
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Oscillations Make Neural Networks Robust to Quantization

Anonymous Authors1

Abstract

We challenge the prevailing view that oscilla-
tions in Quantization Aware Training (QAT)
are merely undesirable artifacts caused by the
Straight-Through Estimator (STE). Through the-
oretical analysis of QAT in linear models, we
demonstrate that the gradient of the loss function
can be decomposed into two terms: the original
full-precision loss and a term that causes quanti-
zation oscillations. Based on these insights, we
propose a novel regularization method that in-
duces oscillations to improve quantization robust-
ness. Contrary to traditional methods that focuses
on minimizing the effects of oscillations, our ap-
proach leverages the beneficial aspects of weight
oscillations to preserve model performance under
quantization. Our empirical results on ResNet-
18 and Tiny ViT demonstrate that this counter-
intuitive strategy matches QAT accuracy at ≥ 3-
bit weight quantization, while maintaining close
to full precision accuracy at bits greater than the
target bit. Our work therefore provides a new per-
spective on model preparation for quantization,
particularly for finding weights that are robust to
changes in the bit of the quantizer – an area where
current methods struggle to match the accuracy
of QAT at specific bits.

1. Introduction
Quantization is the mapping of continuous values to dis-
crete values. In neural networks, quantization reduces the
computational complexity and memory requirements by rep-
resenting weights and/or activations with fewer bits (Gupta
et al., 2015). In the case of weight only quantization, this
means applying a quantizer q(·) to the network’s weights w,
with an additional implicit goal of maintaining the original
performance i.e. L(q(w)) ≈ L(w), where L(·) is a loss
function.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

0 5 10 15 20
Epoch

0.0

0.5

1.0

W
 v

al
ue

QAT oscillating

w
q(w)
y
Threshold
Reg. grad.
Loss grad.

Figure 1. Oscillatory behavior in Quantization-Aware Training
(QAT) for a simple linear model. The figure shows a quantized
linear model f(x) = q(w)x with a single weight w, where x = 1
and target output y = 0.75. When doing squared loss with QAT an
additional term is introduced to the gradient (Eq. 14), which causes
w to oscillate around the quantization threshold. This oscillation
results in q(w) alternating between the 0 and 1 quantization bins.

When training neural networks intended for quantization,
an essential step during optimization is accounting for the
effects of applying a quantizer to the weights. Quantiza-
tion introduces a perturbation to the weights. For uniform
quantizers, this is bounded by s

2 , where s is the scale factor.
At higher bit widths (≥ 8 bits), this perturbation is small,
and standard training procedures often yield weights that
are resilient to quantization noise (Nagel et al., 2021). In
such cases, applying quantization after training, known as
Post-Training Quantization (PTQ), is sufficient to maintain
acceptable performance levels (Nagel et al., 2021).

However, as we reduce the bit width to lower precision (≤ 4
bits), the quantization perturbation becomes more signif-
icant, and the model’s performance tends to degrade sub-
stantially after quantization. This is because the increased
perturbation can lead to larger discrepancy between q(w)
and w. To address this challenge, much research has gone
into finding strategies to mitigate the effects of quantiza-
tion on model accuracy, ensuring that the network remains
accurate even after low-bit quantization.

Though many methods have been proposed for mitigating
the accuracy degradation due to quantization, Quantization-
Aware Training (QAT) (Jacob et al., 2018) remains one of
the most widely adopted approaches. QAT works by in-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

OsciQuant

corporating quantization effects directly into the training
process - quantizing weights in the forward pass while using
the Straight-Through Estimator (STE) (Bengio et al., 2013)
for gradient approximation during backpropagation. Re-
search has identified an interesting phenomenon in QAT
with the STE, known as weight oscillations, where the
quantized weights alternate between two adjacent quantized
states during training (Défossez et al., 2021; Nagel et al.,
2022). While traditionally viewed as a detrimental effect
that should be suppressed through dampening or weight
freezing techniques, there also exists evidence suggesting
these oscillations might play a more nuanced role in the
training dynamics of QAT.

We claim that weight oscillations during training are benefi-
cial and that indeed they are the driving mechanism behind
QAT. Our primary contributions that support this claim are:

1. we isolate the mechanism that leads to weight oscilla-
tions during QAT (Sec. 4);

2. we develop a regularization method that induces weight
oscillations during training using this mechanism
(Sec. 5);

3. we show experimentally that weight oscillations are
sufficient for preserving performance after quantization
on small-scale computer vision tasks (Sec. 6).

Since previous results have shown that weights oscillations
are also necessary for good quantization performance with
QAT (see Sec. 7 for details), and extrapolating from our
experiments, our results suggest that weight oscillations
capture all the beneficial effects of QAT while avoiding un-
intended side-effects. For instance, in our experiments our
method avoids overfitting to the bit-width used during train-
ing, resulting in superior cross-quantization performance
compared to QAT.

2. Related Work
The most used strategy to minimize the impact of quanti-
zation on model accuracy is to minimize the quantization
error. This can be achieved by adjusting the granularity
of the quantizer—for instance, using per-channel (Nagel
et al., 2019) or block-wise quantization (Dettmers et al.,
2022) instead of per-tensor quantization. While these meth-
ods reduce quantization error without additional training,
they come with increased storage requirements due to ex-
tra quantization parameters and may still fall short at very
low bit widths, necessitating the combination with other
approaches.

Consequently, extensive research has been dedicated to
developing techniques that explicitly minimize the quan-
tization error during optimization (Hung et al., 2015; Hi-

rose et al., 2017; Li et al., 2019; Choi et al., 2020; Han
et al., 2021; Zhong et al., 2025). Given a model w the
hope is that by ensuring q(w) ≈ w, we likely also have
L(q(w)) ≈ L(w), thereby preserving model accuracy after
quantization.

An alternative and less explored approach involves training
models to be robust to quantization perturbations without
necessarily minimizing the quantization error itself. This
means finding weights w such that L(q(w)) ≈ L(w) even
if q(w) is not close to w (Alizadeh et al., 2020; Chmiel et al.,
2020). Such methods focus on enhancing the robustness of
the model to the quantization error, leading to better perfor-
mance at bits different than the ones used in the quantizer,
which we will refer to as cross-bit quantization.

A third approach is to train supernets on the desired config-
urations of the quantizers (Xu et al.; 2023). This approach
increases the training complexity and cost, which is not
incurred by explicit regularization.

Despite these efforts, the aforementioned strategies often
fall short of the accuracy obtained with QAT (Jacob et al.,
2018) at individual bits or indirectly rely upon QAT them-
selves. In short, QAT integrates the quantization process
into the training loop allowing the model to adapt to the
quantization effects directly. This is done by quantizing the
weights during the forward pass and using techniques like
the Straight-Through-Estimator (STE) to approximate the
gradient of the quantizer (Which has a derivative of zero
almost everywhere) during backpropagation (Bengio et al.,
2013).

Yet, there is limited understanding of how QAT affects
model optimization and why it outperforms other methods.
One phenomenon observed during QAT is weight oscilla-
tions (Défossez et al., 2021; Nagel et al., 2022), which are
periodic changes in the value of the quantized weight be-
tween two adjacent quantization levels. It is speculated in
these works that that the abrupt changes in values caused by
oscillations can interfere negatively with optimization. Os-
cillations are assumed to be undesirable side effects caused
by the use of the STE during backpropagation, as the STE al-
lows gradients to pass through the rounding operation in the
quantizer, which has a gradient of zero almost everywhere
(Défossez et al., 2021; Nagel et al., 2022).

Several approaches have been suggested to mitigate oscilla-
tions, such as dampening or freezing the oscillating weights,
which have shown improved accuracy (Nagel et al., 2022;
Gupta & Asthana, 2024). However, the reported gains are
sometimes marginal, and these methods may inadvertently
also hinder the optimization process. For instance, Nagel
et al. (2022) notes that freezing or dampening weights too
early during training can hurt optimization, indicating that
oscillations might contribute to finding better quantized min-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

OsciQuant

ima. Liu et al. (2023) propose that weights with low oscilla-
tion frequency should be frozen, where as high-frequency
ones should be left unfrozen, under the rational that high
frequency means the network has little confidence in what
value to quantize the weight to, where as low frequency
means the optimal weight lies close to a quantization level.

Though QAT often provides the best accuracy for a given
target bit, degradation to a lesser or greater extent exists
when the bit of the quantizer is different to the one seen dur-
ing training, ie. cross-bit quantization (Alizadeh et al., 2020;
Chmiel et al., 2020). This means QAT requires training and
storing of weights for each desired bit width. This special-
ization can also pose challenges when deploying models
across different hardware platforms, each potentially using
different quantization schemes (Reddi et al., 2020), making
it difficult to develop models which can be easily quantized
at deployment according to end-user requirements.

This makes robust quantization methods an interesting re-
search avenue, especially if they could be improved to match
the individual bit performance of QAT. In this work, we aim
to deepen the understanding of how QAT influences model
optimization, particularly focusing on the role of weight
oscillations and their relation to robustness.

3. Preliminaries
3.1. Quantization

A quantizer divides a continuous input range into quanti-
zation bins, where each bin is represented by a specific
quantization level. The boundaries between bins are called
quantization thresholds. During quantization, any value
within a bin is mapped to that bin’s quantization level. With
a uniform quantizer, the step size (the distance between two
adjacent quantization levels) is equal to the scale factor s.

We consider a uniform symmetric quantizer with a max-
range scale factor. The quantization operation q(·) can then
be expressed as

q(w) = s ·
⌈w
s

⌋
(1)

Here, s represents the scale factor and ⌈·⌋ denotes the round-
ing operation.

The scale factor s is set to cover the range of w as this
removes the need for the usual clamping operation in the
quantizer, while keeping the number of bins symmetric
around 0:

s =
max(|α|, |β|)
2b−1 − 1

(2)

Where b is the bit in the quantizer and α, β are the min. and
max. values respectively of the layer wise weight w.

The quantization process introduces quantization error ∆,
defined as the difference between the original and quantized
values:

∆(w) = w − q(w) (3)

Due to the uniform quantizer, for all bins the absolute error
is bounded between 0 ≤ |∆| ≤ s/2, which is maximized at
quantization thresholds and 0 at quantization levels.

3.2. Quantization-Aware Training

While there exist many variants of QAT, fundamentally the
forward pass is performed using the quantized weights q(w)
in most variants of QAT (Jacob et al., 2018; Krishnamoorthi,
2018), simulating the effect of using low-precision weights.
In principle the gradient for the weights during QAT is given
by:

∂L(q(w))

∂w
=

∂L(q(w))

∂q(w)
· ∂q(w)

∂w
(4)

A problem with the above formulation is that the gradient of
the rounding operation used in the quantizer is zero almost
everywhere, causing the last term to interrupt gradient-based
learning. A popular solution to this problem is to use the
so-called Straight-Through Estimator (STE) (Bengio et al.,
2013). We define the STE to be the operator ∂̂

∂̂x
such that ∂̂f

∂̂x

is obtained by computing ∂f
∂x and in the resulting expression

replacing q′ (the derivative of q) by the constant function
equal to 1. In other words, if ∂f

∂x = g(. . . , q′, . . .) then
∂̂f

∂̂x
= g(. . . , 1, . . .).

4. Oscillations in QAT
Previous studies have explored linear models to analyze the
behavior of QAT and the phenomenon of weight oscillations
(Défossez et al., 2021; Nagel et al., 2022; Liu et al., 2023;
Gupta & Asthana, 2024). Inspired by these works, we
analyze a linear regression model to gain theoretical insights
into the optimization dynamics during QAT.

Consider a linear model with a single weight w, input x and
target y ∈ R. The quantized version of this model is defined
as f(x) = q(w)x, where q(·) is the quantizer from Eq. 1.
The quadratic loss for the quantized model is given by

L(q(w)) = 1

2
(q(w)x− y)2. (5)

Our goal in this section is to understand how QAT affects
the full precision optimization process. For a given loss
function L(·) with quantized weights, we have

L(q(w)) = L(w) + L(q(w))− L(w) (6)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

OsciQuant

We can then expand the difference caused by quantization
as follows

δL = L(q(w))− L(w) (7)

=
1

2

(
(q(w)x− y)2 − (wx− y)2

)
(8)

=
1

2

(
(q(w)x)2 − (wx)2 − 2y(q(w)x− wx)

)
(9)

=
1

2

(
x2

(
q(w)2 − w2

))
+ (yx(w − q(w))) (10)

This expression decomposes the loss difference into a
quadratic term 1

2x
2(q(w)2 −w2) and a linear term yx(w−

q(w)).

Next we derive the gradient of δL wrt. w:

∂δL
∂w

=
∂

∂w

(
L(q(w))− L(w)

)
(11)

=
∂

∂w

(
1

2
x2(q(w)2 − w2) + yx(w − q(w))

)
(12)

= x2

(
q(w)

∂q(w)

∂w
− w

)
+ yx

(
1− ∂q(w)

∂w

)
(13)

Using the STE and recalling that ∂̂q

∂̂w
= 1 the expression of

the STE gradient simplifies to

∂̂δL

∂̂w
= x2(q(w)− w) = −x2∆(w). (14)

To see how this gives rise to oscillations, for an arbitrary w,
denote w0 the upper discretization threshold w0 = q(w) +
s/2. For ε ∈ (0, s/2) note that we have q(w0 − ε) = q(w)
and q(w0 + ε) = q(w) + s so that

∆(w0 + ε) = q(w) + s/2 + ε− (q(w) + s) (15)
= −s/2 + ε, (16)

∆(w0 − ε) = q(w) + s/2− ε− q(w) (17)
= s/2− ε. (18)

Assuming x ̸= 0, the negative STE gradient “flips” from
−s/2 to s/2 as the weight w passes the quantization thresh-
old w0 from above, pushing the weight back towards the
threshold. We note that the STE gradient is 0 at the special
value w = q(w), but the preceding argument shows that
this is an unstable critical point and gradient noise will im-
mediately cause the weights to move away from it. When
combined with (stochastic) gradient descent and a finite
discretization timestep we can identify this as the driving
mechanism behind oscillations during training with QAT
(Fig. 1).

We can also see how the dynamics lead to clustering around
quantization thresholds by looking at the sign of ∆ for
different values of w. For a weight w let dlow(w) and
dup(w) denote the distance from w to the upper and lower
thresholds, dlow(w) = w −

(
q(w)− s

2

)
= ∆(w) + s

2 and
dup(w) =

(
q(w) + s

2

)
−w = s

2 −∆(w) respectively. If w
is closest to the upper threshold we have

dup < dlow =⇒ s
2 −∆ < ∆+ s

2 =⇒ ∆ > 0 (19)

While if w is closest to the lower threshold

dlow < dup =⇒ ∆+ s
2 < s

2 −∆ =⇒ ∆ < 0 (20)

We emphasize that this mechanism causes the weights to
move towards the quantization thresholds (the edges of quan-
tization ”bins”) as opposed to the quantization levels (the
centers of the quantization ”bins”).

5. Regularization Method
Based on our theoretical observations in the one weight lin-
ear model, we now investigate empirically if the mechanism
in Eq. (14) is sufficient to introduce weight oscillations in
neural networks.

From the quantization difference in Eq. 10 and the STE
gradient derived in Eq. 14, we have:

∂L(q(w))
∂w

=
∂L(w)
∂w

− x2∆(w) (21)

where the first term is the gradient of the original full-
precision loss, and the second term causes the quantization
oscillations in QAT.

In order to emulate the effects of QAT, we propose a regu-
larization term so that the training objective becomes:

L(q(w)) = L(w) +Rλ(w) (22)

where we let the regularization term be similar to the
quadratic term in Eq. (10):

Rλ(w) =
λ

2

∑
ℓ

1

nℓ

nℓ∑
i=1

(
q(wℓ

i)
2 − (wℓ

i)
2
)
. (23)

Here λ ≥ 0 is a hyperparameter that controls the amount of
regularization, ℓ ranges over the layers in the model and i
over the weights in each layer.

Using the STE, ∂̂q
∂w = 1, we have the following expression

for the gradient:

∂̂

∂̂wℓ
i

Rλ(w) =
λ

nℓ

(
q(wℓ

i)− wℓ
i

)
= − λ

nℓ
∆(wℓ

i). (24)

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

OsciQuant

By the same reasoning as in Sec. 4 this pulls the weight wℓ
i

towards the quantization threshold and causes the gradient
to “flip” as wℓ

i crosses the threshold. We expect this to lead
to oscillations based on the same mechanism as in the model
from Sec. 4.

Figures 2 and 3 show the results of an experiment where we
observe the weight distributions, and measured the oscilla-
tions, during training of a neural network (ResNet-18) with
varying degrees of regularization, respectively. For com-
parison purposes the figures also shows the weight distribu-
tions and oscillations observed during training with QAT.
Using the definition of an oscillation established in Nagel
et al. (2022), we count an oscillation at epoch i > 1 if
q(wt) ̸= q(wt−1) and the direction of the change in the
quantized space is opposite to that of the previous change.
We note though that this method of counting misses the first
threshold crossing during an oscillation A.5

Our first observation is that QAT displays more oscillations
– also seen as clustering around the quantization threshold
in Fig. 2-a) – than a baseline model without QAT or reg-
ularization (corresponding to λ = 0 in Fig. 3-b)) . As we
increase λ we observe that the number of oscillations as
well as the clustering increases. This confirms that our regu-
larizer can indeed induce oscillations similar to QAT during
the training of deep neural networks. At λ = 1 (Fig. 3-c))
the number of oscillations observed with our regularizer
is similar to the behaviour of QAT, lending support to our
hypothesis that the mechanism in (15) is indeed at the root
of the oscillations observed when training neural networks
with QAT.

6. Experiments & Results
In this section we empirically try to answer the question: is
it sufficient to induce weight oscillations during training in
order to get the benefits of QAT?

We answer this question mostly affirmatively for ResNet and
Vision Transformer architectures, based on the results of
training ResNet-18 and Tiny ViT on the CIFAR-10 dataset.
This is both in a training-from-scratch setting and when fine-
tuning pretrained models. In all our experiments we use the
regularizer Rλ defined in Eq. (23) to induce oscillations.

In the following subsections we first describe the experi-
mental setup, then we present the accuracy results from
training-from-scratch and fine-tuning models trained with
different quantization levels for the quantizer in Rλ or QAT
and finally, we present the cross-bit accuracy of the fine-
tuned models. We train models at ternary (3 possible values:
-1, 0, 1), 3-bit and 4-bit. This is in line with contemporary
research, where the emphasis lies on quantization at 4-bit
and below since the challenges of maintaining accuracy
are more significant compared to quantization at higher bit

widths.

6.1. Experimental setup

We conducted our experiments using the CIFAR-10 dataset
(Krizhevsky et al., 2009) without data augmentation. We
evaluated three architectures; A multi-layer perceptron with
5 hidden layers and 256 neurons per layer (MLP5), ResNet-
18 (He et al., 2016) and Tiny Vision transformer (Tiny ViT)
(Wu et al., 2022).

For each architecture we used the Adam optimizer (Kingma,
2014) and tested multiple configurations: A baseline
model to establish optimal floating-point accuracy and post-
training quantization (PTQ) performance, a model with QAT
and a model with our approach. The two latter configura-
tions are trained using a ternary, 3-bit, and 4-bit quantizer.

Training from Scratch For the MLP5 architecture, we used
a learning rate of 10−3 and regularization parameter λ=1.
The ResNet-18 was trained with a learning rate of 10−3 and
λ=0.75 (see Appx. A.2 for our hyperparameter selection).
We modified the ResNet-18 architecture by replacing the
input layer with a smaller 3×3 kernel and adapting the final
layer for 10-class classification of both ResNet-18 and Tiny
ViT. Training proceeded for a maximum of 100 epochs with
early stopping triggered after 10 epochs without improve-
ment in validation performance. For quantized models, we
monitored the quantized validation accuracy at the target bit
precision, while for the baseline, we tracked floating-point
accuracy.

Fine-tuning We fine-tuned two ImageNet-1k (Deng et al.,
2009) pre-trained models on CIFAR-10: a Tiny ViT (learn-
ing rate: 10−4, λ=1) and a ResNet-18 (learning rate: 10−3,
λ=1). To maintain compatibility with the pre-trained ar-
chitectures, we upsampled CIFAR-10 images to 224× 224
pixels. The λ parameter selection process for Tiny ViT
is detailed in Appx. A.2. Fine-tuning continued for up to
200 epochs, with early stopping after 30 epochs without
improvement, using the same accuracy metrics as training
from scratch.

Quantization We implemented weight quantization using a
per-tensor uniform symmetric quantizer as defined in Eq. 1.
The quantization range was determined by computing mini-
mum and maximum values per layer. In our implementation
of ResNet-18 (11M parameters) all layers except batch nor-
malization were quantized, covering 99.96% of parameters.
For Tiny ViT (5.5M parameters) quantization was applied to
MLP, Self-Attention, and key-query-value projection layers,
encompassing 97.18% of parameters. And lastly for the
MLP5 model all layers were quantized.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

OsciQuant

0.2 0.1 0.0 0.1 0.2
w value

0

10

20

30

40

De
ns

ity

QAT weight distribution

Threshold

(a)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
w value

0

10

20

30

40

De
ns

ity

=0 weight distribution

Threshold

(b)

0.2 0.1 0.0 0.1 0.2
w value

0

10

20

30

40

De
ns

ity

=1 weight distribution

Threshold

(c)

0.15 0.10 0.05 0.00 0.05 0.10 0.15
w value

0

10

20

30

40

De
ns

ity

=10 weight distribution

Threshold

(d)

Figure 2. Weight distribution analysis of ResNet-18’s first convolutional layer after 50 epochs of training from scratch. a) Weight
distribution under QAT with a 3-bit quantizer. b)-d) Our proposed regularization approach with a 3-bit quantizer at varying regularization
strengths (λ = 0, 1, 10, from left to right). When λ = 0, the training reduces to standard optimization. The QAT distribution (leftmost)
exhibits the characteristic threshold clustering behavior. As λ increases, we observe progressively stronger clustering of weights around
quantization thresholds, illustrating the relationship between regularization strength and weight clustering.

.

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

(a)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

(b)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=1

(c)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

(d)

Figure 3. The plots show the distribution of weights with oscillation counts > 0 when training with a) QAT and b)-d) our regularizer for
different values of λ. Here λ = 0 corresponds to a full precision model where our regularizer has no influence on training. The y-axis
represents the percentage of total weights in the first convolutional layer of a ResNet-18 trained from scratch for 50 epochs, while the
x-axis shows the oscillation count. Following the oscillation definition from (Nagel et al., 2022), we count oscillations at each epoch
during training. The results demonstrate that QAT produces a significantly higher proportion of oscillating weights compared to λ = 0.
Furthermore, we observe that as we increase λ a greater percentage of weights oscillates.

6.2. Training-from-scratch

Table 1 shows the results from training an MLP and ResNet-
18 from scratch on the CIFAR-10 dataset. Our regularization
method (OsciQuant) demonstrates improvements compared
to the PTQ baseline from ternary quantization. More impor-
tantly, it also matches the performance of QAT at bit widths
of 3 and 4.

For both models we see that at 3-bit and 4-bit, our method
exhibits similar performance as QAT but with less variabil-
ity, while not differing significantly in the average number
of training epochs required. With both models, QAT and
OsciQuant are competitive with the full-precision baseline,
although we observe an increased number of training epochs.
Notably, both OsciQuant and QAT significantly outperform
PTQ when applied to the full precision baseline.

6.3. Fine-tuning

Table 2 summarizes the test accuracies for fine-tuning using
our OsciQuant method and QAT on ResNet-18 and Tiny
ViT architectures. The observations are roughly in line with
the results observed for training from scratch in the previous
section with the exception of the number of epochs required

for fine-tuning.

On the ResNet architecture both QAT and our model train
for significantly longer than the full precision baseline. As
is the case for training from scratch, we see an increase in
ternary performance compared to PTQ, but QAT still ourper-
forms our method in the ternary setting. Our regularization
and QAT show comparable performance when quantized at
3 bits and 4 bits, while achieving test accuracy close to the
full precision model at 4-bits.

The general trend regarding accuracy is identical for the
vision transformer experiments, while we again note the
high number of epochs require for both methods when fine-
tuning, compared to the full precision baseline.

6.4. Robustness to cross-bit quantization

As described above, the goal of our proposed regularization
term is to train a model that maintains performance after
quantization. Since the regularization term involves a quan-
tization operator, we need to choose the quantization level
in the regularization term. In this experiment we evaluated
the robustness of our method and QAT towards quantization
at levels different from the ones used during training.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

OsciQuant

Model Quantization method Accuracy Mean Epochs

MLP5

Baseline FP32 51.43 ± 0.39 14

Ternary PTQ 10.00 ± 0.02 14
Ternary QAT 49.20 ± 1.34 24
Ternary OsciQuant 36.49 ± 0.51 14

3-bit PTQ 20.97 ± 5.64 14
3-bit QAT 50.53 ± 1.43 33
3-bit OsciQuant 48.48 ± 0.29 15

4-bit PTQ 46.50 ± 0.76 14
4-bit QAT 51.39 ± 0.60 26
4-bit OsciQuant 50.72 ± 0.47 19

ResNet-18

Baseline FP32 83.26 ± 1.07 24

Ternary PTQ 10.00 ± 0.01 24
Ternary QAT 79.62 ± 6.42 42
Ternary OsciQuant 61.5 ± 1.82 56

3-bit PTQ 77.79 ± 4.0 24
3-bit QAT 82.51 ± 2.14 37
3-bit OsciQuant 81.77 ± 0.46 41

4-bit PTQ 82.11 ± 1.21 24
4-bit QAT 82.66 ± 2.57 28
4-bit OsciQuant 83.74 ± 0.59 32

Table 1. Comparison of accuracy when training from scratch on
CIFAR-10. Results show classification accuracy and mean training
epochs for MLP5 and ResNet-18 across different quantization ap-
proaches and bit-widths. Results is means and standard deviations
over 5 random seeds.

For OsciQuant, we applied a regularization term with the
training bit width during training and applied PTQ after
training finished at a different quantization level. For QAT
we trained using the training bit width and afterwards ap-
plied PTQ to the latent weights. For each method we also
evaluated the corresponding model without PTQ, directly
using the latent weights for inference (reported as FP32).

Table 3 shows the results from the experiment. A first ob-
servation is that the models produced by our method consis-
tently achieve nearly full-precision accuracy when quantized
at 8-bit or when used without quantization, irrespective of
the quantization level used during training. This contrasts
with QAT, which produces a viable 8-bit or full-precision
model only when trained with at least 4-bit.

Furthermore we see that our method mostly maintains per-
formance when trained at 3 or 4-bit and quantized at bit level
of 3 or 4-bit. QAT also achieves this for Tiny ViT but for
ResNet, the accuracy of QAT trained at 3-bit and quantized
at other bit widths is barely above random guessing.

Regarding training with ternary quantization, we see that
our method produces models that achieve near full precision
performance for ResNet when quantized at 3-bit or higher.
Ternary training for ViT is somewhat peculiar in that it fails
to produce a model that is viable when quantized to ternary,
whereas the performance of the resulting models starts to
show a high level of variability at 4-bit and finally reaches
close to full-precision accuracy at 8-bit. In contrast, for
both ResNet and ViT, the performance of QAT degrades

Model Quantization method Accuracy Mean Epochs

ResNet-18

Baseline FP32 88.50 ± 0.64 4

Ternary PTQ 10.01 ± 0.01 4
Ternary QAT 77.02 ± 7.57 47
Ternary OsciQuant 44.59 ± 3.30 35

3-bit PTQ 10.28 ± 0.48 4
3-bit QAT 85.69 ± 1.83 25
3-bit OsciQuant 84.94 ± 1.59 27

4-bit PTQ 35.56 ± 9.05 4
4-bit QAT 87.71 ± 1.14 26
4-bit OsciQuant 87.08 ± 0.72 24

Tiny ViT

Baseline FP32 96.11 ± 0.31 6

Ternary PTQ 9.39 ± 1.11 6
Ternary QAT 73.53 ± 0.77 140
Ternary OsciQuant 13.51 ± 1.32 28

3-bit PTQ 11.56 ± 1.99 6
3-bit QAT 88.13 ± 0.60 131
3-bit OsciQuant 88.68 ± 1.08 108

4-bit PTQ 21.57 ± 5.33 6
4-bit QAT 94.96 ± 0.33 57
4-bit OsciQuant 94.82 ± 0.51 90

Table 2. Comparison of accuracy when fine-tuning on models pre-
trained on ImageNet-1k. Results show classification accuracy and
mean training epochs for MLP5 and ResNet-18 across different
quantization approaches and bit-widths. Results is means and
standard deviations over 5 random seeds.

completely to random guessing when trained with ternary
quantization and evaluated at any other quantization level.

7. Discussion
We have shown that training with weight oscillations in-
duced via regularization is sufficient in most cases to main-
tain performance after quantization for ResNet and Tiny
ViT. This begs the question whether weight oscillations are
also a necessary part of the QAT training process. Indeed,
some previous work already points towards this. There are
examples claiming that both dampening and/or freezing of
oscillations too early in the training process is detrimen-
tal to performance after quantization (Nagel et al., 2022;
Han et al., 2021). And in other case presented in Liu et al.
(2023), freezing only the low frequency oscillating weights
improves performance. This suggests that weight oscilla-
tions are both a necessary and sufficient part of QAT, at least
in the early phases of the training process. This further sup-
ports our hypothesis that oscillations in QAT have a positive
effect on quantization robustness.

Additionally, there might be further benefits to our regular-
ization approach compared to QAT. Our method aims to
isolate this crucial part of the training process. This is ar-
guably a more principled approach compared to QAT, where
quantization during training combined with STE can lead
to a number of side-effects beyond oscillations, which can
be highly non-intuitive. We present a simple example in the
Appendix Sec. A.1 where replacing a single scalar weight

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

OsciQuant

Model Train bit ↓ / Eval. bit → FP32 Ternary 3-bit 4-bit 8-bit

ResNet-18

Baseline (PTQ) 88.50 ± 0.64 10.01 ± 0.01 10.28 ± 0.48 35.56 ± 9.05 88.45 ± 0.64

Ternary QAT 10.39 ± 0.71 77.02 ± 7.57 9.75 ± 0.77 10.03 ± 0.51 10.35 ± 0.63
Ternary OsciQuant 87.44 ± 0.56 44.59 ± 3.30 85.42 ± 1.13 87.03 ± 0.65 87.42 ± 0.56

3-bit QAT 16.89 ± 4.97 10.01 ± 0.04 85.69 ± 1.83 17.42 ± 4.96 16.56 ± 4.32
3-bit OsciQuant 87.86 ± 0.42 20.19 ± 10.74 84.94 ± 1.59 87.56 ± 0.38 87.86 ± 0.42

4-bit QAT 87.75 ± 1.13 10.13 ± 0.29 82.08 ± 6.25 87.71 ± 1.14 87.76 ± 1.12
4-bit OsciQuant 87.85 ± 0.49 11.91 ± 0.87 85.57 ± 1.10 87.08 ± 0.72 87.87 ± 0.49

Tiny ViT

Baseline (PTQ) 96.11 ± 0.31 9.39 ± 1.11 11.56 ± 1.99 21.57 ± 5.33 96.03 ± 0.34

Ternary QAT 10.62 ± 1.29 73.53 ± 0.77 11.52 ± 1.82 11.13 ± 1.75 10.61 ± 1.26
Ternary OsciQuant 95.79 ± 0.58 13.51 ± 1.32 12.53 ± 3.66 54.93 ± 27.32 95.76 ± 0.59

3-bit QAT 86.94 ± 0.91 19.78 ± 6.04 88.13 ± 0.60 86.69 ± 0.62 86.95 ± 0.89
3-bit OsciQuant 96.47 ± 0.11 9.48 ± 1.64 88.68 ± 1.08 95.35 ± 0.18 96.50 ± 0.11

4-bit QAT 95.14 ± 0.29 11.11 ± 1.84 59.86 ± 19.95 94.96 ± 0.33 95.13 ± 0.28
4-bit OsciQuant 96.54 ± 0.09 11.90 ± 1.29 70.23 ± 12.75 94.82 ± 0.51 96.55 ± 0.09

Table 3. Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on CIFAR-10. Grey background is the target-bit accuracy.
Models are trained using different quantization methods (QAT and ours) and bit-widths (ternary, 3-bit, and 4-bit), then evaluated across
various bit-widths ranging from ternary to FP32. The grey diagonal shows the results for the bit used during training. Results are means
and standard deviations over 5 random seeds. All significant differences between QAT and OsciQuant are shown in bold face.

by a product of two scalar weights leads to a non-trivial
change in training dynamics when using QAT with the STE.

On the other hand, while it is not clear what the additional
effects are during QAT, we do note two consistent deviations
from the QAT performance when using our regularization
method: QAT outperforms regularization at ternary quan-
tization, whereas our regularization method outperforms
QAT in cross-bit accuracy for the ternary and 3-bit case. In
A.4, we see how it seems that the cross-bit performance for
QAT is upper-bounded by the target-bit performance, which
might explain the subpar QAT performance at cross-bit com-
pared to our regularization method which seems bounded
by the full precision accuracy. Additionally we can note
that while it is stated in Alizadeh et al. (2020); Chmiel et al.
(2020) that QAT is not robust to cross-bit quantization, A.4
shows that for some cases the robustness is tied closely to
how long the model is trained after the target bit accuracy
has converged.

Finally we note in A.2 that in the ResNet-18 model, we see
similar results for the hyperparameter sweep for different
λs, which might suggest that the key for robustness is the
presence of oscillations and not their precise nature.

Limitations In our experiments we observed that the ro-
bustness to cross-bit quantization improves in later training
epochs. In order to further improve robustness one might
consider an early stopping criterion that evaluates the per-
formance on cross-bit quantization, which was not done in
this work. The same approach could also increase cross-bit
quantization robustness of QAT although to a lesser degree
than for our method.

We performed our experiments on the CIFAR-10 dataset
which might make it more difficult to compare our results
with other published works that provide benchmark results

for other datasets such as ImageNet-1k.

8. Conclusion
Based on the analysis of a toy model we proposed the hy-
pothesis that weight oscillations during training in deep
neural networks make the model robust to quantization.

In Sections 4 and 5 we explain on a toy model how train-
ing with QAT and STE leads to oscillations and propose a
regularizer that encourages this oscillating behaviour. We
confirm that as we increase the strength of the regulariza-
tion, we empirically observe the appearance of clustering
together with oscillations.

Finally we experimentally confirm that the regularizer in-
deed leads to consistent robustness towards quantization
for quantization levels above ternary. Our regularization
method achieves comparable performance to QAT above
ternary quantization when quantizing to the target-bit seen
during optimizing and shows increased robustness com-
pared to QAT in cross-bit quantization with bits greater than
the target-bit used in the quantizer during training. All this
being evidence of our hypothesis.

Our insights on weight oscillations and their role in quanti-
zation robustness open new horizons for model quantization
approaches. Our regularization method especially creates
interesting possibilities for cross-bit robustness, potentially
making our regularization method more appealing than QAT
when the goal is to deploy or relase a single set of weights
that works across different bit widths or maybe even quantiz-
ers. While the regularizer used in our experiments should be
viewed as an initial step, we expect that quantization robust-
ness could be further improved by developing oscillation-
inducing methods that are adaptive to different learning
rates, layer statistics or phases of the training process.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

OsciQuant

Broader Impact

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgments: Authors like to thank many funding
agencies and colleagues for useful discussions.

References
Alizadeh, M., Behboodi, A., Van Baalen, M., Louizos,

C., Blankevoort, T., and Welling, M. Gradient l1 reg-
ularization for quantization robustness. arXiv preprint
arXiv:2002.07520, 2020.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Chmiel, B., Banner, R., Shomron, G., Nahshan, Y., Bron-
stein, A., Weiser, U., et al. Robust quantization: One
model to rule them all. Advances in neural information
processing systems, 33:5308–5317, 2020.

Choi, Y., El-Khamy, M., and Lee, J. Learning sparse low-
precision neural networks with learnable regularization.
IEEE Access, 8:96963–96974, 2020.

Défossez, A., Adi, Y., and Synnaeve, G. Differentiable
model compression via pseudo quantization noise. arXiv
preprint arXiv:2104.09987, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer,
L. 8-bit optimizers via block-wise quantization. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=shpkpVXzo3h.

Gupta, K. and Asthana, A. Reducing the side-effects of
oscillations in training of quantized yolo networks. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp. 2452–2461, 2024.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML), 2015.

Han, T., Li, D., Liu, J., Tian, L., and Shan, Y. Improving low-
precision network quantization via bin regularization. In

Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5261–5270, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hirose, K., Ando, K., Ueyoshi, K., Ikebe, M., Asai, T., Mo-
tomura, M., and Takamaeda-Yamazaki, S. Quantization
error-based regularization in neural networks. In Artifi-
cial Intelligence XXXIV: 37th SGAI International Confer-
ence on Artificial Intelligence, AI 2017, Cambridge, UK,
December 12-14, 2017, Proceedings 37, pp. 137–142.
Springer, 2017.

Hung, P.-H., Lee, C.-H., Yang, S.-W., Somayazulu, V. S.,
Chen, Y.-K., and Chien, S.-Y. Bridge deep learning to the
physical world: An efficient method to quantize network.
In 2015 IEEE Workshop on Signal Processing Systems
(SiPS), pp. 1–6. IEEE, 2015.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Krishnamoorthi, R. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, Y., Dong, X., and Wang, W. Additive powers-of-two
quantization: An efficient non-uniform discretization for
neural networks. arXiv preprint arXiv:1909.13144, 2019.

Liu, S.-Y., Liu, Z., and Cheng, K.-T. Oscillation-free
quantization for low-bit vision transformers. In Inter-
national Conference on Machine Learning, pp. 21813–
21824. PMLR, 2023.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
October 2019.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., Van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

9

https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

OsciQuant

Nagel, M., Fournarakis, M., Bondarenko, Y., and
Blankevoort, T. Overcoming oscillations in quantization-
aware training. In International Conference on Machine
Learning, pp. 16318–16330. PMLR, 2022.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., et al. Mlperf inference bench-
mark. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–
459. IEEE, 2020.

Wu, K., Zhang, J., Peng, H., Liu, M., Xiao, B., Fu, J., and
Yuan, L. Tinyvit: Fast pretraining distillation for small
vision transformers. In European conference on computer
vision, pp. 68–85. Springer, 2022.

Xu, K., Feng, Q., Zhang, X., and Wang, D. Multiquant:
Training once for multi-bit quantization of neural net-
works.

Xu, K., Han, L., Tian, Y., Yang, S., and Zhang, X. Eq-net:
Elastic quantization neural networks. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 1505–1514, 2023.

Zhong, Y., Zhou, Y., Chao, F., and Ji, R. Mbquant: A
novel multi-branch topology method for arbitrary bit-
width network quantization. Pattern Recognition, 158:
111061, 2025.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

OsciQuant

A. Appendix
A.1. 2-layer with single weights

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iteration

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
va

lu
e

w1

w1
q(w1)
q pred
Target
Linear Reg
Quadratic Reg

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iteration

w
va

lu
e

w2

w2
q(w2)
q pred
Target
Linear Reg
Quadratic Reg

Figure 4. We repeat the toy model experiments, but this time with 2 weights, taking into account that the linear term is no longer 0 in the
gradient. We notice at epoch 15 and 18 where the prediction of the quantized model is greater than y, the effect of the terms flip for w2.

Consider a linear model f(x) = w2w1x, with w1, w2, input x, and target y ∈ R. The quantized version of this model is
defined as fq(x) = q(w2)q(w1)x, where q(·) is the quantizer from Eq. 1. The quadratic loss for the model is given by

L(f(x)) = 1

2

(
w2w1x− y

)2
The difference compared to full-precision optimization is then given as

δL = L(fq(x))− L(f(x)) (25)

=
1

2

[(
q(w2)q(w1)x− y

)2 − (
w2w1x− y

)2]
(26)

=
1

2

[(
q(w2)q(w1)x

)2 − (
w2w1x

)2 − 2y
(
q(w2)q(w1)x− w2w1x

)]
(27)

=
1

2
x2

[
q(w2)

2q(w1)
2 − w2

2w
2
1

]
+ yx

[
w2w1 − q(w2)q(w1)

]
(28)

The loss difference decomposes into:
1

2
x2

(
q(w2)

2q(w1)
2 − w2

2w
2
1

)
︸ ︷︷ ︸

quadratic term

+ yx
(
w2w1 − q(w2)q(w1)

)
︸ ︷︷ ︸

linear term

Taking the derivative of L with respect to w1:

∂δL
∂w1

=
∂

∂w1

(
L(fq(x))− L(f(x))

)
(29)

=
∂

∂w1

[
1

2
x2

(
q(w2)

2q(w1)
2 − w2

2w
2
1

)
+ yx

(
w2w1 − q(w2)q(w1)

)]
(30)

= x2
[
q(w2)

2q(w1)
∂q(w1)

∂w1
− w2

2w1

]
+ yx

[
w2 − q(w2)

∂q(w1)

∂w1

]
(31)

Using the STE approximation from Eq. 4, we get:

∂δ̂L
∂w1

= x2
[
q(w2)

2q(w1)− w2
2w1

]
+ yx

[
w2 − q(w2)

]
(32)

We note that the linear term is no longer zero in the gradient and thus for a model consisting of 2 single weight layers we see
that there is additional effects from QAT other than oscillations. Additionally because of the non-linearity of the rounding
operation, even with the absence of a non-linear activation function, we can no longer reduce the model to a single weight.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

OsciQuant

A.2. Hyperparameters

A.2.1. RESNET-18

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Learning rate comparison 3-bit regularization

LR: 0.0001
LR: 0.001
LR: 0.01

λ 3-bit (%) Ternary (%)
0.25 68.77 ± 0.19 47.85 ± 5.51
0.50 69.47 ± 1.11 46.77 ± 4.83
0.75 70.08 ± 0.40 46.86 ± 3.01
1.00 66.20 ± 4.05 47.33 ± 2.06
1.25 69.31 ± 0.32 43.14 ± 6.62
1.50 68.96 ± 0.30 46.73 ± 3.91
1.75 69.92 ± 0.11 47.02 ± 4.19

Figure 5. Mean over 3 runs of the best validation accuracy for different lambdas. Training a ResNet-18 from scratch. Both ternary and
3-bit is at 10−3 learning rate and 50% of the data used for training. The plot shows three learning rates, where we for each learning
ratue evaluate with the λs in the rhs. table. The colored background covers the range between the maximum and minimum value of the
quantized validation accuracy with the given λs.

In Fig. 5 we see the results of a hyperparameter search over different learning rates and λs for a ResNet-18 model. There is
a clear trend of seeing the best performance at a learning rate of 10−3. We note that interestingly there is a comparable
performance for a wide range of λs, indicating that it is the presence of oscillations which is important for quantization
robustness, and not the exact frequency of oscillations.

A.2.2. TINY VIT

0 20 40 60 80 100 120 140
Epoch

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

Different Lambdas in ViT

0.01
0.5
0.75
1
2

λ 3-bit (%) Ternary (%)
0.01 18.85 -
0.5 85.21 15.10
0.75 87.68 -
1.0 90.29 13.04
2.0 89.31 14.16
2.5 - 13.70
5.0 - 14.20

Figure 6. Validation accuracy at different λ values and the corresponding best validation accuracies for 3-bit and 2-bit configurations for a
single run. Learning rate is set to 1e-4 for fine-tuning. For the 2-bit we test higher λ but still see no improvemenet in accuracy. We note
how all the λs lies close to each other, except for the low of 10−2

Fig. 6 We note how also the Tiny Vit seems to allow for a wide range of λs even though we this time note that λ = 1
performs significantly better than the others.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

OsciQuant

A.3. Epochs and cross-bit robustness

Figure 7. Left is the validation accuracy during training of a ViT with QAT at different bits, right is for our regularization. Both QAT and
regularization is trained with a 3-bit quantizer. We note how the order of convergences for cross-bit changes between QAT and our model
and that QAT cross-bit robustness especially depends on number of epochs trained.

There is an interesting interaction between number of epochs trained and robustness both of our method and QAT. We note
how QAT converges first for the target-bit and then over time also converges for the 4 and 8-bit. Additionally we see that
QAT seems upper-bounded by the target-bit performance, while this is not the case for our metho. Fig. 7,

A.4. Convergence behaviour of Tiny ViT

Figure 8. Regularization with a 3-bit quantizer on a Tiny ViT. We note the peculiar behaviour of the orange line, which is the validation
accuracy on the target-bit performance. The performances cycles between ≈ 90% and 10%, while the full precision accuracy (The model
evaluated without quantized weights) stays some-what stable.

Fig. 8 shows the convergence behaviour of the full precision weights and the quantized weights at target-bit. We note how
the Tiny ViT displays a peculiar convergence behaviour, where the accuracy will break, only to go up again. In the Tiny Vit
model we quantize the self-attention layers, it is already noted in (Liu et al., 2023) that ViTs are especially vulnerable to
quantization of the query and key of a self-attention layer, which might be related to the convergence behaviour we see.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

OsciQuant

A.5. Counting oscillations

1 5 9 13 17 21 25 29 33
Number of oscillations

0.000

0.025

0.050

0.075

0.100

0.125

Fr
eq

ue
nc

y

QAT

1 5 9 13 17 21 25 29 33
Number of oscillations

0.000

0.025

0.050

0.075

0.100

0.125

Fr
eq

ue
nc

y

=0

1 5 9 13 17 21 25 29 33
Number of oscillations

0.000

0.025

0.050

0.075

0.100

0.125

Fr
eq

ue
nc

y

=1

1 5 9 13 17 21 25 29 33
Number of oscillations

0.000

0.025

0.050

0.075

0.100

0.125

Fr
eq

ue
nc

y

=10

Figure 9. The plots shows the weights with a total oscillation count > 0 in a baseline model, a QAT model and a model regularized with
λ = 1 respectively. The y-axis is the percentage of the total weights in the first convolutional layer in a ResNet-18 trained from scratch
for 50 epochs. For the baseline model we log the full precision weights at each epoch and then apply the quantizer after training, where as
for the regularized model we simply log both the full precision and quantized weights at each epoch.

Using the counting method proposed by (Nagel et al., 2022), we notice the biased odd distribution of the bins. In the plot
used for the main paper, we count each bin the histogram in iterations of 2. Additionally we note that the proposed method
misses the first oscillation count in each weight history.

14

