇f(xk)∥1

32
+

∥σ⃗∥1√
Mk

instead of
d∑

j=1

|∇f(xk)|j · P(sign([∇f(xk))]j ̸= [sign(gk)]j) ≤
∥σ⃗∥1
B

κ−1
κ

k

.

Hence, the final bound on the sum of ℓ1-norm of gradients with probability at least 1− δ is

1

16

T∑
k=1

γk∥∇f(xk)∥1 ≤ ∆+ L0d

T∑
k=1

γ2k + 2
T∑

k=1

γk
∥σ⃗∥1√
Mk

1

32

T∑
k=1

γk∥∇f(xk)∥1

+ 6d(γmax∥∇f(x1)∥1 + 2CTL0) log(1/δ), Mk ≥ 160

κ2
.

Theorem 8 (HP complexity for MajorityVote-SignSGD, finite horizon). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2) and the gradient estimates corrupted by unimodal and
symmetric HT noise with κ > 0 (As. 3). Then Alg. 3 requires the sample complexity N to achieve
1
T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε with probability at least 1− δ for:

Optimal tuning for ε > 8L0

L1
: T = O

(
∆Lδ

1d
ε

)
, γk ≡ 1

48Lδ
1d
,Mk ≡ max

{
160
κ2 ,

216∥σ⃗∥2
1

ε2

}
:

N = O

(
∆Lδ

1d

ε

[
1

κ2
+

(
∥σ⃗∥1
ε

)2
])

,

Optimal tuning for ε ≤ 8L0

L1
: T = O

(
∆Lδ

0d
ε2

)
, γk ≡

√
∆

80Lδ
0dT

,Mk ≡ max
{

160
κ2 ,

216∥σ⃗∥2
1

ε2

}
:

N = O

(
∆Lδ

0d

ε2

[
1

κ2
+

(
∥σ⃗∥1
ε

)2
])

,

Parameter-free tuning for ε ≤ 8L0

L1
: T, γk ≡ γ0√

T
,Mk ≡ max{160/κ2,M0T}:

N = O

(
M0(∆/γ0 + Lδ

0dγ0)
4

ε4
+

1

M0

(
∥σ⃗∥1
ε

)4
)
,

Parameter-free tuning for ε ≥ 8L0

L1
: T, γk ≡ γ0 ≤ 1

48Lδ
1d
,Mk ≡ max{160/κ2,M0T

2}:

N = O

(
M0

(
∆

εγ0

)3

+
1

M2
0

(
∥σ⃗∥1
ε

)3
)
,

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

Proof. Plugging in constant stepsizes γk ≡ γ implies CT = Tγ2, γmax = γ into the bound (25)
from Convergence Lemma 7, we have :

1

2T

T∑
k=1

∥∇f(xk)∥1 ≤ 16∆

Tγ
+ 192L0dγ log(1/δ) +

32∥σ⃗∥1√
Mk

+ 96
d∥∇f(x1)∥1

T
log(1/δ). (32)
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Case ε > 8L0

L1
, parameter-free tuning: We use parameters T, γk = γ0,Mk =

max{160/κ2,M0T
2} to get:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 16∆

Tγ0
+ 32

∥σ⃗∥1√
M0T

+ 96
d∥∇f(x1)∥1

T
log(1/δ).

Setting such T that the first two terms become less than ε, we obtain the final complexity N =
T ·M0T

2.

Case ε ≥ 8L0

L1
, optimal tuning: We use stepsize γ = 1

400L1d log 1
δ

⇒ 192L0dγ log(1/δ) ≤ ε/2 and

batchsize 32 ∥σ⃗∥1√
Mk

≤ ε/4 ⇒Mk ≡ max

{
160
κ2 ,

(
128∥σ⃗∥1

ε

)2}
. The number of iterations T is chosen

to bound the first term:

16∆

Tγ
=

2560∆L1 log
1
δd

T
≤ ε

4
⇒ T = O

(
∆L1 log

1
δd

ε

)
.

The total number of oracle calls is:

N = O

(
∆L1 log(1/δ)d

ε

[
1

κ2
+

(
∥σ⃗∥1
ε

)2
])

.

Case ε < 8L0

L1
, parameter-free tuning: We use parameters T, γk = γ0√

T
,Mk =

max{160/κ2,M0T} to get:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 16∆√
Tγ0

+ 192
L0dγ0√

T
log(1/δ) + 32

∥σ⃗∥1√
M0T

+ 96
d∥∇f(x1)∥1

T
log(1/δ).

Setting such T that the first two terms become less than ε, we obtain the final complexity N =
T ·M0T.

Case ε < 8L0

L1
, optimal tuning: We set the same batchsize 32 ∥σ⃗∥1√

Mk
≤ ε/4 ⇒ Mk ≡

max

{
160
κ2 ,

(
128∥σ⃗∥1

ε

)2}
. The stepsize γ is set to minimize the sum:

min
γ

[
16∆

Tγ
+ 192L0dγ log(1/δ)

]
= 2

√
3200∆L0d log(1/δ)

T
,

it means that the stepsize γ =
√

4∆
80TL0 log(1/δ)d . The number of iterations T is chosen to satisfy

2

√
3200∆L0 log(1/δ)d

T
≤ ε

2
⇒ T = O

(
∆L0 log(1/δ)d

ε2

)
.

We only need to check whether condition γ ≤ 1
48L1d log 1

δ

holds:

γ =

√
4∆

80TL0 log(1/δ)d
=

√
4∆

T

1

80L0 log(1/δ)d

≤ ε

4

1

80L0 log(1/δ)d
≤ 8L0

4L1

1

80L0 log(1/δ)d

≤ 1

48L1d log
1
δ

.

Hence, we have the following bound for sample complexity

N = O

(
∆L0 log(1/δ)d

ε2

[
1

κ2
+

(
∥σ⃗∥1
ε

)2
])

. (33)
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B.6 PROOF OF M-SignSGD COMPLEXITY THEOREM 3

Theorem 9 (Complexity for M-SignSGD in expectation, full version). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 4 requires T
iterations to achieve 1

T

∑T
k=1 E

[
∥∇f(xk)∥1

]
≤ ε starting with ∆ = f(x1)− f∗:

Optimal tuning for ε ≥ 3L0

L1
: βk ≡ 1−min

{
1,
(

∆L1

√
d

T∥σ⃗∥1

) κ
2κ−1

}
, γk ≡ 1−βk

8
1

L1d

T = O

(
∆L1d

ε

(
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

))
,

Optimal tuning for ε < 3L0

L1
: 1− βk ≡ 1−min

{
1,
(

∆L0

T∥σ⃗∥2
1

) κ
3κ−2

}
, γk ≡

√
∆(1−βk)
TL0d

T = O

(
∆L0d

ε2

(
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

))
,

Parameter-free tuning for ε ≥ 3L0

L1
: T, βk ≡ 1− 1/T

2
3 , γk ≡ γ0(1− βk), γ0 ≤ 1/8dL1:

T = O

((
∆

γ0ε

)3

+

(
∥σ⃗∥1
ε

) 3κ
2(κ−1)

)
,

Parameter-free tuning for ε < 3L0

L1
: T, βk ≡ 1− 1/

√
T , γk ≡ γ0T

− 3
4 :

T = O

(
(∆/γ0 + L0dγ0)

4

ε4
+

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
.

In this proof, we generalize the proof of Theorem 1 from (Sun et al., 2023) for HT noise.

Proof. Consider the k-th step of M-SignSGD. We use (L0, L1) step update Lemma 5 to estimate:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥2
2

exp(L1∥xk+1 − xk∥2)∥xk+1 − xk∥22

≤ −γk∥∇f(xk)∥1 + 2γk∥ϵk∥2 +
L0dγ

2
k

2
exp(L1

√
dγk)

+
L1dγk exp(L1

√
dγk)

2
· γk∥∇f(xk)∥1. (34)

Since we set constant steps sizes and momentum, we denote them as γ ≡ γk and β ≡ βk, respectively.
We use notations ϵk := mk − ∇f(xk) and θk := gk − ∇f(xk). Therefore, we have at k-th step
values:

mk = βmk−1 + (1− β)gk = β(ϵk−1 +∇f(xk−1)) + (1− β)(θk +∇f(xk)),
ϵk = mk −∇f(xk) = βϵk−1 + β(∇f(xk−1)−∇f(xk)︸ ︷︷ ︸

=:sk

) + (1− β)θk,

ϵk = mk −∇f(xk) = βϵk−1 + βsk + (1− β)θk.

Unrolling the recursion, we obtain an explicit formula (upper index of β is its power):

ϵk = βk−1ϵ1 +

k∑
i=2

βk−i+1si + (1− β)

k∑
i=2

βk−iθi. (35)

From (L0, L1)−smoothness of the function f (Lemma 2) follows the bound:

∥sk∥2 ≤ (L0+L1∥∇f(xk)∥2) exp(L1∥xk−xx+1∥2)∥xk−xk+1∥2 = (L0+L1∥∇f(xk)∥2) exp(L1γk
√
d)γk

√
d
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Denote λ := exp(L1γk
√
d)γk

√
d. Hence, the norm of (35) can be bounded as:

∥ϵk∥1 ≤ βk−1∥ϵ1∥1 + L0λ

k∑
i=2

βk−i+1 + L1λ

k∑
i=2

βk−i+1∥∇f(xk)∥1 + (1− β)∥
k∑

i=2

βk−iθi∥1.

We notice that variables {θi} are martingale difference sequence from Lemma 4 which we plan to
use. Due to the formal definition of θi = gi −∇f(xi) = ∇f(xi, ξi) −∇f(xi) and M-SingSGD
step, the conditioning on θi−1, . . . , θ1 with randomness ξ1, . . . , ξi−1 is equivalent to the conditioning
on point s xi, . . . , x2. Hence, we show by definition of martingale difference sequence that

E[θi|θi−1, . . . , θ1] = E[θi|xi, . . . , x2] = E[∇f(xi, ξi)−∇f(xi)|xi, . . . , x2] = 0.

To take math expectation from both sides, we first take it from the term

E

[
∥

k∑
i=2

βk−iθi∥2

]
≤

(
E

[
∥

k∑
i=2

βk−iθi∥κ1

]) 1
κ

Lem. 4
≤

(
k∑

i=2

2E
[
∥β(k−i)θi∥κ1

]) 1
κ

≤

(
k∑

i=2

2βκ(k−i)E
[
∥θi∥κ1

]) 1
κ

.

For each i ∈ 2, T , we estimate E
[
∥θi∥κ2

]
as

E
[
∥θi∥κ1

] (10)
≤ E

[
∥θi∥κκ

]
= E

 d∑
j=1

|gkj −∇f(xk)j |κ
 As.3

≤
d∑

j=1

σκ
j = ∥σ⃗∥κκ. (36)

We continue bounding (36) with

(36) ≤

(
k∑

i=2

2βκ(k−i)∥σ⃗∥κ1

) 1
κ

≤ 2∥σ⃗∥1
(1− βκ)

1
κ

.

Therefore, the final math expectation can be calculated as:

E∥ϵk∥2 ≤ βk−1E∥ϵ1∥2 +
L0λβ

1− β
+ L1λ

k∑
i=2

βk−i+1E∥∇f(xk)∥2 +
2(1− β)∥σ⃗∥1
(1− βκ)

1
κ

. (37)

Then, we take math expectation from (34):

E[f(xk+1)]− E[f(xk)] ≤ −γE[∥∇f(xk)∥1] + 2γβk−1E∥ϵ1∥2

+ L0λ
2γβ

1− β
+ L1λ2γ

k∑
i=2

βk−i+1E∥∇f(xk)∥1 +
4γ(1− β)∥σ⃗∥1
(1− βκ)

1
κ

+
L0

√
dγ

2
λ+

L1

√
dγ

2
λE∥∇f(xk)∥1.

Summing it over k, we derive

f∗ − f(x1) ≤ −γ
T∑

k=1

E∥∇f(xk)∥1 + 2γ

T∑
k=1

βk−1E∥ϵ1∥2 + L0Tλ
2γβ

1− β

+ L1λ2γ

T∑
k=1

k∑
i=2

βk−i+1E∥∇f(xi)∥1 +
4γT (1− β)∥σ⃗∥1

(1− βκ)
1
κ

+
L0T

√
dγ

2
λ+

L1

√
dγ

2
λ

T∑
k=1

E∥∇f(xk)∥1. (38)
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Changing the order of summation in the right part of (38), we obtain:

2γL1λ

T∑
k=1

(
k∑

i=2

βk−i+1E∥∇f(xi)∥1

)
= 2γL1λ

T∑
i=2

(
T∑

k=i

βk−i+1E∥∇f(xi)∥1

)

= 2γL1λ

T∑
i=2

β−i

(
T∑

k=i

βk+1

)
E∥∇f(xi)∥1

= 2γL1λ

T∑
i=2

β−i+1βi

(
1− βT−i

1− β

)
E∥∇f(xi)∥1

≤ 2γL1λ

T∑
i=2

β

(
1

1− β

)
E∥∇f(xi)∥1.

Finally, we have the bound

f∗ − f(x1) ≤ −γ
T∑

k=1

E∥∇f(xk)∥1 +
2γE∥ϵ1∥2
1− β

+ 2γL1λ · β

1− β

T∑
k=1

E∥∇f(xk)∥1 +
4γT (1− β)∥σ⃗∥1

(1− βκ)1/κ

+
L0T

√
dγ

2
λ+ L0Tλ

2γβ

1− β
+
L1

√
dγ

2
λ

T∑
k=1

E∥∇f(xk)∥1

≤

(
−γ +

2γL1λβ

1− β
+
L1

√
dγ

2
λ

)
T∑

k=1

E∥∇f(xk)∥1

+
2γE∥ϵ1∥2
1− β

+
4γT (1− β)∥σ⃗∥1

(1− βκ)1/κ
+
L0T

√
dγ(1 + 3β)

2(1− β)
λ. (39)

Evaluate L0T
√
dγ(1+3β)

2(1−β) λ ≤ 2L0T
√
dγ

(1−β) λ. Let us set stepsize γ such that

2γL1λ
√
dβ

1− β
+
L1

√
dγ

2
λ ≤ 3γ2L1d exp(L1dγ)

1− β
≤ γ/2 ⇒ γ ≤ 1− β

8

1

L1d
.

Thus, we obtain

f∗ − f(x1) ≤ −γ
2

T∑
k=1

E∥∇f(xk)∥1 +
2γE∥ϵ1∥1
1− β

+ 4γT (1− β)
κ−1
κ ∥σ⃗∥1 +

L0Tdγ
22

(1− β)
,

1

T

T∑
k=1

E∥∇f(xk)∥1 ≤ 2(f∗ − f(x1))

γT
+

4E∥ϵ1∥1
T (1− β)

+ 8(1− β)
κ−1
κ ∥σ⃗∥1 +

4L0dγ

(1− β)
. (40)

Case ε ≥ 3L0

L1
, parameter-free tuning: We set 1 − β = 1

T
2
3
, γ = γ0(1−β)

16d
3
2

, omit the the smaller
terms and obtain

1

T

T∑
k=1

E∥∇f(xk)∥1 ≤ 32∆d
3
2

γ0T
1
3

+
16∥σ⃗∥1
T

2(κ−1)
3κ

+
ε

4
.

Next, we choose T to limit 32∆d
3
2

γ0T
1
3

≤ ε
2 and 16∥σ⃗∥1

T
2(κ−1)

3κ

≤ ε
4 :

T = O

(∆d
3
2

γ0ε

)3

+

(
∥σ⃗∥1
ε

) 3κ
2(κ−1)

 .
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Case ε ≥ 3L0

L1
, optimal tuning: We choose the stepsize γ = 1−β

8
1

L1d
≤ 1−β

8
1

L1d
and get:

1

T

T∑
k=1

E∥∇f(xk)∥1 ≤ 16∆L1d

T (1− β)
+

4E∥ϵ1∥1
T (1− β)

+ 8(1− β)
κ−1
κ ∥σ⃗∥1 +

4L0

L1

≤ 16(∆L1 + E∥ϵ1∥1)d
T (1− β)

+ 8(1− β)
κ−1
κ ∥σ⃗∥1 +

4ε

3
.

Then, we choose 1− β = min

{
1,
(

∆L1

√
d

T∥σ⃗∥1

) κ
2κ−1

}
to obtain

min
β∈[0,1)

[
16∆L1d

T (1− β)
+ 8

√
d(1− β)

κ−1
κ ∥σ⃗∥1

]
≤ 24

√
d

(
∆L1

√
d

T

) κ−1
2κ−1

∥σ⃗∥
κ

2κ−1

1 +
24∆L1d

T
. (41)

Finally, we choose number of iterations T to get:

24

(
∆L1

√
d

T

) κ−1
2κ−1

∥σ⃗∥
κ

2κ−1

1 +
24∆L1d

T
≤ ε⇒ T = O

(
∆L1d

ε

(
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

))
.

Case ε ≤ 3L0

L1
, parameter-free tuning: We set 1− β = 1√

T
, γ = γ0T

− 3
4 and obtain

1

T

T∑
k=1

E∥∇f(xk)∥1 ≤ 2∆

γ0T
1
4

+
4Ldγ0

T
1
4

+
8∥σ⃗∥1
T

κ−1
2κ

+
4∥ϵ1∥1
T

1
2

.

Next, we choose T to limit 2∆/γ0+4Ldγ0

T
1
4

≤ ε
2 and 8∥σ⃗∥1

T
κ−1
2κ

≤ ε
2 .

Case ε ≤ 3L0

L1
, optimal tuning: We choose stepsize γ =

√
∆(1−β)
2TL0d

to minimize the sum

min
γ

[
2(f∗ − f(x1))

γT
+

4L0dγ

(1− β)

]
= 4

√
2∆L0d

T (1− β)
,

1

T

T∑
k=1

E∥∇f(xk)∥1 ≤ 4E∥ϵ1∥1
T (1− β)

+ 4

√
2∆L0d

T (1− β)
+ 8(1− β)

κ−1
κ ∥σ⃗∥1. (42)

The first term is much smaller than the second one, hence we omit it. Next, we choose 1 − β =

min

{
1,
(

∆L0

T∥σ⃗∥2
1

) κ
3κ−2

}
to minimize the last two terms:

min
β∈[0,1)

[
4

√
2∆L0d

T (1− β)
+ 8(1− β)

κ−1
κ ∥σ⃗∥1

]
≤ 12

(
∆L0

T

) κ−1
3κ−2

∥σ⃗∥
κ

3κ−2

1 + 12

√
∆L0d

T
.

Finally, we choose number of iterations T to satisfy:

12

(
∆L0

T

) κ−1
3κ−2

∥σ⃗∥
κ

3κ−2

1 + 12

√
∆L0d

T
≤ ε

2
⇒ T = O

(
∆L0d

ε2

(
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

))
. (43)

We only need to check that

γ =

√
∆(1− β)

TL0d
=

√
∆L0d

T (1− β)

(1− β)

L0d
≤ ε

2 · 12
(1− β)

L0d

ε≤ 3L0
L1

≤ (1− β)

L1d
.
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B.7 PROOF OF PARAMETER-FREE M-SignSGD COMPLEXITY THEOREM 4

Proof. We denote the error between momentum and gradient as ϵk := mk − ∇f(xk), and the
stochastic gradient noise as θk := gk −∇f(xk).
By the momentum update rule:

mk = βkm
k−1 + (1− βk)g

k,

we can write:

ϵk = mk −∇f(xk) = βkϵ
k−1 + βk(∇f(xk−1)−∇f(xk)) + (1− βk)θ

k.

Define sk := ∇f(xk−1)−∇f(xk). Then,

ϵk = βkϵ
k−1 + βks

k + (1− βk)θ
k.

Unfolding the recursion yields:

ϵk =

k∏
j=1

βj · ϵ0 +
k∑

i=1

 k∏
j=i+1

βj

βis
i +

k∑
i=1

 k∏
j=i+1

βj

 (1− βi)θ
i.

Let us denote the coefficients:

wi :=

 k∏
j=i+1

βj

 , so that ϵk = w0ϵ
0 +

k∑
i=1

wiβis
i +

k∑
i=1

wi(1− βi)θ
i.

From (L0, L1)-smoothness, the gradient difference satisfies:

∥sk∥2 ≤ (L0 + L1∥∇f(xk)∥2) · exp(L1∥xk − xk−1∥2) · ∥xk − xk−1∥2.

Let us define:
λk := exp(L1γk

√
d) · γk

√
d,

which leads to:
∥sk∥2 ≤ (L0 + L1∥∇f(xk)∥2) · λk.

Now, using triangle inequality:

∥ϵk∥1 ≤ w0∥ϵ0∥1 +
k∑

i=1

wiβi∥si∥1 +

∥∥∥∥∥
k∑

i=1

wi(1− βi)θ
i

∥∥∥∥∥
1

.

We aim to estimate the following sum involving martingale difference sequence θi:

E

[∥∥∥∥∥
k∑

i=1

wi(1− βi)θ
i

∥∥∥∥∥
2

]
, where wi :=

k∏
j=i+1

βj .

We note that {θi} is a martingale difference sequence, i.e.,

E[θi | θi−1, . . . , θ1] = 0.

Hence, by using the generalized version of the triangle inequality (Minkowski) and applying Lemma 4
for heavy-tailed noise, we get:

E

[∥∥∥∥∥
k∑

i=1

wi(1− βi)θ
i

∥∥∥∥∥
2

]
≤

(
k∑

i=1

wκ
i (1− βi)

κE∥θi∥κ2

)1/κ

≤ 2∥σ⃗∥1 ·

(
k∑

i=1

wκ
i (1− βi)

κ

)1/κ

.
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Define the term:

Sk :=

k∑
i=1

 k∏
j=i+1

βj

κ

(1− βi)
κ.

Assume βj = 1− 1
jq for some q ∈ (0, 1).

E[f(xk+1)]− E[f(xk)] ≤ −γkE[∥∇f(xk)∥1] + 2γkw0E∥ϵ0∥2

+ 2γk

k∑
i=1

wiβiλi
(
L0 + L1E∥∇f(xi)∥2

)
+ 2γk∥σ⃗∥1 · S1/κ

k

+
L0

√
dγk
2

λk +
L1

√
dγk
2

λkE[∥∇f(xk)∥2].

E[f∗]− E[f(x1)] ≤ −
T∑

k=1

γkE[∥∇f(xk)∥1] + 2

T∑
k=1

γkw0E∥ϵ0∥1

+ 2

T∑
k=1

γk

k∑
i=1

wiβiλiL0 + 2

T∑
k=1

γk

k∑
i=1

wiβiλiL1E∥∇f(xi)∥2

+ 2∥σ⃗∥1
T∑

k=1

γkS
1/κ
k

+
L0

√
d

2

T∑
k=1

γkλk +
L1

√
d

2

T∑
k=1

γkλkE[∥∇f(xk)∥2].

We now aim to estimate the term with the S1/κ
k part.

T∑
k=1

γkS
1/κ
k = γ0

T∑
k=1

k−r

 k∑
i=1

 k∏
j=i+1

βj

κ

(1− βi)
κ

1/κ

= γ0

T∑
k=1

k−r

 k∑
i=1

 k∏
j=i+1

(
1− 1

jq

)κ

i−qκ

1/κ

Then by (ii) (Lemma 6) from (Hübler et al., 2024a) to estimate the term inside the sum, we have∑b
t=a t

−p
∏b

τ=t+1(1− τ−q) ≤ 2 exp
(

1
1−q

)
(b+ 1)q−p. Thus:

 k∑
i=1

 k∏
j=i+1

(
1− 1

jq

)κ

i−qκ

1/κ

⩽

 k∑
i=1

k∏
j=i+1

(
1− 1

jq

)
i−qκ

1/κ

⩽ 2e2/κ(k + 1)(q−qκ)1/κ

⩽ 2e2/κk(q−qκ)1/κ

Thus:
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T∑
k=1

γkS
1/κ
k = γ0

T∑
k=1

k−r

 k∑
i=1

 k∏
j=i+1

βj

κ

(1− βi)
κ

1/κ

⩽ 2γ0e
2/κ

T∑
k=1

k(q−qκ)1/κ−r ⩽ 2γ0e
2/κT

1
2κ− 1

4

1
2κ − 1

4

= 2γ0e
2/κT

2−κ
4κ

2−κ
4κ

Hense, we get:

E[f∗]− E[f(x1)] ≤
T∑

k=1

E[∥∇f(xk)∥1]

(
−γk +

L1

√
d

2
γkλk + 2

√
dL1γk

k∑
i=1

wiβiλi

)

+ 2

T∑
k=1

γkw1E∥ϵ1∥1

+ 2
√
dL0

T∑
k=1

γk

k∑
i=1

wiβiλi

+ 4∥σ⃗∥1γ0e2/κ
T

2−κ
4κ

2−κ
4κ

+
L0

√
d

2

T∑
k=1

γkλk,

where γk = γ0k
−r, λk = exp(L1γk

√
d) · γk

√
d ⩽ Ck−r, C := γ0 exp(L1γ0

√
d)
√
d and

wi =
∏k

j=i+1 βj .

k∑
i=1

wiβiλiγk ≤ Cγk

k∑
i=1

i−r
k∏

j=i

βj .

By part (iii) of (Lemma 6) with p = −r, a = 2, b = k (noting that the requirements hold for p ≤ 1),

k∑
i=1

i−r
k∏

j=i

βj ≤ 2 exp

(
1

1− q

)
k−r+q.

Thus,

k∑
i=1

wiβiλiγk ≤ Cγk · 2 exp
(

1

1− q

)
kq−r = Cγk · 2e2kq−r := 2C ′γkk

q−r,

Let us set stepsize γ0 such that

−γk + 2
√
dC ′L1γkk

q−r +
L1

√
d

2
γkλk ≤ −γk

2
.

−1 + 2
√
dC ′L1k

q−r +
L1

√
d

2
λk ≤ −1

2
.

Since λk ≤ Ck−r ≤ C ′k−r and , we obtain:

2
√
dC ′L1k

q−r +
L1

√
d

2
C ′k−r ≤ 1

2
.
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This implies:

C ′L1

√
d

(
2kq−r +

1

2
k−r

)
≤ 1

2
.

We finally obtain:

C ′L1

√
d

(
2 +

1

2

)
=

5

2
C ′L1

√
d ≤ 1

2
⇒ C ′ ≤ 1

5L1

√
d
.

Recall:

exp(L1γ0
√
d) · γ0

√
d ≤ 1

5L1e2
√
d
.

Letting y := L1γ0
√
d, we get exp(y) · y ≤ 1

5e2
√
d
, and hence:

γ0 ≤ y∗

L1

√
d
, where y∗ solves exp(y∗)y∗ =

1

5e2
√
d
.

Since the right-hand side of the inequality is always ⩽ 1, and noting that xex ⩽ 2x on that range,
taking y∗ ≤ 1

5·2·9
√
d

we obtain the bound for

γ0 ≤ 1

90L1d
.

Since the gradient term is now bounded above by −γk

2 , we can move it to the left-hand side:

T∑
k=1

γk
2
E∥∇f(xk)∥1 ≤ ∆ + 2

T∑
k=1

γkw0E∥ϵ0∥1

+ 4
√
dL0

T∑
k=2

C ′γkk
q−r

+ 4∥σ⃗∥1γ0e2/κ
T

2−κ
4κ

2−κ
4κ

+
L0

√
d

2

T∑
k=1

γkλk, (44)

1∑T
k=1 γk

T∑
k=1

γkE∥∇f(xk)∥1 ≤ 2∆∑T
k=1 γk

+
4
√
d∑T

k=1 γk

T∑
k=1

γkw0E∥ϵ0∥2

+
8
√
dL0∑T

k=1 γk

T∑
i=2

C ′γkk
q−r

+ 8
√
d∥σ⃗∥κγ0e2/κ

T
2−κ
4κ

2−κ
4κ

∑T
k=1 γk

+
L0

√
d∑T

k=1 γk

T∑
k=1

γkλk, (45)

FIRST TERM: 2∆∑T
k=1 γk

Approximate with an integral for large T :
T∑

k=1

k−
3
4 ≈

∫ T

1

x−
3
4 dx =

[
x1−

3
4

1− 3
4

]T
1

= 4(T
1
4 − 1) ≈ 4T

1
4 .
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T∑
k=1

γ0k
−3/4 = 4γ0T

1/4

Thus we obtain the bound:

2∆∑T
k=1 γk

=
∆

2γ0T 1/4

SECOND TERM: 4∑T
k=1 γk

∑T
k=1 γkw0E∥ϵ0∥1

Recalling the definition:w0 =
∏k

j=1

(
1− j−1/2

)
Compute the sum using Lemma ? case ii:

4E∥ϵ1∥1∑T
k=1 γk

T∑
k=1

γ0k
−3/4

k∏
j=1

(
1− j−1/2

)
=

4E∥ϵ1∥1
γ0
∑T

k=1 k
−3/4

O(1)

Thus, the term becomes:

4E∥ϵ0∥1∑T
k=1 γk

T∑
k=1

γ0k
−3/4

k∏
j=1

(
1− j−1/2

)
=

E∥ϵ0∥1
T

1
4

.

THIRD TERM: 4
√
dC′L0∑T
k=1 γk

∑T
k=1 γkk

q−r

With q − r = − 1
4 :

T∑
k=1

γkk
q−r =

T∑
k=1

γ0k
− 3

4 · k− 1
4 = γ0

T∑
k=1

k−1 ≈ γ0 log T,

The term is:
4
√
dC ′L0∑T
k=1 γk

· γ0 log T =

√
dC ′L0 log T

T 1/4
.

FOURTH TERM: 8∥σ⃗∥1γ0e2/κ T
2−κ
4κ

2−κ
4κ

∑T
k=1 γk

The term is:

8∥σ⃗∥1γ0e2/κ
T

2−κ
4κ

2−κ
4κ

∑T
k=1 γk

= 2∥σ⃗∥1e/κ
T

2−κ
4κ − 1

4

2−κ
4κ

= 2∥σ⃗∥1e2/κ
1

2−κ
4κ T

κ−1
2κ

FIFTH TERM: L0

√
d∑T

k=1 γk

∑T
k=1 γkλk

Since λk ≤ Ck−
3
4 :

T∑
k=1

γkλk ≤
T∑

k=1

γ0k
− 3

4 · Ck− 3
4 = γ0C

T∑
k=1

k−
3
2 ≈ γ0C

∫ T

1

x−
3
2 dx = γ0C ·

[
x−

1
2

− 1
2

]T
1

(46)

= γ0C · 2(1− T− 1
2 ) ≈ 2γ0C. (47)

The term is:
L0

√
d∑T

k=1 γk
· 2γ0C =

L0

√
dC

2T
1
4

.
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The bound is:

min
k∈1,T

E∥∇f(xk)∥1 ⩽
1∑T

k=1 γk

T∑
k=1

γkE∥∇f(xk)∥1 ⩽
∆

2γ0T 1/4
+

E∥ϵ0∥1
T

1
4

+

√
dC ′L0 log T

T 1/4

+ 2∥σ⃗∥1e2/κ
1

2−κ
4κ T

κ−1
2κ

+
L0

√
dC

2T
1
4

.

ARBITRARY TUNING

The second term is much smaller than the third one, hence we omit it. We now choose T to limit:

(∆/γ0 + L0C
√
d)

2T 1/4
+

√
dC ′L0 log T

T 1/4
≤ (∆/γ0 + 3L0C

′
√
d) log T

2T 1/4
≤ ε

2
,

and
2∥σ⃗∥1e2/κ

1
2−κ
4κ T

κ−1
2κ

≤ ε

2
.

Hense:

T = Õ

((
(∆/γ0 + L0γ0d)

ε

)4

+

(
∥σ⃗∥1
ε

) 2κ
κ−1

)
.

C RESTARTED minibatch-SignSGD AND MajorityVote-SignSGD

For PL functions (As. 4), we can apply restart technique to minibatch-SignSGD and MajorityVote-
SignSGD. At each round, we run a base algorithm with certain parameters and then aggregate the
output point. This output point is used as an initial point for the next round.

Algorithm 5 Restarted-A
Input: Starting point x0 ∈ Rd, number of restarts τ , base algorithm A, parameters {θn}τn=1.

1: for n = 1, . . . , τ do
2: Run Algorithm A with parameters θn and initial point xn−1;
3: Set xn as the aggregated output point from the previous round: the point with the minimal ℓ2

gradient norm;
4: end for

Output: xτ

Theorem 10 (HP complexity for Restarted minibatch-SignSGD). Consider lower-bounded
(L0, L1)-smooth, µ-PL function f (As. 1, 2, 4) and HT gradient estimates (As. 3). Then restarted
minibatch-SignSGD requires the sample complexity N to achieve f(xτ )− f(x∗) ≤ ε with proba-
bility at least 1− δ for:

Optimal tuning for ε ≥ ( 8L0

L1
)2: τ = log(∆/ε), iterations Tn = O

(
Lδ

1d
√
∆

2n/2√µ

)
, constant batchsizes

Bn ≡ max

{
1,
(

1024∥σ⃗∥2
1

µε

) κ
2(κ−1)

}
, constant stepsizes γn ≡ 1

48Lδ
1d

√
d
:

N = O

(
Lδ
1d
√
∆

√
µ

[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])

Optimal tuning for ε < ( 8L0

L1
)2: τ = log(∆/ε), iterations Tn = O

(
Lδ

0d
µ

)
, constant batchsizes

Bn ≡ max

{
1,
(

1024∥σ⃗∥2
1

µε

) κ
2(κ−1)

}
, constant stepsizes γn ≡

√
∆

2n+4TnLδ
0d

:

N = O

(
Lδ
0d log

∆
ε

µ

[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])
,
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where ∆ = f(x1)− f∗, Lδ
0 = L0 log(

log ∆
ε

δ ), Lδ
1 = L1 log(

log ∆
ε

δ ).

Theorem 11 (HP complexity for Restarted MajorityVote-SignSGD). Consider lower-bounded
(L0, L1)-smooth, µ-PL function f (As. 1, 2, 4) and HT gradient estimates corrupted by unimodal
and symmetric HT noise with κ > 0 (As. 3). Then restarted MajorityVote-SignSGD requires the
sample complexity N to achieve f(xτ )− f(x∗) ≤ ε with probability at least 1− δ for:

Optimal tuning for ε ≥ ( 8L0

L1
)2: τ = log(∆/ε), iterations Tn = O

(
Lδ

1d
√
∆

2n/2√µ

)
, constant batchsizes

Mn ≡ max
{

160
κ2 ,

1024∥σ⃗∥2
1

µε

}
, constant stepsizes γn ≡ 1

48Lδ
1d

:

N = O

(
Lδ
1d
√
∆

√
µ

[
1

κ2
+

∥σ⃗∥21
µε

])

Optimal tuning for ε < ( 8L0

L1
)2: τ = log(∆/ε), iterations Tn = O

(
Lδ

0d
µ

)
, constant batchsizes

Mn ≡ max
{

160
κ2 ,

1024∥σ⃗∥2
1

µε

}
, constant stepsizes γn ≡

√
∆

2n+4TnLδ
0d

:

N = O

(
Lδ
0d log

∆
ε

µ

[
1

κ2
+

∥σ⃗∥21
µε

])
,

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(

log ∆
ε

δ ), Lδ
1 = L1 log(

log ∆
ε

δ ).

Proof. Here we prove only Theorem 10. The proof of Theorem 11 is similar.

Consider one round of restarted algorithm with the initial condition ∆ which will be transformed into
∆2 ≤ ∆/2. In total, we will have log(∆/ε) rounds. Instead of the initial failure probability δ we
use decreased probability δ/ log ∆

ε , since the probability of holding bounds log(∆/ε) times for all
restarts equals to (1− δ

log(∆/ε) )
log(∆/ε) ≥ (1− δ

log(∆/ε) log(∆/ε)) = (1− δ).

Plugging in constant stepsizes γk ≡ γ ≤ 1
48Lδ

1d
in (20) implies CT = Tγ2, γmax = γ:

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 16∆

Tγ
+ 256Lδ

0dγ + 32∥σ⃗k∥1.

Due to Batching Lemma 4, we can estimate the κ−th moment of the batched estimate for constant
batchsizes Bk ≡ B as ∥σ⃗k∥1 ≤ 2∥σ⃗∥1

B
κ−1
κ

and derive:

min
k∈1,T

∥∇f(xk)∥2 ≤ 1

T

T∑
k=1

∥∇f(xk)∥2 ≤ 1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 16∆

Tγ
+ 256Lδ

0dγ + 32
∥σ⃗k∥1
B

κ−1
κ

.

Next, we square the inequality and apply PL condition:

∥∇f(xTmin)∥22 ≤ 8

(
16∆

Tγ

)2

+ 8(256Lδ
0dγ)

2 + 8

(
32

∥σ⃗k∥1
B

κ−1
κ

)2

,

f(xTmin)− f(x∗) ≤ ∥∇f(xTmin)∥22 ≤ 8

(
16∆

Tγ

)2

+ 8(256Lδ
0dγ)

2 + 8

(
32

∥σ⃗k∥1
B

κ−1
κ

)2

,

∆2 = f(xTmin)− f(x∗) ≤ 4

µ

[(
16∆

Tγ

)2

+ (256Lδ
0dγ)

2 +

(
32

∥σ⃗k∥1
B

κ−1
κ

)2
]
,

where xTmin = arg min
k∈1,T

f(xk).

Case ε ≥ ( 8L0

L1
)2, optimal tuning: We use stepsizes γ = 1

48Lδ
1d

⇒ (256Lδ
0dγ)

2 ≤ ε/2 and

batchsizes 32 ∥σ⃗∥1

B
κ−1
κ

≤
√
µε/8 ⇒ Bk ≡ max

{
1,
(

1024∥σ⃗∥2
1

µε

) κ
2(κ−1)

}
. The number of iterations T
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is chosen to decrease the term ∆ by half:

∆2 ≤ ∆2

(
1028 ∗ 482(Lδ

1)
2d2

µT 2

)
≤ ∆

2
⇒ T = O

(
Lδ
1d
√
∆

√
µ

)
.

At each restart, the initial condition ∆n becomes ∆n+1 ≤ ∆n

2 ≤ ∆
2n−1 , and the total number of

iterations is

Ttotal =

log(∆/ε)∑
n=1

O

(
Lδ
1d
√
∆

√
µ2

n−1
2

)
= O

(
Lδ
1d
√
∆

√
µ

)
, (48)

with the total number of oracle calls:

N = Ttotal ∗Bk = O

(
Lδ
1d
√
∆

√
µ

[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])
. (49)

Case ε ≤ ( 8L0

L1
)2, optimal tuning: We use batchsizes 32 ∥σ⃗∥1

B
κ−1
κ

≤
√
µε/8 ⇒ Bk ≡

max

{
1,
(

1024∥σ⃗∥2
1

µε

) κ
2(κ−1)

}
and stepsizes γ =

√
∆

16TLδ
0d

to have

∆2 ≤ 8

µ

[
1024Lδ

0d

T
∆+ ε

]
.

The number of iterations T is chosen to decrease the term ∆ by half:

∆2 ≤ 8

µ

1024Lδ
0d

T
∆ ≤ ∆

2
⇒ T = O

(
Lδ
0d

µ

)
.

At each restart, the initial condition ∆n becomes ∆n+1 ≤ ∆n

2 ≤ ∆
2n−1 , and the total number of

iterations is

Ttotal =

log(∆/ε)∑
n=1

O

(
Lδ
0d

µ

)
=

(
Lδ
0d log

∆
ε

µ

)
,

with the total number of oracle calls:

N = Ttotal ∗Bk = O

(
Lδ
0d log

∆
ε

µ

[
1 +

(
∥σ⃗∥21
µε

) κ
2(κ−1)

])
. (50)

D EXPERIMENTAL VALIDATION OF THE THEORETICAL CONVERGENCE
BOUNDS

In this section, we run experiments to verify the following convergence bound from Lemma 1 for the
backbone SignSGD method:

T∑
k=1

γk
16

∥∇f(xk)∥1 ≤ ∆+ L0d

T∑
k=1

γ2k + 2

T∑
k=1

γk∥σ⃗k∥1 + 6d(γ1∥∇f(x1)∥1 + 2CTL0) log
1

δ
,

where CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ , γk ≤ 1/(48L1d
3
2 log 1

δ ) and ∆ = f(x1)− f∗. In case of constant

stepsizes γk ≡ γ, the bound transforms into

1

T

T∑
k=1

∥∇f(xk)∥1 ≤ 4∆

Tγ
+80L0dγ log(1/δ)+8∥σ⃗∥1+24

d∥∇f(x1)∥1
T

log(1/δ), γ ≤ 1

(48L1d
3
2 log 1

δ )
.

(51)
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Figure 1: Experimental noise dependencies for (L0, L1)-smoooth problems.

Objective function and noise. We optimize a non-convex neural network for classification task
with features X and one-dimensional labels y. The network NNθ with parameter vector θ consists
of two fully connected layers, ReLU activation, batch normalization and dropout. The objective
function is the following logistic regression with L0 and L1 regularizations with coefficients λL0

and
λL1

, respectively:

f(θ) = log(1 + exp(−⟨y,NNθ(X)⟩)) + λL0

2
· ∥θ∥22 + exp(λL1

· ⟨⃗1, θ⟩).

The regularization coefficients λL0
, λL1

are the smoothness constants of the corresponding regular-
ization terms (see Appendix B.1). If their value are changed by some amount then the actual L0, L1

smoothness constants of the objective function f are changed by the exactly same amount.

To model the noise, we compute the whole gradient ∇f(θ) and artificially add noise vector with
independent components sampled from α-stable Levy distribution with scale σ (α is the κ parameter).

As training data, we consider the dataset mushrooms from LibSVM (Chang & Lin, 2011). The
matrix X has shape (6499, 112), hence, we set the NN layers sizes (112, 32, 1) and dropout rate 0.1.

Noise dependencies. First, we verify the linear dependence of the achieved accuracy (51) on
noise σ. We set small regularization coefficients λL0 = 0.01, λL1 = 0.001 and constant stepsize
γ = 3 · 10−4 for all experiments in this paragraph.

Next, we vary σ ∈ [0.1, 0.01, 0.001] and κ ∈ [2, 1.5, 1]. The results over 10 runs with standard
deviation bars are depicted in the left graph of Figure 1.

In practice, the achieved accuracy does not depend on κ, only linearly on σ. We also wish to
highlight the small size of error bars especially in the end of training which corresponds to mild log 1

δ
dependence.

In addition, we check how well batching (Alg. 2) and majority voting (Alg. 3) reduce the noise, .i.e,
whether reduction laws σ/B

κ−1
κ and σ/

√
M from Theorems 1 and 2 hold true. To reduce the noise

by 2 and 4 times for majority voting, we use batchsizes M = 1, 4, 16 for all κ ∈ [2, 1.25, 1]. The
results are shown in the middle graph of Figure 1. To reduce the noise by 2 and 4 times for batching,
we use batchsizes B = 1, 4, 16 for κ = 2 and B = 1, 8, 64 for κ = 1.5. The results are shown in
the right graph of Figure 1. In practice, both methods actually reduce the noise according to the
theoretical laws.

Two phase convergence. Here, we demonstrate the convergence speed slowdown after reaching
the accuracy 8L0

L1

√
d

as it stated in Theorem 1. We also test the parameter-free tuning strategy proposed
for reaching this behavior.

We slightly change the setup to better control constants L0, L1. We replace fully-connected neural
network NNθ(X) with simple linear transform NNθ(X) = X · θ, hence, the current objective
function with only L0 regularization is:

f(θ) = log(1 + exp(−⟨y,X · θ⟩)) + λL0

2
· ∥θ∥22.

In this case, we can directly compute (see Example 3 for mushrooms dataset) and control constants
L0 = λL0 , L1 ≈ 5.58. The noise parameters are κ = 1.5 and σ = 0.1.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

0 50 100 150 200 250 300
iteration T

10 3

10 2

10 1

100

101

m
ea

n 
l 1

 n
or

m

log reg mushrooms, SignSGD, L0 dependency

L0 = 0
L0 = 0.1
L0 = 0.01
L0 = 0.001
L0 = 0.0001
L0 = 1e 05

0 200 400 600 800 1000
iteration T

10 3

10 2

10 1

100

101

m
ea

n 
l 1

 n
or

m

log reg mushrooms, SignSGD, phase transition
L0 = 0
L0 = 0.1
L0 = 0.01
L0 = 0.001
L0 = 0.0001
L0 = 1e 05

0 200 400 600 800 1000
iteration T

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

m
ea

n 
l 1

 n
or

m

log reg mushrooms, SignSGD, L1 fast convergence

= 0.1
= 0.01
= 0.001
= 0.0001
= 1e 05
= 1e 06

Figure 2: Experimental convergence speed transition for (L0, L1)-smooth problems.

First, we set constant stepsize γ = 10−1 and vary λL0 ∈ [0, 10−1, 10−2, 10−3, 10−4, 10−5]. The
results over 10 runs are depicted in the left graph of Figure 2. One can see that the final accuracy
drops linearly with λL0

until it reaches the noise level. Before the plateau, we observe the fast L1

convergence.

In the next experiment, we follow the parameter-free tuning strategy and start to decrease stepsizes
as 1/

√
k after the plateau. The results are presented in the middle graph of Figure 2. One can see

that now method can slowly reach the same noise level after the first plateau. The speed transition
accuracy also drops linearly with λL0

.

Finally, we show that, for functions with L0 = 0, our method with constant stepsize convergences
to noise level σ despite the value of the constant L1. We set λL0

= 0 and vary the noise level
σ ∈ [10−1, 10−2, 10−3, 10−4, 10−5, 10−6]. The results are shown in the right graph of Figure 2.
These results clearly support the theory with alone linear dependence on σ.

E ADDITIONAL EXPERIMENTS

E.1 MIXTURE OF EXPERTS PRE-TRAINING EXPERIMENTS

We complement our experiments with another setup – different architecture and data. In Section 3,
we used a dense LLaMA model; now, we have switched to a Mixture of Experts (MoE) architecture
based on the same LLaMA model, retaining RoPE and identical activation functions. Our MoE
model follows the Switch Transformer (Fedus et al., 2022) MoE variant with classical top k = 2
gating and 8 experts, giving us approximately 520M parameters if we have the same configuration
as 130M LLaMA. We conduct these experiments on the FineWeb dataset (Penedo et al.) a popular
corpus for LLM pre-training.

We run AdamW, M-SignSGD, M-NSGD and M-ClippedSignSGD optimizers following the best
practices from our earlier setup on dense models. We train with a batch size of 256 and sequence
length 512 for 42k (5.5B tokens) and 336k steps (44B tokens). That is for the second training horizon
we go far beyond the Chinchilla optimal tokens-per-parameters ration. The results are presented
in Tables 3 and 4 respectively.

Table 3: Perplexity of LLaMa-base MoE 520M model pre-trained on FineWeb for 42k steps. Lower
is better.

Optimizer Perplexity ↓
AdamW 22.85

M-SignSGD 23.19
M-NSGD 23.32
M-ClippedSignSGD 23.30

We would like to highlight that M-SignSGD scales remarkably well with increasing model size,
outperforming M-NSGD and M-ClippedSignSGD. Additionally, we encountered difficulties running
M-ClippedSGD in this setting. Consequently, we decided to include a clipped version of M-
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Table 4: Perplexity of LLaMa-base MoE 520M model pre-trained on FineWeb for 336k steps. Lower
is better.

Optimizer Perplexity ↓
AdamW 18.68
M-SignSGD 18.87

SignSGD, which aligns with our approach since we consider only an EMA of momentum in the
update.

E.2 ROBUSTNESS WITH RESPECT TO RANDOM SEED

To verify the robustness of our approach, we repeated the experiment from Table 2 with three different
random seeds. As shown in Table 5, the performance remains highly consistent across all seeds, with
a standard deviation ≤ 0.03 for all the methods.

Table 5: Comparison of mean and standard deviation of the validation perplexity for various opti-
mization methods for LLaMA 130M model trained on C4.

Method Perplexity ↓
Model size 130M

M-SignSGD 18.37±.01

M-NSGD 19.28±.03

M-ClippedSGD 18.95±.03

AdamW 18.67±.00

F EXPERIMENTAL DETAILS

F.1 HYPERPARAMETERS SWEEP

We adopted a LLaMA-based architecture (Touvron et al., 2023) with RMSNorm (Zhang & Sennrich,
2019) and SwiGLU (Shazeer, 2020) activations on the C4 dataset (Raffel et al., 2020). Follow-
ing (Lialin et al., 2023), we used a batch size of 512 sequences and a sequence length of 256. We
used a T5 tokenizer, since it was also trained on C4 with dictionary size equal to 32k. We trained the
model for 100k steps.

For all experiments, while the main model parameters use the respective optimization method, the
LM head layer is optimized with AdamW (Loshchilov, 2017). This follows prior work (Zhao et al.,
2024) which demonstrated that the LM head layer requires more fine-grained effective learning
rate adaptation across different tokens for optimal performance. We used the Nesterov acceleration
scheme with a momentum value of 0.9 for all methods except AdamW. For AdamW, we used standard
hyperparameters: β1 = 0.9, β2 = 0.999, ε =1e-8.

We selected the learning rate through a grid search with multiplicative step of 10
1
4 (LM head layer

optimized with AdamW and learning rate equal to 1e-3). We used a cosine learning rate schedule
with a warmup of 10% of the total number of steps and decay of the final learning rate down to 10%
of the peak learning rate. In addition, we selected the best weight decay value between [0, 0.01, 0.1].

The final best hyperparameters are shown in Table 6.

F.2 COMPUTATIONAL RESOURCES

We conducted all experiments described in Section 3 and appendix E using NVIDIA A100 GPUs.
We utilized 8 GPUs (full node) with torch.nn.parallel.DistributedDataParallel
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Table 6: LLaMA 130m pre-raining hyperparameters.

Method M-ClippedSGD M-NSGD M-SignSGD AdamW
Learning rate 101.5 100 10−2.75 10−3

Gradient clipping 0.03125 - - 1.0
Weight decay 0 0 0.01 0.01

for most of the runs. A complete run for the 130M model (100k steps) took 6 hours, whereas each
run for 1.3B model (300k steps) lasted for approximately 2 days.

G minibatch-SignSGD FOR DISTRIBUTED OPTIMIZATION

Consider distributed optimization with one server and M workers, each of which calculates its own
gradient estimate. The server receives all estimates, aggregates them, and sends back the updated
solution to the workers. Sign-based methods are so effective in terms of communication (Bernstein
et al., 2018b; Jin et al., 2020), as sending a sign vector costs onlyO(d) operations. We use aggregation
based on the majority voting.

Algorithm 6 Distributed-MajorityVote-SignSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1, batchsizes {Bk}Tk=1.
1: for k = 1, . . . , T do
2: Sample {ξk,ji }Bk

i=1 and compute gradient estimate gk,j =
∑Bk

i=1 ∇f(xk,ξk,j
i )/Bk for each worker

j ∈ 1,M ;
3: Send signs sign(gk,j) to server for each worker j ∈ 1,M ;
4: Compute on server gk = sign

(∑M
j=1 sign(g

k,j)
)
;

5: Send point xk+1 = xk − γk · gk to each worker;
6: end for

Output: uniformly random point from {x1, . . . , xT } .

Theorem 12 (HP complexity for Distributed-MajorityVote-SignSGD). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2) and HT gradient estimates κ ∈ (1, 2] (As. 3). Then Alg. 6 with
M workers requires the sample complexity NM per worker to achieve 1

T

∑T
k=1 ∥∇f(xk)∥1 ≤ ε

with probability at least 1− δ for:

Optimal tuning: T = O
(

∆Lδ
1d

ε

)
, γk ≡ 1

48Lδ
1d
, Bk ≡

(
16∥σ⃗∥1√

Mε

) κ
κ−1

for ε ≥ 8L0

L1
and T =

O
(

Lδ
0d
ε2

)
, γk ≡

√
∆

20Lδ
0dT

, Bk ≡
(

16∥σ⃗∥1√
Mε

) κ
κ−1

for ε ≤ 8L0

L1
:

NM = O

((
∆L0d

ε2
+

∆L1d

ε

)[
1 +

(
∥σ⃗∥1√
Mε

) κ
κ−1

]
log 1/δ

)
, (52)

Parameter-free tuning:1 Until plateau γk = γ0 ≤ 1
48Lδ

1d
, Bk = B0k

2, after γk = γ0√
k
, Bk = B0k:

ε ≥ 8L0

L1

√
d

⇒ NM = Õ

(
B0

(
∆

γ0ε

)3

+
1

B2
0

(
∥σ⃗∥1√
Mε

) 3κ
2(κ−1)

)
,

ε≪ 8L0

L1

√
d

⇒ NM = Õ

(
B0(L

δ
0γ0d+∆/γ0)

4

ε4
+

1

B0

(
∥σ⃗∥1√
Mε

) 2κ
κ−1

)
,

where ∆ = f(x1)− f∗, Lδ
0 = L0 log(1/δ), L

δ
1 = L1 log(1/δ).

1These bounds are proved for a metric mink∈1,T ∥∇f(xk)∥1 ≤ ε.
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Proof of Theorem 12. This proof completely copies the proof of minibatch-SignSGD Complexity
Theorem 1 from Appendix B.4 with substitution of ∥σ⃗∥1 with ∥σ⃗∥1√

M
. Such substitution is justified by

MajorityVote-SignSGD Convergence Lemma 7 which tells that noise level drops as
√
M with the

growth of worker number M . The condition M ≥ 160/κ2 is satisfied for κ > 1 automatically after
the fixed number of training steps in the beginning.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.
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