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ABSTRACT

In recent years, non-convex optimization problems are more often described by
generalized (Lo, L1 )-smoothness assumption rather than standard one. Mean-
while, severely corrupted data used in these problems has increased the demand
for methods capable of handling heavy-tailed noises, i.e., noises with bounded
k-th moment. Motivated by these real-world trends and challenges, we explore
sign-based methods in this setup and demonstrate their effectiveness in com-
parison with other popular solutions like clipping or normalization. In theory,
we prove the first-known high probability convergence bounds under (Lg, L1 )-
smoothness and heavy-tailed noises with mild parameter dependencies. In the
case of standard smoothness, these bounds are novel for sign-based methods
as well. In particular, SignSGD with batching achieves sample complexity

0 ((% + %) [1 + (%)ﬁ]) ,k € (1,2]. Under the assumption of symmet-
ric noises, SignSGD with Majority Voting can robustly work on the whole range of
k € (0, 2] with complexity 0 ((% + %) {% + ‘E’—QQD We also obtain results
for parameter-free methods, Polyak-Lojasiewicz functions and momentum-based
methods (in expectation). Our theoretical findings are supported by the superior

performance of sign-based methods in training Large Language Models compared
to clipping and normalization.

1 INTRODUCTION

1.1 PROBLEM STATEMENT.

Consider a stochastic optimization problem of a smooth non-convex function f : R¢ — R:

min e f (@) = Ee[f(2,€)], ()

where the random variable £ can only be sampled from an unknown distribution. The main goal is
to find a point with the smallest gradient norm. To achieve this, we are able to sample an unbiased
estimate V f(x, &) € R For example, in machine learning, f(z, &) can be interpreted as a loss
function on a sample & (Shalev-Shwartz & Ben-David, 2014). The backbone of all popular stochastic
first-order methods for solving (1) is Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951):

i :xk — Yk 'gkv gk = Vf(xkagk)‘

Huge success of these methods in the rapidly developing neural networks field (Bottou, 2012; Kingma
& Ba, 2014) has sparked numerous works studying their convergence under various assumptions
on noise corrupting true gradients. For SGD, the optimal sample complexity bound O(s~%) in
expectation (Arjevani et al., 2023) is obtained for sub-Gaussian noise (Nemirovski et al., 2009) and
for noise with bounded variance (BV) (Ghadimi & Lan, 2013). These results are derived under classic
assumptions. However, motivated by real-world complex Machine Learning applications (Zhang
et al., 2020b), modern theoretical papers focus on relaxed assumptions and settings. Below, we give
three important stories that are relevant to this paper.

X

(Lo, L1)-smoothness. Usually, for the objective function f, standard Ly-smoothness is assumed, i.e.,
IVf(z) = Vi)l < Lollz — yll2, Yz, y € RY. However, a new generalized (Lo, L;)-smoothness
assumption was recently proposed and motivated for Large Language Models (LLM) in (Zhang



et al., 2020b). This assumption describes objective functions with a linearly growing Hessian norm:
|V2f(z)||2 < Lo + L1||V f(2)||2, Yo € R?. In ongoing research, other variants of this assumption
were introduced: for only once differentiable functions (Chen et al., 2023), for symmetrically and
asymmetrically growing powers of norms (Chen et al., 2023), and for sub-quadratic polynomially
growing norms (Li et al., 2023a). Generalized smoothness applications can be found not only in
LLM training (Zhang et al., 2020b; Liu et al., 2023a), but also in distributionally robust optimization
(Levy et al., 2020; Jin et al., 2021), multitask learning (Zhang et al., 2024a), federated learning (Liu
et al., 2022b), and bilevel optimization (Hao et al.; Gong et al.). The convergence of the most popular
optimization algorithms Adam (Kingma & Ba, 2014) and SGD was explored under various noise
and generalized smoothness assumptions in works (Li et al., 2023b; Zhang et al., 2024b; Wang et al.,
2024bsa) and (Li et al., 2023a), respectively.

High probability bounds. Due to the expensive training of large deep learning models (Davis et al.,
2021), high probability (HP) bounds have gained even more attention than bounds in expectation
describing the behavior of stochastic methods over several runs. HP bounds provide convergence
guarantees that hold true with probability at least 1 — §,6 € (0,1). The bound in expectation can
be reduced to the HP bound using Markov’s inequality; however, it leads to a dominant 1/s factor.
Meanwhile, much milder log 1/s factors can be achieved. For SGD, HP bound O(¢~*log 1/5) under
sub-Gaussian noise is obtained in (Li & Orabona, 2020). However, already under BV noise, SGD has
1//5 dependence under standard (Sadiev et al., 2023) and (Lg, L;)—smoothness (Li et al., 2023a).

Heavy-tailed noise. Moreover, it is shown that the BV assumption cannot describe noises in loss
functions in modern deep learning problems. In Transformer models, stochasticity tends to have a
rather heavy-tailed (HT) distribution (Zhang et al., 2020c; Gurbuzbalaban et al., 2021). This means
that the noise has bounded x-th moment for some x € (1, 2], thatis, E¢[||V f(z, &) -V f(2)|5] < o".
The desire to obtain better §-dependence in HP bounds and to consider HT noise motivated the
development of more robust modifications of SGD, e.g. SGD with clipping or normalization of the
input gradient estimates. In this work, we show that applying a simple sign operator to the gradient
estimates is an effective and comparable solution to cope with heavy-tailed noise as well.

1.2 RELATED WORKS

Clipping. The idea of clipping the norm of the gradient estimate to reduce heavy noise demonstrates
significant empirical results (Pascanu et al., 2013; Goodfellow et al., 2016) and helps achieve log 1/s
dependence under BV noise and standard smoothness (Nazin et al., 2019; Gorbunov et al., 2020).
The clipping operator is defined as c1ip(g¥, A\) := min{1, /| g*|]»} - g* and SGD with clipping is
called ClipSGD. Clipping can also be applied to convex optimization, variational inequalities (Sadiev
et al., 2023), non-smooth optimization (Zhang et al., 2020c), zeroth-order optimization (Kornilov
et al., 2024), robust aggregation (Karimireddy et al., 2021), distributed optimization (Liu et al., 2022b;
Qin et al., 2025) and ensuring differential privacy (Andrew et al., 2021).

For standard smoothness, let us list the latest results on the HP convergence of ClipSGD under HT
noise. First, for non-convex functions, the authors of (Zhang et al., 2020c) proved lower bounds
O(e=®*~2/¢==1) for sample complexity in expectation. As shown in (Nguyen et al., 2023), with
fixed proper clipping levels and stepsizes, ClipSGD achieves the complexity O(e~**~>/x-1),
Remarkably, this complexity can be achieved via both small and large batchsizes. ClipSGD can also
work with an infinite horizon resulting in extra log 1/« factors in complexity (Nguyen et al., 2023).
In (Sadiev et al., 2023), the authors apply ClipSGD to Polyak-Lojasiewicz functions and obtain
faster convergence 05,5(5_“/ 2(==13 In a number of works (Chen et al., 2020; Puchkin et al., 2024),
the authors work with symmetric HT noise to eliminate the dependence on &, expand the range of
feasible x for k € (0, 1] and break the actual lower bounds from (Zhang et al., 2020c).

For (Lg, L1 )—smoothness, only BV noise is considered. Unlike the case of standard smoothness, the
possibility of fast convergence of ClipSGD with small batchsizes remains unclear. In (Koloskova
et al., 2023), the authors show that ClipSGD with constant clipping levels and stepsizes unavoidably
requires either decreasing of the noise level via batching or significant increasing of the clipping
levels. ClipSGD with the small batchsizes convergences slowly with rates O(Loe ™% + L1e7°) in
expectation. Meanwhile, large batchsizes help to achieve faster rates O(Loe~* + L172). Another
solution for small batchsizes is ClipSGD with momentum called M-ClipSGD (Zhang et al., 2020a)
which achieves the fast rates O(¢~*) when the noise in the gradient estimates is bounded.



Despite the effectiveness of clipping, it requires careful tuning, which depends on the iteration and
the characteristics of the optimization problem (Sadiev et al., 2023, Theorem. 3.1).

Normalization. A natural simplification of clipping with a profound level schedule is the permanent
normalization of the gradient estimate, i.e., norm(g*) := 9"/||g* .. SGD with normalization is called
NSGD (Hazan et al., 2015; Zhao et al., 2021). Since normalization does not provide such subtle
control over the noise like clipping, NSGD requires large batchsizes to soften it. For small batches,
one can use NSGD with momentum called M-NSGD (Jin et al., 2021; Cutkosky & Mehta, 2020).

For standard smoothness, the HP convergence of vanilla NSGD under HT noise is proved in (Hiibler
et al., 2024a). The authors show that its complexity is O (e ~“*~*/¢=1 log 1/5) for optimal parameters
and O(e=>"/(*= log 1/s) for parameter-agnostic tuning. The same complexities hold for M-NSGD,
but only in expectation. In (Liu et al., 2023b; Cutkosky & Mehta, 2021), normalization is combined
with clipping which helps cope with HT noise and obtain suboptimal Oj . (£~ **~?/(==1),

For (Lo, Ly)-smoothness, in expectation convergence of M-NSGD with rates
O ((Loe=®" /=1 4 L1e=®*" /(== s the first known convergence result established si-
multaneously under HT noise and generalized smoothness (Liu & Zhou, 2024). However, it is only
in expectation bounds. In addition, parameter-free tuning over an infinite horizon for M-NSGD is
derived only for BV noise achieving the rates O (¢~%).

Sign operator. There is one more promising modification of SGD which behavior under heavy-
tailed noise has not yet been studied. Originally proposed in (Bernstein et al., 2018a) for distributed
optimization, SignSGD takes only a sign of each coordinate of gradient estimate sign(g*). There
is one peculiarity in bounds for sign-based methods: they are proved w.r.t. the ¢;-norm instead of
smaller /5-norm. As a consequence, additional d dependent factors appear.

For standard smoothness, SignSGD achieves sample complexity O(d?c~*) in expectation under BV
noise (Bernstein et al., 2018a). Similar to NSGD, SignSGD requires aggressive batching, which can
be substituted by SignSGD with momentum (M-SignSGD) with bound O(d*c~*)(Sun et al., 2023).
The alternative solution is to add error feedback mechanism that additionally fixes the biased nature
of the sign operator and allows using convex functions (Seide et al., 2014; Karimireddy et al., 2019).

For (Lo, L1 )—smoothness, the authors of (Crawshaw et al., 2022) propose generalized SignSGD
with Adam-like structure and, in particular, prove bound O(e~*log(d/¢)) for M-SignSGD under
almost surely bounded noise. For the same bounded noise, in (Crawshaw & Liu, 2025), the authors
study the behavior of various adaptive gradient algorithms and derive lower bounds for them with
explicit parameter dependencies.

The main motivation for the original SignSGD is communication effectiveness and empirical
robustness in distributed optimization (Bernstein et al., 2018b), since sending sign vector costs O(d)
operations. In theory, the O(d?c~*) effectiveness is proved only under additional assumptions on
noise, e.g., symmetry and unimodality. Other expansions of SignSGD are the following: (Safaryan &
Richtérik, 2021) proposes an updated theory for a wider class of noises in the distributed setup, (Liu
et al., 2019) generalizes SignSGD to zeroth-order oracle, (Jin et al., 2020) studies federated learning
with compression, (Chzhen & Schechtman, 2023; Jiang et al., 2024) explore variance reduction.

1.3 CONTRIBUTIONS

Theory. Using sign-based methods, we prove the first-known high probability bounds for non-
convex (Lg, L1)-smooth optimization under heavy-tailed noise. These bounds are valid for all
possible problem parameters, have mild dependencies on them, and match the optimal bounds in the
case of standard smoothness. Moreover, the HP results for sign-based methods in case of standard
Ly-smoothness are novel as well. Among momentum and adaptive methods, our in expectation
bounds are the first to consider together heavy-tailed noise and (Lg, L1 )-smoothness. In addition, we
consider special cases of Polyak-Lojasiewicz functions, symmetric noises, and parameter-free tuning.
The summarized results and comparisons with related works are presented in Table 1.

Experiments. To validate our findings in real-world scenarios with heavy-tailed noise and gen-
eralized smoothness, in Section 3 we evaluate the sign-based methods on Transformer models,
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ClipSGD (Koloskova et al., 2023) o ALlH5H‘21 + Alle H2<LO+L15 (Lo, L1) P E Min £
small batches
ClipSGD (Koloskova et al., 2023) ALO ALl || H z | _ .
large batches o ( + ) (Lo, L1) k=2 E Min £5
minibatch-SignSGD ALQ Ale H H 1 =y 1 ~ a6 -
(Th. 1), large batches © (( + ) 1+ log 5 (Lo, L1) w € (1,2] EIDANR &
M m and adaptive methods, small k
M-NSGD (Liu & Zhou, 2024) o <(% + ﬂ) (1 + ” ”2 w1 >> (Lo, L1) | re(1,2] E Avr. £o
M-Cli 2 2 2 AL() Il ||2
-ClipSGD (Zhang et al., 2020a) O ———m= (Lo, L1) Bounded E Avr. £5
5 (A7LEI515 AZLT5113
N aws ; ollZllz 1lelz -
D-AdaGrad (Crawshaw & Liu, 2025) Q i = log(1+AL2/LO) ) (Lo, L1) Bounded HP Avr. 4o
= PR
AdaGrad-Norm (Wang et al., 2023) @] 2 L14”U” 2 4+ ALO H I 2 !4 HZ ) (Lo, L1) K e 2 HP Avr. £3
€ affine
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specifically on pre-training LLaMA(Touvron et al.,

2023) family models of sizes up to 1.3B on

the C4 dataset (Raffel et al., 2020) and the Switch Transformer (Fedus et al., 2022) Mixture of
Experts (MoE) model on the FineWeb dataset (Penedo et al.). Results demonstrate the effectiveness
of sign-based methods compared to other commonly considered techniques to cope with heavy-tailed
noise, namely, clipping and normalization. Surprisingly, our results also show that M-SignSGD
demonstrates competitive performance and slight improvements compared to AdamW, which is the
de facto optimizer for language model training.

2 HIGH PROBABILITY BOUNDS FOR SIGN-BASED METHODS UNDER
HEAVY-TAILED NOISE AND (Lg, L1)-SMOOTHNESS

In this section, we present our novel non-convex convergence guarantees with high probability for
SignSGD with batching and majority voting. We prove them for (L, L1 )-smooth objective functions
with heavy-tailed noise in gradient estimates. We provide the best convergence rates and optimal
parameters or rates parameter-free tuning. All proofs are located in Appendix B.

2.1 ASSUMPTIONS AND NOTATIONS.

The notation 1, n represents the set of natural numbers {1, 2, ..., n}. We define £,,-norm p € [1, +00]
as (||z||)? = Z?zl |z;|P, > € R%. The notation (x,y) := Zle x;y; denotes the standard scalar
product for -, y € RZ. The sign operator sign(-) returns the sign of a scalar input and can also be

applied element-wise to a vector. The notation O without index omits all logarithmic factors or, if it
has an index, omits only the logarithmic factors on the variables from its index.



Assumption 1 (Lower bound). The objective function f is lower bounded by f* > —oc.

We use the following formulation of (L, L1)-smoothness from (Gorbunov et al., 2024).

Assumption 2 ((Lg, L1 )-smoothness). The objective function f is differentiable and (L, L1)-smooth,
i.e., for the non-negative constants (Lo, L1) and x,y € R?, it holds

IVf(z) = V(»)ll2 < (Lo + L1 sup uefoy IV (w)l2) |2 — yll2.

For examples of (Lg, L1 )-smooth functions and their properties, we refer the reader to Appendix B.1.

Assumption 3 (Heavy-tailed noise in gradient estimates). The unbiased estimate V f(x, &) has
bounded k-th moment r € (1,2] for each coordinate, i.e., Yz € R%:

Ee[Vf(z,€)] = Vf(z), Eel|Vf(2,8)i—V[f(2)il"] <ofi€ld, @)
where & = |01, ..., 04| are non-negative constants.
2.2 HP CONVERGENCE PROPERTIES OF THE BACKBONE SignSGD METHOD

We begin our analysis with the simplest of sign-based methods, namely SignSGD (Alg. 1) and prove
a general lemma on its convergence with high probability.

Algorithm 1 SignSGD

Input: Starting point 2 € R?, number of iterations 7, stepsizes {w}t_,.
1. fork=1,...,T do
2:  Sample £¥ and compute estimate z5+1 = ¥ — ;. - sign(V f(2F, £%));
3: end for

Output: uniformly random point from {z!,... 27} .

Lemma 1 (SignSGD Convergence Lemma). Consider lower-bounded (Lq, Ly )-smooth function f
(As. 1, 2) and HT gradient estimates Gy, (As. 3). Then Alg. 1 after T iterations with non-increasing

stepsizes v, < 1/(48L1d3 log $) achieves with probability at least 1 — 6:

T

T T
. 1
%gllvf(xk)lll SA+LedY R +2> llkll + 6d(nlIV £ ()1 + 2Cr Lo) log 5O
k=1 k=1 k=1

k—1
where Cr := max v - Y. v, and A = f(z!) — f*.
kel, T =1

s

The bound (3) resembles the convergence bound in expectation for SignSGD for k = 2 (Bernstein
et al., 2018a). The difference is the last term with linear dependence on log %. Remarkably, L,
constant affects only the upper bound for the largest possible stepsizes v;, < 1/ (48L1d% log %) In
the case of small L, this is the only condition that prevents us from increasing the stepsize too much.
We provide synthetic experiments verifying dependencies in bound (3) in Appendix D.

2.3 NEW HP BOUNDS FOR (Lg, L1)-SMOOTHNESS FOR SignSGD WITH AVERAGE BATCHING

In order to upper bound an average accuracy norm from (3) by &, the noise ||&||; has not to exceed ¢.
The first way to lower the noise is to use batch averaging.

Algorithm 2 minibatch-SignSGD

Input: Starting point ! € R?, number of iterations T', stepsizes {vx}7_,, batchsizes { By }1_,.
I: fork=1,...,Tdo
2: Sample {¢5}P% and compute zF+1 = b — ;- sign(3 2K, V" €5)/B,);
3: end for

Output: uniformly random point from {z!,... 27} .




Theorem 1 (HP complexity for minibatch-SignSGD). Consider lower-bounded (L, L1)-smooth
Sfunction f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 2 requires the sample complexity

N to achieve - Zgzl |V £(2®)||1 < & with probability at least 1 — § for:

€

5 = =
Optimal tuning: T = O(Ale) Ve = gmrsg Br = (16"570”1) "fore > 80 aqnd T =
1

K

Léd _ A _ (16]|F]1) "¢ 8Lg .
0(?)’%=\/W73k=(T) fore < T
ALyd AL 7|1\ 7
N:o<( °d+€1d> 1+<”"6”1> ]1og1/a>, )

22
where A = f(z') — f*, LY = Lglog(1/s), L = Ly log(1/s).

The proof of Theorem 1 and parameter-free method version are located in Appendices B.4 and A.

2.3.1 DISCUSSION

Optimal tuning bounds. From Theorem 1, we can clearly distinguish two phases of algorithm
convergence: fast initial phase with rate Os (5’2”71/ ”*1) before threshold £ > 8Lo/L,+/d and slower

one with rate Os (¢=**"%»~1) after. We provide synthetic experiments verifying two stage con-
vergence and batching effectiveness in Appendix D. In the case of Ly ~ 0 (e.g. for logistic
regression (Gorbunov et al., 2024) and deep neural networks (Zhang et al., 2020b)), minibatch-
SignSGD runs in the fast regime the whole time and can work with large constant stepsizes.
Otherwise, under standard smoothness L; = 0, the bound (4) matches the lower in expectation bound

Q (ALO/E2 + ALo/e? (17112/e) ﬁ) for first-order stochastic optimization (Zhang et al., 2020c). We
also highlight the linear dependence of (4) on A, Ly, L1, log 1/5 and the mild dependence on ||&||; .

Extra d factors. In bound (4) for ¢;-norm, there are extra d factors that are missing in bounds for
£o-norm (Table 1). There are no existing lower bounds for the ¢;-norm to the best of our knowledge.
Hence, it is difficult to state whether the d dependence is optimal. In practice (Bernstein et al.,
2018a), gradients and noise vector during DL model training via minibatch-SignSGD actually
keep high density, i.e., their norms are related by || - ||} ~ V/d|| - ||. Hence, we can substitute
e — e'Vd, ||5]|1 — Vd||G]|2,dL1 — V/dL; (the last transition follows from the proofs, where we
can use equality instead of || - |2 < || - ||1) in (4) and see that all extra factors are gone.

We would like to highlight that the d linear factor in the bounds arises from the generalized smoothness
(As. 2) defined in the £5-norm. We can restate it in £1-norm as

IVF(@) = VW)l < (Lo + Ly - supul[V £ (w)[[1)]|2 = yl|oo-

With this assumption, all d factors from the bounds will be gone. In the worst case, the relation
between new and old constants Ly = dLg, L1 = dL, makes factor d unavoidable.

Comparison under standard smoothness. According to the HP analysis of ClipSGD from
(Nguyen et al., 2023), it achieves the rates from Table 1. These rates have optimal Os (5‘3”’2/ ”*1)
dependence on ¢, however, dependencies on A, Ly, & are much worse than ours. Moreover, we
are not aware of any works proposing arbitrary tuning for clipping methods. ClipSGD requires
careful clipping level scheduling which allows it to converge with small batchsizes. On the contrary,
minibatch-SignSGD needs only large batchsizes. In (Hiibler et al., 2024a), the authors analyze
minibatch-NSGD and obtain the HP sample complexity w.r.t. to the o-norm (Table 1), the only
difference from (4) is the absence of d factors. As explained before, this difference comes from the
different norms in the bounds. From a practical point of view, sign-based methods can be applied
to distributed optimization (Appendix G) where normalization does not fit. Besides, one can use
majority voting as a powerful alternative to batching.

Comparison under generalized smoothness. Under BV noise, the only existing results for
CLipSGD in expectation with large batches (Koloskova et al., 2023) match our HP bound (4)
(see Table 1). Unlike minibatch-SignSGD, CLipSGD can converge with small batches, but much

with slower O(AL ||&||% ") rates instead of our O5(ALyd? ||7]|2e73).



2.3.2 POLYAK-LOJASIEWICZ FUNCTIONS.

The minibatch-SignSGD algorithm can be accelerated for the special class of generalized smooth
functions that satisfy the Polyak-Lojasiewicz condition.

Assumption 4 (Polyak-Lojasiewicz (PL)). The objective function f satisfies the PL condition, i.e.,
for the non-negative constant yi and x € R?, it holds

IVf(@)3 > 2u(f(x) = f(z")).

For example, p-strongly convex functions satisfy the PL condition. A similar behavior has also
been observed in over-parameterized models (Liu et al., 2022a). For these functions, we use restarts
on minibatch-SignSGD to achieve the HP function accuracy f(z7) — f(2*) < e. The explicit
algorithm and parameters are presented in Theorem 10, Appendix C, and it achieves the bounds

[ 2112\ 2D
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For the standard smoothness L; = 0, we compare our method with the most related ClipSGD with the

complexity bound O~575 (LHO {1 + (M) ey )(Sadiev et al., 2023). In contrast, minibatch-

n3e

SignSGD does not require adjusting the clipping schedule and has better L /u dependence.

2.4 SignSGD WITH MAJORITY VOTING FOR SYMMETRIC HT NOISE

The second approach to noise reduction inherent to sign-based methods is majority voting.

Majority voting and additional noise assumption. As mentioned above, the original motivation
of SignSGD is fast communication in distributed optimization (Bernstein et al., 2018b; Jin et al.,
2020). In the literature, various types of communication were studied, but the most effective one
turned out to be majority voting. For sign vectors sign(g¥), € 1, M, the resulting update vector is

the majority of the received signs g* = sign(zlj.vi1 sign(g¥)). To be effective, majority voting must
decrease the probability of failure of the resulting vector with the growth of M. However, for very
skewed or bimodal random variables, it might not be true. Choosing the most frequent value from
the sign sequence {sign(g¥)}M, is actually M Bernoulli trials. In these trials, the probability of
choosing a correct answer grows only if the probability of failure of a single worker is less than 2,
ie.: P [sign(V f(z*)) # sign(gF)| < 3,Vi € 1, M. For example, this condition is satisfied if the
noise of the gradient estimate for each coordinate is unimodal and symmetric about its true value.
We use this assumption, but other assumptions (Safaryan & Richtérik, 2021) are valid as well.

Algorithm 3 MajorityVote-SignSGD

Input: Starting point z° € R?, number of iterations 7', stepsizes {4 }+_,, batchsizes { M} }1_,.
1. fork=1,...,T do

2. Sample {¢F}M% and compute 25! = 2% — ~; - sign (Zf\i’“l sign(V f (2", ff))),

3: end for
Output: uniformly random point from {z!,... 27} .

Theorem 2 (HP complexity for MajorityVote-SignSGD). Consider lower-bounded (L, L1)-
smooth function f (As. 1, 2) and the gradient estimates corrupted by unimodal and symmet-
ric HT noise with > 0 (As. 3). Then Alg. 3 requires the sample complexity N to achieve

+ Zle |V £(z*)||1 < & with probability at least 1 — § for:

5 —
Optimal tuning: T = O(Aéld) Ve = @,Mk = max{%74216€‘|;||?}f0r5 > 8L ang
5 16 g 2
T=0(284) o = [ Me = max {32, 250 for e < 8o
ALod = ALd\ | 1 7l1\°
NO<< pt o S0d) | (1) ]10,@;1/6), ©)
€ € K €




where A = f(z') — f*, L = Lolog(1/s), L = Ly log(1/s).

The proof of Theorem 2 and parameter-free method version are located in Appendices B.5 and A.
For PL functions, we use the restart technique and achieve bounds similar to (5) as if k = 2. The
results are presented in Theorem 11 in Appendix C.

Related works and discussion. Works (Jakovetic et al., 2023; Armacki et al., 2023; 2024) analyze
online non-linear SGD without batching for convex and non-convex functions under HT symmetric
noise and standard smoothness. It includes a wide range of non-linear transformations of gradient
estimates such as clipping, normalization, and sign operator. The authors of (Armacki et al., 2024)
propose a unified theoretical framework and prove bounds which are arbitrarily close to O(e~%)
for all k > 0. In works (Compagnoni et al., 2024; 2025), the authors derive continuous SDE with
Student’s noise describing SignSGD dynamics and obtain the O(¢~*) HP bound from it.

Similar to these works, the severity of the corrupting noise (the value of ) has much milder effect on
convergence of MajorityVote-SignSGD in comparison with minibatch-SignSGD and its bound
(4). It was known for the standard smoothness, while we show it for the generalized one. Under
standard smoothness, the bound (6) with log 1/s factor matches the optimal bound Q (AZoll5l3/c4) in
expectation for first-order methods under BV noise (Arjevani et al., 2023).

2.5 SignSGD WITH MOMENTUM AND SMALL BATCHES

Both minibatch-SignSGD and MajorityVote-SignSGD methods require increasing batchsizes
comparable to the number of iterations. In order to use small batches, one can utilize the momentum
technique, resulting in the same total sample complexity. The proof is located in Appendix B.7.

Algorithm 4 M-SignSGD

Input: Starting point 2! € R%, number of iterations K, stepsizes {7j }7_,, momentums {Sj }7_,.
1: fork=1,...,T do
2:  Sample £* and compute m* = Bym* =1 + (1 — Br)V f(aF, &F);
3: SetzFtl =k — ;- sign(mF);
4: end for
Output: uniformly random point from {z!,... 27} .

Theorem 3 (Complexity for M-SignSGD in expectation). Consider a lower-bounded (L, L1)-
smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then, Alg. 4 requires T iterations to

achieve Zle E[[|Vf(z")|1] < e starting with A = f(x') — f*:

Optimal tuning: B, =1 — min{l, (%ﬁ}fﬁ) Zn-1 } = 1—8ﬁk ﬁforg > % and 1 — By, =

l—min{L(T?Jgoi)sm_z}’%E\/Wfors<?f;};
ALed ALyd 7l \ 7T
reof(Bt 2 (1 (1) 7)) g
15 £ €

Related works. As we mentioned before, vanilla ClipSGD, NSGD and SignSGD cannot effec-
tively handle small constant batchsizes under (Lo, L1 )-smoothness. Hence, here we compare with
the works dedicated to theoretical analysis of more powerful modifications for noise control.

In (Liu & Zhou, 2024), the authors analyze M-NSGD under the same assumptions and derive the rates
identical to ours in (7) up to d factors which are inherent to sign-based methods. In comparison with
adaptive methods (Wang et al., 2023; Crawshaw & Liu, 2025), our results remain valid for all possible
values of parameters Lo, L1, ||¢'||2, A > 0 and accuracy . Moreover, our bounds demonstrate a
milder dependence on €, A, Ly, Ly and allow HT noise. Although the rates in (Wang et al., 2023;
Crawshaw & Liu, 2025) are formally proved with high probability, they are derived either under
restrictive a.s. bounded noise or under BV noise with suboptimal polynomial § dependence.



Parameter-free tuning. In practice, the characteristics of the optimized function and corrupting
noise are usually unavailable. To address this challenge, we propose a special parameter-agnostic
tuning for our most applicable method, M-SignSGD, and analyze its convergence guarantees.

Theorem 4 (Complexity for Parameter-Free M-SignSGD in expectation). Consider a lower-
bounded (Lg, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then, Alg. 4
requires T iterations to achieve min , .7E||V f(2¥)|1 < € starting with A = f(a') — f*:

Paramer-free tuning: £, = 1,5, =1 — 1/Vk v = Yok~ 7% v < m"

oo (st (121

Although parameter-free tuning has a worse polynomial dependence on parameters Lo, L1, A and
non-optimal rates in ¢ for k # 2, it does not require any knowledge about the optimization problem.
The parameter-free tunings for other our methods and their discussion are located in Appendix A.

3 EXPERIMENTS

Table 2: Comparison of validation perplexity for various
optimization methods across LLaMA model scales trained
on C4

In this section, we present experimental
results for sign-based methods described
in Section 2. To demonstrate the effec-
tiveness of sign-based methods, we fo-

cus on language model training tasks. Method ‘ Perplexity |
This choice is motivated by two factors:

first, these tasks are known to exhibit Model size ‘ 130M 350M 138
heavy-tailed noise Zhang et al. (2020c) M-SignSGD ‘ 1837+ 01 13.73 11.56
i genelved oo ANng ol NGED 1938, 0 o0 1262
tics, and second, they represent an impor- M-ClippedSGD 1895505 1430 12.30
tant real-world application domain. AdamW 1867100 1378 1157

Training tokens

10B 30B 30B
To evaluate the performance of M- Number of iterations

SignSGD (Algorithm 4) we adopt the 100k 300k 300k

established experimental setup from Lialin et al. (2023), training LLaMA-like models (Touvron
et al., 2023) of various sizes — up to 1.3B parameters — on the Colossal Clean Crawled Corpus
(C4) dataset (Raffel et al., 2020). The C4 dataset represents a colossal, cleaned version of Common
Crawl’s web corpus, specifically designed for pre-training language models and word representations.

For our comparison, we focus on two key techniques for handling heavy-tailed noise and small batches:
gradient clipping with momentum and gradient normalization with momentum. As representative
methods, we choose M-ClippedSGD Zhang et al. (2020a) and M-NSGD Cutkosky & Mehta (2020),
respectively. We also compare to AdamW Loshchilov (2017), as a de-facto method for the first-order
optimization algorithm for deep learning. To ensure a fair comparison, we conduct an extensive grid
search over key hyperparameters, including learning rate, weight decay, and clipping level. Detailed
information on the final hyperparameters and experimental setup is provided in Appendix F.1.

Table 2 presents final validation perplexity for each method. M-SignSGD demonstrates superior
performance over other heavy-tail mitigating baselines, aligning with our theoretical results. Fur-
thermore, to our surprise, we discovered that M-SignSGD outperforms the strong AdamW baseline,
despite careful hyperparameter tuning of the latter. These findings highlight the significant potential
of M-SignSGD for language model pretraining. Given these promising results on smaller LLaMA
models, we invite the research community to further explore sign-based optimization methods for
large-scale LLM training and other computationally demanding applications of practical importance.

To ensure the generalizability of our findings, we complemented our experiments with a new setup
— new architecture and data. We have switched model to the Switch Transformer MoE architec-
ture (Fedus et al., 2022), and data to the FineWeb dataset (Penedo et al.), a popular corpus for LLM
pre-training. Further details on experimental setup and results can be found in Appendix E.
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A PARAMETER-FREE METHODS

In this section, we provide parameter-free tunings for all our methods and discuss them.

Theorem 5 (HP complexity for minibatch-SignSGD, infinite horizon). Consider lower-bounded
(Lo, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 2 requires the
sample complexity N to achieve min ||V f(x*)||; < e with probability at least 1 — & for:

kel T

s

Parameter-free tuning: Until plateau i, = o < @, By, = Bok?, after vy, = “’—3@, By, = Bok:

3K
8Lo . AN 1 i
>0 o N=O(By (=) +o, (121 :
©= Ly ( 0<705> +Bg< €

2K

8L ~ [ Bo(Lyyod + AJyo)* 1 [[I&i\* "
LB N:O< olind e A1), L (1) >

L1 g Bo 3
where A = f(z') — f*, L = Lolog(1/s), L = Ly log(1/s).

The proof is located in the second part of Appendix B.4.

Theorem 6 (HP complexity for MajorityVote-SignSGD, infinite horizon). Consider lower-
bounded (Lg, L1 )-smooth function f (As. 1, 2) and HT gradient estimates corrupted by unimodal
and symmetric HT noise with k. > 0 (As. 3). Then Alg. 3 requires the sample complexity N to

achieve min ||V f(x*)|1 < e with probability at least 1 — § for:
kel,T

Parameter-free tuning: Until plateau vy, = vy < %—M,Mk = Mok?/K?, after v, = %7Mk =
1 C
Mok /K2:

3 =13 2
ex 8o N:@(MO(A/%) +|0|1/M0)’

L1 K2e3

8L ~ ( Mo(Ldvod + A 4 7|4 /M,
e 8o L 2o (MoLbrod + A/v0)" +(IG1IT /Mo

Ly K2et

where A = f(2') — f*, L = Lolog(1/s), L = Ly log(1/s).

The proof is similar to the proof of Theorem 5 with x = 2 and additional condition M}, > 160/x2.
The parameter-free tuning for our M-SignSGD (Algorithm 4) is presented in Theorem 4.

Parameter-free tuning bounds. For our methods, we use dynamic parameter-free tuning. We start
with the largest stepsize 7y for which the method converges and continue until it reaches the plateau
observed in the convergence bounds. After that, we begin to decrease the stepsizes. Parameter-free
tuning does not require any knowledge about the optimization problem, but it has worse polynomial
dependence on parameters Lg, L1, A and slower (for asymmetric noise x # 2) non-optimal rates.

The works (Hiibler et al., 2024a;b) were the first to introduce this approach for building parameter-free
tunings. They study it only for normalized methods and proposed tunings for NSGD and M-NSGD.
However, these tunings were built either only under the assumption of standard smoothness and
heavy-tailed noise, or under generalized smoothness and BV noise. That is, we are the first to build
a tuning under both assumptions simultaneously. Under HT noise, the authors also observe that
parameter-free tuning leads to the same slower non-optimal rates. In (Hiibler et al., 2024b), they
apply simple parameter-free tuning to M-NSGD and obtain in BV expectation bound O, ((A /vy +
voLo)e(0E)” 4 ]|#|2)*/e*). Unlike our methods, M-NSGD works with any stepsize vo and , but
has exponential dependence on L; due to it. Moreover, we explicitly divide convergence into two
stages, what helps us to get accelerated rates during the initial training phase.
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Practical heuristics justification. Using parameter-free tuning bounds, we can explain why popular
practical heuristics for training neural networks such as grid search of hyperparmaters and decreasing
stepsizes successfully work in real-world problems.

First, one can grid search hyperparameters (e.g., initial stepsize 7y) and choose the best ones
according to the achieved final accuracy. Parameter-free Tuning Theorems guarantee convergence to
any accuracy for almost all g, By, and the only difference is the convergence speed. Hence, trying
various values reveals which values pair better with the unknown problem parameters Lg, L1, &.

Second, one can start to decrease stepsizes at any moment before the oscillating plateau, even from
the beginning of the training. In this case, the initial fast convergence phase is not fully utilized, and
the slower speed comes earlier for all accuracies € > 0.

B PROOFS

B.1 (Lo, L1)-SMOOTHNESS

Standard L-smoothness assumes that the gradient of a function is globally Lipschitz continuous.
However, this condition can be too restrictive in practice. Many functions arising in optimization,
especially in Machine Learning and statistics, either do not satisfy L-smoothness or satisfy it with a
very large constant Ly, leading to overly pessimistic theoretical guarantees. (Lg, L1 )-smoothness
(Assumption 2) is weaker than L-smoothness and allows finer control over the smoothness behavior
of functions with rapidly growing curvature in regions where the gradient is large.

Importantly, many functions satisfy (Lg, L1 )-smoothness with significantly smaller constants Lo and
Ly compared to the L required for global Lipschitz smoothness. As a result, optimization algorithms
tailored for (Lg, L1)-smooth functions can achieve better convergence guarantees, especially in
settings involving large gradients or heavy-tailed noise. The examples of practically used (Lo, L1)-
smooth functions include:

Example 1 (Power of Norm). Let f(x) = ||x||?", where n is a positive integer. Then, f(x) is convex
and (2n, 2n — 1)-smooth. Moreover, f(x) is not L-smooth for n > 2 and any L > 0.

Example 2 (Exponent of the Inner Product). Function f(x) = exp(a' x) for some a € R% is convex,
(0, ||la||)-smooth, but not L-smooth for a # 0 and any L > 0.

Example 3 (Logistic Function). Consider logistic function: f(z) = log (1 + exp(—a'z)), where
a € R% is some vector. It is known that this function is L-smooth and convex with L = ||a||?. However,
one can show that f is also (Lo, Ly)-smooth with Lo = 0 and Ly = ||a||. For ||a]| > 1, both Ly and
Ly are much smaller than L.

Example 4 (Quadratic Function with Linear Term.). Let f(z) = %xTAx +b"x, where A € R¥*4 g

symmetric positive semi-definite, and b € R%. Then f is convex and (L, 0)-smooth with Ly = || A||.
This function is also L-smooth with the same L, but here (L1 = 0) shows the gradient is Lipschitz
regardless of gradient size.

The condition of (Lg, L1)-smoothness from Assumption 2 can be formulated in terms of inequalities
without sup operator, similar to the case of standard smoothness.

Lemma 2. ((Lg, L1)-smoothness properties (Gorbunov et al., 2024)) For (Lo, L1)-smooth function
f (As. 2) and xz,y € RY, it holds

IVf(z) = VIy)lz2 < (Lo + Li[IVF()ll2) exp(La |z = yll2) |z — yll2,

) — f@) — (Vi(x)y —a) < 20T L1||2Vf(x)||2

exp(Lallz = yll2) |z — yl3. ©

B.2 TECHNICAL LEMMAS AND PROPOSITIONS

We use the following facts from the linear algebra and convex analysis (Boyd, 2004):

Proposition 1 (Norm Relation). For two norms £, and £ with 1 < p < q < 2, the following relation
holds true:

lzllg < llzllp < dv™allzllg, Vo€ R (10)
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Proposition 2 (Jensen’s Inequality). For scalar random variable & with bounded rk-th moment
k € (1, 2], the following inequality holds true:

E[|¢]] < (E[J]"])™ - (11)

Proposition 3 (Markov’s Inequality). For scalar random variable & with bounded first moment, the
following inequality holds true for any a > 0:

E[jél)

a

P(|§ —E[]]| > a) < (12)

To prove the HP bounds with the logarithmic dependence, we use the following measure concentration
result (see, for example, (Li & Orabona, 2020, Lemma 1).

Lemma 3 (Measure Concentration Lemma). Let {Dy}}_, be a martingale difference sequence
(MDS), i.e., E[Dg|Dg—1, . . Dl] = 0forall k € 1,T. Furthermore, for each k € 1,T, there exists

positive o, € R, s.t. E [exp ( ) \k} < e. Then the following probability bound holds true:

YA > 0,0 € ( (ZDk< )\Zak+ log1/5)>>1— (13)

To control error reduction during batching, we use the following batching lemma for HT variables.
Its modern proof for d = 1 was proposed in (Cherapanamjeri et al., 2022, Lemma 4.2) and then
generalized for the multidimensional case in (Kornilov et al., 2024; Hiibler et al., 2024a).

Lemma 4 (HT Batching Lemma). Let k € (1,2], and X1,...,Xp € R? be a martingale difference
sequence (MDS), i.e., E[X;|X;_1,...,X1] = Oforalli € 1, B. If all variables X; have bounded
Kk—th moment, i.e., E[| X;||5] < 400, then thefollowing bound holds true

BEZX

< o ZE 1% 15] (14)

We generalize the following lemma about changes after one update step of sign-based momentum
methods from (Sun et al., 2023, Lemma 1).

Lemma 5 (Sign Update Step Lemma). Let z,m € R? be arbitrary vectors, A = diag(ay, ... ,aq)
be diagonal matrix and f be (L, L1)-smooth function (As. 2). Then for the update step

¥ =x—7-A- sign(m)
with € := m — V f(z), the following inequality holds true

Lo + L1[| AV f (2*)]|2
2

exp (YL1[| Al p)7? || Al 7
(15)

f@) = f(x) < =7 AVF (@)1 + 2] Allpllell2+

and in particular, if A = I for the {1 and {5 norms:

L() + L1 ||Vf(x)

5 12 cxp(yLavd2a. )

f@) = f(@) < =vIVF@) 1+ 2v]ell +

Proof. Using (Lg, Ly)-smoothness of f (Lemma 2) between points x and 2/, we have

L Lq||z’ —
)

f@) < f@) +(Vf(2),2" —2) +
Substitute 2’ — x = —yAsign(m) gives us:

(Vf(x),2’ — ) = =7 (V[(x), Asign(m)).

Next, we decompose the inner product:

(Vf(x), Asign(m)) = (V f(x), Asign(V f(x))) + (Vf(z), A(sign(m) — sign(V f(z)))).
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We use the identity:
(Vf(z), Asign(V f(2))) = [[AV f ()],

and define [V f(x)]; =: g¢;, then the second term becomes

d
Z a;g; (sign(m;) — sign(g;)) .
i=1
Now we analyze two cases for each 4:

o If sign(m;) = sign(g;), then the term is equal to zero.

* Otherwise, g;-m; < 0, hence |g; —m;| > |g;|, and we have the following with €; := m,; —g;:

a;gi (sign(m;) — sign(g;)) < 2a4|g:| < 2aie;].

In total, we have:
d
(Vf(@), Asign(V f(x)) — Asign(m)) <2 aile;| < 2| A plle]l2,
i=1
(Vf(z),2" = z) < —v|AVf(@)ll1 + 2] All pll€]|2-
Finally, we observe that
l2" — || = yl|Asign(m)||2 < 7[|Allr,

and derive the upper bound:
Lo+ Li[[AV f ()]

5 exp(vL1 || All )72 (Al %-

f@') = f(z) < AV (@)1 + 271 Al pllell2 +

For the A = T part, substitute 2’ — 2z = —~ysign(m), so:
(Vf(x),2" —x) = —y(V[f(x),sign(m)).

The inner product decomposition and analysis of (V f(z), sign(m)) follow the previous part, leading
to:

d
(Vf(@),sign(V f(2)) - sign(m)) <2 |ei| = 2le]1,
i=1

(Vf(z), 2" —z) < =V f(@)ll + 27]le]]s.
Substituting into the smoothness bound:
Lo+ L1||Vf(z
£a) — £(@) < A9 £@)h + 29 ey + 2LV )

2

l2 exp(yL1Vd)~y2d.

From (Hiibler et al., 2024b) we use the following lemma:

Lemma 6 (Technical Lemma). Let g € (0,1),p > 0and k > 0. Further let a,b € N>o with a < b.
Then the following statements are true.

1) We have

1) If p > q, then

i (a—1)9"Pexp (W) — N9 Pexp (%)

N
Z;z'—pHu—T—q)S T4 (p— g Ne T ;

T=a

and in particular,

N
S
i=a

%

[[a-79<(a-1)"Pexp <

T=a

a4 — (a—1)17¢

1—g¢q

) = 0(a?™P).
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1
iii) Ifa > p™i and a > (252) ™7, then

b b
i I 1=779) < 2exp (11(]) (b+1)77P.

i=a T=i+1

Note that these requirements are always fulfilled for p < 1.

B.3 PROOF OF SignSGD GENERAL CONVERGENCE LEMMA 1

For beginning, we prove general lemma about SignSGD convergence with HT gradient estimates g*
with &, k € (1, 2]. This proof considerably relies on proof techniques for NSGD from (Hiibler et al.,
2024a).

Proof. Consider the k-th step of SignSGD. We use (Lg, L) smoothness of function f (Lemma 2)
to estimate:

Lo+ Li[|[Vf(a")]2

FE@) = f@*) < (Vf(h), 2 —ab) + 5 oxp(La [+ — a*|l2) 2"+ — 2|3
_ (Vf(z"), sign(g")) K Lodr}
= T [V f (2R IV )]+ 5 eXP(Ll\/Zi’Yk)
n Lydyy expz(Ll\/;hk) AV @)l
k : k 2
< i H(é }Eiﬁi‘q D19 1)+ ZE exp( V)
¢ ORIV 9 )

Let us choose v, < ﬁlld’ then we have L1 dyy, exp(L1vVdyy) < + and

(Vf(a"),sign(g"))
IV f (@)1

Consequently, after summing all 7" steps, we obtain:
T

z*), sign(g* a
> | e ] 196 £ g e s ray ot

fh) —f@®) < -

gl
AV + Lodrg + IV F ).

We introduce the following terms ¢ := W € [-1,1], Y := Elpg|z*] and

Dy = —(dx — Y)|[VF(@¥)|1. We note that Dy, is a martingale difference sequence
(E[Dg|Dg—1, ..., Di] = 0) and satisfies

D? B (o — r)?
P <4vﬁvf($"“)||?> eXp( 1 > =

Applying Measure Concentration Lemma 3 to MSD Dy, with 02 = 42|V f(2*)||2, we derive the
bound for all A > 0 with probability at least 1 — J:

T T-1
Y = 3NV (@) = Y[V () |0 < A+ Lod Y a7 + %10g(1/5)~
k=1 k=0

We use norm relation (10) and (Lo, L1 )-smoothness to estimate maximum gradient norm for all
ke2T+1:
IV /Vd < V@Rl = [VF(*) = V) + V],

< |VFEY) = VEETD) 2+ [V

< (Lo + Lil|Vf(= Y l2) exp(La |2 — 2" o) 2" — 2o + [V F (2" 1)]l2
<

(Lo + La[|Vf (2" 1)ll2) exp(Ly Vi) Ve + [V f (1) o
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- to obtain

At this point, we take v < m

VSV < 2Lo¢&w+W+nw ol
va 195Gl
< ar 27”248[1 I
< 2Lo¢az 248 it ”1 IV,

WIVFE)L < 2Lod- %E%M Z”m ’”1+f»y IV £

Since stepsizes 7y are non-increasing, we have

Z” Ml Z%Wf )
4810g 4810g7 ’

IVf(z

Ir ”1
IV S @) < 2Lod- ka% Z BT VAITIE)
) k—1
Hence, the choice \ := where C'r := max g - -
6d(ymer |V f(z) 1+ 57, %4_20 Lo) T kELiT’Yk ‘rgl Y
and ™" := max ~y; yields with probability at least 1 — d:

kel, T

= 11
> (-5 1) VA6l
k=1

IN

T
A+ Lod Y A%+ 6Vd(y™ |V f(z") |1 +2C7 Lo) log(1/s)
k=1

+ Z%nw )i,

IN

S (5 5 D) IVACRI £ A a3 57 6V 2L o)
k=1

Next, we estimate each term v ||V f(x*)||; in the previous sum:

el V@) = E[Vf("),sign(g"))la"]
d
= |IVF@) =Y 2AVF(a)] - Plsign(Vf(2")); # sign(gh)lz"). (18)
i=1
For each coordinate, we have a bound derived from Markov’s inequality (12) followed by Jensen’s
inequality (11):

— gk
P(sign(V £(z")); # sign(")lz") < BV ) — o] 2 [Vl < el V@i = orl]

IV f(zF)i]
Eex |V f(2F): — gF|*])* ;
o BelVH)— gD on )
IV f (")l [V f (")l
Hence, the whole sum can be bounded as
d
D 2V (")) - Plsign(V f(a¥)); # sign(gF)if*) < 2]kl
i=1
Finally, we put this bound in (18) and obtain:
me o < A+Lodzwk+2zwnoku1
k=1 k=1
+ 6d(y™ ||V f (2|1 + 2Cr Lo) log(1/s). (20)
O
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B.4 PROOF OF minibatch-SignSGD COMPLEXITY THEOREM 1

The proof of Theorem 1 is divided into two parts: for finite horizon with optimal tuning (Theorem 7)
and for infinite horizon with parameter-free tuning (Theorem 5).

Theorem 7 (HP complexity for minibatch-SignSGD, finite horizon, full version). Consider
lower-bounded (L, L1 )-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg.

2 requires the sample complexity N to achieve 7 25:1 IV f(x*)|l1 < e with probability at least
1— 6 for:

Optimal tuning for ¢ > 80: T = O Yk = gap5g Br = (16“676”1) T
1

Ly

Optimal tuning for ¢ < 8.0: T = O

ALjd — A — (16]5]L ) =T .
Ly e ) W =/ soz5ar Br = € :

AL(S = =
v-o(2 1, (1)),
g 3

By = max{1, ByT?}:

Parameter-free tuning for ¢ > %.‘ T,y =7 < Wltfd’

AN 1 (lEh ™
N = By [ — —
o(m(3) (7)),

Parameter-free tuning for ¢ < %: T,y = %, By, = max{1, ByT}:

Bo(8/v + Lidvo)* 1 (||l "
N:O<0tho%)+<Wh> 7
€ By €

where A = f(z') — f*, L = Lolog(1/s), L} = Ly log(1/s).

Proof. Plugging in constant stepsizes v, = v < m in (20) implies Cp = T2, 4™ = ~:
5

dIV£@h)h
T

4A
— Z IV £ (2*) ||y <o + 80Lodylog(1/s) + 8||Gk|[1 + 24 log(1/s).

Due to Batchmg Lemma 4, we can estimate the k—th moment of the batched estimate for constant
batchsizes By, = B as |51 < 2” 1 and derive:

4A
T Z va ”1 < o + 80L0d’)’10g(1/5) + 8|BU||1

dIVf )l
T (0]

+24 log(1/s).

We can omit the last term since its dependence on T has the largest power.

Case ¢ > %, parameter-free tuning: We use parameters 7', v, = Yo, Bx = max{1, BoT?} to
get:

11

A d|V f(x!
*ZHVf M < —|—5—|—16 ey T 24 I f}
By~ T =
Setting such T that the first two terms become less than e, we obtain the final complexity N =
T - BoT?.

) log(1/s).

Case ¢ > %, optimal tuning: We use stepsize v = + = 80Lodvylog(l/s) < /2 and

48Ly dl og L
batchsize 8”37!11 <¢/2 = By = max {1, (%) " } The number of iterations 7" is chosen
B

to bound the first term:
1
4N 192AL110g6d E:T:O(ALllog‘sd).

Ty T =2 €
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The total number of oracle calls is:

1
8Ly _ NZQ(ALllog(/a)d
g

1+(|a€n1>"1]>.

Ly
Case ¢ < 8L1° , parameter-free tuning: We use parameters T, vy, = \F’ By, = max{1, ByT} to
get:
4A Lodyo ||5||1 d|[V (=)l
= \Y% < + 80 log(1/s) +8——% - +24 log(1/s).

Setting such 7" that the first two terms become less than €, we obtain the final complexity N = T'-ByT.

Case ¢ < %, optimal tuning: We set the same batchsize 8 ”‘z‘l < ¢/2 = By =
B w
max {1, (%) =t } The stepsize 7 is set to minimize the sum:
4A 320A Lod log(t
min [ + 80Lody log(l/é)} = 2\/ od log( /6),
v [T T

it means that the stepsize v = ,/ m. The number of iterations 7" is chosen to satisfy

) \/320AL0 log(1/s)d <f.T_0 (ALO log(l/é)d>.
T 2 g2

We only need to check whether condition v < m holds:

_ 4 _j4A 1
T T A\ 80T Lo log(1fs)d ~ \| T 80Lo log(1/s)d

€ 1 < 8o !

4 80Lglog(1/s)d ~ 4Ly 80Lg log(1/s)d
1

48L1dlog L

Hence, we have the following bound for sample complexity

e < 8Lo = NO(W{1+<|&”1>M])~ 2D
Ly € c

O

Proof. Proof of Parameter-free Tuning Theorem 5 First, we derive upper bound for new min metric
with non-constant parameters:

T T T k=1
kzlwcl\vf(w'“)lll A kxlvi QkZIVkHEHl/BkT
kfélliLTHVf(xk)Hl < = —— + Lod——+ ———
’ > Yk >k Z Vi >k
k=1 k=1 =
log( /6)

+ 6d(y™ |V f (@)1 +2CrLo)—

Z Vi
k=1
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s 2
Case ¢ > %, optimal tuning. If we consider only first 7' < m# steps with constant

stepsizes v = @ and increasing batchsizes By = (16k)ﬁ, we get
T
1 T
= 5 azr = 77 C = 7’

kzzl% 48L5d 27 48L5d 27" = w0ia 9T T Wniae
| 1 _ T
> T TS e
k=1 B " k=1

48ALYd  24L%d  2||F|y InT
< — <
- T 4814%d T 16 —

The term Zgiéj < §5 is bounded by condition, and the number of iterations 7" = O (

(AL‘fd+H5H1))
>4
is enough to bound the other terms. The total sample complexity is

5 > ey

3

T T

S B, =Y (16k)FT < (167) %

k=1 k=1

S5 52
Case ¢ < %, optimal tuning. In this case, the first % steps can be neglected, and we use

decreasing stepsizes v, = /55 dAm 7 and increasing batchsizes By, = (16k) -1 o get
0

T T
AT , AT 1 A
Ve = 2 Vi = A = i O = ——5,
; QOLSd ,;1 20L3d 48L3d 20L3d
T T
Z Tk I Z \/TIHT
r—1 - 5 S )
k=1 B, " 20L od i= Vk 4[ 256Ld
80LYd ALSd ]l InT ALSd
: \V/ k < \/ 0 \/ 0 InT 2 0
IQ%H f@)l < 7 TV oor BT 5t or

Hence, the number of iterations T' = O (AL“dEiJr”UH)) is enough to bound the sum. The total
sample complexity is

T

T 3k—2
o _ ALéd =112 2(r—1)
ZBk = Z 16k) D < (16T)723£H_f) =0 <(0+01)) ) (23)

2
3
k=1

Casec > M, parameter-free tuning. If we consider only first 7" steps until plateau %, we use

constant stepsizes v, = Y0 < g L5 - and increasing batchsizes By, = Byk? to get

T
Z% = TVO,Z’W?:T%%ﬁmax:%,CT:T’Yo,
k=1 k=1
G o T InT
Z el Z 2(;1 1) < o1
k=1 B} " =1 ( - By~
A 2||&
min VAN < o+ 24L8dn0 + — U jp <
kel, T YoT' (T ﬁBo)f

The term 24L5d70 < 1—56 is bounded by condition, and the number of iterations T =

O (( A ) 1 ( ity ) #mn ) is enough to bound the other terms. The total sample complexity is

Yo€

T T 3 - ot

~ A ]_ 2(k—1)
S Bi=Y Bok*<BI*=0(Bo(—) +— 171 :
k=1 k=1 "oe Bq <
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8Ly . . 64AL; LS d>
Case ¢ < ) parameter-free tuning. In this case, the first —— L, stepscan be neglected, and

we use decreasing stepsizes v = % and increasing batchsizes By, = Byk to get

T T
o = WV, =% WT, 4™ =0, Cr =13,
k=1 k=1
~ 1 M o 1 Y0 g2
k 0 0 2=k
=1 o1 Z 5z < 1 7 InT,
P Bk = BO e k2= BO ®
, A In7  ||¢iInT
min VA € —m 4 Ly 2L o WAL
L R L s

~ 5 2 o =\ .
Hence, the number of iterations 7' = O <(L°%ds+2AMO) + Bio (m) 1> is enough to bound the

)

sum. The total sample complexity is

T T ~ 5 4 = %
Y Bi=) Bk <BT*=0 (BO(LO%dJF S/, L ("""1) ) 2
k=1 k=1

€4 B() e

O

B.5 PROOF OF MajorityVote-SignSGD COMPLEXITY THEOREM 2

We start this section with a general lemma on convergence of MajorityVote-SignSGD. The proof
of Theorem 2 is located after the lemma and divided into two parts: for finite horizon with optimal
tuning (Theorem 8) and for infinite horizon with parameter-free tuning (Theorem 6).

Lemma 7 (MajorityVote-SignSGD Convergence Lemma). Consider lower-bounded (Lo, L1 )-
smooth function f (As. 1, 2) and HT unimodal and symmetric gradient estimates k > 0 (As. 3).
Then Alg. 3 after T iterations with non-increasing stepsizes v < 1/(48L1dlog %) and batchsizes
My, > 160/k? achieves with probability at least 1 — §:

T T T .
BT f ) < At Lod 3 +23 2L ¢ 6 Yl +2Cr Lo log =, (25
;16||Vf(x It < A+ Lo ;vw ;wkm+ (V") |1 +2Cr Lo) log 5, (25)
k=1
where Cp := max v, - > V- and A = f(g_’;l) — f*
kel T =1

Proof. The beginning of this proof exactly copies the proof of SignSGD Convergence Lemma
(Appendix B.3) until equality (18). We have to estimate the probability of failure of majority voting
for each coordinate j conditioned on xzk, namely,

M,
P | sign(Vf(z")); # sign lz sign(g; )] ,gF =V Eh.
i=1 j
We use the generalized Gauss’s Inequality about distribution of unimodal symmetric random variables
(Dharmadhikari & Joag-Dev, 1986, Theorem 1).

Lemma 8 (Gauss’s Inequality). Let a random variable & be unimodal symmetric with mode v and
bounded k-th moment, k > 0. Then the following bounds hold:

K K/]Eﬁ—u'{ " e .
B¢ —v| > 7] < (Fr) 25 e Bl
1‘[%} » T < o EBlE—v[T]
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We use Gauss’s Inequality for each variable gf ; = V f (", £F); satisfying the symmetry requirement

from the theorem’s statement. We denote S; := [Vi@)s] gjk)J | and bound
P [sign(V f(z");) # sign(g;)] = Plof; — VI(2¥); > [V f(z");]
1
= 5Pllgk; — VN 2 V)]
1 K r of k K P e
< 5(?—1) W7 IV f(z )]' ZW'UJ"
1
- 1 1 [IVFE®) 15" kY. |k K" K
§_§|:(N+1)UJ;:| ) IV f(z )J| SW'%,
1 K ~ 1 K K"
< 2 ,«Tl) 5 Sj > [CE )
T s itr SP< g
(kt1)% 7 = (s+1)

We denote probability of failure of a single estimate by

g = Plsign(Vf(a*);) #sign(gf;)]
1 K ® 1 K K"
_ )z () & 5= e
= 11 Sj 1 Ko< /1'{. ;
27 2, )L 7 = (rfl)r 1o
= §;(5;). (26)
Moreover, this probability ¢; < g; (S j) < %, and the deviation of ¢; from % can be bounded by
1 1 -
€5 1= 5~ < 5 — 5(5;) = &;(S).

The probability of getting the wrong sign can be restated as the probability of failing half out of M}
Bernoulli trials with fail probability g;:

My,
. . . 1 1
P |sign(Vf(a*);) # sign | > _sign(gf;) || < 77— < — 27)
prt 1+ = ) 1+ p— —
- 422 4§§(sj)
» First, we consider the case S; > E .
‘ (k1) w
1 1 "1 ’ 1 2
~2 K K
‘(S)=|=-—=[ —— — >
Ej( J) (2 2(H+1) S;{) —4(1%_’_1)2’
1 (k+1)2 5
2E) LS e Tlse
g\~
If we set My, > %9, then the fail probability is upper bounded by
il 1 1
P |sign(V f(z*);) # sign Zsign(gf’j) < p— r— < 32" (28)
i=1 45?15]»)71
* For the case 5; < (% we derive the bound:
){,-}-1)7
1 (k+1)% 4
—— =1 = ——-1<—=. 29
2(S)) 52 =3 @

And we use the inequality 555 < 5,2 > 0 on (27):

Ve L 11
482(S;
€5(0j < . 7'. (30)

@7 <



Combining (28) and (30) together, we obtain the bound for each coordinate:

. ki 1 11 1 1 o;
P |sign(V f(z*);) # sign Zagn g” _32 \/ﬁs—j 5 \/7|Vf( SR (31)

The rest of this proof is copying the proof of SignSGD Convergence Lemma (Appendix B.3) until
the equality (18). There we replace probability of single estimate with the majority voting and obtain:

- - S ()| | < IVF@OI 15
Z| PP |sign(VF)) sign | 3 siently) || < S+ A
instead of
) a
XJVf B(sign(([V/(2*)]; # [sian(g")];) < 120
B, ~
Hence, the final bound on the sum of /;-norm of gradients with probability at least 1 — § is
- . 1l 1
< A+ LedY A2 42 ! k
ka Vi)l < A+ Lo ;vk + ,; AT 3 Z KV £ (")

+ 6d(y" ||V f(zM) |1 + 207 Lo) log(Ys), My > —-.

Theorem 8 (HP complexity for MajorityVote-SignSGD, finite horizon). Consider lower-bounded
(Lo, L1)-smooth function f (As. 1, 2) and the gradient estimates corrupted by unimodal and
symmetric HT noise with k > 0 (As. 3). Then Alg. 3 requires the sample complexity N to achieve

T Zle |V £(z*)||1 < e with probability at least 1 — & for:

16 2
Optimal tuning for ¢ > 32: T = O (AL d) Y = 48L‘5d’Mk = max{l’go, 2 lZly E” dl } :
ALY [ 1 31\’
:0( 1 2+<|| ||1> )7
e |k 5
5
Optimal tuning for ¢ < 82: T = O (AEL;d) . /W’Mk = max{lg)7 2156”‘7”2} :
ALY [ 1 31\’
N:O< Bl (1)),
5 K 5
Parameter-free tuning for ¢ < %: T,y = %, My, = max{160/x?, MoT}:

Mo(8/70 + Lydro)* ||<7||1
N=0
( et YA Mo € ’

My, = max{160/x?, MoT?}:

Parameter-free tuning for ¢ > %: T =7 < 33 L" -

AN 1 e’
N=0(My (=) +—
(o0 () () )

where A = f(z') — f*, L = Lolog(1/s), L = Ly log(1/s).

Proof. Plugging in constant stepsizes vy, = v implies Cr = T+2,~4™* = « into the bound (25)
from Convergence Lemma 7, we have :

=3 1
3203l1 o dIVIG
VM, T

16A
= Z 1954l < S+ 192 Ladylog(1s) + Mrogse). @2
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Case ¢ > %, parameter-free tuning: We use parameters T,v, = 7o, M =

max{160/x?, MoT?} to get:
V£l

16A 5]]1
—ZHW Y < +32FT+96 T log(1/s).

Setting such 7' that the first two terms become less than ¢, we obtain the final complexity N =
T - MyT?.

r = 192Lgdvylog(1/s) < /2 and

8Lg . . . .
Casec > ) optimal tuning: We use stepsize v = 7400 Ty diog

batchsize 32% <eg/4= M) =max {1,?207 (128”””1) } The number of iterations 7" is chosen

£

AL;log id
:>T:O<1€og‘5>.

to bound the first term:
16A 2560AL1 log d €
Tv T 4

The total number of oracle calls is:

Yo <AL1 log(1/5)d llg . <I5I1>2D |
8Lg

Case ¢ < <%, parameter-free tuning: We use parameters 7,7, = %,Mk =
max{160/f£2 MoT} to get:

150 oIV

16A Lod’}/o
< — 1
T § :||vf IF! +192 log(1/s) + 32 T 7

VT VT

Setting such 7' that the first two terms become less than €, we obtain the final complexity N =
T - M,T.

log(1/s).

Case ¢ < 8LLl°, optimal tuning: We set the same batchsize 321‘/1\% < g/4 = My

max { 99, ( %) } The stepsize  is set to minimize the sum:

1/s
Y T'}/ T

it means that the stepsize v = ,/ m. The number of iterations 7" is chosen to satisfy

1 1
2\/3200AL010g( /5)d <§ T:O(ALolog( /5)d)_

T g2

We only need to check whether condition v < W holds:

_ 4 _j4A 1
T T A\ 80TLolog(Ye)d  \| T 80Lolog(1/s)d

ooe 1 8Lo 1
= 480Lglog(1/s)d — 4L, 80Lglog(1/s)d
1
48L1dlog L~

Hence, we have the following bound for sample complexity

NeoO <AL0 log(l/é)d l12 + <|5|1>21> ' (33)
€ K €
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B.6 PROOF OF M-SignSGD COMPLEXITY THEOREM 3

Theorem 9 (Complexity for M-SignSGD in expectation, full version). Consider lower-bounded
(Lo, L1)-smooth function f (As. 1, 2) and HT gradient estimates (As. 3). Then Alg. 4 requires T

iterations to achieve Zle E [[IVf(z®)|1] < e starting with A = f(x') — f*:

Optimal tuning for & > *F2: B, = 1 mm{l, CoIN } =

o <A§1d <1+ (ninl)ﬁfl))’

Optimal tuning for = < 3L0 1—06;=1—min {1, (Tﬁg‘%) e } S Ve = A(TlL_(fzk)
1

o2+ (%)”).

Parameter-free tuning for ¢ > % T8k =1-Y73 v =v(1 — Br), Y0 < YsdLy:

3 AP ECED)
TO((A) (1) )
Yo& 13

Parameter-free tuning for ¢ < % T8, =1—1YVT,y = WoT_%-'

(8 + Lodyo)* | (11511 )"

In this proof, we generalize the proof of Theorem 1 from (Sun et al., 2023) for HT noise.

Proof. Consider the k-th step of M-SignSGD. We use (Lo, L1) step update Lemma 5 to estimate:
Lo + Ly ||V f(z%)]2

F —fh) < (Vf@h) At =) 4 > exp (L[ — P [a)]|* ! — P
Lod;
< VI + 2mlletle + TG exp(Lr V)
Lydyy, exp(L1Vd
o p2(1 W) ). (34)

Since we set constant steps sizes and momentum, we denote them as v = y and 8 = S, respectively.
We use notations ¢* := m* — V f(z*) and 0¥ := g¥ — V f(2*). Therefore, we have at k-th step
values:

3
[

k BmP 4 (1= B)gh =" + Vf(mk_l)) +(1 =) + V("))
Fo= mf - V@) = BT BV (Y = VIER) + (1 - B)6F,

=gk

" = mF - Vfh) =B+ Bsh + (1 - B)oFk.

o™
\

Unrolling the recursion, we obtain an explicit formula (upper index of (3 is its power):
k k
Gk — ﬁk_1€1 + Zﬁk—z+1sz + (1 _ /6) Zﬁk—zaz- (35)
i=2 i=2

From (L, L1)—smoothness of the function f (Lemma 2) follows the bound:

Is"ll2 < (Lo+LalIV £ (2")l|2) exp(Ly a* —aF 1 |2) 2" —2* |2 = (Lo+La ||V £ (2*)|2) exp(Liye Vd)yuVd
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Denote A := exp(L17vk \/3)% v/d. Hence, the norm of (35) can be bounded as:

k k
el < B4 et ZoA D2 B 4 LAY BV )+ (1 - 8 HZB’“ an

=2 =2

We notice that variables {6, } are martingale difference sequence from Lemma 4 which we plan to
use. Due to the formal definition of §* = ¢* — V f(z") = V f(2%, &) — Vf(z) and M-SingSGD
step, the conditioning on §*~1, ..., ! with randomness &1, ..., &;_1 is equivalent to the conditioning
on point s %, . .., 22. Hence, we show by definition of martingale difference sequence that

E[0Y0°, ..., 01 = E[¢'|2",...,2°] = B[V f(2", &) — Vf(z")|z",...,2%] = 0.

To take math expectation from both sides, we first take it from the term

=2

For each i € 2, T, we estimate E [||¢°]|5] as

. As.3
E[[°]15] < E[[16°]] Z\QJ )< > e =8 (36)

j=1
We continue bounding (36) with
1
- » 208
36y < | > 28" Vg | < =
; (1—p%)x

Therefore, the final math expectation can be calculated as:

k
A ) X 2(1 — %
Blély < BB+ 2 1 a3 g vty o+ 2O )
5 i=2 (1_5/@),{
Then, we take math expectation from (34):
E[f (@] —E[f(z")] < —AE[IVf(@")1]+ 278" "El€'|.
k
Q’Yﬂ k—i+1 k 47(1 - B)HEHI
+  LoA + L2 RNV +—F
AT+ Iz P EIVS R+ 250
Lovd Livd
= 0\{7“ 1{”A1E||Vf(xk)u1.
Summing it over k, we derive
. 1 kel 1 298
fr=reh < —vZJEHVf \1+272/3 Elle! 2 + LoTAT—5
k=1
k ) ) 44T (1 — 0
+ Ll/\Z,}/ZZﬁk—z—&-lE”v‘f(xz)”l+ Y ( ﬁ)”l ”1
k=1 i=2 (L—=pn)=
L Tf LVd
o olVdy, I 7AZEHW - (38)
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Changing the order of summation in the right part of (38), we obtain:

T T
2VL1AZ (Zﬁ“ﬂmﬂxim) = 2Ly <Zﬁ’”“E||Vf(x")I1>

=2 1=2 \k=i

T T
= 23 (Z B’““) E|IV £ ()]l

k=1

ﬁT % .
- leAZﬁ it (L2 EIv sl

7
1138 (1) BIv s
=2

IN

Finally, we have the bound

s < by 2l
ff=f) < —WZE”Vf(x) -5
T
ﬂ AT (1 - B
+ 29[ A —— Vi(z +—
1 ﬁ kz:: || H (1 _Bm)l/,.Q
LoTVdy 2v8 Ll\[’Y
+ = A+ LoTAT— —57 )\Z]EHVf )
2y A Ll\[V
< (—w 3 A ZEHW h
L 2Ell: | T8l +Lon M3,
-8 (- g 2(1- )
Evaluate LOT‘G’Y%;” 35) \ < 2L(0T‘§7)\ Let us set stepsize v such that
2yLi\dB n lef”y)\ 3v2Lyd exp(Lidry) <)2m < 1-8 1
1-5 2 1-5 =VETY =T L
Thus, we obtain
N 27El||e kel LoTdv?2
gt < ZEHW i+ ZED s - gy o + 2,
2(f* — f(@Y) | 4E[ly e L ALgdy
E||V f(x < + +8(1—p)"F + ) (40)
Z V£l - tra-p Y a9
Case ¢ > %, parameter-free tuning: We set 1 — 3 = Ti%,y = %, omit the the smaller

terms and obtain

32Adz 16|51 e
= ZEHVf ||1 = Tt e t 4
YoT's T 3=

. . 16|
Next, we choose T to limit 32A‘if < £ and Sl < £
YoT'3 T 3%

1

adi\” /5D
oo (22) 4 (1)
Yo€ €
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Case ¢ > 2Lo, optimal tuning: We choose the stepsize y = =L 73 < =L 75 and get:

16AL.d 4FE||e! w1
—EEHW M < et el s oy ol +

16(AL1 —|—EH€1H1)d el 4e
1-B) l
< HELEEIC L g1 o +

Then, we choose 1 — 8 = min {1, (%ﬁgﬁ) ot } to obtain

16ALyd — ALlf e sy | AL
m o <24 T ——. 4l

Finally, we choose number of iterations 7' to get:

AL o L AL AL Fp\ 7T
24 ( 1\/&) ” ||2m 1 ld T O ( 1d ( + (HUHI) )) )
T T 5

Case e < %, parameter-free tuning: We set 1 — 5 = %7 v = WOT_% and obtain

2A 4Ld 8llg 4|t
*Z]Ellvf o < 284 ALdw  8IFl  Alel

Yol % T3 T T3

0

51l

Next, we choose 7 to limit 28/20+4Ed%0 < Sand =21 < 5.
T4 T 2r
Case ¢ < 3Lo, 0, optimal tuning: We choose stepsize v = L;‘Ffrl 17 [;) to minimize the sum
min =4y =———,
v VT (1-5) T -p)

4E ||t 2ALod ko1
*ZEIIW e < 2Blells |y J 2ALed g gy

= 1a-p N1a-p (2

The first term is much smaller than the second one, hence we omit it. Next, we choose 1 — 3 =

min {1, (%) } to minimize the last two terms:
1

2ALod
T(1-p)

Finally, we choose number of iterations 7" to satisfy:

12 (BLo |\ ||3“2+12,/AL°d Eopoolhd (1)) 6
T 2 g2 €

We only need to check that

_[aa-p) _ [ALd (-p) _ e (1-p)F=EH 1-p)
TN T TLed T N\TO—5) Lod —2-12 Lod - L

Rl AL ALgd
+8<1—5>~1||a||1] <12 TO) o Lod

min
Belo,1)
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B.7 PROOF OF PARAMETER-FREE M-SignSGD COMPLEXITY THEOREM 4

Proof. We denote the error between momentum and gradient as € := m*F — Vf(z*), and the
stochastic gradient noise as 6% := g* — V f(xF).

By the momentum update rule:
m" = Bm* ! + (1 - Br)g",
we can write:
e =mP = V(") = B+ Be(V (") = V(") + (1= Br)6"
Define s* := V f(z*~1) — Vf(«*). Then,
b= BT+ st 4 (1 Br)o"

Unfolding the recursion yields:
k k k
k i
ezH E+Z Hﬁj 5i8+z Hﬁ] Bi)
Jj=1 i=1 \j=i+1 i=1 \j=i+1
Let us denote the coefficients:
k k k
w; = H Bi |, sothat € =wpe® + Zwlﬂisl + Zwi(l — B;)6
j=i+1 i=1 i=1
From (Lo, L1)-smoothness, the gradient difference satisfies:
Is*l2 < (Lo + La[[V f(")2) - exp(La[|z® — 2" 7H2) - l2* — 2.

Let us define:
Ak = exp(L17xVd) - v, Vd,
which leads to:
5% ]2 < (Lo + La[|[V£(&*)]12) - A

Now, using triangle inequality:

k
Zwi(l — /Bl)ez

i=1

k
¥l < wollell + > wiBills']lr +

i=1

1

We aim to estimate the following sum involving martingale difference sequence #':
k
l Zwl Bi) ] ,  where w; := H Bj.
2

j=i+1
We note that {6} is a martingale difference sequence, i.c.,

E[g' | 9'7Y,...,0'] = 0.

Hence, by using the generalized version of the triangle inequality (Minkowski) and applying Lemma 4
for heavy-tailed noise, we get:

k k ‘ 1/k E
E [ ] < <ZWf(1 - 5¢)”E||9’||§) < 2[5 - (Z wi (1 - 50“)
i=1 9 i=1

i=1

1/k

(1= 5i)0
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Define the term:

Assume §; =1 — jiq for some ¢ € (0,1).

E[f(«"1)] - E[f(2")] —wE[IVF(@*)l1] + 2ykwoE[e’]|2

IN

k
+ 2y Z wiBiNi (Lo + LiE|V f(2)]2)
i—1

+ 2| - S

LoVdy LiVdy
5 A +

5 MBIV £ (2F) 2]

E[f*]-E[f(@)] < =) %ENVA)]+2) ywoEle|h

k=1 k=1

T k T k
+2) Y wiBidLo+2> Y wiBiNIaE|Vf(2)]2
k=1 =1 k=1 =1

T
+ 28 Y sy

k=1
LO\/Zl d Ll\/a d k
t = > Ak + 5 D WME[V ()]
k=1 k=1
We now aim to estimate the term with the S;/ " part.
T T k k " e
1/k — K
Dows = 0 k| 2| IT 8] (-6
k=1 k=1 i=1 \j=i+1
T k k ! " 1/%
= ok (ST (-5 ) o
k=1 i=1 \j=i+1

Then by (ii) (Lemma 6) from (Hiibler et al., 2024a) to estimate the term inside the sum, we have
Zf:a P Hf—:t-&-l(l —779) < 2exp (ﬁ) (b+1)7=P. Thus:

k k 1 " 1/% k& 1 1/m
- c—qk R Wt 1] 2/k (g—gqr)1/k
SII(-5)) =) < (SO (-%)r] <oerwenor
i=1 \j=i+1 i=1 j=i+1
< 2e2/rgla—am)1/k
Thus:
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K

T T k k
STwsy = 2w I 8| =B
k=1 k=1 i=1 \ j=i+1
T T21 _
< 27062#1 Z la—am)t/m—r < 27062/
k=1 2k
Hense, we get:
T
) Ly ﬁ
E[f] - E[f(z")] < Z]Ellvf ( Y+
T
+ ZkaleHelHl
=1
T k
+ 2\/gL()Z'7kaiﬂi)\i
k=1 i=1
2—K
+ 4ot 5=
e
Lovd «
+ 2 Zlyk)\kta
k=1
where v, = k™", A\x = exp(Llfyk.\/g) cyeVd < Ck", C o=

k
= Hj:i+1 5j~

W;

k k k
> wiBidive < Cwe i " [ 8-
i=1 i=1  j=i
By part (iii) of (Lemma 6) with p =

k

>

i=1

k
Hﬁj < 2exp (1
j=i

Y
—4q

Thus,

k
1
Zwiﬁi)\i’)/k < C - 2exp (1_q> BT = Cryy, - 2e2 kI

i=1

Let us set stepsize 7o such that

—k + 2VdC Ly k" +

—1 4+ 2VdC L kT +

IN

Since A\, < Ck™" < C'k™" and , we obtain:

1\f 1

WdO' L k" + 2 0

IN

35

1
4
2/k
1 1 2706 2=
4

k
Ve + 2V d Ly, Z w; B;

2—k

/TM

K

4k

i=1

)

70 exp(L1vovVd)Vd and

—r, a = 2, b = k (noting that the requirements hold for p < 1),

= 20"y kTT,



This implies:
1
C'LVd <2k‘” + 21ﬂ) <

N | —

We finally obtain:
1
C'LiVd (2 + 2) = gc’le/& <

N =
\
ot
oy
B

Recall:

exp(L170Vd) - 0Vd <

5Lle2f
Letting i := L170V/d, we get exp(y) -y < ﬁ, and hence:
———, where y" solves ex =—.
NS T y P =
Since the right- hand side of the inequality is always < 1, and noting that xe” < 2z on that range,
taking y* < 5.2_9 s20va Ve obtain the bound for
< —.
10 =90Ld
Since the gradient term is now bounded above by — 2%, we can move it to the left-hand side:
d i
k
ZEEIIVJ” h <A+ 22%on|\6 Il
k=1 k=1
T
+ AVALY Y Clypkd T
k=2
2—k
. NT 1
+ 4F]h0e* "=
T4k
Lovd
D PR (44)
k=1
2A Wd &
S < A 4 woB]|e]l3
Zk 17k k=1 Dkt Ve 2p=1 Yk k21
T
8vdL
+ \f Bvdlg Z C/ kq r
Zk 1Yk
T24—Kn
+ 8\/&||&||H7032/”2_K7T
T Dk W
LoVd
+ Zwk, (45)
Zk 17k
FIRST TERM: Ek 1’Yk
Approximate with an integral for large 7"
1-377
Zk %z/ e de = lf 31 — AT —1) ~ 477
-4,



T

Z Yok /% = dyoT/*
P

Thus we obtain the bound:

A A
Zle Tk 29T/

SECOND TERM: ZT Zk L vkwoE||€° |y

Recalling the definition:w, = H§:1 (1 —j~'/2) Compute the sum using Lemma ? case ii:

‘ﬂE”6 1 ok~ 3/4H ( —1/2) _ AE| €' 1 0(1)
Zk 17k p=1 Yo ZZ:l fe=8/4

Thus, the term becomes:

4E||€O||1 ok~ 3/4H( —1/2) EHEOHI.
Zk 17k k=1

THIRD TERM: % S kT

Withg —r = —i:
T T T
— _3 1 —
Dokt =D ki ki =0y kT A ologT,
k=1 k=1 k=1
The term is:
4v/dC’ Ly ologT — VdC'Lylog T
—_— S St = Rl
D k=1 Yk T
2—kK
. QIR 2/k__ T ar
FOURTH TERM: 8]|&||170€ I
The term is:
2k 2—rk 1
. T 1 . T2 — 1 . 1
8/1711v0e* " s =207 ¢/ = 20T e =
T Xk=1k Tn T L
FIFTH TERM: Z Zk 1 VA

Since A\, < C’k_%

T T ‘ T T
D e D DU T el e P IS ey
k=1 k=1 k=1 1

=7C 2(1 =T %) ~ 2y,C.

The term is:
LoVd o — LoVdC
et Tk 273
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The bound is:

A E|y  VdC'LologT
||V < ||V <
2in B[V f(z M < S kkzlwc IV £(*)ll < T A T 1 T i
1 LovdC
poglern oty Lovd
T:TW 2Tz

ARBITRARY TUNING

The second term is much smaller than the third one, hence we omit it. We now choose 7’ to limit:

(/o + LoCV/d)  /dC'LylogT < Bt 3LoC'\d)log T L€
271/4 R = 2T1/4 =2
and
= 13
2”0”162/ 24; £l < 5
Hense:

T:O(CMW+%%®Y+(51)ﬁ>.

C RESTARTED minibatch-SignSGD AND MajorityVote-SignSGD

For PL functions (As. 4), we can apply restart technique to minibatch-SignSGD and MajorityVote-
SignSGD. At each round, we run a base algorithm with certain parameters and then aggregate the
output point. This output point is used as an initial point for the next round.

Algorithm 5 Restarted-.4

Input: Starting point z° € R?, number of restarts 7, base algorithm A, parameters {6, }7_;.
1: forn=1,...,7do
2:  Run Algorithm A with parameters 6,, and initial point "~ !;
3:  Set z™ as the aggregated output point from the previous round: the point with the minimal ¢
gradient norm;
4: end for
Output: x7

Theorem 10 (HP complexity for Restarted minibatch-SignSGD). Consider lower-bounded
(Lo, L1)-smooth, u-PL function f (As. 1, 2, 4) and HT gradient estimates (As. 3). Then restarted
minibatch-SignSGD requires the sample complexity N to achieve f(x™) — f(x*) < & with proba-
bility at least 1 — 6 for:

3
Optimal tuning for ¢ > (8L°) 7 =log(A/e), iterations T,, = O (;;flz‘/\/é) , constant batchsizes
_ 102432\ 2D . -1 .
B,, = max {1, (7#6 1) }, constant stepsizes 7y, = LAV
LidvA 712\ 7D
N=0 1 VA 1+<||U||1)
VI He

Optimal tuning for e < (3£2): 7 = log(A/e), iterations T, = O (

B,, = max {17 (102il‘6 gl ) #=D } constant stepsizes vy, = \/% :
Lidlo A 2112\ 3ReT)
N=o =205 1+(01) :
H e

Lid .
=) » constant batchsizes




A LA
where A = f(z1) — f*,Lg =Ly log(loi?),L‘{ =1 log(logT?).
Theorem 11 (HP complexity for Restarted MajorityVote-SignSGD). Consider lower-bounded
(Lo, Ly1)-smooth, u-PL function f (As. 1, 2, 4) and HT gradient estimates corrupted by unimodal
and symmetric HT noise with x > 0 (As. 3). Then restarted MajorityVote-SignSGD requires the
sample complexity N to achieve f(z7) — f(x*) < e with probability at least 1 — 0 for:

Optimal tuning for ¢ > (320)2: 7 = log(A/¢), iterations T,, = O ( constant batchsizes

VA
Ly 271,/2\/7 ’

1024|512
M, = max{%o, 1113

e } constant stepstzes Yn =

48L§d )

N_o(HETL |als
Vi LR? e
Optimal tuning for ¢ < (SL") : 1 = log(A/e), iterations T,, = O (L%d) , constant batchsizes

160 1024(77 ; — A :
M, = max{ W e , constant stepsizes ~, = ST, L84

o A =
N0 (Lodlogg EE |0%D |
w K ne

where A = (') — f*, L = Lolog("*5%), L§ = Ly log("%%),

Proof. Here we prove only Theorem 10. The proof of Theorem 11 is similar.

Consider one round of restarted algorithm with the initial condition A which will be transformed into
Ay < A/2. In total, we will have log(A/e) rounds. Instead of the initial failure probability § we
use decreased probability ¢/ log %, since the probability of holding bounds log(A /e) times for all
restarts equals to (1 — m)log@/g) >(1- log(A/a log(A/e)) = (1-9).

Plugging in constant stepsizes v, = 7 < in (20) implies Cp = T2, y™%® = ~:

48L‘5d
16A 5 .
= Z IV f (@)l < —7 + 256 Lgdy + 32|51

Due to Batching Lemma 4, we can estimate the x—th moment of the batched estimate for constant
batchsizes By, = B as |51 < 2” 1 and derive:

1%l

16A
kmlm |V f(x ||2<—§ [V f(z*)]2 < § |V £ (x ||1<—7 + 256 LY dy +3zB .
S

K

Next, we square the 1nequal1ty and apply PL condition:

VS @hnll3 < 8 (m) +8(256L3d7)? + 8 (32|0k1)
Lmin)ll2 = T’y 0 P ,
. 16A &
F@min) = F(@") < IV (@nin)ll3 <8 ( T ) +8(256Lidr)? + 8 (32Lk”1> 7

po= sl 1) = A () s sorgan + (2 1200),
where r1 . = arg min f(a").
kel,T
Case ¢ > (%/2)%, optimal tuning: We use stepsizes ¥ = 48L5d = (256L3dy)? < £/2 and
batchsizes 32% < Jue/8 = By = max {17 (102i!a ) RoT) } The number of iterations T
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is chosen to decrease the term A by half:

2(716)\2,92 é
A2§A2(1028*482(L1)d)SA:>T:O LidVA '
pT 2 Vi

AQ” < 27%1’ and the total number of

At each restart, the initial condition A,, becomes A

iterations is
log(A/e) 5 5
Ledv A LYdv A
Tt = », O = )=0(= , (48)
2 Yz

n=1
=12 2(;11)
1+ (”Z!l) D . (49)

Case ¢ < (%0)2 optimal tuning: We use batchsizes 32% < Vwe/8 = By =

with the total number of oracle calls:
LidvA

N = Ttotal *Bk: =0
NG

L

max {1, (IOQi”&” ) sy } and stepsizes 7 = M%Lgd to have
8 [1024L%d
Ay < — [OA —|—€] .
" T

The number of iterations 7" is chosen to decrease the term A by half:

o 5
A2<§1024LdA§é T O(Ld)
p T 2 %

At each restart, the initial condition A,, becomes A, 11 < % < TL%, and the total number of
iterations is

log(A/e) 5 5 A
L§d Lidlog =
Ttotul - Z O ( ) = <O/JLE> )

with the total number of oracle calls:

L5d1 A =112 Tm—l)
N = Ttotal * Bk =0 Oioga 14+ <J|1> . (50)
1 e

D EXPERIMENTAL VALIDATION OF THE THEORETICAL CONVERGENCE
BOUNDS

In this section, we run experiments to verify the following convergence bound from Lemma 1 for the
backbone SignSGD method:

T

T T

o 1

>, %|\Vf($k)||1 <A+ Lod ) i +2) wlldwlh + 6d(n[|Vf (@)l + 207 Lo) log 5
k=1 k=1 k=1

k-1

where Cp := max 7 - 3. Yr, 7k < 1/(48L1d2 log 1) and A = f(z') — f*. In case of constant
kel, T =1

stepsizes v = 7, the bound transforms into

V£l 1
T

log(Y/s), v < ————.
(48L1d? log %)
(51

4A
—Z IV £(zR)| < —+80Lodvlog(l/a)+8\|o\|1+24
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Figure 1: Experimental noise dependencies for (L, L1 )-smoooth problems.

Objective function and noise. We optimize a non-convex neural network for classification task
with features X and one-dimensional labels y. The network N Ny with parameter vector 6 consists
of two fully connected layers, ReLU activation, batch normalization and dropout. The objective
function is the following logistic regression with L and L, regularizations with coefficients Az, and
AL, respectively:

ALg .

2

The regularization coefficients Az, Az, are the smoothness constants of the corresponding regular-

ization terms (see Appendix B.1). If their value are changed by some amount then the actual Lg, L
smoothness constants of the objective function f are changed by the exactly same amount.

f(0) =1log(1 + exp(—{y, NNy(X)))) + 16113 + exp(AL, - (T, 6)).

To model the noise, we compute the whole gradient V f () and artificially add noise vector with
independent components sampled from a-stable Levy distribution with scale o («v is the x parameter).

As training data, we consider the dataset mushrooms from LibSVM (Chang & Lin, 2011). The
matrix X has shape (6499, 112), hence, we set the NN layers sizes (112,32, 1) and dropout rate 0.1.

Noise dependencies. First, we verify the linear dependence of the achieved accuracy (51) on
noise 0. We set small regularization coefficients A\, = 0.01, A, = 0.001 and constant stepsize
v = 3-10~* for all experiments in this paragraph.

Next, we vary o € [0.1,0.01,0.001] and x € [2,1.5,1]. The results over 10 runs with standard
deviation bars are depicted in the left graph of Figure 1.

In practice, the achieved accuracy does not depend on x, only linearly on 0. We also wish to
highlight the small size of error bars especially in the end of training which corresponds to mild log %
dependence.

In addition, we check how well batching (Alg. 2) and majority voting (Alg. 3) reduce the noise, .i.e,

whether reduction laws o/ B* and o /v/M from Theorems 1 and 2 hold true. To reduce the noise
by 2 and 4 times for majority voting, we use batchsizes M = 1,4, 16 for all x € [2,1.25,1]. The
results are shown in the middle graph of Figure 1. To reduce the noise by 2 and 4 times for batching,
we use batchsizes B = 1,4,16 for k = 2 and B = 1, 8,64 for k = 1.5. The results are shown in
the right graph of Figure 1. In practice, both methods actually reduce the noise according to the
theoretical laws.

Two phase convergence. Here, we demonstrate the convergence speed slowdown after reaching

the accuracy -229 as it stated in Theorem 1. We also test the parameter-free tuning strate roposed
1

for reaching this behavior.

We slightly change the setup to better control constants Lg, L. We replace fully-connected neural

network N Ny(X) with simple linear transform NNy(X) = X - 6, hence, the current objective

function with only L regularization is:

AL
2

£(6) = log(1 + exp(—(y, X - ))) + = - |0]13.

In this case, we can directly compute (see Example 3 for mushrooms dataset) and control constants
Lo = Ar,, L1 = 5.58. The noise parameters are k = 1.5 and 0 = 0.1.
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Figure 2: Experimental convergence speed transition for (Lg, L1 )-smooth problems.

First, we set constant stepsize v = 10~! and vary Az, € [0,107%,1072,1073,10%,1075]. The
results over 10 runs are depicted in the left graph of Figure 2. One can see that the final accuracy
drops linearly with Az, until it reaches the noise level. Before the plateau, we observe the fast L;
convergence.

In the next experiment, we follow the parameter-free tuning strategy and start to decrease stepsizes
as 1/+/k after the plateau. The results are presented in the middle graph of Figure 2. One can see
that now method can slowly reach the same noise level after the first plateau. The speed transition
accuracy also drops linearly with Az, .

Finally, we show that, for functions with Ly = 0, our method with constant stepsize convergences
to noise level o despite the value of the constant L;. We set A\, = 0 and vary the noise level
o € [1071,1072,1072,1074,107°,107°]. The results are shown in the right graph of Figure 2.
These results clearly support the theory with alone linear dependence on o.

E ADDITIONAL EXPERIMENTS

E.1 MIXTURE OF EXPERTS PRE-TRAINING EXPERIMENTS

We complement our experiments with another setup — different architecture and data. In Section 3,
we used a dense LLaMA model; now, we have switched to a Mixture of Experts (MoE) architecture
based on the same LLaMA model, retaining RoPE and identical activation functions. Our MoE
model follows the Switch Transformer (Fedus et al., 2022) MoE variant with classical top k = 2
gating and 8 experts, giving us approximately 520M parameters if we have the same configuration
as 130M LLaMA. We conduct these experiments on the FineWeb dataset (Penedo et al.) a popular
corpus for LLM pre-training.

We run AdamW, M-SignSGD, M-NSGD and M-ClippedSignSGD optimizers following the best
practices from our earlier setup on dense models. We train with a batch size of 256 and sequence
length 512 for 42k (5.5B tokens) and 336k steps (44B tokens). That is for the second training horizon
we go far beyond the Chinchilla optimal tokens-per-parameters ration. The results are presented
in Tables 3 and 4 respectively.

Table 3: Perplexity of LLaMa-base MoE 520M model pre-trained on FineWeb for 42k steps. Lower
is better.

Optimizer Perplexity |
AdamW 22.85
M-SignSGD 23.19
M-NSGD 23.32

M-ClippedSignSGD 23.30

We would like to highlight that M-SignSGD scales remarkably well with increasing model size,
outperforming M-NSGD and M-ClippedSignSGD. Additionally, we encountered difficulties running
M-ClippedSGD in this setting. Consequently, we decided to include a clipped version of M-
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Table 4: Perplexity of LLaMa-base MoE 520M model pre-trained on FineWeb for 336k steps. Lower
is better.

Optimizer Perplexity |

AdamW 18.68
M-SignSGD 18.87

SignSGD, which aligns with our approach since we consider only an EMA of momentum in the
update.

E.2 ROBUSTNESS WITH RESPECT TO RANDOM SEED

To verify the robustness of our approach, we repeated the experiment from Table 2 with three different
random seeds. As shown in Table 5, the performance remains highly consistent across all seeds, with
a standard deviation < (.03 for all the methods.

Table 5: Comparison of mean and standard deviation of the validation perplexity for various opti-
mization methods for LLaMA 130M model trained on C4.

Method | Perplexity |
Model size | 130M
M-SignSGD | 18.37.

M-NSGD 19.284 o3
M-ClippedSGD 18.951 03
AdamW 18.67+ o

F EXPERIMENTAL DETAILS

F.1 HYPERPARAMETERS SWEEP

We adopted a LLaMA-based architecture (Touvron et al., 2023) with RMSNorm (Zhang & Sennrich,
2019) and SwiGLU (Shazeer, 2020) activations on the C4 dataset (Raffel et al., 2020). Follow-
ing (Lialin et al., 2023), we used a batch size of 512 sequences and a sequence length of 256. We
used a TS tokenizer, since it was also trained on C4 with dictionary size equal to 32k. We trained the
model for 100k steps.

For all experiments, while the main model parameters use the respective optimization method, the
LM head layer is optimized with AdamW (Loshchilov, 2017). This follows prior work (Zhao et al.,
2024) which demonstrated that the LM head layer requires more fine-grained effective learning
rate adaptation across different tokens for optimal performance. We used the Nesterov acceleration
scheme with a momentum value of 0.9 for all methods except AdamW. For AdamW, we used standard
hyperparameters: 51 = 0.9, 82 = 0.999,¢ =1le-8.

We selected the learning rate through a grid search with multiplicative step of 104 (LM head layer
optimized with AdamW and learning rate equal to 1e-3). We used a cosine learning rate schedule
with a warmup of 10% of the total number of steps and decay of the final learning rate down to 10%
of the peak learning rate. In addition, we selected the best weight decay value between [0, 0.01, 0.1].

The final best hyperparameters are shown in Table 6.

F.2 COMPUTATIONAL RESOURCES

We conducted all experiments described in Section 3 and appendix E using NVIDIA A100 GPUs.
We utilized 8 GPUs (full node) with torch.nn.parallel.DistributedDataParallel
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Table 6: LLaMA 130m pre-raining hyperparameters.

Method M-ClippedSGD | M-NSGD | M-SignSGD | AdamW
Learning rate 10+ 109 10727 1073
Gradient clipping 0.03125 - - 1.0
Weight decay 0 0 0.01 0.01

for most of the runs. A complete run for the 130M model (100k steps) took 6 hours, whereas each
run for 1.3B model (300k steps) lasted for approximately 2 days.

G minibatch-SignSGD FOR DISTRIBUTED OPTIMIZATION

Consider distributed optimization with one server and M workers, each of which calculates its own
gradient estimate. The server receives all estimates, aggregates them, and sends back the updated
solution to the workers. Sign-based methods are so effective in terms of communication (Bernstein
etal., 2018b; Jin et al., 2020), as sending a sign vector costs only O(d) operations. We use aggregation
based on the majority voting.

Algorithm 6 Distributed-MajorityVote-SignSGD

Input: Starting point z! € R?, number of iterations T', stepsizes {vx}7_,, batchsizes { By }1_,.
1: fork=1,...,T do
2:  Sample {ff 7Bk “and compute gradient estimate g7 = Zf:k‘l V(")) B, for each worker
jel, M,
3:  Send signs sign(g") to server for each worker j € 1, M;

4:  Compute on server g* = sign (Zﬁl sign(gkvj)) ;

5:  Send point zF+1 = ¥ — 4, - ¢* to each worker;
6: end for
Output: uniformly random point from {z!,... 27} .

Theorem 12 (HP complexity for Distributed-MajorityVote-SignSGD). Consider lower-bounded
(Lo, Ly1)-smooth function f (As. 1, 2) and HT gradient estimates « € (1,2] (As. 3). Then Alg. 6 with
M workers requires the sample complexity Ny per worker to achieve - 21{:1 IVF(a®)|1 < e
with probability at least 1 — § for:

K

) ~ =1
Optimal tuning: T = O(M) Ve = m,Bk = (16“"[1) ' for e > 8,% and T =

€ 1

Lid _ A _ (16]|7]. \F T 8Lg .
O (752 ) s Ve = 720Lng7Bk = 77\45 fOV{:‘ S 7L1 .

_((ALd  ALd 151 \ =
NM—O<< 2t )[H(\/Ms> ]logl/é), (52)

Parameter-free tuning:' Until plateau v, = o < m, By, = Bok?, after v, = 7—‘;, By = Bok:
1

3K
8L - (A)3 1 (||5||1>2<m>
e > = Ny=0|[B[(Z2) +—= ,
LiVd M (0 Yo€ B3 \V/Me

Lo - [ Bo(Ldvod + AJv)* 1 <||5|1>~“1
£ < ~ Ny=0 +— (i ,
LiVd M ( el By \\/Me

where A = f(x') — f*, L = Lolog(1/s), L{ = Ly log(1/s).

'These bounds are proved for a metric min, err IVF (@Rl <e.
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Proof of Theorem 12. This proof completely copies the proof of minibatch-SignSGD Complexity
Theorem 1 from Appendix B.4 with substitution of ||&||; with % Such substitution is justified by

Majority Vote-SignSGD Convergence Lemma 7 which tells that noise level drops as v M with the
growth of worker number M. The condition M > 160/x? is satisfied for £ > 1 automatically after
the fixed number of training steps in the beginning. O

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.
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