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ABSTRACT

Deep generative models have achieved promising results in image generation, and
various generative model hubs, e.g., Hugging Face and Civitai, have been de-
veloped that enable model developers to upload models and users to download
models. However, these model hubs lack advanced model management and iden-
tification mechanisms, resulting in users only searching for models through text
matching, download sorting, etc., making it difficult to efficiently find the model
that best meets user requirements. In this paper, we propose a novel setting called
Generative Model Identification (GMI), which aims to enable the user to iden-
tify the most appropriate generative model(s) for the user’s requirements from
a large number of candidate models efficiently. To our best knowledge, it has
not been studied yet. In this paper, we introduce a comprehensive solution con-
sisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding
(RKME) framework for capturing the generated image distribution and the rela-
tionship between images and prompts, a pre-trained vision-language model aimed
at addressing dimensionality challenges, and an image interrogator designed to
tackle cross-modality issues. Extensive empirical results demonstrate the pro-
posal is both efficient and effective. For example, users only need to submit a
single example image to describe their requirements, and the model platform can
achieve an average top-4 identification accuracy of more than 80%. The code and
benchmark are all released to promote the research.

1 INTRODUCTION

Deep generative models (Jebara, 2012), including variational autoencoder (VAE) (Kingma &
Welling, 2014; 2019; Parmar et al., 2021), generative adversarial network (GAN) (Creswell et al.,
2018; Mirza & Osindero, 2014; Sohn et al., 2015), flow-based model (Kobyzev et al., 2021; Rezende
& Mohamed, 2015), and the diffusion models (Dhariwal & Nichol, 2021; Sohl-Dickstein et al.,
2015), have achieved remarkable performance in image generation. Recently, stable diffusion mod-
els (Rombach et al., 2022) have achieved state-of-the-art generative capabilities and become one of
the popular topics in artificial intelligence. Various model hubs, e.g., Hugging Face1 and Civitai2,
have been developed to enable model developers to upload and share their generative models.

Existing model hubs provide some trivial methods such as tag filtering, text matching, and download
volume ranking (Shen et al., 2023), to help users search for models. However, these methods cannot
accurately capture the users’ requirements, making it difficult to efficiently identify the most appro-
priate model for users. As shown in Figure 1, the user should submit their requirements (usually in
text) to the model hub and subsequently, they must download and evaluate the searched model one
by one until they find the satisfactory one, causing significant time and computing resources.

The above limitation of existing generative model hubs inspires us to consider the following ques-
tion: Can we describe the functionalities and utilities of different generative models more precisely
in some format that enables the model can be efficiently and accurately identified in the future by
matching the models’ functionalities with users’ requirements? We call this novel setting Generative
Model Identification (GMI). To the best of our knowledge, this problem has not been studied yet.

1https://huggingface.co/
2https://civitai.com/
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Figure 1: Comparison between traditional generative model search of existing model hubs and GMI.
GMI matches requirements and specifications during the identification process. A detailed explana-
tion is presented in B.

It is evident that two problems need to be addressed to achieve GMI, the first is how to describe the
functionalities of different generative models, and the second is how to match the user requirements
with the models’ functionalities. Inspired by the learnware paradigm (Zhou, 2016), which proposes
to assign a specification to each model that reflects the model’s utilities, we adopt the Reduced Ker-
nel Mean Embedding (RKME) as the model specification to capture the distribution of generated
images produced by different generative models, since the generated image distribution could reflect
the model functionality. However, previous RKME studies mainly focus on classification tasks, and
can not be directly applied to generative models. To this end, we propose a novel systematic so-
lution consisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding (RKME)
framework for capturing not only the generated image distribution but also the relationship between
images and prompts, a pre-trained vision-language model aimed at addressing dimensionality chal-
lenges, and an image interrogator designed to tackle cross-modality issues. For the second problem,
we assume the user can present one image as an example to describe the requirements, and then
we can match the model specification with the example image to compute how well each candidate
generative model matches users’ requirements. Figure 1 provides a comparison between previous
model search methods and the new solution. The goal is to identify the most suitable generative
model with only one single image as an example to describe the user’s requirements.

To evaluate the effectiveness of our proposal, we construct a benchmark platform consisting of 16
tasks specifically designed for GMI using stable diffusion models. The experiment results show
that our proposal is both efficient and effective. For example, users only need to submit a single
example image to describe their requirements, and the model platform can achieve an average top-4
identification accuracy of more than 80%, indicating that recommending four models can satisfy
users in major cases on the benchmark dataset.

2 PROBLEM AND ANALYSIS

In this section, we first describe the notation and formulation of GMI. Then, we theoretically dis-
cuss the obstacles existing methods face in generative models. Finally, we propose an advanced
formulation motivated by our analysis.

2.1 PROBLEM SETUP

In this paper, we explore a novel problem setting called GMI, where users identify the most appro-
priate generative models for their specific purposes using just one single image. We assume there
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is a model platform, consisting of M generative models {fm}Mm=1. Each model is associated with
a corresponding specification Sm to describe its functionalities for future model identification. The
platform consists of two stages: the submitting stage for model developers and the identification
stage for users.

In the submitting stage, the model developer submits a generative model fm to the platform. Then,
the platform assigns a specification Sm to this model. Here, the specification Sm = As (fm,P)

is generated by a specification algorithm As using the model fm and a prompt set P = {pk}Nk=1.
If the model developer can provide a specific prompt set for the uploaded model, the generated
specification would be more precise in describing its functionalities. In the identification stage, the
users identify models from the platform using only one image xτ . When users upload an image
xτ to describe their purposes, the platform automatically calculates the pseudo-prompt p̂τ and then
generates requirements Rτ = Ar(xτ , p̂τ ) using a requirement algorithm Ar. Users can optionally
provide corresponding prompt pτ , setting p̂r = pτ , to more precisely describe their purposes.
During the identification process, the platform matches requirement Rτ with model specifications
{Sm}Mm=1 using a evaluation algorithm Ae and compute similarity score ŝτ,m = Ae(Sm, Rτ ) for
each model fm. Finally, the platform returns the best-matched model with the maximum similarity
score or a list of models sorted by {ŝτ,m}Mm=1 in descending order.

Note that the GMI setting helps reduce the consumption of network traffic and computing resources,
as well as the time and effort of users. As shown in Figure 1, users are relieved from the burden
of repeatedly selecting, downloading, and evaluating models by utilizing the calculated similarity
scores {ŝτ,m}Mm=1. Moreover, the GMI setting is easy to use for both developers and users since all
the processes are automatically conducted in the background without requiring complex inputs.

There are two main challenges for addressing GMI setting: 1) In the submitting stage, how to design
As to fully characterize the generative models for identification? 2) In the identification stage, how
to design Ar and Ae to effectively identify the most appropriate generative models for user needs?

2.2 PROBLEM ANALYSIS

In this subsection, we first briefly introduce the principle of the generative model, taking the stable
diffusion models as examples. Then, we show the RKME method (Wu et al., 2023) can address
GMI as a baseline method, modeling the data distribution of the model as the specification. We
present an example to show impossible cases of the baseline method because of overlooking the
interplay between prompts and images for generative tasks. Finally, we introduce our weighted
RKME framework for solving GMI problem setting.

Stable Diffusion. Generative models (Jebara, 2012) are capable of sampling images from a data
distribution defined by the model. Recently, stable diffusion models (Dhariwal & Nichol, 2021)
have become one of the most popular models for their impressive performance. Therefore, we take
conditional stable diffusion models as examples for subsequent analysis and experiments. The con-
ditional diffusion model is a latent variable model, modeling a Markov chain with learned Gaussian
transitions pθm(xt−1|xt;p) for each iteration t ∈ [1, T ] starting an initial state p(xT ) ∼ N (0, I):

pθm(x0:T |p) = p(xT )

T∏
t=1

pθm(xt−1|xt;p) (1)

Here, p is a prompt guiding the generation process, and pθm(·) is the learned Gaussian transitions
parameterized by θm. For simplicity, we assume the generative model fm generate an image set
Xm = {xm,i}Ni=1 = {x|x ∼ fm(p),∀p ∈ P} sampled from corresponding probability distribution
pθm(x0:T |p), using prompt set P of model platform.

Reduced Kernel Mean Embedding. A baseline method to describe the model’s functionality is
the RKME techniques (Wu et al., 2023). It maps data distribution of each model fm as corresponding

specification SRKME
m =

{
xRKME
m,i

}NRKME
m

i=1
, where NRKME

m is the reduced set size of fm. For one query
image xτ from the users, the baseline method defines the requirement as RRKME

τ = {xτ}. Finally,
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the platform computes the similarity score in RKHS Hk using evaluation algorithm ARKME
e :

ARKME
e (SRKME

m , RRKME
τ ) =

∥∥∥∥∥∥
NRKME

m∑
i=1

1

NRKME
m

k(xRKME
m,i , ·)− k(xτ ·)

∥∥∥∥∥∥
2

Hk

(2)

where k(·, ·) is the reproducing kernels associated with RKHS Hk. This baseline method fails to
capture the interplay between generated images Xm and the prompt set P, which is the probability
distribution pθm(x0:T |p) inside the generative model fm. We present an example to show this
interplay is important otherwise the specification cannot distinguish two models in specific cases,
resulting in unsatisfactory identification results.
Example 2.1. Suppose that there are two simplified generative models f1 and f2 on the platform.
f1 generates scatter points following x = cos (pπ), y = sin (pπ). f2 generates scatter points fol-
lowing x = sin (pπ), y = cos (pπ). The prompt set p follows U(−1, 1). The user wants to de-
ploy the identified model conditioned on prompts pτ following distribution U(0.5, 0). In Figure 2,
we show that the baseline method in Equation 2 fails to distinguish two models f1 and f2 for the
user. However, the two models function differently with pτ . Figure 2a and Figure 2b show that

(a) Distribution of specifi-
cation X1 ∼ f1(p)

(b) Distribution of specifi-
cation X2 ∼ f2(p)

(c) Distributions of f1(pτ )
and f2(pτ )

Figure 2: Baseline method in Equation 2 fails to distinguish two different models for users.

although models f1 and f2 function differently, the data distribution X1 ∼ f1(p) and X2 ∼ f2(p),
conditioned on the default prompt distribution p, could be identical. Therefore, the specificaions
SRKME
1 and SRKME

2 are identical, resulting in the same similarity scores ARKME
e (SRKME

1 , RRKME
τ ) and

ARKME
e (SRKME

2 , RRKME
τ ). However, Figure 2c shows that two models f1 and f2 generate different

data distributions f1(pτ ) and f2(pτ ) conditioned on the user prompt distribution pτ .
Remark. Example 2.1 shows us that overlooking the interplay between images and prompts leads
to impossible cases for distinguishing generative models effectively. Existing RKME studies mainly
focus on classification tasks, which can implicitly model the tasks through data distribution since
the class space is discrete and small. For generative models, we have to explicitly model the model’s
functionality, i.e., the relation between images and prompts, to achieve satisfied identification results.

Incorporating relation between images and prompts Motivated by our analysis, how to incor-
porate the relationship between images and prompts in model specification and identifying process
is the key challenge for our GMI setting. Inspired by existing studies (Li et al., 2015; Ren et al.,
2016) about the conditional maximum mean discrepancy, we propose to consider the above relation
using a weighted formulation of Equation 2:

AWeighted
e (SWeighted

m , RWeighted
τ ) =

∥∥∥∥∥
Nm∑
i=1

1

Nm
wm,i · k(xm,i, ·)− k(xτ , ·)

∥∥∥∥∥
2

Hk

(3)

where Wm = {wm,i}Nm

i=1 are required to measure the relation between user image xτ and prompt
set P. Here, we make the simplifications RWeighted

τ = xτ and SWeighted
m = Xm in Equation 3.

This raises challenges inherent in dimensionality since stable diffusion models produce high-quality
images. Moreover, measuring the relation using Wm is also a challenging problem and encounters
cross-modality issues. Below we propose a comprehensive solution based on Equation 3 addressing
these challenges.
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3 PROPOSED METHOD

In this section, we present our solution for the GMI setting, building upon the previous analysis and
the weighted formulation introduced in Equation 3. As mentioned earlier, two significant challenges
remain to be addressed: 1) The raw images reside in a high-dimensional space, and pixel-level com-
parisons are highly sensitive. How can we efficiently and effectively measure the similarity between
images? 2) The user’s image xτ and the platform’s prompt set P belong to different modalities.
How do we address cross-modality issues and calculate Wm to capture the relationship between
images and prompts?

To address the aforementioned challenges, we employ a large pre-trained vision model G(·) to map
images from raw input space to a common feature representation space. Subsequently, an image
interrogator I(·) is adopted to convert xτ to corresponding pseudo prompt p̂τ , thereby mitigating
the cross-modality issues. Consequently, the similarity in the common feature representation space
can be computed with the help of a large pre-trained language model T (·). We provide a detailed
description of our proposed method for the submitting stage and the identification stage, respectively.

3.1 SUBMITTING STAGE

In the submitting stage, the model developer submits the generative model fm, and the platform
generates the model specification in the background using the specification algorithm As with the
submitted models fm and default prompt set P. The developer can optionally replace P with a
specific prompt set to generate a more precise specification. The algorithm As first samples images
from the generative model fm using the prompt set:

Xm = {fm(p)|p ∈ P} (4)
Then, the large pre-trained vision model G(·) is adopted to encode Xm as follows. The obtained
feature representation Zm is efficient and robust to compute similarity between images.

Zm = {G(x)|x ∈ Xm} (5)
Subsequently, As encodes prompt set P to the common feature representations using T (·):

Qm = {T (p)|p ∈ P} (6)
Finally, the specification Sm of generative model fm is defined as follows:

Sm = As(fm;Pm) = {Zm;Qm} (7)
Note that Sm is automatically computed inside the platform, which is very convenient for developers
to use and deduce their burden of uploading models. Additionally, the specification does not occupy
a large amount of storage space on the platform since the only feature representation is storage.

3.2 IDENTIFICATION STAGE

In the identification stage, the users upload one single image xτ to describe their requirements. Then,
the platform describes the requirements with Rτ from xτ . Specifically, the requirement algorithm
Ar first generates feature representations of xτ using G(·), i.e., zτ = G(xτ ). Subsequently, the
pseudo-prompt p̂τ is generated by I(·), i.e., p̂τ = I(xτ ), and converted to feature representations
using T (·), i.e., q̂τ = T (p̂τ ). The user can optionally replace p̂τ with a prompt pτ built on his
understanding to precisely describe the requirement. Finally, the requirement is:

Rτ = Ar(x) = {zτ ; q̂τ} (8)
Note that Rτ is automatically computed inside the platform, which is very easy to use for users.

After the platform generates the requirement Rτ , it will calculates the similarity score for each
model fm using evaluation algorithm Ae:

Ae(Sm, Rτ ) =

∥∥∥∥∥
Nm∑
i=1

1

Nm

q̂m,iq̂τ

∥q̂m,i∥∥q̂τ∥
k(zm,i, ·)− k(zτ , ·)

∥∥∥∥∥
2

Hk

(9)

where the Wm of Equation 3 is define as the cosine similarity between platform prompts q̂m,i ∈
Q̂m and pseudo-prompt q̂τ . Wm encodes the structure information of xτ within Pm during the
identification, which successfully captures the relation between images and prompts. The platform
returns a list of models sorted in increasing order of similarity score obtained by Equation 9.
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3.3 DISCUSSION

It is evident that our proposal for the GMI scenario achieves a higher level of accuracy and efficiency
when compared to model search techniques employed by existing model hubs.

For accuracy, our proposal elucidates the functionalities of generated models by capturing both the
distribution of generated images and prompts. This approach allows for more accurate identifica-
tion of suitable models for users, as opposed to the traditional model search method that relies on
download counts and star ratings for ranking models.

For efficiency, suppose the platform generates one requirement in Tr time and calculates the simi-
larity score for each model in Ts time. The time complexity of our proposal for one identification
is O(Tr + MTs) time. Moreover, with accurate identification results, users can save the efforts of
browsing and selecting models, as well as reducing the consumption of network and computing. This
is linearly correlated to the number of models on the platform (which can be reduced through tag
filtering). Additionally, our approach also has the potential to achieve further acceleration through
the use of a vector database (Guo et al., 2023) such as Faiss (Johnson et al., 2019).

4 EXPERIMENTS

To verify the effectiveness of our proposed method for GMI problem, we conduct experiments on a
novel generative model identification benchmark dataset based on stable diffusion models (Rombach
et al., 2022). Our objective is to answer the following three research questions:

• Whether the most suitable generative model can be identified by our proposed method?

• Whether our proposal can achieve satisfactory model recommendations for users?

• To what extent does each component contribute to the proposed method?

4.1 EXPERIMENTAL SETTINGS

Model Platform and Task Construction. In practice, we expect model developers to submit their
models and corresponding prompts to the model platform. And we expect users to identify models
for their real needs. In our experiments, we constructed a model platform and user identification
tasks respectively to simulate the above situation. For the construction of the model platform, we
manually collect M = 16 different stable diffusion models {f1, . . . , fM} from one popular model
platform, CivitAI, as uploaded generative models on the platform. Note that these collected models
belong to the same category to simulate the real process in which users first trigger category filters
and then select the models. We construct 55 prompts {p1, . . . ,p55} as default prompt set P of
platform. For task construction, we construct 18 evaluation prompts {pτ1 , . . . ,pτ18} for each model
on the platform to generate testing images with random seed in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, forming
Nτ = 18 × 16 × 10 = 2880 different identification tasks {(xτi , ti)}

Nτ

i=1, where each testing image
xτi is generated by model fti and its best matching model index is ti. Here, we ensure that there is
no overlap between {p1, . . . ,p55} and {pτ1 , . . . ,pτ18} to ensure the correctness of the evaluation.

Evaluation Metrics. In our experiments, we use accuracy and average rank to evaluate the perfor-
mance of methods. We define the rank of model fm for task τ as r̂τ,m = 1 +

∑M
i=1 I [ŝτ,i < ŝτ,m].

The accuracy is defined as Acc. = 1
Nτ I [r̂τi,ti = 1], where Acc. ∈ [0, 1] evaluates the ability of

each method to find the best matching model. The average rank is defined as Rank =
r̂τi,ti
Nτ ,

where Rank ∈ [1,M ] evaluates the ability of each method to rank the best matching model
among other models. We additionally report the Top-k accuracy, which is calculated as Top-
k Acc. = 1

Nτ I [r̂τi,ti ≤ k]. This metric measures the average effort spent by users during the
identification process and Top-k Acc. ∈ [0, 1].

Comparison Methods. Initially, we compare it with the traditional model search method called
Download. This method is used to simulate how users search generative models according to their
downloading volumes (Shen et al., 2023), where users will try models with high downloading vol-
ume first. This baseline method can represent a family of methods that employ statistical information
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Figure 3: The left two subfigures present the average accuracy and rank on all tasks. The right
subfigure presents the detailed rank of each task. For accuracy, the higher the better. For rank,
the lower the better. The accuracy shows that our proposal outperforms existing solutions (e.g.,
Download and RKME) and our simple solution which combines some existing techniques. The
average rank and detailed ranks present the user’s efforts in identifying satisfied models for each
task. Our proposal requires minimal user effort.

without regard to model capabilities. We also consider the basic implementation of the RKME spec-
ification (Wu et al., 2023) as a baseline method RKME-Baisc for our GMI problem. The details
of generating specifications, and identifying models are presented in section 2.2. Furthermore, we
compare our proposed method with a variant of the basic RKME specification, that is, RKME-CLIP,
which calculates specifications in the feature representation space encoded by the CLIP model (Rad-
ford et al., 2021). The results obtained from RKME-CLIP further support our viewpoint on the
critical challenges posed by dimensionality.

Implementation Details. We adopt the official code in Wu et al. (2023) to implement the RKME-
Basic method and the official code in Radford et al. (2021) to implement the CLIP model. For
RKME-Basic and RKME-CLIP methods, we follow the default hyperparameter setting of RKME
in previous studies (Guo et al., 2023). We set the size of the reduced set to 1 and choose the RBF
kernel (Xu et al., 1994) for RKHS. The hyperparameter γ for calculating RBF kernel and similarity
score is tuned from {0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05} and set to 0.02
in our experiments. Experiment results below show that our proposal is robust to γ.

4.2 EMPIRICAL RESULTS

Whether the most suitable generative model can be identified by our proposed method? The
objective of GMI setting is to identify the most suitable generative model for the user’s needs.
Hence, our initial focus is to determine the effectiveness of baseline methods and our proposed
method in identifying the most suitable generative model. We report the accuracy in the left subfig-
ure of Figure 3 to evaluate each method’s ability to identify the best matching generative model.
Specifically, the Download and RKME-Basic methods cannot work in the GMI problem. The
Download method will return models ranked by download volume, which is unable to meet the vari-
ous needs of users. The identification results of the RKME-Basic method are biased to one model in
the platform. The high resolution of images, such as 512x512, presents challenges in calculating the
RKME specification and renders the RKME-Basic method ineffective. The performance of RKME-
CLIP demonstrates that encoding images is necessary to address the high dimensionality in GMI.
However, RKME-CLIP fails to consider the relation between images and prompts, which cannot
give the optimal identification results. Our proposal solves the above challenges, giving the best
average accuracy compared to baseline methods. These results demonstrate that the specification
can help identify the most suitable generative models, which is in line with our starting point.

Whether our proposal can achieve satisfactory model recommendations for users? When de-
ploying our proposal in real model platforms, the platform will recommend multiple models for
users sorted by similarity score. Therefore, our focus shifts to rank and Top-k accuracy metrics.
We report the average rank and detailed ranks in the right two subfigures of Figure 3. Specifically,
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Table 1: Performance of each method evaluated by Top-k accuracy. The results show that our
proposal achieves 80% top-4 accuracy, indicating that user only requires four models to satisfy their
needs in major cases.

Method Top-1 Acc. Top-2 Acc. Top-3 Acc. Top-4 Acc. Top-5 Acc. Top-6 Acc. Top-7 Acc. Top-8 Acc.

Download 0.062 0.125 0.188 0.250 0.312 0.375 0.438 0.500
RKME-Basic 0.062 0.125 0.188 0.250 0.312 0.375 0.438 0.500
RKME-CLIP 0.419 0.576 0.688 0.770 0.832 0.870 0.905 0.934

Proposal 0.455 0.614 0.734 0.812 0.863 0.899 0.922 0.943

Table 2: Ablation study. For accu-
racy, the higher the better. For rank,
the lower the better. The best perfor-
mance is in bold.

Methods Acc. Top-2 Acc. Rank

Download 0.062 0.125 8.500
RKME-Basic 0.062 0.125 8.500
RKME-CLIP 0.419 0.576 3.130
RKME-Concat 0.433 0.602 2.938

Proposal 0.455 0.614 2.852 Figure 4: Visualization of generated images.

Download and RKME-Basic methods show poor performance for similar reasons stated above. Our
proposal achieves the best average rank, thus demonstrating its effectiveness. Note that the average
rank is related to the efforts of the user when identifying the most appropriate models. Therefore,
our proposal can save users time and effort compared to baseline methods. We also report the Top-
k accuracy in Table 1. Our proposal gives the best performance among all different values of K,
which demonstrates its effectiveness. The experiment results show that our proposal can achieve
80% accuracy when just recommending four models for users. These results reveal the possibility
of building a generative model platform and recommending models to users with specifications.

To what extent does each component contribute to the proposed method? In order to com-
prehensively evaluate the effectiveness of our proposal, we investigate whether each component
contributes to the final performance. We additionally compare our proposal with two variants,
called RKME-CLIP and RKME-Concat. RKME-CLIP adopts the CLIP model to extract the fea-
ture representation for constructing RKME specifications. RKME-Concat adopts both vision and
text branches of the CLIP model to extract representations of images and prompts. It combines two
modes of representation for constructing RKME specifications. We report accuracy and rank metrics
in Figure 2. The performance of RKME-CLIP demonstrates that employing large pre-trained models
is an effective approach for addressing dimensionality issues. The performance of RKME-Concat
demonstrates the benefits of considering both images and prompts for model identification. Our
results achieve the best performance, and demonstrate the effectiveness of our weighted formulation
in Equation 3 and our specifically designed algorithm in Equation 9.

4.3 VISUALIZATION

We conducted visualization experiments to further show that the new proposal can identify the best-
matched model and thereby generate images that meet user requirements better in Figure 4. Specif-
ically, we show the example image xτ submitted by the user in the first column. Then, we generate
requirement Rτ and identify models from the platform using different methods. For each method,
we show the image generated with its identified model and pseudo-prompt I(xτ ). The title of the
images indicates different model identification methods. The results clearly show that the generative
model identified via the new proposal can generate images that best match the users’ requirements
(most similar to the example image). For example, our method correctly captures the two differ-
ent comic styles of the image and generates a satisfied image, whereas other methods either have a
mismatch in style or have errors in content.
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5 RELATED WORK

Generative modeling (Jebara, 2012) is a field of machine learning that focuses on learning the un-
derlying distribution and generation of new samples for corresponding distribution. Recently, sig-
nificant progress has been made in image generation with various methods. Generative Adversarial
Networks (GANs) (Arjovsky et al., 2017; Brock et al., 2019; Choi et al., 2020; Goodfellow et al.,
2014) apply an adversarial approach to learn the data distribution. It consists of a generator and
a discriminator playing a min-max game during the training process. Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Vahdat & Kautz, 2020; van den Oord et al., 2017) is a variant of
Auto-Encoder (AE) (Wang et al., 2016), where both consist of the encoder and decoder networks.
The encoder in AE learns to map an image into a latent representation. Then, the decoder aims to
reconstruct the image from that latent representation. Diffusion Models (DMs) (Nichol & Dhari-
wal, 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022) leverages the concept of the diffusion
process, consisting of forward and reverse diffusion processes. Noise is added to an image during
the forward process and the diffusion model learns to denoise and reconstruct the image. With the
development of the generative model, various generative model hubs/pools, e.g., HuggingFace, Civ-
itai, have been developed. However, they lack model management and identification mechanisms,
resulting in inefficiency for users to find the most suitable model.

Lu et al. (2022) performs context-based search for unconditional generative models and involves a
contrastive learning process for all models in the model hubs. However, this learning process sig-
nificantly hinders the adaptability of the approach, making it unsuitable for a frequently updated
model hub. Assessing the transferability of pre-trained models is related to the problem studied
in this paper. Negative Conditional Entropy (NCE) (Tran et al., 2019) proposed an information-
theoretic quantity (Cover, 1999) to study the transferability and hardness between classification
tasks. LEEP (Nguyen et al., 2020) is primarily developed with a focus on supervised pre-trained
models transferred to classification tasks. You et al. (2021) designs a general algorithm, which is
applicable to vast transfer learning settings with supervised and unsupervised pre-trained models,
downstream tasks, and modalities. However, these methods are not suitable for our GMI problem
because they impose significant computational overhead in terms of model inference during the iden-
tification process. Learnware (Zhou, 2016) presents a general and realistic paradigm by assigning a
specification to models to describe their functionalities and utilities, making it convenient for users to
identify the most suitable models. Model specification is the key to the learnware paradigm. Recent
studies (Tan et al., 2022) are designed on Reduced Kernel Mean Embedding (RKME) (Wu et al.,
2023), which achieves model identification by comparing similarities in the RHKS. Tan et al. (2023;
2022) make their efforts to solve heterogeneous feature spaces. However, these studies primarily
focus on classification tasks, overlooking the relationship between images and prompts, which is
crucial for identifying generative models. Therefore, existing techniques are inadequate for address-
ing the GMI problem, requiring for novel technologies.

6 CONCLUSION

In this paper, for the first time, we propose a novel problem called Generative Model Identification.
The objective of GMI is to describe the functionalities of generative models precisely and enable
the model to be accurately and efficiently identified in the future by users’ requirements. To this end,
we present a systematic solution including a weighted RKME framework to capture the generated
image distributions and the relationship between images and prompts, a large pre-trained vision-
language model aimed at addressing dimensionality challenges, and an image interrogator designed
to tackle cross-modality issues. Moreover, we built and released a benchmark platform based on
stable diffusion models for GMI. Extensive experiment results on the benchmark clearly demon-
strate the effectiveness of our proposal. For example, our proposal achieves more than 80% top-4
identification accuracy using just one example image to describe the users’ requirements, indicating
that users can efficiently identify the best-matched model within four attempts in major cases.

In future work, we will endeavor to develop a novel generative model platform based on the tech-
niques presented in this paper, aiming to provide a more precise description of generative model
functionalities and user requirements. This will assist users in efficiently discovering models
that align with their specific requirements. We believe this could facilitate the development and
widespread usage of generative models.
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A ADDITIONAL EXPERIMENTS

A.1 VISUALIZATION

In this section, we present the additional visualization in Figure 5. Each image is genearated using
prompts obtained from image interrogator and models identified by corresponding methods. The

(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 5: Examples of images generated by the identified model of each method.

results show that our proposal can identify the best-matched model and generate the most similar
images, compared to baseline methods. For all examples, the Download method is biased towards
the DreamShaper model, while the RKME-basic method is biased towards the RevAnimated model.
Our proposed methods successfully identify the most suitable model in examples 1 and 4, while
the other RKME-Clip method fails to find the best model. As a result, our proposal yields superior
generated results compared to the results of other methods. For example 2, our proposed method
identified a model that can generate more cartoonish images. However, the models identified by
other methods all generate more realistic images. For example 3, all methods did not find the most
suitable model, but the model identified by our method was not inferior to other methods. Detailed
results about ground-truth prompts, generated prompts, ground-truth model and identified models
are shown in Table 3.
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Table 3: The prompts generated using the image interrogator, the corresponding ground-truth
prompts, the ground-truth model, and the identified model using different methods for each example.

Ground-truth Prompts Generated Prompts Ground-truth Model Download RKME-basic RKME-CLIP Proposal

Example 1

a woman with blonde hair and blue eyes, a de-
tailed painting, by rossdraws, fantasy art, red-
purple gradient map, mercy from overwatch, close
up of a blonde woman, a brightly colored, lux, sy-
las

a woman with blonde hair and blue eyes, art-
germ. high detail, extremely detailed artgerm,
marc brunet, trending artgerm, artgerm on artsta-
tion pixiv, featured on artgerm, as seen on art-
germ, artgerm comic, artgerm detailed, artgerm.
anime illustration

ComicBabes DreamShaper RevAnimated TAnime ComicBabes

Example 2

a woman with blonde hair and blue eyes, a de-
tailed painting, by rossdraws, fantasy art, red-
purple gradient map, mercy from overwatch, close
up of a blonde woman, a brightly colored, lux, sy-
las

a woman with blonde hair and blue eyes, mercy
( overwatch ), overwatch splash art, mercy from
overwatch, mercy from overwatch game (2016),
heroes of the storm splash art, overwatch fanart,
iconic character splash art, official splash art, art
of kryssalian, character portrait closeup, cine-
matic closeup!!, 4 k asymmetrical portrait, ze-
rochan art

QMega DreamShaper RevAnimated DreamShaper 2DAnimerge

Example 3

a black car parked on the side of the road, a com-
puter rendering, inspired by Stefan Lochner, ver-
dadism, looks like jerma985, on a great neoclas-
sical square, insignia, veveltaria, rowan atkinson,
vetements, written in a neat, an ultra realistic 8k
octa photo

a black car driving down a street next to tall build-
ings, ctane 3 d rendered, render in re engine, pho-
torealistic -20, virtual engine 5, 1 9 9 8 render, vue
3d render, rendered in 3 dsmax, denoised photore-
alistic render, photorealistic highly detailed, pho-
toreal render, cg graphics, v-ray engine

QMega DreamShaper RevAnimated 2DAnimerge Mistoon

Example 4

a man with glasses and a striped shirt, a picture,
inspired by Victor Meirelles, cubo-futurism, 2019
trending photo, clean shaven wide wide wide face,
joel fletcher, pixel degradation, uncropped, tired
face, k-pop, lolth, tiled, blond boy

a close up of a person wearing glasses, ilya ku-
vshinov face, ilya kuvshinov with long hair, nerdy
man character portrait, portrait of archie andrews,
viktor antonov concept art, covid-19 as a human,
ilya kuvshinov!, artstyle : ilya kuvshinov, disco
elysium character

ComicBabes DreamShaper RevAnimated 2DAnimerge ComicBabes

Table 4: Performance when users upload multiple images as their requirements

Top-1 Acc. Top-2 Acc. Top-3 Acc. Top-4 Acc.

1 image 0.455 0.614 0.734 0.812
2 images 0.578 0.743 0.840 0.908
3 images 0.658 0.791 0.883 0.950
4 images 0.709 0.854 0.929 0.969
5 images 0.755 0.873 0.946 0.979

Here, Image interrogator is implemented with official code3 for optimizing text prompts to match a
given image. It first generates candidate captions using the BLIP model (Li et al., 2022). Then, it
adopts a search process to identify the caption list that maximizes the similarity between the captions
and images, evaluated by the CLIP model (Radford et al., 2021).

A.2 MULTIPLE IMAGES FOR QUERYING

RKME paradigm performs more effectively when the provided image set accurately represents the
distribution. Thus, our framework, built upon RKME, naturally accommodates situations in which
users provide multiple images as queries. We conducted experiments using user queries consisting
of 1, 2, 3, 4, or 5 images. In this case, the performance comparison is a bit unfair as lines 2 to
5 involve more images for querying. The results are shown in Table 4. The results demonstrate
that the accuracy of identifying the most appropriate model improves as the number of uploaded
images increases. Therefore, our framework has the capability to handle multiple images as a query.
However, uploading a single image offers a compromise between performance and convenience.

A.3 DIFFERENT SELECTION OF DEFAULT PROMPT SETS

This section involves conducting experiments to assess the impact of different default prompt sets
on our performance. We denote Split 1 as our default prompt set used in our experiments. Split 2
and Split 3 are two non-overlapping subsets, each half the size of Split 1. The results demonstrate
the robustness of the identifying performance to varying default prompt sets used in generating
specifications.

3https://github.com/pharmapsychotic/clip-interrogator
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Table 5: Performance using different default prompt sets

Top-1 Acc. Top-2 Acc. Top-3 Acc. Top-4 Acc.

Split 1 0.455 0.614 0.734 0.812
Split 2 0.442 0.609 0.729 0.810
Split 3 0.460 0.617 0.732 0.808

Table 6: Performance using an extreme small reduced set size

Top-1 Acc. Top-2 Acc. Top-3 Acc. Top-4 Acc.

Size = 1 0.434 0.592 0.707 0.789
Proposal 0.455 0.614 0.734 0.812

A.4 SCALABILITY PROBLEM

We conduct an extreme experiment with reduced set size = 1 as the size will affect the running time
for each query. Compared to proposed methods, the performance is relative stable in Table 6. There-
fore, the scalability of the method is guaranteed when the number of generative models increases.
As discussed in Section 3.3, scalability problem can be handled using other techniques.

A.5 DEVELOPER & USER PROVIDED PROMPT

We claim that if the developers and users provide their own prompt, the identify results can be more
accurate. The detailed explanations and instructions are given as follows.

Users should provide prompts that accurately describe the images they upload. In our proposed
method, we generate prompts by employing an image interrogator that demonstrated effective per-
formance in our experiments. When ground-truth prompts are provided, the identification perfor-
mance will intuitively not be worse.

Developers should provide prompts to guide the model in generating images it excels at. A model-
specific prompt set will enhance identification by amplifying the contrast between generated spec-
ifications, resulting in improved accuracy. We conducted synthetic experiments to validate this
claim. In this experiment, developers will provide 5 prompts for each model, assuming they excel at
them, and generate corresponding specifications. The user will query images generated using simi-
lar prompts. The results in Table 7 demonstrate that providing prompts for specification generation
leads to improved accuracy. However, in actual situations, it is difficult for the model hub to force
developers to provide prompts. Therefore, we conduct experiments under a default prompt set.

A.6 CONFUSION MATRIX

We present the confusion matrix for the prediction of each method in Figure 6. The Download and
RKME algorithm consistently show a bias towards a specific model regardless of the user image xτ .
This indicates that the Download and RKME methods cannot address GMI problem. The results
show that our proposal achieves the best identification performance on major tasks.

A.7 HYPERPARAMETER ROBUSTNESS

We evaluate the robustness of each method to the hyperparameter γ in Figure 7. The results demon-
strate that our proposed method exhibits robust performance across a wide range of γ values. How-
ever, as γ continues to increase, the performance of both our proposal and the baseline methods
begins to degrade. This observation highlights the importance of tuning the hyperparameter γ be-
fore deploying our method in practical applications. Once γ is properly tuned, our method can
operate robustly due to its hyperparameter robustness within a broad range.
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Table 7: Performance when developers provide specific prompts

Top-1 Acc. Top-2 Acc. Top-3 Acc. Top-4 Acc.

Default Prompt Set 0.455 0.614 0.734 0.812
Developer Provided Prompt 0.777 0.937 0.985 0.987

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prediction

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

G
ro
un

d-
tru

th

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0.0

0.2

0.4

0.6

0.8

1.0

(a) Download

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prediction
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
G
ro
un

d-
tru

th

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
0.0

0.2

0.4

0.6

0.8

1.0

(b) RKME

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prediction

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

G
ro
un

d-
tru

th

24% 5% 1% 7% 1% 2% 11% 2% 18% 2% 3% 0% 4% 10% 4% 7%

5% 5% 0% 5% 1% 3% 4% 2% 32% 1% 15% 0% 5% 9% 0% 14%

14% 4% 2% 8% 2% 2% 5% 1% 10% 4% 4% 0% 11% 16% 4% 13%

3% 0% 0% 57% 8% 3% 5% 1% 0% 1% 0% 0% 13% 2% 6% 1%

2% 0% 0% 18% 35% 6% 4% 1% 1% 7% 0% 0% 15% 1% 1% 9%

1% 0% 1% 2% 4% 19% 13% 3% 27% 0% 6% 0% 0% 3% 0% 22%

3% 0% 1% 5% 4% 4% 42% 1% 21% 0% 7% 0% 7% 2% 2% 3%

0% 0% 0% 6% 2% 7% 11% 11% 24% 0% 13% 0% 4% 4% 0% 18%

0% 1% 0% 1% 1% 0% 1% 0% 94% 0% 0% 0% 1% 3% 1% 0%

4% 0% 0% 8% 11% 13% 14% 1% 7% 12% 4% 0% 3% 4% 4% 16%

0% 0% 0% 2% 3% 1% 3% 1% 32% 0% 53% 0% 1% 2% 0% 3%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99% 1% 1% 0% 0%

4% 1% 0% 2% 0% 0% 3% 0% 2% 0% 1% 0% 81% 4% 3% 0%

1% 1% 0% 5% 2% 0% 0% 0% 33% 0% 7% 0% 2% 48% 0% 1%

12% 2% 1% 28% 2% 3% 11% 0% 7% 6% 1% 0% 6% 4% 15% 2%

0% 0% 0% 1% 4% 3% 0% 0% 15% 0% 2% 0% 2% 1% 0% 73%
0.0

0.2

0.4

0.6

0.8

(c) RKME-CLIP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prediction

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

G
ro
un

d-
tru

th

28% 7% 1% 5% 1% 2% 8% 0% 11% 4% 3% 0% 8% 11% 5% 7%

5% 13% 1% 5% 1% 2% 3% 1% 23% 3% 12% 0% 8% 7% 1% 16%

17% 10% 6% 7% 1% 1% 3% 0% 6% 7% 4% 0% 14% 10% 4% 9%

1% 0% 0% 53% 6% 2% 3% 0% 0% 2% 0% 0% 22% 1% 9% 0%

1% 0% 0% 14% 34% 6% 2% 1% 0% 8% 1% 0% 24% 1% 3% 7%

1% 0% 1% 2% 4% 24% 15% 3% 19% 1% 8% 0% 0% 3% 1% 19%

3% 0% 1% 5% 3% 3% 46% 0% 12% 4% 8% 0% 8% 2% 3% 3%

0% 1% 0% 6% 3% 8% 11% 12% 17% 2% 16% 0% 4% 5% 0% 14%

0% 1% 0% 0% 1% 0% 0% 0% 91% 0% 1% 0% 2% 5% 1% 0%

2% 1% 0% 6% 10% 16% 11% 1% 4% 20% 3% 0% 9% 3% 7% 9%

0% 0% 0% 3% 2% 1% 3% 0% 27% 0% 56% 0% 1% 3% 0% 3%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 99% 1% 1% 0% 0%

2% 0% 0% 0% 0% 0% 3% 0% 0% 0% 1% 0% 87% 2% 6% 0%

1% 1% 0% 5% 1% 0% 0% 0% 24% 0% 8% 0% 3% 57% 0% 1%

9% 2% 2% 23% 2% 2% 8% 1% 2% 6% 1% 0% 11% 2% 27% 1%

0% 0% 0% 1% 4% 4% 0% 0% 10% 1% 2% 0% 2% 2% 0% 75%
0.0

0.2

0.4

0.6

0.8

(d) Proposal

Figure 6: The confusion matrix of each method. The results show that our proposal performs the
best. The baseline method, e.g., Download and RKME, cannot work in our GMI problem.

B DETAILED EXPLANATION FOR FIGURE 1

In Figure 1, we compare the difference between GMI setting and traditional model search process.

In traditional searches for generative models, the models are initially filtered by the model hubs
using tags and then sorted based on download volume. However, this approach presents challenges
for users in identifying their desired models, as the model with the highest download volume may
not necessarily align with their specific target. Consequently, users select models based on their own
judgement, and then download and evaluate each model individually. This consumes a significant
amount of network resources and human effort, and there is also the possibility of filtering out the
potentially best model due to judgment errors.

In our GMI setting, each model is directly sorted based on its matching score. This means that
the most suitable model is recommended at the top, enabling users to effortlessly find their desired
models with minimum effort.
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Figure 7: The accuracy with varying values of γ was evaluated. The results demonstrate that our
proposal is robust to slight changes in the value of γ.

C LIMITATIONS

In this section, we will discuss the limitations of our paper, which encompass two main aspects.

First, the time complexity of our work has the potential for improvement. At present, our time
complexity increases linearly with the number of models in the model platform, which will not
become a heavy burden when the number of models is large. Previous research (Guo et al., 2023)
has demonstrated that acceleration techniques can enhance the identification process, such as the use
of a vector database. This could be an area for future exploration.

Second, we currently only consider the cases that identify generative models using one uploaded
image to describe users’ requirements. The assumption is reasonable since users’ ideas often rely on
existing image templates when they want to generate images, and it is not difficult to find only one
image that has a similar style to fulfill the user’s requirements. Despite this, it is also interesting to
study how to quickly and accurately identify models via other information such as textual prompts.
We will study this problem in future work.

16


	Introduction
	Problem and Analysis
	Problem Setup
	Problem Analysis

	Proposed Method
	Submitting Stage
	Identification Stage
	Discussion

	Experiments
	Experimental Settings
	Empirical Results
	Visualization

	Related Work
	Conclusion
	Additional experiments
	Visualization
	Multiple Images for Querying
	Different Selection of Default Prompt Sets
	Scalability Problem
	Developer & User Provided Prompt
	Confusion Matrix
	Hyperparameter Robustness

	Detailed Explanation for Figure 1
	Limitations

