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ABSTRACT

Resource-constrained vision tasks, such as image classification on low-end de-
vices, put forward significant challenges due to limited computational resources
and restricted access to a vast number of training samples. Previous studies have
utilized data augmentation that optimizes various image transformations to learn
effective lightweight models with few data samples. However, these studies re-
quire a calibration step for optimizing data augmentation to specific scenarios or
hardly exploit frequency components readily available from Fourier analysis. To
address the limitations, we propose a frequency-based image encoding method,
namely FourierAugment, which allows lightweight models to learn richer features
with a restrained amount of data. Further, we reveal the correlations between the
amount of data and frequency components lightweight models learn in the pro-
cess of designing FourierAugment. Extensive experiments on multiple resource-
constrained vision tasks under diverse conditions corroborate the effectiveness of
the proposed FourierAugment method compared to baselines.

1 INTRODUCTION

As the application areas of computer vision expand, research on lightweight models under con-
strained conditions such as image classification in mobile or embedded environments with small-
scale training datasets is drawing increasing attention (Tao et al. (2020); Lin et al. (2020); Mehta
& Rastegari (2022); Girish et al. (2023)). Contemporary studies have designed data augmentation
methods to handle the data deficiency problem (Cubuk et al. (2019; 2020); Cheung & Yeung (2022))
or lightweight models to manage limited computational resources (Howard et al. (2017); Tan & Le
(2019)). However, conventional data augmentation methods require an optimization process for op-
timal performance and lightweight models still demand large-scale training datasets for enhanced
performance.

In this paper, we focus on the scenario where both the training data and computational resources are
constrained. Further, we propose data augmentation as a straightforward method to substantially im-
prove the performance of lightweight models with a restricted amount of training samples. Behind
the motivation of our approach rests the special property of the resource-constrained vision tasks.
The tasks deal with exceptionally small datasets that reflect the practicality of real-world scenarios
(Zhang et al. (2021); Zhou et al. (2022); Peng et al. (2022)). Due to this property, lightweight models
with limited training data samples tend to preferentially learn low-frequency related features (Ra-
haman et al. (2019))—restricting the models from equipping with discriminative features. To cope
with this limitation, we design a frequency-based image encoding method, FourierAugment.

The proposed FourierAugment method explicitly provides the information from various frequency
bands to a lightweight model by exploiting the discrete Fourier transformation (DFT). Consequently,
the model with FourierAugment learns both low- and high-frequency information in balance (Fig.
1)—resulting in richer features promoting boosted performance. Besides, the proposed FourierAug-
ment method is easily applicable to existing models without complicating the model architecture or
increasing the amount of computation.

In the process of designing FourierAugment, we have devised a thorough empirical study—shedding
light on the model design process. We reveal the correlation between the amount of data and fre-
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(a) Original (b) FourierAugment

Figure 1: Comparison of the learning process with FourierAugment against that with the original
data, in resource-constrained conditions. (a) the process of learning with the original data; the model
tends to learn only one type of features. (b) the process of learning with the proposed FourierAug-
ment method; the model learns features from various frequency bands.

quency components lightweight models learn; it is challenging for lightweight models to learn high-
frequency related features in the early stage of learning because humans prefer low-frequency in-
formation and provide ground-truth labels for learning (Wang & Raj (2017)). Furthermore, we have
performed comprehensive comparative experiments to establish the effectiveness of the proposed
FourierAugment method both qualitatively and quantitatively. As a result of our study, we have
achieved new state-of-the-art performance.

In summary, our main contributions are as follows:

• FourierAugment: We propose FourierAugment to significantly improve the performance
of lightweight models without complicating the model architectures.

• Empirical Study: We reveal the correlation between the number of data samples and
learned frequency components of lightweight models.

• SoTA Performance: As a result of our study, we achieve new state-of-the-art performance
for several public benchmarks.

• Open Source: To contribute to the research society, we make the source code of the pro-
posed FourierAugment method and related dependencies public.

2 RELATED WORK

2.1 IMAGE TRANSFORMATION AND DATA AUGMENTATION

Image transformation varies the original image through multiple operations. Image transformation
largely encompasses two classes of approaches (Laganiere (2014); Szeliski (2022)): 1) changing
pixel values and 2) moving the position of pixels. First, contrast, color, sharpness, brightness, etc.
exemplify image transformation methods changing pixel values. Next, image transformation moving
the position of pixels includes rotation, shearing, translation, zooming, and warping.

Data augmentation for vision tasks, in general, combines image transformation to handle the prob-
lem of limited data—enhancing generalization (Shorten & Khoshgoftaar (2019)). Zhang et al. (2017)
proposed MixUp that augments new data by mixing two data and labels in a specified ratio. CutMix
(Yun et al. (2019)) takes a cut-and-paste method and fills a part of an image with a patch of an-
other image. AugMix (Hendrycks et al. (2019)) remixes the original image with the augmented data
to prevent the augmented image from changing its manifold. AutoAugment (Cubuk et al. (2019))
automatically searches for improved data augmentation policies. Fast AutoAugment (Lim et al.
(2019)) complements the slow optimization process of AutoAugment and RandAugment (Cubuk
et al. (2020)) requires only two hyper-parameters to perform data augmentation. Deep AutoAug-
ment (Zheng et al. (2022)) reduces strong human priors and performs data augmentation search
in a fully automated manner. Nonetheless, this class of data augmentation demands a complicated
optimization process and specific domain knowledge.

Frequency-based data augmentation—employing readily accessible features from Fourier
analysis—has mainly drawn attention from the medical image processing society. For example, a
research team has proposed a domain generalization method that only augments the amplitude in-
formation during training (Xu et al. (2021)); domain shift barely affects the phase information for
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medical images. Next, a study for differentiating diabetes from non-diabetes with foot temperature
photographs has utilized the Fourier transform as a way to make up for insufficient data (Anaya-
Isaza & Zequera-Diaz (2022)). Another study (Yang et al. (2022)) has designed a source-free do-
main adaptation method for medical image segmentation. Nevertheless, these Fourier-based methods
tend to fail in generalizing over multiple tasks since they are specifically designed for certain task
domains.

2.2 FREQUENCY DOMAIN IN COMPUTER VISION

Recent studies have demonstrated that frequency domain features are effective in classification and
few-shot learning tasks (Xu et al. (2020); Chen & Wang (2021)). These studies have applied the
discrete cosine transformation (DCT) to convert images from the spatial domain to the frequency
domain. This simple feature conversion has resulted in classification performance improvement by
approximately 1∼2% (Xu et al. (2020)). Furthermore, processing frequency domain features and
spatial domain features separately and integrating the two types of features in the later stage has
boosted the performance of few-shot learning (Chen & Wang (2021)).

Further, researchers have investigated the relationship between features from different frequency
bands and CNN models. First, it is a well-known fact that low-frequency components (LFC) provide
key information to CNNs. LFC corresponds to broader patterns and textures in space. LFC represents
the approximate shape, boundaries, and major features of the subject (Bharati et al. (2004)). Indeed,
CNNs show a tendency to learn LFC first than high-frequency components (HFC) (Rahaman et al.
(2019)), which is explained by the fact that humans supply the labels for target datasets (LFC has
more critical effects on the human visual system than HFC) (Wang et al. (2020)). On the other hand,
HFC, which seemingly contains lots of noise, provides detailed information to CNN models. LFC
helps CNN models achieve robustness on random perturbations (Xu (2018); Xu et al. (2019); Yin
et al. (2019)) and HFC is associated with finer details and small features (Yin et al. (2019); Wang
et al. (2020)). In fact, HFC learned at the later stage of learning aids CNN models in generalizing
over training and validation datasets (Wang et al. (2020); Zhao et al. (2022)).

2.3 RESOURCE CONSTRAINED VISION TASKS

As the scope of application of AI increases, lightweight models have appeared to solve computer
vision tasks in low-end environments such as mobile devices and IoT. We present the resource-
constrained environments reported in the literature and introduce resource-constrained vision tasks.

Resource-Constrained Environments. Resource-constrained environments fall into several cate-
gories depending on the memory usage and computational time (Bianco et al. (2018)). Specifically,
the resource-constrained conditions are as follows:

• Memory usage: high (≤ 1.4GB), medium (≤ 1.0GB) and low (≤ 0.7GB)
• Computational time: half real-time (≤ 66ms), real-time (≤ 33ms), and super real-time (≤

17ms)

The NVIDIA Jetson series, a representative product of embedded systems, has 64GB or less of
internal storage. To use only the built-in storage, we should limit the size of the dataset.

Image Classification. A large number of researchers have studied lightweight models for image
classification, a representative computer vision task. SqueezeNet (Iandola et al. (2016)) uses a com-
bination of 1×1 convolutional filters, which reduce the number of input channels, and fire modules,
which act as a lightweight alternative to traditional convolutional layers. MobileNet (Howard et al.
(2017)) involves the depthwise separable convolution structure to optimize the size of the model.
MCUNet (Lin et al. (2020)) is a lighter model than the two models and can run on a microcontroller;
MCUNet extracts weights from the layers during training and increases sparsity by removing parts
of the weights. Moreover, scalable model architectures such as ResNet (He et al. (2016)) and Effi-
cientNet (Tan & Le (2019)) have emerged.

Few-Shot Class-Incremental Learning. Recently proposed few-shot class-incremental learning
(FSCIL) (Tao et al. (2020)) studies the Class-incremental learning task with extremely few training
samples (less than 10 samples per class) in incremental sessions; a learning method receives abun-
dant object classes and data in the base session. The earliest work on FSCIL has proposed a neural
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(a) 500 data per class (b) 100 data per class (c) 50 data per class

(d) 25 data per class (e) 10 data per class (f) 5 data per class

Figure 2: The effect of the number of data per class and the input frequency components on accuracy.
The horizontal and vertical axes represent the epochs and the accuracy, respectively. The blue solid
line is the accuracy of the model learned from the original images. The orange dotted line and
the green dotted line are the accuracies of the models learned with LFC images and HFC images,
respectively. As the number of training data decreases, the accuracy of the original image model and
that of the LFC model becomes indistinguishable.

gas network to maintain the topology of features across previous and new object classes (Tao et al.
(2020)). CEC has attempted to learn context information for classifiers utilizing a pseudo incre-
mental learning paradigm and a graph neural network (Zhang et al. (2021)). FACT has focused on
forward compatibility and secured room for incremental classes in the embedding space by utilizing
virtual prototypes and virtual instances (Zhou et al. (2022)). ALICE has encouraged the model to
learn discriminative features through the angular penalty loss (CosFace) (Wang et al. (2018)) as well
as transferable representations by class augmentation and data augmentation techniques (Peng et al.
(2022)).

3 EMPIRICAL OBSERVATION

Our goal is to improve the performance of neural models by exploiting the frequency analysis in
two limited conditions: the amount of data and the size of the models. Previous studies (Xu (2018);
Rahaman et al. (2019); Xu et al. (2019); Yin et al. (2019); Wang et al. (2020)) have presented fre-
quency characteristics of CNN models, but there has been no research from a frequency perspective
on features of constrained conditions. Therefore, it is necessary to study what frequency component
models learn in these conditions. In this section, we describe our research hypothesis and empirical
validation.

3.1 RESEARCH HYPOTHESIS

We investigate how the amount of data and the size of models affect the frequency components
models learn. Previous studies have revealed CNN models prefer to learn LFC first because they
use human-classified datasets (Rahaman et al. (2019); Wang et al. (2020)). This leads to speculation
that models would preferentially learn LFC —resulting in insufficiently learned HFC— when we
constrain the amount of data and the size of models. We state our hypotheses as follows:

• Hypothesis: When the sizes of datasets and models become restricted, models would
mainly learn LFC rather than learn LFC and HFC in a balanced manner.
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Figure 3: The overall data processing pipeline of FourierAugment. FourierAugment separates the
RGB channels, applies discrete Fourier transformation (DFT) to each channel, processes low-, mid-,
and high-frequency components, and concatenates the processed components as independent chan-
nels.

3.2 EMPIRICAL VALIDATION1

Settings. We use ResNet18 (He et al. (2016)) and miniImageNet (Russakovsky et al. (2015)) as the
baseline. To verify which frequency component the model learns, we use three types of images:
original images, LFC images (containing only LFC), and HFC images (consisting of only HFC). We
limit the training data per class to 500, 100, 50, 25, 10, and 5 to examine what frequency components
the model learns when we constrain the amount of data, on the small model. The total number of
classes is 100.

Results and Analysis. Fig. 2 shows that as the number of data per class diminishes, the difference of
accuracy between the model learned with the LFC images and that learned with the original images
decreases. In particular, when the number of data is reduced to less than 10, the accuracy of the two
models becomes nearly identical—analogous training curves indicating the two models learn the
same category of frequency components (Wang et al. (2020)). On the other hand, the HFC image
model differs in performance from the original image model by 1.95% when the number of data is
10 and by 2.66% when the number of data is 5. In this experiment, we can observe that lightweight
models prefer to learn LFC rather than HFC given a small number of data.

4 METHODOLOGY

4.1 MOTIVATION

We propose FourierAugment to address the problem of poorly learning HFC in resource-constrained
conditions. Previous studies have analyzed the influence of each frequency component by separating
frequencies using the Fourier transform (Rahaman et al. (2019); Wang et al. (2020))—in particular,
learning HFC properly is crucial for performance. However, previous studies have only utilized
one frequency domain at a time, either LFC or HFC (Rahaman et al. (2019); Wang et al. (2020)).
Furthermore, they have not presented methods to learn various frequency components. We propose a
simple but effective method of integrating images separated by low- and high-frequency bands into
a single data to shift the attention of resource-constrained models toward HFC.

4.2 FOURIERAUGMENT

The proposed FourierAugment is a frequency-based image encoding that helps models learn each
frequency component better by explicitly feeding a set of distinct frequency components separated
by bands. Fig. 3 depicts the data processing pipeline of the proposed FourierAugment method. First,
we separate the RGB channels of the input image. Then, we perform the discrete Fourier transfor-
mation (DFT) to convert each channel image into the frequency domain from the spatial domain.
We maintain the magnitude spectrums of the converted channels in the frequency domain. Next, we
define a filter bank as follows:

1For more detailed description and results, refer to the supplementary materials.
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Table 1: Top-1 accuracies of RA, DAA, and FA on the miniImageNet and ImageNet dataset

Method
miniImageNet ImageNet

100 500 100 500 full

baseline 35.60 61.52 19.13 57.81 65.16
+AM 34.42 58.89 36.22 59.15 67.38
+RA 35.98 61.94 22.61 51.99 67.33
+DAA 35.81 64.30 22.23 57.68 67.50
+FA 37.35 65.23 37.26 61.44 67.82

fi = {(x, y)| I
2n

(i− 1) ≤ |x| ≤ I

2n
i,

I

2n
(i− 1) ≤ |y| ≤ I

2n
i}, (1)

where i (= 1, ..., n) and n represent the index of each filter and the number of total filters in the filter
bank, respectively. We apply these filters to the magnitude spectrums, invert the filtered magnitude
spectrums into the spatial domain, and concatenate the inverted signals. As a result, the total number
of channels becomes n × 3. We generally set n as 2 or 3—moderately separating frequency bands
can benefit from separation without compromising the performance; The dense separation results in
lower performance despite the increased input size.

After FourierAugment, the resulting input image becomes n × 3 channels. The change in the input
shape requests modification of the backbone architecture; the input layer should receive a (n ×
3)-channeled input rather than 3-channeled input. Moreover, FourierAugment functions as a few
convolutional layers since it extracts a set of features. This functionality creates synergy when the
first few layers of the backbone get omitted (Xu et al. (2020)). In the case of ResNet (He et al.
(2016)), skipping the first 7× 7 convolutional layer provokes performance optimization.

5 EXPERIMENTS2

The proposed FourierAugment method can improve the performance of lightweight models with
fewer data. First, we demonstrate the effectiveness of FourierAugment in resource-constrained vi-
sion tasks: image classification, and FSCIL. For comparative study, we employ high-performance
data augmentation methods as baselines because it is rare for other image transformations to be used
alone. Specifically, we use AugMix (AM) (Hendrycks et al. (2019)), RandAgument (RA) (Cubuk
et al. (2020)) and Deep AutoAugment (DAA) (Zheng et al. (2022)), the state-of-the-art methods of
ImageNet; Existing methods using frequency are designed to suit specific data and are not suitable
for general tasks. Further, we verify that FourierAugment indeed helps models learn HFC through
quantitative and qualitative studies.

5.1 RESOURCE CONSTRAINED VISION TASKS

5.1.1 IMAGE CLASSIFICATION

Settings. We utilize two sizes of datasets to examine the effect of FourierAugment over the size of
datasets. Concretely, we employ ImageNet 1K (Russakovsky et al. (2015)) and miniImageNet as
large and small datasets, respectively. ImageNet 1K includes 1,000 classes and approximately 1,000
images per class and miniImageNet, a subset of ImageNet, encompasses 100 classes and 500 images
per class. To evaluate the effect of the amount of data per class, we conduct additional experiments
using subsets of ImageNet with 500 and 100 images per class, and subsets of miniImageNet with
100 images per class. This examines the impact of both the total amount of data and the amount of
data per class. ImageNet offers images with the resolution of 224 × 224, and miniimageNet with
84× 84. Moreover, we use ResNet18 as a base model.

2For more detailed description and results, refer to the supplementary materials.
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Table 2: Comparative study results of the proposed FourierAugment method on the miniImageNet
dataset.

Method
Top-1 Accuracy in each session (%)

PG
0 1 2 3 4 5 6 7 8

CEC 78.00 72.89 69.01 65.45 62.36 59.09 56.42 54.28 52.63 -
+ AM 73.45 68.46 64.06 60.59 57.41 54.32 51.40 49.32 47.42 -5.21
+ RA 76.80 71.62 67.17 63.83 60.54 57.51 54.90 52.93 51.36 -1.27
+ DAA 76.80 71.62 67.26 63.63 60.59 57.71 54.96 52.81 51.57 -1.06
+ FA 80.30 74.34 69.94 66.48 63.37 60.63 57.59 55.45 53.77 +1.14

FACT 75.92 70.62 66.29 62.79 59.46 56.27 53.23 51.05 49.20 -
+ AM 74.73 69.68 65.14 62.01 59.08 56.29 53.52 51.72 50.00 + 0.80
+ RA 77.47 72.22 68.10 64.45 61.37 58.64 55.49 53.58 52.02 +2.97
+ DAA 78.73 73.20 68.77 65.05 62.16 59.11 55.89 53.94 52.49 +3.44
+ FA 81.25 75.86 71.50 67.68 64.50 61.05 57.84 55.82 54.01 +4.96

ALICE 81.03 72.48 68.94 65.15 62.68 60.11 57.74 56.85 55.72 -
+ AM 77.53 69.03 64.39 61.21 57.95 55.18 52.88 51.29 49.62 -6.10
+ RA 77.38 69.02 65.40 61.84 59.52 56.78 54.50 52.55 51.47 -4.25
+ DAA 76.53 67.97 64.24 60.21 57.77 55.41 53.00 51.57 50.94 -4.78
+ FA 80.88 73.06 69.57 65.80 63.46 60.61 58.32 57.15 56.09 +0.37

Results and Analysis. Table 1 shows the result of applying each method to miniImageNet and
ImageNet. In miniImageNet experiments, when the number of images per class was 500, Fourier-
Augment improved performance by 3.71% over the baseline. When the number of images per class
was 100, FourierAugment improved performance by 1.75% over the baseline. On miniImageNet,
FourierAugment outperforms other data augmentation methods as well.

In ImageNet, FourierAugment exhibits superior performance than the baseline data augmentation
methods both when restricting the number of data and when not. Accuracies improved by 18.13%,
3.63%, and 2.66%, respectively, when the numbers of data per class were 100, 500, and whole.
Especially, in the ImageNet-100 experiments, the most constrained experiments, other methods im-
proved performance by 3.10% and 3.45%, respectively, while FourierAugment improved perfor-
mance by 18.13%, which is a significant margin. Therefore, the smaller the number of data, the
higher the effect of FourierAugment. We note that the full data case is not the resource-constrained
environment—the focus of our work—and this result agrees with our expectation since we specifi-
cally designed FourierAugment for resource-constrained vision tasks, not for data-abundant cases;
although FourierAugment enhances the performance for the full data case as well.

5.1.2 FSCIL

Settings. We employ miniImageNet and CUB200 (Wah et al. (2011)) datasets for FSCIL experi-
ments. miniImageNet includes 100 object classes with 600 images for each class, totaling 60,000
images of the 84 × 84 size. We split the 100 classes into 60 base session classes and 40 incremen-
tal session classes following the convention (Tao et al. (2020)). CUB200 originally designed for
fine-grained image classification offers 224 × 224 sized 11,788 images of 200 object classes. We
divide the 200 object classes into 100 base session classes and 100 incremental session classes as
the standard evaluation protocol (Tao et al. (2020)). miniImageNet follows the 5-way 5-shot setting
and CUB200 does the 10-way 5-shot setting.

We investigate the effectiveness of the proposed FourierAugment method and other data augmenta-
tions on the following FSCIL models: continually evolved classifiers (CEC) (Zhang et al. (2021)),
forward compatible training (FACT) (Zhou et al. (2022)), and augmented angular loss incremental
classification (ALICE) (Peng et al. (2022)). We do not make much change to the existing models to
focus only on the influence of our proposed method. Specifically, we kept the training procedure the
same but removed the first convolutional layer as mentioned before.

Metrics. We report the Top-1 accuracy after each session denoted as Ai, where i stands for the
session number. Furthermore, we quantitatively measure the performance gain (PG) owing to the
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Table 3: Comparative study results of the proposed FourierAugment method on the CUB200 dataset.

Method
Top-1 Accuracy in each session (%)

PG
0 1 2 3 4 5 6 7 8 9 10

CEC 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 -
+ AM 74.73 70.30 66.11 60.83 60.30 55.90 54.19 52.41 51.74 49.91 48.15 -4.13
+ RA 73.22 69.29 64.71 60.04 59.31 55.44 54.32 51.90 51.21 49.59 48.10 -4.18
+ DAA 74.15 70.06 66.08 60.88 60.00 56.59 54.95 52.69 51.52 50.24 49.09 -3.19
+ FA 79.94 75.22 70.89 66.05 64.79 61.37 60.27 58.20 57.22 56.31 55.09 +2.81

FACT 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 -
+ AM 79.21 74.73 71.25 66.85 66.09 63.40 62.65 61.50 59.63 58.82 57.81 +0.87
+ RA 79.30 75.18 71.28 66.35 66.06 62.20 60.55 59.37 58.33 57.35 56.13 -0.81
+ DAA 79.97 75.90 72.43 67.09 66.55 62.93 61.08 59.87 59.00 57.56 56.14 -0.80
+ FA 79.80 74.30 70.88 66.58 66.27 62.77 62.61 61.44 59.13 58.92 57.87 +0.93

ALICE 78.14 73.15 70.64 67.33 65.57 62.88 62.05 61.09 59.82 59.79 59.27 -
+ AM 78.46 73.91 71.22 67.97 65.91 63.06 62.25 61.41 59.70 59.56 58.92 -0.35
+ RA 77.48 72.89 70.61 67.06 65.09 62.07 61.34 60.40 58.95 58.81 58.25 -1.02
+ DAA 77.30 71.94 69.24 65.93 64.35 61.56 60.84 60.01 58.61 58.48 57.84 -1.43
+ FA 78.53 75.12 72.71 69.34 67.55 64.86 63.89 63.18 61.72 61.76 60.84 +1.57

(a) Original vs. HFC (b) FA vs. HFC (c) Original vs. LFC (d) FA vs. LFC

Figure 4: Analysis of the similarity between features from each block of ResNet18 measured by
CKA. (a) the similarity between the original model and the HFC model, (b) the similarity between
the FourierAugment model and the HFC model, (c) the similarity between the original model and
the LFC model, and (d) the similarity between the FourierAugment model and the LFC model.

proposed FourierAugment method, i.e., PG = ADA
N −AOrig

N , where ADA
i and AOrig

i refer to the Top-1
accuracy with and without data augmentation, respectively and N indicates the last session number.

Results and Analysis. Tables 2 and 3 delineate the comparison results on miniImageNet and
CUB200, respectively. In all cases, the proposed FourierAugment method enhances the performance
of the FSCIL models. AM, RA, and DAA have the effect of improving the performance of FACT
on miniImageNet, but less effective than FourierAugment. On other models, AM, RA, and DAA
degrade performance. On CUB200, FourierAugment also gained higher performance margins of
2.81%, 0.93%, and 1.57% on three models, respectively.

5.2 EFFECTIVENESS OF FOURIERAUGMENT

In this section, we verify the effectiveness of FourierAugment through centered kernel alignment
(CKA) (Kornblith et al. (2019); Davari et al. (2022)) and visualization of occlusion sensitivity (Zeiler
& Fergus (2014)).

5.2.1 CENTERED KERNEL ALIGNMENT (CKA)

Settings. To verify that FourierAugment helps to learn various frequency components, we examine
if the CNN model learns both low- and high-frequency features with FourierAugment using CKA;
CKA numerically analyzes how similar two sets of features from a pair of models are and represents
the similarity as a single value between 0 to 1 (1 signifying the uniformity). For this, we contrast
the features at each block of ResNet18 trained with the four data configuration schemes: 1) original
data, 2) low- and middle-frequency pass-filtered data (low-frequency components; LFC), 3) high-
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(a) Image (b) Original (c) AM (d) RA (e) DAA (f) FA

Figure 5: The areas each model uses for prediction. (a) the source image is used for prediction.
(b) the model trained with original images focuses on irrelevant regions to the object. The models
trained with (c) AugMix, (d) RandAugment, and (e) Deep AutoAugment still use unrelated areas.
(f) the model with FourierAugment concentrates on the object.

and middle-frequency pass-filtered data (high-frequency components; HFC), and 4) low-, middle-
and high pass filtered data (FourierAugment).

Results and Analysis. Fig. 4 represents the feature similarity analysis results. In Block 1, the sim-
ilarity between Original and HFC is the same as that between FourierAugment and HFC (Fig. 4(a)
and Fig. 4(b)). However, the similarity between FourierAugment and HFC becomes more promi-
nent than that between the Original and HFC in later Blocks—signifying FourierAugment helps the
model to learn high-frequency features far more significantly. Besides, the FourierAugment model
has a higher similarity to LFC than the original model (Fig. 4(c) and Fig. 4(d)). This result in-
dicates that FourierAugment aids the model in learning not only high-frequency features but also
low-frequency features, which is not notable with the original data—attesting to the validity of the
effectiveness of FourierAugment.

5.2.2 OCCLUSION SENSITIVITY

Settings. To verify the effectiveness of FourierAugment, we compare where the models learned with
each data augmentation technique focus on for prediction. Occlusion sensitivity presents the areas
that models concentrate on. If the heatmap approaches the red spectrum, it indicates the region where
the model is primarily attentive, whereas proximity to the blue spectrum suggests the region seldom
utilized by the model (Zeiler & Fergus (2014); Van Noord et al. (2015); Aminu et al. (2021)). We
train ResNet18 on miniImageNet with four data augmentation methods: AugMix, RandAugment,
Deep AutoAugment, and FourierAugment.

Results and Analysis. Fig. 5 visualizes the attention of the models learned by different data augmen-
tation methods. The model trained on the original images exhibits a proclivity to attend to regions
unrelated to the target object for prediction (Fig. 5(b)). Models employing AugMix, RandAugment,
and Deep AutoAugment tend to focus more on the object than the original model, but they still al-
locate attention to extraneous regions (Fig. 5(c), Fig. 5(d), and Fig. 5(e)). This phenomenon can be
attributed to the constraints of dataset size and model size, which preclude the model from achieving
complete proficiency in discerning optimal focus areas. In contrast, the model employing Fourier-
Augment demonstrates a notable ability to concentrate attention precisely on the object essential for
accurate prediction (Fig. 5(f)).

6 CONCLUSION

In this paper, we presented FourierAugment, a frequency-based image encoding. By utilizing DFT,
FourierAugment provides a balanced representation of low- and high-frequency information, result-
ing in improved feature richness and discriminability. FourierAugment stands as the inaugural data
augmentation that improves the performance of lightweight models by facilitating the learning of
various frequency components in balance. Extensive experiments demonstrated the effectiveness of
FourierAugment, achieving new state-of-the-art performance on benchmark datasets. Our approach
is easily applicable to existing models without architectural complexity or increased computational
requirements and is effective on general image data. Overall, FourierAugment offers a practical
solution for boosting the performance of lightweight models in resource-constrained environments.
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ETHICS STATEMENT

We proposed data augmentation as a straightforward method to substantially improve the perfor-
mance of lightweight models with an excessively restricted amount of training samples. We be-
lieve our research does not raise potential concerns where appropriate, topics include, but are not
limited to, studies that involve human subjects, practices to data set releases, potentially harmful
insights, methodologies and applications, potential conflicts of interest and sponsorship, discrimi-
nation/bias/fairness concerns, privacy and security issues, legal compliance, and research integrity
issues (e.g., IRB, documentation, research ethics). We used only public datasets and source codes.

REPRODUCIBILITY STATEMENT

All the missing details for experiments in Section 3 and Section 5 are in the Appendix and the
supplementary material. Details of empirical validation and used datasets are in Appendix B. We
described the implementation details of classification experiments in Appendix C.1.1, and details
of FSCIL experiments are summarized in Appendices C.2.1 and C.2.2. We also attached the source
code in the supplementary material.
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A RESOURCE-CONSTRAINED ENVIRONMENTS

Table 4: Memory usage and computational time for each neural network

Models
Memory usage Computational time

16 32 64 16 32 64

AlexNet 0.84 0.92 0.99 5.39 4.77 -
DenseNet-121 0.71 0.71 0.99 40.41 38.22 -
DenseNet169 0.93 0.97 1.04 92.97 88.95 -
FBResNet-152 0.97 1.12 1.31 94.26 97.47 -
GoogLeNet 1.09 1.51 2.35 19.77 19.96 -
MobileNet-v1 0.67 0.71 0.78 10.82 10.58 10.55
MobileNet-v2 0.66 0.70 0.78 13.18 13.10 12.72
ResNet-101 1.08 1.37 1.94 58.11 - -
ResNet-152 1.15 1.43 2.01 82.35 - -
ResNet-18 0.71 0.75 0.89 11.99 10.73 12.45
ResNet-34 0.90 1.09 1.47 20.41 18.48 17.97
ResNet-50 0.99 1.28 1.86 35.72 - -
ShuffleNet 0.95 0.99 1.05 12.91 12.66 12.50
SqueezeNet-v1.0 0.94 0.97 1.05 13.25 12.89 12.70
SqueezeNet-v1.1 0.94 0.99 1.07 7.38 7.20 7.04
VGG-11 1.53 1.55 1.81 32.56 30.51 32.27
VGG-13 2.02 2.41 3.99 70.57 64.88 62.79
VGG-16 2.41 3.61 6.02 91.72 - -
VGG-19 2.43 3.64 6.04 112.39 - -

Table 5: Sizes of the training datasets used in the experiments

Dataset miniImageNet100 miniImageNet ImageNet100 ImageNet500 ImageNet CUB200

Size (GB) 0.5 2.6 11.4 57.0 146.1 0.7

We define resource-constrained environments by referring to Bianco et al. (2018). The study pre-
sented investigated memory usage and computational time for classification models. The embedded
system used in the study is as follows:

• NVIDIA Jetson TX1 board with 64-bit ARM® A57 CPU @ 2GHz, 4GB LPDDR4
1600MHz, NVIDIA Maxwell GPU with 256 CUDA cores

Table 4 summarizes the memory usage and computational time of the models according to the batch
size for evaluation. Models found to be suitable for resource-constrained environments in the evalu-
ation are ResNet18 (He et al. (2016)), SqueezeNet (Iandola et al. (2016)), MobileNet (Howard et al.
(2017)), ShuffleNet (Zhang et al. (2018)), etc. Furthermore, we regard FSCIL models as suitable for
resource-constrained environments (Zhang et al. (2021); Zhou et al. (2022); Peng et al. (2022)) since
most FSCIL models employ ResNet18 as a backbone.

Table 5 shows the size of the training set of the dataset used in the experiment. NVIDIA Jetson
TX1 has 16GB of internal storage. When the embedded system has no additional storage, the appro-
priate datasets for the embedded system are miniImageNet100, miniImageNet, ImageNet100, and
CUB200.

A.1 MODEL PARAMETERS

Table 6 displays the number of parameters when FourierAugment is applied. FourierAugment in-
creases the number of channels, but FouireAugment minimally changes the number of parameters.
In particular, we deleted the first convolution layer of ResNet18, so the model can learn with fewer
parameters.
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Table 6: Comparison of the number of light-weight model parameters

Number of parameters Original +FA

ResNet18 11,688,512 11,646,092
EfficientNet-lite0 3,499,108 3,499,972
MobileNet-V2 3,504,872 3,505,736
ShuffleNet-V2 2,278,604 2,279,252

(a) LFC spectrum (b) LFC image sample (c) HFC spectrum (d) HFC image sample

Figure 6: Sample LFC images and HFC images used for empirical validation.

B EMPIRICAL VALIDATION

We validate the characteristics of learned frequency components in resource-constrained environ-
ments with more diverse models: MobileNet-v1 (Howard et al. (2017)), ShuffleNet (Zhang et al.
(2018)) and EfficientNet-lite0 (Tan & Le (2019)).

Datasets. In the experiment, we extract LFC images and HFC images by filtering specific frequen-
cies from miniImageNet. For LFC images, we transform the original images into the frequency
domain using the Discrete Fourier Transform (DFT) and apply a filter that allows only LFC com-
ponents to pass through. Fig. 6(a) represents the filtered LFC spectrum obtained from this process.
Inverse transforming the LFC spectrum yields the filtered image shown in Fig. 6(b). Similarly, we
obtain the HFC images by filtering the HFC spectrum, as depicted in Fig. 6(c), and then apply-
ing the inverse transformation to obtain the image shown in Fig. 6(d), which contains only HFC
components. In this experiment, we create a dataset using the top 12.5% of both LFC and HFC
components.

Settings. For the three datasets used in the experiment, we limit the number of data to 500, 100, 50,
25, 10, and 5 per class. The model receives a limited number of training samples and we evaluate
the models with a test dataset created in the same way. The test dataset has 100 data per class in all
experiments.

Results and Analysis. Figs. 7, 8 and 9 delineate the result of training MobileNet, ShuffleNet, and
EfficientNet-lite0 with a limited number of data per class, respectively. These experiments demon-
strate that the constrained models learn less HFC as the number of data decreases—corroborating our
research hypothesis over various lightweight models. Especially, the learning curves of the model
learned with the original images and that with LFC converge to the same point as the number of data
gets constrained under 10 or 25.

C EXPERIMENTS

In this section, we describe detailed experiment settings and present additional experiment results.
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(a) 500 data per class (b) 100 data per class (c) 50 data per class

(d) 25 data per class (e) 10 data per class (f) 5 data per class

Figure 7: The effect of the number of data per class and the input frequency components on accuracy
in the case of MobileNet. The blue solid line is the accuracy of the model learned from the original
images. The orange dotted line and the green dotted line are the accuracies of the models learned
with LFC images and HFC images, respectively.

(a) 500 data per class (b) 100 data per class (c) 50 data per class

(d) 25 data per class (e) 10 data per class (f) 5 data per class

Figure 8: The effect of the number of data per class and the input frequency components on accuracy
in the case of ShuffleNet. The blue solid line is the accuracy of the model learned from the original
images. The orange dotted line and the green dotted line are the accuracies of the models learned
with LFC images and HFC images, respectively.
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(a) 500 data per class (b) 100 data per class (c) 50 data per class

(d) 25 data per class (e) 10 data per class (f) 5 data per class

Figure 9: The effect of the number of data per class and the input frequency components on accuracy
in the case of EfficientNet-lite0. The blue solid line is the accuracy of the model learned from the
original images. The orange dotted line and the green dotted line are the accuracies of the models
learned with LFC images and HFC images, respectively.

Table 7: Top-1 accuracies of AM, RA, DAA, and FA on EfficientNet-lite0

Method miniImageNet-100 miniImageNet-500 ImageNet-100 ImageNet-500

baseline 33.80 59.04 27.90 55.88
+ AM 33.51 58.99 36.88 61.15
+ RA 27.74 56.11 32.46 59.04
+ DAA 26.12 54.94 35.73 60.43
+ FA 34.48 59.35 36.94 61.46

C.1 IMAGE CLASSIFICATION

C.1.1 IMPLEMENTATION DETAILS

Computational Environment. For all experiments, we used eight NVIDIA Tesla A30 (24G) GPUs
and two Intel Xeon Gold (16/32) CPUs. We implemented FourierAugment with the Pytorch library.

FourierAugment. We have experimentally discovered that using two or three filters for Fourier-
Augment offers optimal performance. In fact, using two or three filters does not result in a huge per-
formance difference. Thus, we have used two channels converting the input data into a 6-channeled
one. Besides, we stack the channels in increasing order from low- to high frequencies; we tested
the effect of the stacking order of channels and confirmed that the stacking order does not affect the
performance notably.

C.1.2 COMPARATIVE STUDY

Settings. We employ EfficientNet-lite0 for additional classification experiments. We use subsets of
ImageNet and miniImageNet with 500 and 100 images per class. ImageNet offers with the resolu-
tion of 224 × 224, and miniImageNet offers with the resolution of 84 × 84. We also measured the
effectiveness of FourierAugment in unrestricted situations, using ResNet50 with miniImageNet and
ImageNet.
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Table 8: Top-1 accuracies of RA and FA on ResNet50

Method miniImageNet ImageNet

baseline 71.66 76.30
+RA 71.81 77.85
+FA 80.80 75.61

Results and Analysis. Table 7 shows the comparative study results of FourierAugment, AugMix,
RandAugment, and Deep AutoAugment for each dataset. FourierAugment outperforms other data
augmentation methods in the case of EfficientNet-lite0, a model suitable for resource-constrained en-
vironments. Similar to the comparative study results with ResNet18, the proposed FourierAugment
displays superior performance over other data augmentation methods in all experiment conditions.

Table 8 shows the results of unconstrained environments. FourierAugment enhances the perfor-
mance on mini-ImageNet (small dataset) and results in no significant performance improvement on
ImageNet (large dataset). We analyze that this is because ResNet50 does not learn sufficiently var-
ious frequency components from small datasets requiring FourierAugment for enhancement, but it
can learn sufficiently various frequency components from large datasets—corroborating the effec-
tiveness of FourierAugment in resource-constrained environments.

C.2 FSCIL

C.2.1 PROBLEM SETTING

FSCIL includes two types of learning sessions: a single base session and a set of incremental ses-
sions.

Base Session: In the base session, the FSCIL model is provided with the training dataset
D0train = (xi0, y0i )i = 1|D

0train|. xi0 represents an input image, and yi0 represents the corre-
sponding ground-truth class label. The training dataset for the base session contains a sufficient
number of data samples, and the learning algorithm evaluates its performance on the test dataset
D0test = (xi0, y0i )i = 1|D

0test|.

Incremental Sessions: Following the base session, the learning algorithm proceeds with a series
of incremental sessions. During these sessions, the algorithm encounters a sequence of datasets
D1, ...,Ds, ...,DN , where Ds = (Dstrain,Dstest), and N denotes the number of incremental ses-
sions. The label sets of object classes in each incremental session are non-overlapping, meaning that
Ci∩Cj = ∅ for all i and j where i ̸= j. Cs represents the set of class labels for the s-th session. Fur-
thermore, the training datasets for the incremental sessions contain an insufficient number of data
samples. The N -way K-shot setting indicates that each incremental session consists of N object
classes, with K samples per class. The evaluation protocol carried out after the final incremental
session takes into account all object classes C0 ∪ C1 ∪ ... ∪ CN .

C.2.2 IMPLEMENTATION DETAILS

Backbone. FSCIL models used in the experiments adopted ResNet18 as the backbone. We did not
make much change to the existing models to focus only on the influence of our proposed method.
Specifically, we kept the training procedure the same but removed the first convolutional layer as
mentioned before. For CEC and FACT, there exists a max-pooling layer following the first convolu-
tional layer and it would reduce the raw input image resolution. We observed that this max-pooling
layer harmed the performance on miniImageNet and we assumed that it was due to the difficulty
in utilizing frequency information from low-resolution images. The experiment on CUB200 did not
exhibit a performance drop because the images have a relatively higher resolution than those of
miniImageNet. Therefore, we removed the max-pooling layer only when using CEC and FACT on
miniImageNet.
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Table 9: Comparative study results of the proposed FourierAugment method and previous Fourier-
based methods in image classification (miniImageNet).

Method miniImageNet-100 miniImageNet-500

Baseline 35.60 61.52
+Xu et al. (2021) 32.65 58.11
+Anaya-Isaza & Zequera-Diaz (2022) 33.00 52.34
+Yang et al. (2022) 32.35 56.37
+FA 37.35 65.23

Table 10: Comparative study results of the proposed FourierAugment method and previous Fourier-
based methods in FSCIL (miniImageNet).

Method
Top-1 Accuracy in each session (%)

PG
0 1 2 3 4 5 6 7 8

CEC 78.00 72.89 69.01 65.45 62.36 59.09 56.42 54.28 52.63 -
+Xu et al. (2021) 42.58 38.91 36.14 34.23 32.06 30.13 28.38 27.35 26.10 -26.53
+Anaya-Isaza & Zequera-Diaz (2022) 43.73 40.40 37.89 36.45 34.86 33.22 31.32 30.14 29.17 -23.46
+Yang et al. (2022) 35.53 32.74 30.43 28.56 26.64 25.14 23.80 22.61 21.51 -31.12
+ FA 80.30 74.34 69.94 66.48 63.37 60.63 57.59 55.45 53.77 +1.14

Table 11: Ablation study results: the effect of the shape of filters on the proposed FourierAugment
method (miniImageNet).

Shape of Filters
Top-1 Accuracy in each session (%)

0 1 2 3 4 5 6 7 8

Square 80.30 74.34 69.94 66.48 63.37 60.63 57.59 55.45 53.77
+ Gaussian blur 80.77 74.89 70.23 66.44 63.05 59.97 57.04 54.60 52.84

Circle 81.22 75.14 80.79 67.16 63.56 60.33 57.50 55.4 53.65
+ Gaussian blur 80.32 74.68 70.31 66.56 63.20 60.25 57.20 55.14 53.56

C.2.3 COMPARATIVE STUDY

We compared FourierAugment to previous Fourier-based methods (Xu et al. (2021); Anaya-Isaza
& Zequera-Diaz (2022); Yang et al. (2022)) using the image classification and the FSCIL task. In a
classification task, we employ miniImageNet-100 and -500 on ResNet18. Table 9 presents compara-
tive study results of the preceding Fourier-based data augmentation techniques, revealing diminished
performance. In Table 10, previous Fourier-based data augmentation methods display performance
degradation; especially, other Fourier-based methods cause performance degradation by more than
20% in FSCIL.

We surmise this phenomenon occurs since previous Fourier-based methods were specifically de-
signed towards a certain task domain, i.e., medical image processing. On the other hand, Fourier-
Augment boosts performance over multiple tasks.

C.3 ABLATION STUDY

C.3.1 SHAPE OF FILTERS

We investigated the effect of the filter shapes on FourierAugment (Table 11): we varied the fil-
ter shapes (square or circle) and the application of the Gaussian blur. The Gaussian blur is highly
inclined to degrade the performance while the filter shape does not affect the performance with a
noticeable margin. We surmise that the low resolution of the images studied in the FSCIL task makes
the effect of filter shape obtuse.
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Table 12: Ablation study results: the effect of the number of filters on the proposed FourierAugment
method (miniImageNet).

Number of Filters
Top-1 Accuracy in each session (%)

0 1 2 3 4 5 6 7 8

CEC 78.00 72.89 69.01 65.45 62.36 59.09 56.42 54.28 52.63
+ FA 6ch 80.30 74.34 69.94 66.48 63.37 60.63 57.59 55.45 53.77
+ FA 9ch 79.80 74.34 70.06 66.53 63.21 59.91 57.24 55.16 53.41
+ FA 12ch 79.52 74.15 70.01 66.27 62.64 59.64 56.69 54.62 52.92
+ FA 15ch 78.83 72.97 68.67 65.04 61.39 58.42 55.61 53.27 51.50
+ FA 18ch 80.18 74.08 69.86 66.29 62.71 59.61 56.87 54.81 53.23
+ FA 21ch 79.00 73.55 68.23 65.07 61.56 58.55 55.49 53.56 51.58

Table 13: Ablation study results: the effect of the first layer of ResNet18 on the proposed Fourier-
Augment method (miniImageNet)

Method First layer miniImageNet

Baseline ◦ 61.52
+FA ◦ 54.48
+FA × 65.23

C.3.2 NUMBER OF FILTERS

We examined the effect of the number of filters on FourierAugment (Table 12). The result demon-
strates that subdivision of the frequency bands beyond moderation degrades the performance of the
model. This phenomenon is expected due to the inability to explore meaningful information with the
excessive growth and granularity of the data. Excessive separation may destroy and lose essential
features that rely on the whole image. Among the seven experiments, there was just one case in
which the performance improved even with the increase in the number of filters. We assume that the
performance improvement of the model using 6 filters and 18 channels needs further investigation.

C.3.3 EFFECT OF THE FIRST LAYER ON RESNET18

We measured the effect of the first layer on ResNet18. Xu et al. (2020) demonstrated that the perfor-
mance improves with the first convolution layer (stem layer) of ResNet getting removed when feed-
ing frequency-related features since the transformed input functions as a few convolution layers. In
a similar vein, FourierAugment includes a step of transforming images into the frequency domain,
thus we delete the stem layer of ResNet. Further, we have verified the effectiveness of this elimina-
tion with ablation experiments (Table 13); the accuracy of baseline, with-the-first-layer-model, and
without-the-first-layer-model corroborates the validity of our design.

In summary, the proposed FourierAugment method shows robust performance in various settings
though we recommend that FourierAugment use two or three square-shaped filters for easy im-
plementation. When applying FourierAugment to ResNet18, it is recommended to delete the stem
layer.

C.4 EFFECTIVENESS OF FOURIERAUGMENT

C.4.1 FEATURE SPACE: T-SNE

We verify the effectiveness of FourierAugment through t-distributed stochastic neighbor embedding
(t-SNE) Van der Maaten & Hinton (2008).

Settings. To verify qualitatively the effectiveness of FourierAugment, we compare the features
learned with FourierAugment and those with other frequency-processing configurations. For this,
we train ResNet18 with four data schemes (as in Sec. 5.2.1). Then, we extract the features at the last
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(a) Original (b) LFC (c) HFC (d) FourierAugment

Figure 10: Variance across classes in the feature space. (a) the feature distribution by classes with
the original data, (b) the feature distribution by classes with the LFC data, (c) the feature distribution
by classes with the HFC data, and (d) the feature distribution by classes with FourierAugment.

block of ResNet18 (not including the fully-connected layer). The dimension of the features at the
last block of ResNet18 is 512, which gets compressed to 2-dimensional vectors for visualization.

Results and Analysis. Fig. 10 visualizes the features learned by different models. Comparing the
features learned with the original data and those with LFC reveals that intra-class variance does not
display a considerable difference in the two cases (Fig. 10(a) and Fig. 10(b)). We assume that this
phenomenon occurs since CNN models learn low-frequency components first (Wang et al. (2020)).
Next, the features learned with HFC exhibit a huge variation across classes, i.e., dispersed features,
(Fig. 10(c)). On the other hand, FourierAugment lets the model learn more discriminative features
than other data configurations (Fig. 10(d)). Features learned with the proposed FourierAugment
reveal low variance across classes. This confirms that learning each frequency component well helps
improve model performance.
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