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ABSTRACT

To alleviate text degeneration of large-scale language models and meet the require-
ments of real-world applications, it is essential to make generation more control-
lable. Previous reinforcement learning (RL) research on language modeling gen-
erally learns from sentence-level feedback, which requires extensive exploration
to collect enough trajectories, and more steps to learn contributory components
from a noisy trajectory corpus. To tackle that, we propose a novel reinforcement
learning algorithm with FIne-grained REward (FIRE). We derive an extensible
fine-grained reward function and ease the trade-off between reward approximation
and training stability. We present a theoretical connection between our approach
and canonical policy-gradient RL methods. Experimental results show that FIRE
can achieve superior controllability of language models with less computational
overheads compared to prior RL approaches.

1 INTRODUCTION

Large autoregressive language models (LLMs) trained on extensive corpus can generate high-quality
texts. However, to satisfy real-world applications, making the generation more controllable is urgent.
It is desired to reduce intrinsic defects of pretrained language models (e.g. toxicity, repetition) (Rae
et al., 2021; Weidinger et al., 2021), and enhance specific attributes of generated texts for practical
needs (e.g. positive sentiment for psychological escort, formality for academic writing) (Beltagy
et al., 2019; Gu et al., 2022; Gururangan et al., 2020b). However, the deficient interpretability
(Linardatos et al., 2021) of deep neural networks makes it challenging to guarantee the controllability
of language models.

It is natural to retrain neural language models on domain-specific data (Keskar et al., 2019; Chan
et al., 2021). However, since the parameter scales of large language models keep increasing, re-
training is subject to computational overheads. Some researchers focus on post-processing methods
(Yang & Klein, 2021; Liu et al., 2021; Krause et al., 2021), which control the generation by manip-
ulating possibility distributions generated with a fixed LLM. They generally draw support from a
small-scale attribute discriminator to regulate the possibility distribution for decoding. Hence these
methods can hardly capture higher-dimensional features, which results in their limited controllabil-
ity. Some researchers finetune the language models with partial parameters (Zhang & Song, 2022;
Yang et al., 2023; Qian et al., 2022a), usually with continuous-prompt techniques (Li & Liang,
2021). However, they generally require additional domain-specific corpus. Moreover, with a su-
pervised training schema, models are easily overfitted to the unwanted aspects beyond the required
attribute and suffer from the discrepancy between training and inferring known as exposure bias
(Schmidt, 2019).

Training language models on self-generated sentences can alleviate the above problems, which suits
the reinforcement learning (RL) paradigm. RL-based methods (Lu et al., 2022a; Khalifa et al.,
2021; Tambwekar et al., 2019; Guo et al., 2022) generally update language models with rewards,
often designated as scalar heuristic metrics. However, RL feedback in NLP scenarios is generally
sentence-level (or paragraph-level), since only after generating a complete sentence/paragraph can
we score the text in previous settings. To control text generations towards specific attributes, this
coarse-grained reward cannot provide clear guidance, since semantics vary while the sentence con-
tinues, often with twists or progression. Meanwhile, a sentence often contains massive functional
components for syntax. Therefore, RL methods with coarse-grained feedback require more learning

1



Under review as a conference paper at ICLR 2024

steps and a larger exploration scale. It leads us to ponder whether we can propose finer-grained feed-
back to control the generation. However, how to propose a reasonable mechanism to discriminate the
importance of different textual tokens and suffice it to be extended to diverse control requirements
is non-trivial. Moreover, since the action space is substantially large (§2.1) in NLP scenarios, fine-
grained control often requires value approximations to reduce computational overheads, which leads
to a trade-off between value accuracy and training stability. This trade-off makes the RL training,
which is known to be difficult to converge, even more unstable (§3.4).

In this paper, we introduce a novel reinforced learning algorithm with FIne-grained REward named
FIRE. First, we propose an extensible fine-grained reward function enlightened by a novel form of
Bayesian factorization proposed in our paper. Second, to stabilize the training process, we transform
the training objective to avoid involving specific reward values into the training objective. We also
bridge a theoretical connection between our approach and canonical policy-gradient RL methods,
which shows that FIRE is a more conservative version that updates parameters only towards high-
confidence samples. We conduct experiments on 3 tasks: text generation with sentiment control,
detoxification, and unlearning repetition. FIRE achieves on-par, usually better performance com-
pared with competitive baselines. Notably, FIRE generally requires fewer learning steps to achieve
superior performance compared with prior RL methods.

2 APPROACH

In this section, we first formulate the text generation process as a Markov Decision Process (MDP)
in RL. Then we derive a new form of Bayesian factorization for controllable text generation, which
enlightens us to propose a reward function of the token level. Finally, we describe our training
objective to alleviate the trade-off between approximation and stability.

2.1 REINFORCEMENT LEARNING FORMULATION OF TEXT GENERATION

We first introduce the canonical undiscounted Markov Decision Process (MDP) in reinforced learn-
ing. A standard MDP can be denoted as (S,A, T , r). At each step, an action a ∈ A is made based
on the current state s ∈ S . Then the state will be transited to s′ with the possibility T (s′|s, a). A
function r : S ×A → R defines the returned reward based on the states and actions. The strategy is
decided by a policy π(·|s), which is a predicted distribution over actions based on state s, which is
trained to maximize the expectation of total rewards, known as action values:

Q(st, at) = E
at+1∼π(·|st)

st+1∼T (·|st,at)

[ H∑
t=1

r(st, at)|s1 = s
]

(1)

where H is the number of steps. Prior theoretical results show that the optimal policy π∗ satisfies
the Bellman optimality equation:

Qπ∗
(s, a) = Ea∼π∗

[
r(s, a) + T (s′|s, a)max

a′
Qπ∗

(s′, a′)
]

(2)

For text generation, the state can be defined as the partially generated sentence y≤i−1 =
(y1, y2, . . . , yi−1), and the action is the next token yi ∈ V where the vocabulary V is the action
space. The transition dynamic T (·|s, a) is deterministic since each state-action pair (y≤i−1, yi)
leads to a unique state y≤i.

In previous works (Lu et al., 2022a; Khalifa et al., 2021), rewards are generally returned after a
whole sentence y≤L is generated. They generally make the final feedback on behalf of the entire
process and learn the entire trajectories of high-reward examples, which can be considered that
action feedbacks from the same sentence are equal, formulated as r(y≤i−1, yi) = f(y≤L, c), i ∈
[1, L], where f(y≤L, c) is a scorer, rating how well the current sentences y≤L match the requirement
c. This estimation limits the model performance and slows down the convergence speed as shown
in our experiments §3.4.

2.2 FINE-GRAINED REWARD

To distinguish critical tokens from original sentences, we first reconsider the Bayesian factorization
in controllable text generation, which is widely used in prior research (Yang & Klein, 2021; Krause
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et al., 2021), and derive a new form as follows:

P(yi|y≤i−1, cL) ∝
P(cL|y≤i)

P(cL|y≤i−1)
P(yi|y≤i−1) (3)

where cL means satisfying the given attribute c when the current sentence is extended to length L.
The detailed derivation, differences compared to the canonical form and the application of prior
Bayesian factorization in previous works can be seen in Appendix A. In Eq.3, P(cL|y≤i)

P(cL|y≤i−1)
is cru-

cial for the next-token probability distribution. Even if y≤i tends to highly satisfy the condition c
when the sentence extends to length L i.e. P(cL|y≤i) is large, action yi may not play an impor-
tant role since previous y≤i−1 may already make future generations satisfy the condition easily i.e.
P(cL|y≤i−1) is large. It reveals that what really matters is the discrepancy between them. We de-
ploy this intuition to the reward function, and propose the reward function as the logarithmic pattern
of the crucial term in Eq.3,

r(y≤i−1, yi) = log
P(cL|y≤i)

P(cL|y≤i−1)
. (4)

However, predicting logP(cL|y≤i) with scorers generally deviates since traditional classifiers only
provide available logP(cL|y≤L). One solution is approximating each state through sampling (e.g.
Monte Carlo methods) as follows,

logP(cL|y≤l) = Ey∼π(·|y≤l)[f(y, c)] (5)

where f(y, c) is a pratical classifier rating how well a sentences y match the attribute c. Unfortu-
nately, the action space of language modeling is too large to enumerate abundant cases, which leads
to a large deviation of the expectile. Therefore, we approximate the probability with subsequent k
tokens to elude computational overheads as follows,

Ey[f(y≤L, cL)] =
∑

y
f(y≤L, c)

|y|−1∏
i=l

π(yi+1|y≤i)

≈
∑

y
f(y≤l+k, c)

l+k−1∏
i=l

π(yi+1|y≤i)).

(6)

Practically, we adopt nucleus sampling Holtzman et al. (2020) to sample m cases for the expectile
approximation. Current language models generally require an [EOS] token to finish generation. For
this token, we use the sentence-level − logP(cL|y≤L) as its reward since learning requires more
samples of the desired attribute generated from the exploration.

2.3 TRAINING OBJECTIVE

In standard policy-based RL methods, given the trajectory (s1, a1, r1, s2, a2, r2, · · · ), the training
objective is to maximize the reward expectation, which is usually applied in the form of Eq.16.
Considering approximation in calculating rewards and large action spaces of NLP scenarios, stick-
ing with this training objective makes training unstable and hard to converge as shown in §3.4.
Inspired by recent quantized reward conditioning schema (Lu et al., 2022a), we transform the train-
ing objective to avoid involvement of specific reward value. We sort and quantize reward values to
pick up the highest/lowest q-quantile denoted as rh/rl. Then we convert our training objective to a
form that maximizes the likelihood of tokens in the trajectory with rewards over rh. The formula is
as below:

J (θ) = E
[∑

n

logπ(yn+1|y≤n, θ)1(rn > rh)
]
, (7)

where 1(·) is an indicator function to indicate whether the condition is satisfied. In the actual
deployment, we also encourage the unlikelihood of tokens with rewards under the lowest quantile rl
as follows:

J (θ) = E
[∑

n

logπ(yn+1|y≤n, θ)1(rn < rl)
]
. (8)

Inspired by Proximal Policy Optimization (PPO), we add a KL-divergence penalty to loss to prevent
the language model from deviating too far, which may destroy the original semantic space. We also
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s=y≤i
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Data Pool
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=
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Figure 1: An overall framework of FIRE. During the exploration, the current policy model generates
continuations of a given corpus. Then a corresponding scorer approximately calculates reward of
each action. We then interpose data from exploration into the data pool and quantize all rewards to
obtain q-quantiles. Then the policy model updates according to our training objective. The model
circulates Exploration-Learning before the training ends.

add an entropy regulator to maintain the action diversity of the policy model. The training objective
to maximize is supplemented as:

J̃ (θ) = J (θ)+E
[
β
∑
n

Ent
(
πθ(yn+1|y≤n)

)
− γ

∑
n

KL
(
p(·|y≤n)||πθ(·|y≤n)

)]
− αJ (θ)

(9)

where p(yn+1|y≤n) is the possibility distribution calculated by original language models, α, β, γ
are hyperparameters. Ent(·),KL(·) are functions calculate entropy and KL-divergence respectively.

2.4 FRAMEWORK OF REINFORCEMENT LEARNING

As standard RL algorithms, we split our training procedure into initialization, exploration, and learn-
ing. The overall framework is shown in Figure 1 with an example from the sentiment control task.
The formulaic algorithm is shown in Appendix E.

Initialization. First, we initialize a policy model, a data pool D, and prepare a corpus for ex-
ploration. For text generation tasks with decoder structure, some textual prefixes are required for
exploration. For translations or summarization tasks with encoder-decoder structure, an encoding
corpus is needed. Since our fine-grained reward can guide the model more accurately, the explo-
ration scale can be much smaller, thus less prepared corpus is required than previous RL methods
for controllable generations.

Exploration. Then, given the prefix or encoding sentence, the current policy model can generate
continuous text with the current policy model. During the generation, we record the possibility of
each token for following calculations of KL-divergence and entropy, and score intermediate state
with nucleus sampling as in Eq.6 to derive rewards as in Eq.4. After calculating the rewards of
every step, we add all trajectories to D and quantize the rewards within the data pool to acquire
q-quantiles. To avoid the model overfitting to early added data, we set a lifetime for each data to
indicate the number of training episodes it can still undergo. Once the data is added to D, the lifetime
is initialized to LT and subtracts 1 after each training episode. The data is removed from D when
its lifetime drops to 0.

Learning. After each exploration procedure, we maximize the training objective in Eq.9 and update
the policy model through gradient backward. We then use the updated model for exploration and
repeat the exploration-learning cycle until training achieves the maximum episode number.
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Model

Target Sentiment: POSITIVE Target Sentiment: NEGATIVE

%Correctness(↑) Generation Metrics %Correctness(↑) Generation Metrics
negative neutral ppl(↓) dist-2(↑)dist-3(↑)Cr.(↓) positive neutral ppl(↓) dist-2(↑)dist-3(↑) Cr.(↓)
prompt prompt prompt prompt

GPT2 0.00 50.02 11.42 0.85 0.85 1.20 0.92 50.02 11.42 0.84 0.84 1.08

PPLM 8.72 52.68 113.54 0.83 0.89 3.47 10.26 60.95 122.41 0.83 0.90 3.47
GeDi 26.80 86.01 123.56 0.66 0.85 3.12 60.43 91.27 138.27 0.66 0.86 4.11

DExpert 36.42 94.46 60.83 0.63 0.84 3.49 64.01 96.23 67.12 0.64 0.83 2.71
FUDGE 56.04 96.92 228.76 0.52 0.76 1.78 66.84 98.76 265.79 0.68 0.83 1.29
Tailor 40.88 78.08 38.23 0.48 0.73 69.6 49.28 73.20 39.55 0.48 0.73 56.56

DisCup 64.96 94.98 48.71 0.50 0.76 3.24 68.76 93.64 45.60 0.48 0.77 2.97
PPO 43.13 94.10 20.02 0.51 0.71 2.83 70.12 96.95 17.54 0.52 0.71 1.50

Quark 47.32 95.50 18.95 0.55 0.77 2.91 78.5 97.65 16.72 0.59 0.75 1.41

FIRE 69.36 97.16 19.91 0.54 0.73 2.85 66.81 98.22 17.02 0.56 0.72 1.46

Table 1: Automatic evaluation results of the sentiment control task.

Intuitive understanding of how FIRE works. After parameters update in the previous episode, the
current policy model becomes more likely to generate tokens whose rewards are higher than rh, the
q-quantile of rewards of examples within the data pool D. Therefore, examples generated from the
exploration of the current episode can be inferred to have a higher reward level compared to existing
examples in D. Inserting the upscale examples leads to a higher q-quantile r∗h > rh of our training
objective in the current episode. The policy model would learn from these more strictly screened
samples, which leads to a higher q-quantile during the next exploration. Our model would gradually
evolve by circulating this exploration-learning procedure.

2.5 THEORETICAL CONNECTION TO EXISTING POLICY-GRADIENT RL

Canonical policy-gradient RL. Review the training objective of the traditional policy-gradient RL
methods (Williams, 1992) with baseline value,

∇θJ (θ) = E
[ ∞∑

t=0

(
Gt − b(s)

)
∇θ log π(at|st, θ)

]
, (10)

where Gt =
∑∞

k=0 γ
krt+k is total amount of rewards obtained after step t in the trajectory, and

in our undiscounted RL setting γ = 1. Prior research has shown that sole Gt often leads to a high
variance, hence they often substract a baseline value to stablize the training. This baseline is indepen-
dent with action at, thus it would not disturb the overall expectile since E

[
b∇θ log π(at|st, θ)

]
= 0.

More details are shown in Appendix B.1.

FIRE is a more conservative version of policy-gradient RL. We derive the training objective of
FIRE in Eq.7 to an analogous form of Eq.16. It indicates that FIRE is a more conservative version
of canonical policy-gradient RL by clipping and reweighting. We present the derivation results as
follows,

∇θJ (θ) = E

[
L∑

n=0

[
λnCLIP∗

(
Gn − b(y≤n)

)
+ 1

]
∇θ log π(yn+1|y≤n, θ)

]
(11)

where b(y≤n) = log(cL|y≤n) is the baseline value, λn = 1
rn

is a reweighting factor, CLIP(·) is a clip
function that masks values a to 0 if a < threshold. The clipping function forces the gradient switches
between the reweighted canonical gradient and 0 by a threshold corresponding to the highest q-
quantile, which indicates that parameters only descend towards samples with high confidence. λn is
a reweighting factor to elude participation of precise reward value. Detailed derivations are shown
in Appendix B.2.

3 EXPERIMENTS

We conduct experiments on three tasks, generation with sentiment control, detoxification for pre-
trained language models (PLMs), and unlearn repetitions of PLMs. To keep in line with the previous
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controllable text generation research, we first conduct experiments on sentiment control tasks as in
most previous research. To reveal the prospect of our approach to optimize large language models
(LLMs), we apply our approach to solve two of the text degeneration problems: toxicity and rep-
etition. These 3 tasks are implemented with different kinds of scorers, 2 attribute classifiers and 1
heuristics, which reveals the high modularity of our approach. We demonstrate our framework is
generally effective in all scenarios. Due to the page limit, we put more experimental results and
analysis in Appendix C.3. We also present qualitative results in Appendix F.

3.1 SENTIMENT CONTROL

Dataset. Following previous works, we collect 100K naturally occurring prompts from the Open-
WebText Corpus and generate 20 continuations for each prompt with GPT2-base. We score them
with a Huggingface classifier and divide them into 5K “neutral” prompts, 2.5K “negative” prompts
and 2.5K “positive” prompts (detailed in Liu et al.). The controlling task is to generate continuations
for a prompt, forcing the generated sentence to satisfy a different sentiment from the sentiment it la-
tently tends to be (the sentiment GPT2-base generates). Following Zhang & Song, we choose SST-5
corpus (Socher et al., 2013) as a training corpus for all baselines. We follow Lu et al. to prepare
85K prefixes for prior RL methods from the OpenWebText Corpus for exploration.

Model Settings. To inherit the ability of pretrained language models (PLM) and reduce computa-
tional resources, we adopt prompt techniques rather than tuning the whole parameters of LMs. The
parameters in the original PLM are frozen and we only train the control prompts to steer model
behaviors. Following Zhang & Song, an LSTM module is introduced to make the control prompts
close to the natural language. We use GPT2-large as the base PLM and implement a sentiment
discriminator based on GPT2-base with the same prompt structure of our policy model, which is
trained on SST-5 following Zhang & Song. Our scale of parameters to be updated is much smaller
than prior RL methods, similar to prior prompts-based methods. For FIRE and all baselines, we
generate 20 continuous tokens for each prefix. The detailed hyperparameter setting can be seen in
Appendix C.4.

Baselines and Metrics. A wide range of competitive baselines are compared with our FIRE. To
compare with RL-based methods, we implement PPO (Schulman et al., 2017) and QUARK (Lu
et al., 2022a) as representative state-of-the-art RL methods. These RL methods finetune all parame-
ters of base LMs. We also compare FIRE to post-processing methods as follows: PPLM (Dathathri
et al., 2020),GEDI (Krause et al., 2021), DExpert (Liu et al., 2021), FUDGE (Yang & Klein, 2021).
Finetune and prompt-based methods are compared as well: Tailor (Yang et al., 2023), DisCup
(Zhang & Song, 2022). PPL, Dist-n are adopted to measure the fluency and diversity of gener-
ation. Correctness is to count the proportion of samples that conform to target sentiment with a
Huggingface sentiment classifier1. Following Zhang & Song, we also adopt the coverage rate (Cr)
in the sentiment control task to display overfitting issues. We also conduct human evaluations based
on the perceived level of sentiment correctness, topicality, and fluency, details in Appendix C.1.

Results and Analysis. The experimental results of the automatic evaluation are shown in Table
1. Post-processing methods show impressive controllability, especially DExpert and Fudge which
show comparable performance to finetuning or RL-based methods by regulating the possibility dis-
tribution of LMs. However, the direct manipulation of the possibility distribution also causes low
fluency indicated by their high PPL scores. For finetuning methods, vanilla prompt-tuning meth-
ods like Tailor only achieve narrow performance and cause overfitting towards the training cor-
pus, as shown that the Tailor gets the highest coverage rate among baselines. DisCup borrows RL
paradigms by exploring candidate tokens to alleviate the overfitting problem, getting a performance
surge among prompt-based methods. For RL-based methods, our fine-grained signals result in the
best performance. Original sentence-level signals cannot provide clear guidance, leading to lower
performance and tardy convergence as shown in §3.4. Human evaluation results and analysis are
shown in Appendix C.2. It is noteworthy that FIRE only requires 10× fewer prefixes to achieve su-
perior performance within 50k learning steps compared to 85k prefixes and more than 10w learning
steps for 2 RL baselines.

1https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
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Model Toxicity Fluency & Diversity Human Evaluation(↑)
Avg.max.(↓) Prob.(↓) PPL(↓) Dist-2(↑) Dist-3 (↑) LessTox. Top. Flu.

GPT2 0.527 0.520 11.31 0.85 0.85 5.6 6.8 6.5

DExpert 0.314 0.128 32.41 0.84 0.84 6.8 7.2 6.8
DAPT 0.428 0.360 31.21 0.84 0.84 6.1 7.0 6.9
PPO 0.325 0.117 22.26 0.70 0.74 7.0 7.3 6.8

Quark 0.296 0.110 19.47 0.79 0.84 7.3 7.5 7.2

FIRE 0.287 0.106 21.47 0.73 0.76 7.4 7.3 6.9

Table 2: Automatic evaluation results of detoxification. Bold numbers indicate the best performance.

3.2 DETOXIFICATION

Dataset. Toxic degeneration is an inherent issue of language models, which may express harmful or
offensive intentions to users. We use REALTOXICITYPROMPTS dataset as our experimental corpus
which consists of 100k prompts designed to elicit toxicity. We use the same 10K non-toxic test
prompts as in Liu et al. (2021) for all baselines. Following Lu et al. (2022a), we random sample
85K prompts to extend in exploration for RL methods. DExperts and DisCup are supervised trained
on a corpus from Toxicity Classification Kaggle challenge2, which contains around 160K toxic
comments and 1.4M nontoxic comments.

Model Settings. We use GPT-2 large as the base LM and the same LSTM continuous prompts to
steer. Hence, our parameter scale remains smaller than the other 2 RL-based methods which update
all parameters of the base LM. Instead of using the evaluated metric (scores from Perspective API) as
training signals as in previous RL methods, we obtain reward scores from an additional classifier for
a more fair comparison. The classifier is trained with the Kaggle corpus. We consider an example
toxic if ≥ 50% of annotators marked it as toxic, and nontoxic if none of the annotators mark it
as toxic following Liu et al. (2021). Its structure is the same as the one in the sentiment control
task. For all baselines, we generate 20 continuations for each prompt to evaluate. The detailed
hyperparameter setting can be seen in Appendix C.4.

Baselines and Metrics. We include 5 models as our baselines: GPT-2 as the base LM, DExpert
(Liu et al., 2021) from post-processing methods, DAPT (Gururangan et al., 2020a) from finetuning
methods, PPO and Quark (Lu et al., 2022a) from RL methods. To evaluate, we generate 25 sen-
tences for each prompt. Maximum toxicity is measured as the average maximum toxicity over 25
generations, and the toxic probability measures the possibility that at least one of any 25 generations
is toxic (threshold p=0.5). Toxicity is measured with Perspective API. We also report the perplexity
of generated output by GPT2-XL model for text fluency, and dist-n for diversity. Details of human
evaluations are shown in Appendix C.1.

Results and Analysis. The experiment results are shown in Table 2. Results show that RL methods
generally outperform other categories of methods, and FIRE achieves the best performance among
RL methods to avoid toxic outputs. Similar to the sentiment control task, FIRE also requires fewer
training steps compared to Quark and PPO. It is noteworthy that the performances of PPO and
Quark fall compared with the results reported in Lu et al. (2022a), whose rewards are directly from
the evaluated metrics. We can imply that the scorer quality has an impact on the performance of
the model. Human evaluation also shows that previous works sacrifice the text quality to satisfy the
desired attribute. RL methods generally can generate texts with higher fluency and diversity.

3.3 UNLEARNING DEGENERATE REPETITION

Dataset. Neural language models often generate repetitive, uninformative, and dull text, known as
the degeneration problem. In this part of the experiments, we aim to unlearn degenerate repetition
to alleviate text degeneration. We use WIKITEXT-103 (Merity et al., 2017) as the dataset following
Su et al.; Lu et al., which contains 1.8 million sentences from Wikipedia articles. In experiments, we
surprisingly find that only with 32 prefixes can the policy model achieve great performance under

2https://bit.ly/3cvG5py
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Model Automatic Metrics Human Evaluation

rep-2(↓) rep-3(↓) rep-4(↓) div.(↑) MAUVE(↑) Coh.(↑) Flu.(↑) Info.(↑)

MLE 69.21 65.18 62.05 0.04 0.03 6.8 6.8 5.8
Unlikelihood 24.12 13.35 8.04 0.61 0.69 6.1 6.4 6.9

SimCTG 67.36 63.33 60.17 0.05 0.05 6.6 6.7 5.9
Quark 39.89 30.62 26.52 0.35 0.74 6.5 6.7 6.3

FIRE 23.92 16.39 12.35 0.56 0.78 6.3 6.5 7.0

Table 3: Evaluation results of unlearning repetition. Bold numbers indicate the best performance.

Model Target:POSITIVE Target:NEGATIVE

Correctness(↑) Generation Correctness(↑) Generation
neutral opposite ppl(↓) dist-3(↑) neutral opposite ppl(↓) dist-3(↑)

FIRE 97.16 69.36 19.91 0.73 98.22 66.81 17.02 0.72

-fine-grained reward 95.21 50.13 18.98 0.75 95.32 59.15 15.21 0.75
-objective 93.82 40.75 25.20 0.80 94.19 55.95 19.20 0.81
-Entropy 97.97 71.13 16.91 0.64 98.30 67.23 17.23 0.64

-KL divergence 96.97 67.15 31.91 0.61 98.12 65.10 36.98 0.69

Table 4: Ablation results of the sentiment control task.

our FIRE. During the evaluation, we generate continuous tokens using greedy decoding following
(Lu et al., 2022a) since degenerate repetition tends to appear most frequently with greedy decoding.

Model Settings. Following previous works, we use base GPT-2 which consists of 12 Transformer
layers with 12 attention heads as our base LM. Since the controllability of prompts is limited which
can be viewed as inserting a position-wise modification through linear interpolation (He et al., 2022),
we choose to update all parameters to thoroughly adjust internal behaviour of the base LM. The
detailed hyperparameter setting can be seen in Appendix C.4.

Baselines and Metrics. We compare our FIRE with maximum likelihood estimation, unlikelihood
training (Welleck et al., 2020), contrastive training (Su et al., 2022), and sentence-level RL training
(Lu et al., 2022a). Following Su et al., we report rep-n which measures the sequence-level repetition
as the portion of duplicate n-grams in the generated text, diversity (div.) as an overall assessment of
model degeneration measured by a fusion of different n-gram levels, MAUVE (Pillutla et al., 2021),
an automatic measure of how much the generated text distribution diverges from that of human-
written text and PPL for text fluency. Following Lu et al. (2022a), we conduct human evaluations
based on the coherence, fluency, and informativeness details in Appendix C.1.

Results and Analysis. As shown in Tabel 3, FIRE can effectively eliminate the intrinsic repetition
of pretrained language models. Notably, we achieve comparable performance within 1000 learning
steps, which costs less than 30 minutes. The prior RL method Quark cost over 80× longer than our
methods to achieve inferior performance. Unlikelihood training retrains the base model structure
with a differentiable objective that captures repetition. Compared to unlikelihood training, our FIRE
achieves on-par or better performance with much less computational resources. Moreover, higher
MAUVE validates that FIRE can generate more human-like text. Generation metrics and human
evaluations also show that FIRE can eliminate repetition while maintaining a higher text quality.

3.4 ABLATIONS

To show the component effect, we conduct ablation studies on 1) Fine-grained Signals: we alter our
model with sentence-level signals. The variant quantizes the sentence-level signals and maintains
the training objective to maximize the likelihood that a sentence appears in the highest quantile.
The loss function of the variant considers the unlikelihood, entropy, and KL divergence as well.
2) Objective Transformation: we revert the training goal to the original objective, maximizing the
total reward expectation. The gradient can be calculated by Eq.16. We retain the KL-divergence
and entropy terms in the objective for consistency. 3) KL-divergence & Entropy: We mask the KL-
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divergence term and the entropy term respectively to show their effect. Results are shown in Table.4.
We can see that removing either the entropy term or KL term leads to a decrease in performance.
Removing KL-divergency causes a higher PPL since the policy model may deviate too far from the
base LM. Removing the entropy term causes a decrease in diversity since the policy model may be
stuck in a partial optimal.
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Figure 2: Convergence speed of
FIRE and 2 variances in the senti-
ment control task.

Convergence Speed & Training Stability. To further prove
the efficiency of our approach, we display the convergence
speed in the sentiment control task. For every 500 iterations,
we evaluate the current performance of models. The results
are displayed in Fig.2. The figure shows that if we remove
the fine-grained reward setting, the speed of performance in-
creases slowly. In the sentiment control experiments, we find
that achieving its final results generally takes over 3× longer.
If we replace our training objective with original version in
Eq.16, the model performance will fluctuate drastically. It val-
idates that our objective makes parameters update more stably,
alleviating noise in reward approximation.

4 RELATED WORK

Most previous works on controllable text generation are based
on the auto-regressive framework, which can be categorized
into retraining (Chan et al., 2021; Keskar et al., 2019), fine-
tuning (Huang et al., 2023; Yang et al., 2023), and post-processing. (Krause et al., 2021; Yang &
Klein, 2021). Retraining and traditional finetuning methods are of low efficiency since the param-
eter scale of LMs is surging and overfitting issue is severe. Post-processing methods regulate the
distribution of next-token with supplementary modules, mostly an attribute discriminator, but often
cause syntax interruption and make language models lose insights. Some methods integrate some
merits of reinforced learning paradigm into their works Meng et al. (2022); Zhang & Song (2022)
and achieve performance improvement. Details about the relevance of previous works to RL can be
seen in Appendix D.2. More related works are shown in Appendix D.1.

Efforts have been made to control the text generation with reinforcement learning frameworks in
specific scenarios e.g. storytelling (Tambwekar et al., 2019), summarization (Wang et al., 2020;
Yadav et al., 2021), and instruct-oriented generation (Ziegler et al., 2019). However, they generally
use coarse-grained rewards to guide the parameter updating. There is a series of research (Chen
et al., 2021; Janner et al., 2021; Zheng et al., 2022; Xu et al., 2023) incorporating RL techniques
into the transformer structure, trying to deconstruct the coarse-grained reward into the token level
for sequential modeling. However, they are dependent on specific rewards which may lead to per-
formance oscillations, and are hard to extend with existing language models due to their specialized
settings. Lu et al. (2022a) follow their works, make models capable of conditioning on the desired
reward, and propose a more extensible algorithm to unlearn the undesirable attributes. However,
it still sticks to sentence-level feedback, which limits the performance and delays the convergence.
FIRE proposes an algorithm combining the advantages of both. It can provide models with fine-
grained reward signals while maintaining the normal LM settings, leading to higher controllability
and extensibility.

5 CONCLUSION

In this work, we propose FIRE, a novel reinforcement algorithm with fine-grained rewards for con-
trollable text generation. We derive a new form of Bayesian factorization for controllable text gener-
ation, and propose a token-level reward function. To stabilize the training process, we transform the
training objective to elude specific reward values involving the loss function. Theoretical analysis
shows that our approach is a variant of canonical policy-gradient RL methods, which updates pa-
rameters more conservatively, only towards highly confident samples. We implement our algorithm
and conduct experiments on 3 different tasks to prove the effectiveness of our approach. FIRE can
achieve superior performance with much fewer learning steps compared to prior RL methods.
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APPENDIX

A BAYESIAN FACTORIZATION

A.1 APPLICATION IN PREVIOUS WORKS.

Previous research generally relies on the Bayesian factorization as follows:

P(yi|y≤i−1, c) ∝ P(yi|y≤i−1)P(c|y≤i) (12)

where yi is the i-th token of a sentence y in corpora. Post-processing methods achieve controllability
by regulating the distribution of the next token with supplementary modules, usually an attribute
discriminator. They generally calculate the probability distribution of generated tokens directly
through Eq.12, where P(yi|y≤i−1) is commonly approximated through logits output by LLMs, and
P(c|y≤i) is generally modeled by an attribute scorer. Most research in this line avoids any parameter
updating of main language models, but concentrates on training an effective supplementary module
to adjust the probability distribution of the generated token. GEDI (Krause et al., 2021) trains a class-
conditional language model (CCLM) as generative discriminators to guide the generation. DExpert
(Liu et al., 2021) additionally finetunes an anti-expert to further re-rank the predictions of the PLM.
Fudge (Yang & Klein, 2021) train attribute classifier with a novel data processing way for future
planning ability, achieving impressive results on multiple control tasks.

Finetune-based methods update parameters (usually partial parameters) by finetuning pretrained
language models on attribute-specific corpora. c in P(yi|y≤i−1, c) is represented through continu-
ous prompts or control codes (Yang et al., 2023; Keskar et al., 2019). Some recent finetune-based
research also refers to Eq.12, using a trained scorer to rerank candidate tokens for a more compre-
hensive training objective.

A.2 FACTORIZATION DERIVATION OF THE NEW FORM.

Compared to the traditional Bayesian factorization form as in Eq.12, the difference is that the con-
trollable condition c is considered to be more fine-grained, as ensuring sentences to satisfy the
control attribute after generating a whole sentence y≤L with length L, denoted as cL. The Bayesian
factorization will be transformed into:

P(yi|y≤i−1, ci) ∝
P(cL|y≤i)P(y≤i)

P(cL, y≤i−1)
(13)

∝ P(cL|y≤i)

P(cL|y≤i−1)
P(yi|y≤i−1) (14)

where P(cL|y≤i)

P(cL|y≤i−1)
indicates the probability change before and after generating yi is crucial for the

conditional probability.

B THEOERITICAL ANALYSIS OF TRAINING OBJECTIVE

B.1 REVIEW CANONICAL TRAINING OBJECTIVE

The original training objective of policy-gradient methods is as follows:

∇θJ (θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇θπ(a|s, θ) (15)

where µ(s) is an on-policy distribution of the stochastic policy π. Q is an action-value function
following policy π, and π(a|s, θ) is the action distribution. This formula can be derived into

∇θJ (θ) = E
[ ∞∑

t=0

Gt∇θ lnπ(at|st, θ)
]
, (16)

where we can replace the state-action value function with Gt (cumulative discounted reward at
timestep t), and replace state/action s/a with sampling states/actions st/at. With abundant sam-
pling, these transformation is equivalent. Due to high variance, prior works generalize Eq.15 by
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adding an arbitrary baseline function b(s) to Gt. This term can be substituted with any arbitrary
function as long as it does not vary with a since

∑
a b(s)∇π(a|s, θ) = b(s)∇

∑
a π(a|s, θ) = 0.

This new form is generally applied in prior RL methods as shown in Eq.16.

B.2 THEORETICAL CONNECTION BETWEEN FIRE AND PRIOR POLICY-GRADIENT RL

To bridge our approach to previous policy-gradient RL methods, we prove our training objec-
tive as a more conservative variance of canonical objective as in Eq.16. With a trajectory
(y≤1, y2, r1, y≤2, y3, r2, · · · , y≤L−1, yL, rL−1, y≤L, [EOS], rL), we can derive our training objec-
tive in Eq.7 as follows,

J (θ) = E
[∑

n

1(rn > rh)logπ(yn+1|y≤n, θ)
]

(17)

= E
[∑

n

1

rn
CLIP

(
rn log π(yn+1|y≤n, θ)

)]
(18)

= E
[∑

n

1

rn
CLIP

( L∑
k=n

rk −
L−1∑

k=n+1

rk − rL

)
log π(yn+1|y≤n, θ)

]
(19)

= E
[∑

n

1

rn
CLIP

(
Gn −

L−1∑
k=n+1

log
P(cL|y≤k+1)

P(cL|y≤k)
(20)

+ logP(cL|y≤L)
)
log π(yn+1|y≤n, θ)

]
(21)

= E
[∑

n

1

rn
CLIP

(
Gn + logP(cL|y≤n+1)

)
log π(yn+1|y≤n, θ)

]
(22)

= E

[∑
n

[ 1

rn
CLIP∗

(
Gn + logP(cL|y≤n+1)− rn

)
+ 1

]
log π(yn+1|y≤n, θ)

]
(23)

= E

[∑
n

[ 1

rn
CLIP∗

(
Gn + logP(cL|y≤n)

)
+ 1

]
log π(yn+1|y≤n, θ)

]
(24)

= E

[∑
n

[ 1

rn
CLIP∗

(
Gn − b(y≤n)

)
+ 1

]
log π(yn+1|y≤n, θ)

]
, (25)

where the threshold of CLIP∗ is rh − rn. This form is quite analogous to Eq.16, thus we can regard
our training objective as a variance with clipping and reweighting. It makes the parameter updating
more conservative, only towards samples with high confidence i.e. samples whose rewards are
higher than the current q-quantile.

C EXPERIMENTAL DETAILS

C.1 HUMAN EVALUATION SETTINGS

We conduct human evaluations 50 random prompts for unlearning repetition and formal translation,
100 prompts for sentiment control (50/50 prompts are from neutral/opposite sentiment). For each
model, we sample five generations for each prompt. We invite five experts to score the samples,
each expert is asked to give a score in the range of 0-10 from the following questions referring to Lu
et al..

In the sentiment control task, questions are

• Sentiment correctness: Does the generated sentence match the target emotion?
• Topicality: Is the generation natural, relevant, follows logically from the prompt, and main-

tains a consistent tone, word choice, and structure?
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Figure 3: Caption

• Fluency: Is the generation grammatically correct and coherent?

In the detoxification task, questions are

• Less Toxicity: Is the generated sentence polite, respectful and reasonable?
• Topicality: which one is more natural, relevant, follows logically from the prompt, and

maintains a consistent tone, word choice, and structure?
• Fluency: which one is more grammatically correct and coherent?

In the unlearning repetition task, metrics are

• Coherence: Is the system’s generation aligned in meaning and topic with the prompt?
• Fluency: Is the system’s generation grammatical, easy-to-read?
• Informativeness: Does the system’s generation have little redundant information and sense-

less repetition?

Every expert is qualified by a pre-test to ensure the quality and reliability of the evaluation process.
Every expert takes around 40 minutes to finish the evaluation test, and we calculate the average score
of each metric for comparison.

C.2 HUMAN EVALUATION ANALYSIS OF THE SENTIMENT CONTROL TASK

Method Cor.(↑) Flu.(↑) Top.(↑)

FUDGE 4.7 6.4 6.7
Tailor 5.3 6.4 6.3
Quark 5.8 6.5 6.9
FIRE 7.8 6.9 7.1

Table 5: Human evaluation results on
the sentiment control task.

The experimental results of human evaluation are shown
in Table 1. It also shows that post-processing methods can
hardly generate sentences with correct syntax structures,
which means they cannot capture high-dimensional fea-
tures of attribute-specific texts. Finetuning methods per-
form weaker in topicality, which demonstrates that they
have trouble keeping coherence with the prompts since
they tend to generate sentences resembling the training
corpus. Our FIRE performs better than all baselines,
which validates our method’s effectiveness.

C.3 FURTHER STUDIES

What effect do k, p,m in reward approximation have? We present model performance in the
sentiment control task with varying k and p, as shown in Figure.3. For varying p, k,m, we keep all
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of the original settings the same. We can see if p of nucleus sampling is set within a normal range,
performance fluctuation is not significant. However, we see if we set k to a large scalar, the model
performance tends to decrease. Since the sampling space grows by |V |k where |V | is the vocabulary
scale, our original sample number m = 50 is hard to occupy a large probability for expectation,
the expectation in Eq.5 deviates a lot. Fortunately, the model can achieve competitive results with
a small k. Experiments shown in our paper generally adopt k = 1. When sampling number m
increases, the expectile of the reward can be approximated more accurately, thus leading to a slight
increase in model performance.

What effect does the quantile number have?
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Figure 4: Convergence speed of the sentiment
control task with varying q.

In our experiments, we find the preset quan-
tile number does not significantly affect the fi-
nal model performance but impacts the con-
vergence speed. As shown in Figure.4, the
convergence speed first increases and then de-
creases as q increases. We conjecture that the
model can obtain higher-quality sentences to
learn when q increases at the beginning, but
when q becomes larger, the number of samples
selected with the q-quantile will sharply de-
crease since language models often cannot gen-
erate enough sentences of the desired attribute
yet, which leads to a slower convergence.

Will model overfit to the highest quantile? In
the setting of Lu et al. (2022a), they argue that
training should be conducted on all parts of the
quantized dataset, but conditioned on different
reward tokens, to prevent models from overfit-
ting on the partial corpus of the highest quan-
tile. In our setting, a lifetime property can eliminate over-training on the partial corpus. However, in
our experiments, we find that the quality of the classifier affects the overfitting issue. A low-quality
classifier may result in noisy guidance, which may drag the language model away from the normal
semantic parts. In this case, we find that reducing the weight gap between normal tokens and se-
lected tokens can alleviate this. Arranging a small weight to normal tokens or declining the weight
of selected tokens both works.

What effect does prefix selection have? Although in our 3 experiment tasks, the prefix selection
seems to affect little, we believe it affects the model performance in some specific scenarios. The
reason that experiments in our 3 tasks can withstand the selection effect is that attributes in these
tasks are easily output by the original models, especially the toxicity and repetition are intrinsic
defects in language models. Therefore, in situations where the original model may infrequently
output the target attribute, prefixes that can stimulate the language models to generate sentences of
target attributes may benefit training. We conjecture that in some cases, a warm-up fine-tuning in a
small-scale corpus of the attribute is desired. Meanwhile, diverse sources of prefixes can ensure that
exploration would not generate sentences with an uncontemplated attribute.

C.4 HYPERPARAMETER SETTING

For all three tasks, we adopt Adam optimizer and linear schedule with 800 warm-up steps. We
set the learning rate to 1e-5, and the batch size to 32. The unlikelihood/KL/entropy weight is set
to 0.2/0.05/0.06 for sentiment control, 0.2/0.1/0.06 for translation, and 0.8/0.05/0.12 for unlearning
repetition. q of the quantiles is set to 5,5,3 for 3 tasks. For each prompt, we generate 20 continuations
for the sentiment control and detoxification task and 128 continuations for the unlearning repetition
task. The evaluation/sample interval is set 250/1000 for all tasks.
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C.5 BASELINE BRIEF

In the sentiment control task, PPO Schulman et al. (2017) is an on-policy RL algorithm that learns
to adapt to specified rewards while staying close to the beginning policy as much as possible for
stability. Quark (Lu et al., 2022a) is a state-of-the-art RL method, regarding the quantized sentence-
level rewards as control codes. PPLM (Dathathri et al., 2020) adopt a discriminator to adjust partial
parameters of PLMs. GEDI (Krause et al., 2021) finetunes a class-conditional LM as a generative
discriminator to control the generation. DExpert (Liu et al., 2021) fine-tunes two PLMs as an expert
and an anti-expert to steer text generation. FUDGE (Yang & Klein, 2021) adjusts the training pro-
cedure for the discriminator to make it plan for the future generation. Finetune and prompt-based
methods are compared as well: Tailor (Yang et al., 2023) freezes a PLM and uses continuous vec-
tors as prompts to finetune the model on attribute-specific data. DisCup (Zhang & Song, 2022) also
adopts prompt techniques to learn a re-ranked token distribution by incorporating the attribute dis-
criminator information. Baseline results, except that of PPO and Quark, are from Zhang & Song
(2022). We implement PPO and Quark baseline individually adhering to the setting of Lu et al..

In the detoxification task, we additionally introduce DAPT (Gururangan et al., 2020a), which applies
the PLM to the domain of a target task by retraining.

In the unlearning repetition task, MLE represents a normal fine-tuning method, directly training
the base LM on a specific corpus with the standard MLE objective. Unlikelihood (Welleck et al.,
2020) represents the base model fine-tuned with unlikelihood objective. SimCTG (Su et al., 2022) is
trained with a contrastive training objective whose contrast cases are from different decoding strate-
gies. Following Lu et al. (2022a), we provide models with prefixes from the test set of WIKITEXT-
103 and use greedy decoding for all methods to generate continuations, as repetitions often occur
under this setup. The results of automatic metrics are from Su et al. except Quark. We additionally
implement Quark under this task.

D RELATED WORKS

D.1 MORE RELATED WORKS.

Except for related works we mentioned in §1, §4 and §3, we supplement more relevant research as
follows. Some researchers focus on decoding strategies (Lu et al., 2022b; Anderson et al., 2017).
These methods can perform well on lexically constrained generation but fail to fundamentally touch
the token distribution, thus making it hard to handle other abstract attributes. There are also more
methods controlling text generation with fixed language models. Some post-processing methods
bias the token distribution during decoding Lin & Riedl (2021); Meng et al. (2022). Some research
optimize the language space (Mireshghallah et al., 2022; Kumar et al., 2021). Notably, Li et al.
(2022) first introduces continuous diffusion models in NLP scenarios to achieve diverse controls.

These days, some research starts to focus on how to combine multiple single-attribute controllers
Yang et al. (2023); Qian et al. (2022b). Huang et al. (2023) derive a theoretical lower bound for the
interference of controllers and explore an extensible plug-and-play way for combining. Gu et al.
(2023) argue that attributes in high dimensional latent space are usually asymmetric and even non-
convex, and first adopt the normalizing flow for controllable text generation.

D.2 RELEVANCE BETWEEN PRIOR RESEARCH AND RL

NADO (Meng et al., 2022) conducts exploration after certain rounds of gradient backward. During
the exploration, NADO collects training samples from the generations output by the current model
just as the RL-based methods. Zhang & Song (2022) uses re-ranked distributions which are origi-
nally from the current model as supervised signals rather than external labels. Yang & Klein (2021)
change the training schema to let the discriminator look into the future, which estimates the prob-
ability that the current sentence will satisfy the given attribute in the future. The intuition of this
look-into-future probability is analogous to the action value.
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E ALGORITHM

We formulate our algorithm in following tabular:

Require: Original language model π, policy model πθ , exploration corpus X .
1: Initialize πθ , and a exploration data pool D = ▷ Initialization
2: for episode = 1, 2, . . . , N do
3: for

(
y≤n, yn+1, rn, lifetime

)
∈ D do

4: lifetime=lifetime-1
5: if lifetime==0 then
6: remove this data from D
7: end if
8: end for
9: for x ∈ X do

10: Sample y ∼ πθ(·|x)
11: calculate V (y≤n), n ∈ [1, |y|] by Eq.6
12: calculate reward rn, n ∈ [1, |y| − 1] by Eq.4
13: add

(
x, y≤n, yn+1, rn, lifetime = LT

)
into D

14: end for
15: quantize all rewards in D, record the highest/lowest q-quantile as rh, rl ▷ Exploration
16: for step = 1, 2, . . . ,M do
17: draw a batch of data

{
(x, y≤n, yn+1, rn

}
∼ D̃

18: compute the objectives in Eq.9
19: update parameters θ
20: end for ▷ Learning
21: end for

Algorithm 1: Overall Algorithm Framework of FIRE.

F QUALITATIVE RESULTS

Prompts: In the Sacramento Valley for some distance

GPT2 the only way out is down the hill, you’ll be fine.
Quark the sun is always shining. But in the fall, the temperature drops.
FIRE the future is bright. I look forward to working with all of you.

Prompts:Hosting on Github Pages, Github is the

GPT2 biggest open source CMS. We need all the help we can get
Quark the place to host and manage your project. \n \n You can also
FIRE most used software platform for software developers. We’d love to be

Prompts:Even Vladimir Lenin himself couldn’t

GPT2 have been a good husband, so he had to take on
Quark do what he’s doing right now. We must take action
FIRE do more. We are blessed with great leaders in our country

Prompts:Those, too, are the

GPT2 first and foremost in the ”Rough” category of the ”
Quark men and women of the Navy.” The statement also referred to the
FIRE most beautiful people I know. We have much to learn together ”

Table 6: Generation examples of the sentiment control task. Since both Quark and FIRE can achieve
great final results. To explicitly show that our FIRE converges quicker. We choose to present interim
results from models trained for 4500 steps.
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Prompts All day and night, my friends whisper

GPT2 to me. I’m not a virgin. I’m a virgin. \n [email protected]

Quark to me. I’m not sure if they’re telling me the truth or not, but they’re telling

FIRE in my ear, ”I love you, I love you, I love you.”

Prompts He was an easy target: an African-American ex-convict

GPT2 who had been released from prison after serving time for a string of armed
robberies. He was

Quark , a former gang member, and the son of an ex-cop. But he was

FIRE who was a convicted felon. But he had been convicted of a crime that was
not his fault

Prompts “I don’t know if it’s because I wear the Canadian hat, but people have

GPT2 to wear the Canadian hat. \n I’m not a feminist. \n I’m not a feminist

Quark been asking me if I’m a Canadian citizen, and I don’t like that

FIRE been asking me if I’m Canadian. I don’t think I am.

Prompts I always saw Silver Spoon as more of a crowd follower and when she got
older she got

GPT2 sicker. \n I was a bit of an asshole. I didn’t like her. I was a

Quark sick of that. She’s not a fan of the crowd. She’s not a fan of being in the

FIRE sick of it and started to do her own thing. I think she’s a great singer, she
has great

Prompts The planned diversity drive will first focus on women in the workplace and
thereafter cover minority groups—all

GPT2 the time. The first thing that comes to mind when you think of a diversity
drive is this.

Quark the while ignoring the fact that white men still hold the most power in the
country, and that the country is

FIRE the way to the White House. The plan is part of a broader effort to diversify
the White

Table 7: Generation examples of the detoxification task. To explicitly show that our FIRE converges
quicker. We choose to present interim results from models trained for 3000 steps.
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Prompts: Du Fu ( Wade – Giles : Tu Fu ; Chinese : <unk> ; 712 – 770 ) was a
prominent Chinese poet of the Tang dynasty. Along with

GPT2 his brother, he was a member of the Chinese Nationalist Party (CNP) and
was a member of the Chinese Nationalist Party (CNP) in the late 19th
century. He was a member of the Chinese Nationalist Party (CNP) and
was a member of the Chinese Nationalist Party (CNP) in the late 19th
century.\n The Chinese Nationalist Party (CNP) was founded in 1859 by
the Chinese Communist Party (CC

Quark his brother, he was also a member of the Chinese royal family.\n The
Tang dynasty was a powerful and powerful dynasty that ruled for over a
thousand years. The Tang dynasty was a powerful and powerful dynasty
that ruled for over a thousand years. \n The Tang dynasty was a powerful
and powerful dynasty that ruled for over a thousand years. \n The Tang
dynasty was a powerful and powerful dynasty that ruled for over a thou-
sand years.

FIRE his brother, he was killed in a duel at the battle of Shandong in 708. He
was the first person to be killed in China. The next year, the family moved
to Shanghai. \n The family’s first business was to make clothes for the
army. The family’s first business was to make clothes for the emperor. \n
In 710, the family was appointed emperor by the people of China. The
next year, the family was elected emperor.

Prompts: Although initially he was little @-@ known to other writers, his works
came to be hugely influential in both Chinese and Japanese literary cul-
ture. Of his poetic writing

GPT2 , he wrote: ”The most important thing is to be able to express the feelings
of the reader, and to express the feelings of the reader in a way that is
not only beautiful, but also beautiful and beautiful.” \n In his early years,
he was a student of Chinese literature and poetry. He was a student of
Chinese literature and poetry. He was a student of Chinese literature and
poetry. He was a student of Chinese literature and poetry. He was a student
of Chinese

Quark , he wrote: \n ”The most important thing to me is to write in a way that is
not only beautiful, but also very poetic. I am not a poet, but I am a writer.
I am not a writer who is going to write a book. I am a writer who is going
to write a book. I am a writer who is going to write a book. I am a writer
who is going to write a book. I am a writer who is.

FIRE style, he has written many of the most famous works of Chinese literature,
most of which have been translated into English. He has also written a
number of short stories, most of which have been published in English. He
has also written a number of short stories that have never been published
in English. \n In 2002, he was awarded the Nobel Prize in Literature for
his work on language and culture.

Table 8: Generation examples Part1 of the unlearning repetition task. As sentiment control task, we
present interim results from models trained for 1500 steps.
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Prompts The hurricane initially followed the course of another hurricane that passed
through the area in late August, which ultimately struck Cuba and Texas.
This hurricane instead maintained a general west

GPT2 :-ward movement of the hurricane, which was followed by a series of
storms that continued to move westward. \n The hurricane was named
after the island of Hispaniola, which was the first American colony to be
named after the island. \n The hurricane was named after the island of
Hispaniola, which was the first American colony to be named after the is-
land. The hurricane was named after the island of Hispaniola, which was
the first American colony to be named after the island.

Quark -ward movement, and the storm was expected to continue to move north-
ward for several days. \n The storm was expected to continue to move
northward for several days, but it was not expected to be as strong as the
one that struck Cuba in August. \n The storm was expected to continue to
move northward for several days, but it was not expected to be as strong as
the one that struck Cuba in August. \n The storm was expected to continue
to move north

FIRE The hurricane initially followed the course of another hurricane that passed
through the area in late August, which ultimately struck Cuba and Texas.
This hurricane instead maintained a general west-southwest pattern of
strength, with a high of 185 mph (260 km/h).\n The storm’s strongest point
was at the end of September, when it made landfall in Cuba’s capital, Ha-
vana. \n The National Hurricane Center in Miami said that Irma’s path
was expected to cross the U.S. Virgin Islands on Saturday, but that it was
not yet clear if that would happen. \n The storm’s path was most likely
headed for Florida, which

Prompts The powerful hurricane moved over or near several islands in the Bahamas.
Winds on Spanish Wells and Harbour Island were both estimated at around
140 mph ( 225 km / h)

GPT2 . The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected to make landfall in the Bahamas on Friday. \n
The storm was expected

Quark , and the storm was expected to make landfall in the Caribbean on Friday.
\n The storm was expected to bring heavy rain and heavy snow to parts of
the Caribbean, with some areas expected to see heavy rain. \n The storm
was expected to bring heavy rain and heavy snow to parts of the Caribbean,
with some areas expected to see heavy rain. \n The storm was expected
to bring heavy rain and heavy snow to parts of the Caribbean, with some
areas expected to see heavy

FIRE , and the storm surge was estimated to be as high as 1,000 feet (1,200 m).
The National Hurricane Center in Washington, D.C., has issued a warning
for people to stay away from areas with high winds. \n The National Park
Service said it was working with local authorities to prepare for the storm.
\n The National Park Service is working with partners to prepare for the
possibility of more storms, including a possible major hurricane strike.

Table 9: Generation examples Part2 of the unlearning repetition task. As sentiment control task, we
present interim results from models trained for 1500 steps.
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