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ABSTRACT

Nonstationary time series forecasting suffers from the distribution shift issue due to
the different distributions that produce the training and test data. The distributions
can be regarded as governed by a time structure which itself may be subject to some
probabilistic law. Existing methods attempt to alleviate the dependence by, e.g.,
removing low-order moments from each individual sample. These solutions fail to
capture the underlying time-evolving structure across samples and do not model
the complex time structure. In this paper, we aim to address the distribution shift in
the frequency space by considering all possible time structures. To this end, we
propose a Time-Invariant Frequency Operator (TIFO), which learns stationarity-
aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-
stationary ones, thereby mitigating the distribution shift issue in time series. To
justify our method, we show that the Fourier transform of time series data implicitly
induces eigen-decomposition in the frequency space. Learning the data-specific
eigenvalues has the natural interpretation of weighting up frequency components
responsible for distributional discrepancies. TIFO is a plug-and-play approach
that can be seamlessly integrated into various forecasting models. Experiments
demonstrate our method achieves 18 top-1 and 6 top-2 results out of 28 forecasting
settings. Notably, it yields 33.3% and 55.3% improvements in average MSE on
the ETTm2 dataset. In addition, TIFO reduces computational costs by 60% -70%
compared to baseline methods, demonstrating strong scalability across diverse
forecasting models. Our code can be found at this anonymous GitHub repository1.

1 INTRODUCTION

Time series forecasting is vital to decision-making in real-world applications like industrial system
control and stock market tracking (Thompson & Wilson, 2016). However, a crucial challenge is
the non-stationary nature of real-world time series that often leads to poor generalization to unseen
data beyond the training set. In this paper, we analyze this issue and existing normalization-based
solutions (Kim et al., 2021; Fan et al., 2023; Liu et al., 2023; Han et al., 2024) from a data generation
perspective. We thus introduce a principled new solution derived from this analysis.

From a distributional perspective, a time series is sampled from a distribution x ∼ p(x|t), where t
denotes a temporal condition (e.g., the t-th sliding window) drawn from a time-evolving distribution
p(t). Consider the normal distribution N (µt, σ

2
t ) for example, it suggests that the mean and variance

are conditional on t. Therefore, a forecasting model trained on training data xtrain ∼ p(x|ttrain) may
not perform well on test data xtest ∼ p(x|ttest) since ttrain, ttest can be vastly different, referred to as
the distributional shift issue.

Existing methods tackle this issue by weakening the dependency of x on t through normalizing the
data distribution (Kim et al., 2021; Liu et al., 2023; Fan et al., 2023; Han et al., 2024), so that the
time-dependent low-order moments (mean and variance) are removed from both training and test
sets to obtain a standard distribution, in the normal case N (0, 1). While this kind of method has

1https://anonymous.4open.science/r/TIFO-6BE1
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shown some promise, it implicitly assumes that (1) this standard reference distribution represents the
underlying distribution of the entire dataset, and (2) low-order statistics are sufficient to describe the
complex data distribution and avoids modeling the time parameter distribution p(t). It may cause poor
performance when the assumption does not hold, e.g., the distribution has more complex dependency
over time, such as modality, high-order moments, or its functional form. To address this challenge,
this paper proposes a novel frequency-based method and provides its theoretical foundation.

From a signal processing perspective, non-stationarity in real-world time series often manifests as
changes in frequency characteristics (Proakis & Manolakis, 1996), such as shifts in dominant spectral
modes or time-dependent amplitudes. Mean and variance characterize the overall amplitude and
spread of a time series, but they fail to capture how energy is distributed across different frequency
components (Piao et al., 2024). In the existing works, normalizing low-order statistics may help
align total energy but not its spectral structure, such as the location of that energy in the frequency
space. As a result, frequency shifts (i.e., changes in the dominant frequencies over time) may persist,
especially when spectral characteristics differ significantly across training and testing datasets.

In this work, we propose to address distributional shift by working in the frequency space and by
considering all possible time conditions via p(x) =

∫
p(t)p(x|t)dt. Specifically, frequency-domain

analysis provides a disentangled view of underlying temporal features, enabling the model to capture
fine-grained stationarity. Crucially, such analysis is conducted across samples at the dataset level: the
observed distribution p(x) is formulated as a weighted average of the conditional distributions p(x|t)
over all possible time conditions, where the weights are given by p(t). Thus, we can achieve the
same goal (weakening the dependency of x on t) but account for the full temporal variability. To this
end, we propose Time-Invariant Frequency Operator (TIFO) for stationarity-aware representation
learning, which consistes two stages. Stage-I: We apply the Discrete Fourier Transform (DFT) to all
samples in a given time series dataset to obtain their frequency components. For each frequency, we
then conduct cross-sample statistical analysis and use a lightweight neural network layer to learn a
weight that quantifies its time-invariant relevance for mitigating distributional shift. Through this
data-driven weighting, our method emphasizes relatively stationary components (via higher weights)
while suppressing non-stationary ones (via lower weights), effectively learning a weighted average
over all time conditions embedded in the dataset. Stage-II: After weighting, we perform an inverse
DFT (IDFT) to project the adjusted frequencies back into the time domain. These transformed time
series are then fed into forecasting models. The weighted composition of fine-grained frequency
components enables the model to approximate more complex, temporally-evolving distributions.
Moreover, this paper takes a first step toward providing a theoretical foundation to justify our method.
We adopt a non-stationary stochastic process perspective and characterize time series through their
frequency characteristics. We show that by classical harmonic analysis results, the Fourier transform
on time series data implicitly induces a kernel in the frequency space, which in turn permits a set
of orthonormal basis functions formed by spectral eigen-decomposition (Berg et al., 1984). By
learning data-specific eigenvalues, the frequency components that are responsible for distributional
discrepancies can be captured as a weighted sum of eigenfunctions. Our contributions are as follows:

Summary of Key Contribution

(Perspective) We provide a data generation-based formulation of non-stationary time series and
distributional shift, offering a unified theoretical framework that both explains and generalizes
existing normalization methods.
(Method) We propose to learn stationarity and non-stationarity across samples in the frequency
domain. Our method enables fine-grained feature extraction to handle complex temporal dy-
namics, and can be seamlessly integrated into various forecasting models. We also provide a
theoretical analysis to justify the soundness of our method.
(Experiments) We apply TIFO to popular forecasting models, including DLinear (Zeng et al.,
2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b) to validate its effective-
ness across seven datasets. In non-stationary datasets such as ETTm2, we improve PatchTST and
iTransformer by 33.3% and 55.3%, respectively. Compared to existing normalization methods,
TIFO achieves 18 top-1 and 6 top-2 results out of 28 settings. Analysis on data distribution
shows that TIFO reduces the difference between training and testing datasets by up to 88%,
improving robust forecasting for non-stationary data. Computational efficiency analysis shows
that TIFO achieves improvements of 60% to 70% in 16 out of 28 settings.
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2 BACKGROUND AND PRELIMINARY ANALYSIS

We consider multivariate time series forecasting, where we are given a set of input X = {X(i)}Ni=1

and the corresponding target Y = {Y(i)}Ni=1 in discrete time, where N denotes the number of
sequences. Let C,Lx, Ly respectively denote the number of variables, the input-sequence length,
and the model prediction length, then the goal can be formulated as that given an input sequence
X(i) ∈ RLx×C , predict the target values Y(i) ∈ RLy×C .

2.1 ANALYZE DISTRIBUTIONAL SHIFT FROM A DATA GENERATION PERSPECTIVE

In this paper, we tackle the distributional shift issue in time series forecasting by analyzing the data
generation process. Time t can be viewed as the index of a structured temporal sequence (e.g., the
t-th sampling window) drawn from a distribution p(t). Once t is sampled, a corresponding time
series segment X is then drawn from the conditional distribution p(x|t) (Adak, 1998), reflecting
various events (e.g., industrial sensors) occurring within that segment. This formulation highlights
that time series datasets X = {X(i)}Ni=1 can be viewed as being generated from different realizations
of temporal indices {t(i)}Ni=1, where each t induces its own conditional distribution p(x|t). As
time evolves, these context-dependent distributions naturally shift, reflecting the non-stationary
characteristics of time series. As such, the distributional difference of p(x|ttrain) ̸= p(x|ttest) thus
arises from the underlying variation in temporal contexts. In practice, this shift is often quite large,
since testing or future time series naturally change with time and differ from the training contexts.

2.2 NORMALIZATION METHODS WEAKEN x DEPENDENCY ON TIME CONDITION t

Methods such as RevIN (Kim et al., 2021) and SAN (Liu et al., 2023) are based on a key concept: they
aim to estimate time-dependent statistics (e.g., mean and variance) and remove them from the input
time series. This process reduces the conditional dependence on t, transforming the time-varying
distribution p(x|t) closer to a stationary form p(x). We provide more discussion in Appendix A.1.

Formally, take a Gaussian distribution N (µt, σ
2
t ) for example, its mean and standard deviation are

subject to time changes. They estimate (µt, σt) for each time segment xt via a function fθ(xt),
where fθ(·) can be either a numerical computation (Kim et al., 2021) or a neural network (Fan et al.,
2023; Liu et al., 2023; Han et al., 2024). By removing these statistics from the data via x̂t =

xt−µt

σt
,

the time-dependent N (µt, σ
2
t ) is transformed into a standard Gaussian N (0, 1). Consequently, the

distributional shift between training and test datasets is mitigated, since x̂train, x̂test ∼ N (0, 1).

Nonetheless, some limitations remain in existing normalization methods:

1. Inadequate Data Distribution Modeling. This approach handles each sample individually that
implicitly assumes the reference N (0, 1) as the dataset-level ground truth distribution, i.e., ∀t ∈
{train, test}, p(x̂t) = N (0, 1). This suppresses meaningful cross-sample stationary distributions
and prevents the model from capturing how data evolves globally across training and test domains.

2. Simplistic Distribution Characterization. Existing methods primarily rely on low-order statistics
(µ, σ) to standardize data, which assumes that the data distribution can be described by Gaussian-
like behavior. However, real-world time series often exhibit far more complex characteristics (e.g.,
non-stationary frequency dynamics) and distributions (consider the Student’s t distribution, for
instance). Even after normalization, residual distributional shifts may persist.

2.3 PROBLEM FORMULATION

The above discussion suggests that distributional shift in time series should be understood in terms
of how data evolves globally across multiple samples, and in identifying which characteristics can
capture such evolution. The key question in this paper becomes:
Problem 1. which aspects of the data distribution are consistent across multiple samples, and which
are unstable and lead to shifts between training and testing domains?

Let each sample be generated as x ∼ p(x|t) with t ∼ p(t) denoting a latent temporal condition.
Given a training dataset X = {X(i)}Ni=1, the objective is to learn a transformation f(·) such that

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training database

Fo
ur

ie
r t

ra
ns

fo
rm

4. Adjust S using sample-
level information

5. Use adjusted data
for forecasting

Apply S in the traning stage

Fo
ur

ie
r t

ra
ns

fo
rm

R
ea

l
Im

ag
in

ar
y

M
LP

M
LP

In
ve

rs
e 

Fo
ur

ie
r

Fo
re

ca
st

in
g 

m
od

el

1. Transform each sample into
frequnecy amplitudes

sample

    in 
all samples

3. Calculate dataset-level
statistics from training database

In
pu

t s
am

pl
e

sam
plesAmplitude

2. Track the frequnecy
shift across samples

Amplitude

Stationary Frequency
Non-stationary Frequency

0

1

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Figure 1: Overview of TIFO. Before training, we first transfer all samples into the frequency domain
and measure their cross-sample stationarity at the dataset level (steps 1 & 2). These features are then
used to learn frequency weights that measure frequency stationarity (step 3). During training, each
input sample is transformed into the frequency domain and then weighted by the learned stationarity
weights. Finally, they are transformed to the time domain to serve as input to the forecasting models
(steps 4 & 5). TIFO is optimized using the forecasting loss along with the backbone model.

the resulting representations satisfy two requirements: emphasizes stationary components across all
samples from f(X ) while preserves important characteristics unique to each sample f(X(i)), since
time series data often contain stochastic variations and local structures (Piao et al., 2024). To this end,
we develop a novel two-stage framework that mitigates distributional shift and is plug-and-play for
diverse forecasting models, similar to normalization methods (Kim et al., 2021; Ye et al., 2024).

3 PROPOSED METHOD

In this section, we introduce our novel framework TIFO. We begin by introducing our design of
TIFO in Section 3.1. This design is supported by a detailed theoretical analysis in Section 3.2.

3.1 TIFO: SYSTEM OVERVIEW AND FEEDFORWARD PIPELINE

Figure 1 shows the processing pipeline of TIFO. It includes a two-stage modeling: (i) pre-training:
measuring frequency stationarity in the entire training set; (ii) in-training: adaptively re-weighting
frequency coefficients of each input sequence.

Stage-I: Dataset-level Stationarity Learning

• Step 1. For each sample X(i) ∈ RL×C from a multi-channel time series training dataset X =
{X(i)}Ni=1, we take the Discrete Fourier Transform (DFT) and obtain the amplitudes A(i)(k, c)
for frequency k and channel c. Where L represents the length of each sample, C is the number of
channels, and K is the number of frequency components.

• Step 2. We aggregate across the training set to measure the stationarity of frequencies using

S(k, c) =
µi∈train

(
A(i)(k, c)

)
σi∈train

(
A(i)(k, c)

)
, where µi∈train(·) and σi∈train(·) are the mean and standard deviation of the amplitude A(i)(k, c)
in all samples. A larger µ means a higher energy proportion, while a greater σ denotes higher
sample dispersion. Thus, a higher S(k, c) reflects more stationary frequency behavior.

4
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• Step 3. In this step, we save the calculated S from Step 2 and pass it to the forecasting model.
Through S, the model can access cross-sample variation information, while the MLPs in Stage II
can further optimize the weights through training. This aims to allow the forecasting model to
learn the overall stationarity of each component across the dataset, and use this information to
learn a stationary representation of data during the training.

Stage-II: Sample-specific Learning & Forecasting

• Step 4. In the training stage, given an input sample X ∈ RL×C , we compute its DFT and
obtain real and imaginary coefficients R, I ∈ RK×C . Based on the pre-computed stationarity
S ∈ RK×C , we use two independent MLPs to generate frequency weights:

λr = MLPr(S), λi = MLPi(S). (1)

The weighted coefficients are then obtained by element-wise multiplication: Rw = R ⊙
λr, Iw = I ⊙ λi. We model the real and imaginary parts separately to ensure that when
the weighted coefficients are mapped to the time domain through the inverse DFT, the resulting
amplitudes remain non-negative, allowing the inverse DFT to output real-valued sequences. In this
stage, TIFO serves as a lightweight frequency stationarity filter, enhancing stationary components
(those with a high stationarity score) while suppressing non-stationary ones, thereby addressing
the distribution shift problem defined in Section 2.

• Step 5. Finally, the weighted coefficients (Rw, Iw) are transformed to the time domain via inverse
DFT X̃ = iDFT(Rw + i Iw), and fed into the backbone forecasting models. X̃ ∈ RH×C is
the final output of TIFO and the input of the backbone model, where H denotes the forecasting
horizon. The whole framework is optimized end-to-end using the forecasting MSE loss.

3.2 THEORETICAL ANALYSIS

Our frequency weighting in the previous section is the result of the following theoretical analysis.
This section connecting nonstationarity to spectrum analysis is novel to the best of our knowledge.

Existence of Time-Averaged Representation. We connect the learning of frequency weights Eq.(1)
to spectrum analysis by noticing that these weights correspond eigenvalues that characterize frequency
space representations that discern frequency components responsible for distributional shifts. We
begin our analysis with the assumption:

Assumption 1. The time series dataset X = {X(i)}Ni=1 is composed of multiple samples from
ti ∼ p(t) and x(i) ∼ p(x|ti) so it can sufficiently representation the distributions.

We assume that the time series dataset can sufficiently represent the time variations. This assumption
is realistic in many real-world datasets such as electricity or stock markets that collect data on
many-year-basis. These datasets compose a challenge to normalization methods, since removing
empirical estimates µ̄, σ̄ from a batch does not equal removing µti , σti that is governed by a specific
ti. It is intractable to identify which data batch is governed by a unique time structure. Our method
instead turns to a time-averaged representation. We integrate over time by applying Fourier transform
on data. The next theorem formalizes this idea.
Theorem 1 (Bochner’s Theorem (Scholkopf & Smola, 2001)). A kernel function k(x, y) ≥ 0 is a
distance measure of input x, y. It is valid if and only if there exists a probability density that is the
Fourier transform of the kernel.

The fact that we assume data is generated by ti ∼ p(t), x(i) ∼ p(x|ti) plus we apply Fourier
transform to X imply that a kernel function exists on the frequency domain:

k(ω1, ω2)|x =

∫
R
eit(ω1−ω2)Xdt = Et

[
eit(ω1−ω2)

] ∣∣∣∣
x

. (2)

where we use |x to denote the dependency on x. While in practice the dataset X needs to be infinitely
large to sufficiently represent the distributions, we can expect that with a reasonably sized dataset that
comprises multiple samples of t, the existence of a kernel is guaranteed. As the result of integration
over time, it is also reasonable to expect that the kernel as a time-averaged representation should
perform better than the normalization methods.

5
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Adapting Time-Averaged Representation to Data. The kernel function in Eq. (2) is implicit since
we know it exists but have no access to it. To exert the kernel as a distance measure, we can adapt it to
input data so the distances between important and unimportant frequency components are emphasized
most. To this end, we explicitly learn the kernel in a data-driven way based on the Mercer’s theorem.
Theorem 2 (Mercer’s Theorem (Mercer, 1909)). A valid, positive definite kernel function can be
represented by a set of eigenfunctions that form an orthonormal basis {ζi}i∈N with associated
eigenvalues λ1 ≥ λ2 ≥ · · · > 0 such that:

k(ω1, ω2) =

∞∑
i=1

λiζi(ω1)ζi(ω2), (3)

where the convergence of the infinite series holds absolutely and uniformly.

Because the kernel must exist in the frequency space, by Mercer’s theorem it must permit the
eigen-decomposition that forms a set of orthonormal basis in the space. Moreover, if we impose a
structure on the eigenfunctions ζ, then the kernel varies with the eigenvalues λ. Therefore, learning
the eigenvalues given data is equivalent to learning the kernel itself (Wilson et al., 2016).

We follow (Xu et al., 2019) to employ the assumption that the kernel is periodic, which is natural
for frequencies. Therefore, the kernel has the Fourier basis as its eigenfunctions: ζ1(ω) = 1,
ζ2j(ω) = cos

(
2πjω

t

)
, ζ2j+1(ω) = sin

(
2πjω

t

)
for j = 1, 2, . . .. Now λi, i = 1, 2, . . . become the

corresponding Fourier coefficients to weight the contribution of each ζ . Therefore, we have concluded
the theoretical analysis on the role played by λ introduced in Eq.(1).

4 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQ1. Forecasting
Accuracy. Does TIFO improve forecasting performance on non-stationary datasets? RQ2. Addressing
Distribution Shift. Does learning λ mitigate the distribution shift? RQ3. Frequency Feature Learning.
How do λ affect the backbone models to capture informative frequency characteristics? We first
introduce the experimental datasets and settings, followed by detailed results and analysis to answer
each of the above questions. We also conduct efficiency analysis and ablation studies.

4.1 EXPERIMENT SETTINGS

Datasets. We benchmark our models on seven widely used multivariate time-series datasets: Elec-
tricity Transformer Temperature (ETT) with four subsets at hourly (ETTh1, ETTh2) and 15-minute
(ETTm1, ETTm2) resolutions; Electricity consumption of 321 clients; Traffic volumes from 862
San Francisco sensors; and Weather recordings of 21 meteorological variables. We follow the
Time–Series-Library split (7:2:1) with a fixed window length L = 96 and apply per-channel z-score
normalisation; this rescales variables but leaves cross-instance non-stationarity intact. Models are
trained with the Mean-Squared-Error loss and evaluated in the time domain by MSE and MAE.

Baselines. We selected RevIN (Kim et al., 2021), SAN (Liu et al., 2023), and FAN (Ye et al., 2024)
as our baselines. RevIN is widely used as a fundamental module in various forecasting models,
including PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024b), among others (Wang et al.,
2024). SAN is a normalization-based method that outperforms several non-stationary forecasting
modules (Kim et al., 2021; Fan et al., 2023). We also selected FAN, it introduces a frequency-domain
modeling normalization-based method to address the distributional shift issue.

Backbones and Setup. For fair comparisons, we selected three forecasting models, including
DLinear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b),
as the backbones, and deployed all non-stationary modules (TIFO, RevIN, SAN, and FAN) for
evaluation. DLinear is a simple yet efficient forecasting model with an architecture solely involving
MLPs. PatchTST and iTransformer are two well-known Transformer methods that frequently serve
as baselines in various forecasting research (Liu et al., 2024b;a; Piao et al., 2024; Zhang et al., 2024).
We followed the implementation and setup provided in (Liu et al., 2023) and (Liu et al., 2024b).

Experiments Details. All experiments were implemented on a single NVIDIA RTX A6000 48GB
GPU. More details of the datasets are in Appendix A.3, the preprocessing are in A.4, the baselines
are in A.5, the backbones and setup are in A.6, and other details of the experiments are in A.7.
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4.2 EXPERIMENT RESULTS

Table 1: Multivariate forecasting results (average) with forecasting lengths H ∈ {96, 192, 336, 720}
for all datasets and fixed input sequence length L = 96.

Models PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + TIFO Ori + TIFO Ori
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.438 ± 0.024 0.437 ± 0.035 0.480 ± 0.037 0.481 ± 0.031 0.445 ± 0.017 0.443 ± 0.026 0.511 ± 0.033 0.496 ± 0.036

ETTh2 0.379 ± 0.032 0.380 ± 0.038 0.604 ± 0.130 0.524 ± 0.027 0.376 ± 0.041 0.400 ± 0.057 0.813 ± 0.134 0.666 ± 0.072

ETTm1 0.390 ± 0.027 0.398 ± 0.025 0.419 ± 0.055 0.432 ± 0.047 0.396 ± 0.026 0.406 ± 0.056 0.447 ± 0.026 0.457 ± 0.061

ETTm2 0.280 ± 0.032 0.325 ± 0.031 0.420 ± 0.035 0.424 ± 0.044 0.283 ± 0.020 0.327 ± 0.026 0.633 ± 0.055 0.489 ± 0.041

Electricity 0.197 ± 0.027 0.296 ± 0.033 0.218 ± 0.31 0.307 ± 0.032 0.169 ± 0.035 0.262 ± 0.041 0.179 ± 0.028 0.279 ± 0.046

Traffic 0.427 ± 0.029 0.285 ± 0.025 0.619 ± 0.077 0.365 ± 0.029 0.424 ± 0.031 0.282 ± 0.027 0.576 ± 0.069 0.372 ± 0.035

Weather 0.251 ± 0.019 0.276 ± 0.017 0.255 ± 0.021 0.312 ± 0.031 0.246 ± 0.023 0.274 ± 0.017 0.274 ± 0.029 0.320 ± 0.041

Main Results. To answer RQ1, we conduct our proposal on backbone models across seven datasets,
and report the overall forecasting accuracy in Table 1. We set the forecasting lengths as H ∈
{96, 192, 336, 720}, with the input sequence length L = 96. Here, we present the averaged MSE
and MAE over four forecasting lengths. Applying TIFO consistently improved the performance
of the backbone models across all datasets. More importantly, in datasets with complex frequency
characteristics, such as ETTm2, TIFO improves PatchTST and iTransformer by 33.3% (0.420→
0.280) and 55.3% (0.633 → 0.283), respectively. This improvement is attributed to the learned
Fourier basis coefficients λ, allowing these backbones to forecast based on a stationary representation
of the input time series.

Comparison with Baseline Non-stationary Methods. Table 2 further presents the average com-
parison results between TIFO and the baseline non-stationary methods, i.e., RevIN, SAN, and
FAN. We use the same parameters and forecasting length as in Table 1. For iTransformer, the input
sequence length is L = 96, and L = 336 for DLinear. As shown, TIFO achieves 18 top-1 results
and 6 top-2 results out of 28 settings. For instance, in the ETTh1 dataset, TIFO improves the MSE
values for DLinear and iTransformer to 0.407 and 0.445, outperforming RevIN (0.460 and 0.463)
and SAN (0.421 and 0.466). Similarly, in the Traffic dataset, TIFO improves the MSE value to
0.430, compared to RevIN (0.624), SAN (0.440) and FAN(0.541). Here, TIFO * represents the
incorporation of SAN into the backbones, which further improves the second-best results (underlined
in the table) to the best.

Frequency Domain Shift Analysis. To answer RQ2, we further measure the frequency-domain
distribution difference between the train and test dataset amplitude spectra to link accuracy gains
to reduced spectral distributional shift. For each frequency ωj , we gather its amplitudes across all
training and testing samples to build two empirical distributions. Jensen–Shannon divergence squared
(JSD2) is a symmetric, bounded average of the forward and reverse Kullback–Leibler divergences, so
it can tell us how much the two distributions differ overall (Mateos et al., 2017; Iqbal et al., 2021).
Kolmogorov–Smirnov statistic (KS) measures the largest gap between the cumulative distribution
functions, highlighting the most significant mismatch between training and testing data (Wang &
Wang, 2010). Here, JSD2 evaluates the overall shift in amplitude distributions, while KS measures
the worst-case deviation between training and test data for each frequency component.

Table 3 presents the JSD2 and KS statistics for the original data (Before) and after applying RevIN,
FAN, SAN, and TIFO across four benchmark datasets. Lower values indicate smaller distributional
discrepancies between training and test sets. On ETTh1, TIFO reduces JSD2 from 0.3637 to 0.0435
(a reduction of 88%), and on Electricity from 0.1443 to 0.0423 (71%). KS values also decrease
significantly, ranging from 43% to 80% reductions across the same datasets. Figure 5 shows the per-
frequency JSD2 values on the Electricity dataset. Each spoke represents a frequency component, and
the gray shadowed circle area serves as a reference band that indicates the region within which 60% of
the frequency components fall. A smaller area reflects a lower overall distributional discrepancy. As
shown in the figure, TIFO considers all frequency components and significantly reduces distributional
differences, achieving effective alignment between training and test datasets. RevIN and SAN, which
operate in the time domain, exhibit minimal changes before and after learning, as evidenced by the
near overlap between the green line and the gray reference circle. FAN, which explicitly operates in
the frequency domain, shows improved performance. However, it focuses only on the top-k frequency
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Table 2: Multivariate forecasting results (average) with H ∈ {96, 192, 336, 720} for all datasets
and fixed input sequence length L = 96. The best and second best results are highlighted. TIFO *
represents the results where both TIFO and SAN are used in the backbones.

Models MLP-based (DLinear(Zeng et al., 2023)) Transformer-based (iTransformer(Liu et al., 2024b))
Methods + TIFO * + TIFO +SAN + FAN + RevIN + TIFO * + TIFO +SAN + FAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.413 0.424 0.407 0.419 0.421 0.427 0.469 0.473 0.460 0.456 0.455 0.449 0.445 0.443 0.466 0.455 0.504 0.488 0.463 0.452

ETTh2 0.339 0.384 0.337 0.384 0.342 0.387 0.459 0.469 0.561 0.518 0.378 0.408 0.376 0.400 0.392 0.413 0.543 0.515 0.385 0.412

ETTm1 0.341 0.372 0.357 0.375 0.344 0.376 0.367 0.392 0.413 0.407 0.389 0.398 0.396 0.406 0.401 0.406 0.424 0.428 0.406 0.410

ETTm2 0.255 0.316 0.256 0.313 0.260 0.318 0.278 0.339 0.350 0.413 0.285 0.334 0.283 0.327 0.287 0.336 0.337 0.385 0.294 0.337

Electricity 0.161 0.257 0.168 0.262 0.163 0.260 0.176 0.277 0.225 0.316 0.175 0.273 0.169 0.262 0.195 0.283 0.180 0.276 0.205 0.272

Traffic 0.432 0.297 0.430 0.291 0.440 0.302 0.541 0.346 0.624 0.383 0.459 0.313 0.424 0.282 0.520 0.341 0.536 0.339 0.430 0.312

Weather 0.224 0.271 0.237 0.272 0.227 0.276 0.258 0.305 0.265 0.317 0.244 0.282 0.246 0.274 0.247 0.291 0.251 0.298 0.263 0.288

Count 4 4 3 4 0 0 0 0 0 0 2 1 5 6 0 0 0 0 0 0

0.04 0.36

Before After 60% Reference Band: BeforeScatters: After

SANRevIN TIFOFAN

Figure 2: Train-Test Distance Compactness: This figure shows a visualization of the JSD2 amplitudes
distribution distance between the train and test datasets on the electricity data. Each scatter point
represents one frequency component. A smaller radius indicates a smaller distributional gap. Green
and red colors represent the results before and after applying the learning method, respectively.

Table 3: Frequency-domain distribution distance between the train and test set. Both the JSD2 (↓)
and the KS statistic (↓) are computed on amplitudes; bold marks the best per row.

Dataset Before ReVIN FAN SAN TIFO

JSD2 KS JSD2 KS JSD2 KS JSD2 KS JSD2 KS

ETTh1 0.36367 0.35982 0.08100 0.08937 0.14759 0.27057 0.04745 0.08389 0.04353 0.07357
weather 0.11156 0.19926 0.02175 0.09172 0.05328 0.12149 0.01739 0.09566 0.01687 0.07934
ECL 0.14431 0.16804 0.08060 0.11924 0.10394 0.16537 0.07740 0.11639 0.04225 0.09581

components, affecting only a subset of spokes. Overall, TIFO consistently outperforms all baselines,
and more results can be found in Appendix B.2.

Fourier Basis Learning Evaluation To answer RQ3, after analyzing the impact of TIFO on the
distributional difference, we further investigate how TIFO affects the deep forecasting models to
learn frequency features. Figure 10 shows the Fourier basis functions in three cases, from left to
right are: (i) basis functions before any processing (Before), (ii) after applying FAN, and (iii) after
applying TIFO, respectively. We use DLinear as the forecasting model in this evaluation, and results
for other models are given in Appendix B.2. The coefficients λ of the Fourier basis functions ζω1:4

are λ = 1.0 in the unprocessed case (Before). FAN sets the λ of the top-k high-amplitude frequencies
to zero and leaves the λ of the rest frequencies unchanged. In contrast, TIFO learns a data-driven λ
for each basis function. The line plots display ground truth and corresponding forecasting results in
the frequency domain for each case, with local peak components marked by red diamonds. Without
any processing, the original model failed to capture these local peaks. FAN, which affects deep
forecasting models via frequency modeling, shows improved performance. However, it still failed to
capture most local peak components. In contrast, after applying the TIFO, the model successfully
captures all four local peak components, outperforms other cases.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0
1

FAN

0

TIFO

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

Figure 3: Frequency-domain analysis of Fourier basis Learning. From left to right: unprocessed
spectra (Before), after FAN, and after applying TIFO. Each panel is a 3D box with time, frequency,
and amplitude axes. We visualize four Fourier basis waves, ζω1:4 , to illustrate how each processing
method alters the basis functions. In the frequency–amplitude plane, we plot three forecasting cases:
the ground truth in blue and the forecasting results based on the processed input in red. The red
diamonds mark key local peak frequencies.

Table 4: Running time (s), fixed L = 96.
Speed-ups over +SAN in parentheses.

Model Norm H ETTh1 ETTm1

D
L

in
ea

r +TIFO 96 3.004 (↑65.5%) 13.456 (↑63.1%)
720 3.082 (↑60.5%) 13.124 (↑64.2%)

+SAN 96 8.688 36.706
720 8.054 36.564

Pa
tc

hT
ST

+TIFO 96 7.952 (↑51.6%) 54.526 (↑14.3%)
720 8.215 (↑46.2%) 28.944 (↑56.0%)

+SAN 96 16.226 63.686
720 15.309 65.839

Table 5: Ablation study (MAE ↓, mean±std).
Bold = best.

Model Variant H ETTh1 ETTm1
D

L
in

ea
r +TIFO 96 0.371±0.032 0.299±0.021

720 0.428±0.039 0.425±0.032

+Random 96 0.379±0.025 0.305±0.022
720 0.435±0.036 0.431±0.031

iT
ra

ns
fo

rm
er +TIFO 96 0.389±0.023 0.330±0.035

720 0.496±0.034 0.475±0.043

+Random 96 0.401±0.017 0.335±0.033
720 0.502±0.029 0.483±0.047

Running Time and Ablation Study. Table 4 presents the running time results for TIFO and SAN
across two datasets. The results show the average time (in seconds per epoch) using DLinear and
PatchTST as backbones. TIFO consistently outperforms SAN across all datasets. The full results
are in B.3. Notably, we achieved improvements of 60% to 70% in 16 out of 28 experiment settings.
These improvements are primarily because TIFO only utilizes FFT and MLP during the training
phase, minimizing its impact on computation time. Table 5 shows an ablation in which we replace
the computed starting point s with a random vector, while keeping the MLPs and all parameters
unchanged. This variant assigns random starting points for the MLPs. The drop in forecasting
accuracy compared to TIFO demonstrates that initializing the MLPs with s is essential to help deep
forecasting models learn the frequency representations.

5 CONCLUSION

Nonstationary time series forecasting suffers from distributional shift due to the different distributions
that produce the training and test data. As a result, a model trained on the training data may perform
poorly on the test data. These distributions can be regarded as governed by a time structure. A
time series can be considered as first sampling from a time structure distribution, then from a time-
conditional observation distribution. Existing methods attempt to alleviate the issue by normalizing
the distributions. To this end, we propose a Time-Invariant Frequency Operator (TIFO), which
learns stationarity-aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-stationary ones,
thereby mitigating the distribution shift issue in time series. Extensive experiments demonstrate that
the proposed method achieves superior performance, yielding 18 top-1 and 6 top-2 results out of 28
settings compared to the baselines.
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6 REPRODUCIBILITY STATEMENT

To complement the model presented in Section 3.1, we provide pseudocode and an anonymous
repository that illustrate our approach. Algorithm 1 shows how frequency-wise stability s is computed
from the training data. Algorithm 2 demonstrates how these scores are used to adaptively re-weight
Fourier coefficients through independent MLP mappings, before transforming back to the time
domain. The complete implementation, including model training and experimental setup, is available
at our anonymous repository: https://anonymous.4open.science/r/TIFO-6BE1.

Algorithm 1: Compute Stability Scores sj

def compute_stability_scores(X):
"""
X: (N, T) training set
"""
amp = np.abs(np.fft.fft(X, axis=1))
mean = amp.mean(axis=0)

# per-freq mean
std = amp.std(axis=0) + 1e-5

# per-freq std
return mean / std # s_j

Algorithm 2: Apply Fourier Coefficients λj

def weight_spectra(x, s, f_cos, f_sin):
"""
f_*: learnable MLP layers
"""
X = np.fft.fft(x)
X[0::2] *= f_cos(s[0::2])

# re-weight real parts
X[1::2] *= f_sin(s[1::2])

# re-weight imag parts
return np.fft.ifft(X, n=len(x))
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A ADDITIONAL DISCUSSIONS AND DETAILS

A.1 ADDITIONAL DISCUSSION ABOUT BACKGROUND

Before normalization After normalization

Ti
m

e-
do

m
ai

n
da

ta
 d

is
tri

bu
tio

n
Fr

eq
ue

nc
y-

do
m

ai
n

da
ta

 d
is

tri
bu

tio
n

Time-domain distributions aligned after z-score.

Frequnecy distributions remain different after normalization.

Figure 4: Illustration of z-score normalization in both time
and frequency domains. (Top) Data generating distributions
p(x|ti) across different temporal structures ti are aligned
after z-score, sharing a common location and scale. (Bottom)
Frequency-domain power spectra before and after z-score.
The frequency-domain distribution remains divergent after
normalization.

Here, we conduct a schematic case
study using a synthetic time series
dataset to illustrate further the discus-
sions in Section 2.2.

As shown in Figure 4, for each
temporal condition ti, we generate
50 independent samples, each gov-
erned by different temporal structures.
Here, we generate different temporal
structures by mixing low- and high-
frequency components, as shown in
the Figure 4 (bottom). For exam-
ple, t1 mainly contains low-frequency
features, while the energy distribu-
tion of t4 primarily exists in the high-
frequency bands.

Then, we use the numerical distribu-
tion of x and the Power Spectral Den-
sity (PSD) to evaluate the data distri-
bution in both the time domain and
the frequency domain, respectively.
The figure visualizes the data before
and after applying z-score normaliza-
tion. In the time domain, normaliza-
tion successfully transfers the distribu-
tions from different ti into a common
Gaussian shape, thereby reducing distributional gaps. However, when examining the same data in the
frequency domain, we find a very different result: the spectral energy distributions remain distinct and
non-overlapping, revealing that the z-score does not address discrepancies in temporal dependencies
or frequency compositions.

This is because the z-score operates only on first- and second-order statistics, ignoring higher-order
temporal structure information. In contrast, periodicity and other temporal dynamics are preserved
in the signal and are clearly reflected in the frequency features. In other words, while z-score
normalization alters the numerical distribution of the data, it preserves the underlying temporal
organization. Thus, the distribution shift in the frequency domain remains unchanged.

A.2 RELATED WORKS

Time Series Forecasting. Transformer-based architectures have become the mainstream in time
series forecasting (Nie et al., 2023; Zhang & Yan, 2023; Jiang et al., 2023; Liu et al., 2024b).
Meanwhile, simple multilayer perceptron (MLP) models, such as DLinear (Zeng et al., 2023; Chen
et al., 2023; Zhou et al., 2022a), have also attracted attention due to their lower computational costs
and forecasting accuracy comparable to transformer-based models.
Normalization-based Methods. Existing methods aim to quantify and explicitly eliminate non-
stationary components from both training and test data, thereby aligning distributions and enhancing
generalization. A normalization is performed by subtracting the empirical mean and dividing by the
variance computed from the data. At the forecasting stage, denormalization is applied to reintroduce
these descriptive statistics to model outputs. RevIN (Kim et al., 2021) is an innovative work that
focuses on z-score normalization. Dish-TS (Fan et al., 2023) utilizes learned mean and variance for
denormalization. SAN (Liu et al., 2023) models non-stationarity in a set of fine-grained sub-series
and proposes an additional loss function to predict their statistics. Instead of mean and variance,
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SIN (Han et al., 2024) proposes an independent neural network to learn features as the objectives
of normalization and denormalization adaptively. However, existing methods focus on modeling
statistical variations in the time domain. A recent FAN (Ye et al., 2024) has taken an initial step in
learning predominant frequency components as non-stationarities. FAN uses heuristic top-k masking
of the largest-amplitude frequencies, zeroing out a subset of components. However, this heuristic
selection may risk discarding critical periodic patterns embedded in high-energy regions and introduce
sub-optimal frequency correlations into the model, inadvertently misleading the model training.
Frequency Domain Modeling. Frequency domain modeling has proven highly effective in time
series forecasting. Mainstream works employ neural networks to automatically learn frequency
representations directly in the raw Fourier domain (Wu et al., 2021; Zhou et al., 2022b; Wang et al.,
2022; Wu et al., 2023; Yi et al., 2023), but such approaches can be vulnerable to noise and to
frequency components that vary significantly over time. Some other methods are designed to select
informative components via sparse selection (Zhou et al., 2022b; Woo et al., 2022; Zhou et al., 2022a;
Ye et al., 2024) or local normalization in the frequency domain (Piao et al., 2024), yet these still rely
on heuristics, such as top-k selection, or rely on the model to identify the key frequency features.
In contrast, our method learns and adjusts the coefficients of the Fourier basis functions, naturally
encoding the relative importance of different spectral components and allowing seamless deployment
on any forecasting backbone. Notably, FAN uses heuristic top-k masking of the largest-amplitude
frequencies, zeroing out a subset of components. In contrast, TIFO learns a data-driven coefficient
for every Fourier basis function, enabling dynamic weighting of the contribution of each component.

A.3 DETAILS OF THE DATASETS.

Weather contains 21 channels (e.g., temperature and humidity) and is recorded every 10 minutes in
2020. ETT (Zhou et al., 2021) (Electricity Transformer Temperature) consists of two hourly-level
datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). Electricity (Lai et al.,
2018), from the UCI Machine Learning Repository and preprocessed by, is composed of the hourly
electricity consumption of 321 clients in kWh from 2012 to 2014. Solar-Energy (Lai et al., 2018)
records the solar power production of 137 PV plants in 2006, sampled every 10 minutes. Traffic
contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
from January 2015 to December 2016. More details of these datasets can be found in Table.6.

Table 6: Overview of Datasets

Dataset Source Resolution Channels Time Range

Weather Autoformer(Wu et al., 2021) Every 10 minutes 21 (e.g., temperature, humidity) 2020
ETTh1 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2016-2017
ETTh2 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2017-2018
ETTm1 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2016-2017
ETTm2 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2017-2018
Electricity UCI ML Repository Hourly 321 clients’ consumption 2012-2014
Traffic Informer(Zhou et al., 2021) Hourly 862 sensors’ occupancy 2015-2016

A.4 PREPROCESSING AND EVALUATION DETAILS

Given the raw multivariate time-series data X ∈ RT×C , we first slide a window of length L = 96
over X with stride 1. This produces overlapping segments W = {Xi:i+L−1 | i = 1, . . . , T −L+1}.
Each segment is of shape (L,C). We order the segments chronologically and split W into training
(70%), validation (20%), and test (10%) sets. On the training set, we compute per-variable means
µj and standard deviations σj for j = 1, . . . , C. We then apply per-variable z-score normalization
to every segment in all splits: w̃i,j =

wi,j−µj

σj
, ∀w ∈ W, i = {1, . . . , L}, j = {1, . . . , C}. The

normalized segments form Dtrain, Dval, and Dtest, ready for model training and evaluation.
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Algorithm 3: Pre-processing for Time-Series Forecasting

Input: Time-series X ∈ RT×C , window length L, split ratios (0.7, 0.2, 0.1)
Output: Normalized sets Dtrain,Dval,Dtest

Slice X into overlapping windows W ← {Xi:i+L−1 | i = 1, . . . , T − L+ 1};
Split W into train/val/test by first 70%, next 20 %, last 10 %;
Compute µj = mean

(
{wi,j | w ∈ Dtrain}

)
;

Compute σj = std
(
{wi,j | w ∈ Dtrain}

)
;

foreach segment w ∈W do
for variable j = 1, . . . , C do

w̃j ← (wj − µj)/σj ;
end
Add w̃ to its split’s dataset;

end
return Dtrain, Dval, Dtest

A.5 DETAILS OF THE BASELINES

Reversible Instance Normalization. Reversible Instance Normalization (Revin) normalizes each
input sample using z-score normalization while preserving the original mean and variance. Revin
reverses the normalization to model outputs by using the saved statistics and applies learnable scaling
and shifting parameters (γ and β).

Sequential Adaptive Normalization. Sequential Adaptive Normalization (SAN) has two training
phases. In the first phase, SAN is trained to learn the relationships between patches of input and
target data by mapping their means and variances. In the second phase, SAN parameters are frozen,
and only the forecasting model is trained. During inference, input data is normalized using SAN, and
the model output is reverse-normalized with predicted statistics by SAN.

Frequency Adaptive Normalization (FAN) is a deep learning approach for time series forecasting
that decomposes input sequences into frequency components using FFT/RFFT. The algorithm
separates the top-k dominant frequency components from residual signals, then employs an MLPfreq
network to model the main frequency patterns while handling residuals separately. By processing
frequency and temporal information through parallel pathways and combining them via learnable
weights, FAN achieves improved forecasting accuracy through frequency-domain feature extraction
and adaptive normalization. The method is particularly effective for capturing periodic patterns and
long-term dependencies in time series data.

Algorithm 4: Reversible Instance Normalization (Revin)
Input: Time-series data X , Forecasting model F
Output: Forecasted data X̂ ;
for each instance Xi in X do

Compute mean µi ← mean(Xi);
Compute variance σ2

i ← variance(Xi) ;
Normalize X̃i ← Xi−µi

σi
;

Store µi and σ2
i ;

end
X̃ ← {X̃1, X̃2, . . . , X̃N} ;
Ỹ ← F(X̃) ;
for each forecasted instance Ỹi do

Reverse Normalize Yi ← Ỹi × σi + µi ;
Apply learnable parameters Yi ← γ × Yi + β ;

end
return X̂ = {Y1, Y2, . . . , YN} ;
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Algorithm 5: Sequential Adaptive Normalization (SAN)
Stage 1: Train SAN;
Input: Training data X and targets Y Divide X and Y into patches {Xp} and {Yp}
for each pair of patches (Xp, Yp) do

Compute means µX ← mean(Xp), µY ← mean(Yp) ;
Compute variances σ2

X ← variance(Xp), σ2
Y ← variance(Yp) ;

Train SAN to map (µX , σ2
X) to (µY , σ

2
Y ) using loss on µY and σ2

Y ;
Stage 2: Train Forecasting Model Freeze SAN parameters;
for each training iteration do

Divide input X into patches {Xp} ;
for each patch Xp do

Normalize Xp ← Xp−µX

σX
using SAN’s learned µX and σ2

X

end
Forecast Ỹ ← F(X) ;
Divide Ỹ into patches {Ỹp} ;
for each forecasted patch Ỹp do

Predict µY , σ2
Y using SAN Reverse Normalize Yp ← Ỹp × σY + µY

end
end
Compute loss L(Y, Ŷ ) ;
Update forecasting model parameters θ via backpropagation ;

end
return Trained forecasting model F ;

A.6 DETAILS OF THE BACKBONES AND SETUP

In our study, we selected three distinct forecasting models to evaluate the effectiveness of our proposed
normalization techniques. DLinear is an MLP-based model renowned for its lightweight architecture,
utilizing two separate multilayer perceptrons (MLPs) to learn the periodic and trend components of
the data independently.

PatchTST and iTransformer are both Transformer-based models with unique approaches to handling
time-series data. PatchTST introduces a patching operation that samples each input time series into
multiple patches, which are then used as input tokens for the transformer, effectively capturing local
temporal patterns. In contrast, iTransformer emphasizes channel-wise attention by treating the entire
sequence of each channel as a transformer token and employing self-attention mechanisms to learn
the relationships between different channels.

For all models, we first compute the starting point (Coefficient of variation) across the entire training
dataset, a fixed computational process that typically takes less than five seconds. Following this, we
apply a simple, parameter-free normalization and denormalization method. After normalization, the
input data is processed through our custom weighting layer before being fed into the forecasting
models.

A.7 OTHER EXPERIMENTS DETAILS

Loss Function. For our experiments, we adhere to a conventional approach by employing the
Mean Squared Error (MSE) loss function, implemented as nn.MSELoss in our framework. The
MSE loss quantifies the average squared difference between the predicted values and the actual
target values, providing a straightforward measure of prediction accuracy. Mathematically, the MSE
loss is expressed as LMSE = 1

N

∑N
i=1 (ŷi − yi)

2, where N is the number of samples, ŷi represents
the predicted value, and yi denotes the true target value for the i-th sample. This loss function
effectively penalizes larger errors more heavily, encouraging the model to achieve higher precision in
its predictions.
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Algorithm 6: Frequency Adaptive Normalization (FAN)
Stage 1: Frequency Decomposition;
Input: Input sequence x ∈ RB×T×N , top-k frequency components k, RFFT flag
Function MAINFREQPART(x, k, rfft);
if rfft = True then

xf ← RFFT(x, dim = 1) ;
else

xf ← FFT(x, dim = 1) ;
end
indices← TopK(|xf |, k, dim = 1) ;
mask← zeros_like(xf ) ;
mask.scatter(indices, 1) ;
xfiltered
f ← xf ⊙mask ;

if rfft = True then
xfiltered ← IRFFT(xfiltered

f , dim = 1) ;
else

xfiltered ← IFFT(xfiltered
f , dim = 1) ;

end
xresidual ← x− xfiltered ;
return xresidual, xfiltered ;

Stage 2: Train FAN Model;
Input: Training data X , sequence length T , prediction length O, channels N , freq_topk k
Initialize MLPfreq modelMfreq with parameters θfreq ;
Initialize learnable weights w ∈ R2×N ;
for each training iteration do

Normalization Phase:;
(xresidual, xfiltered)← MAINFREQPART(X, k, rfft) ;
x̂main ←Mfreq(x

filtered, X) ;
Forward Pass:;
xnorm ← xresidual ;
Denormalization Phase:;
x̂residual ← ForecasterOutput ;
x̂final ← x̂residual + x̂main ;
Loss Computation:;
(yresidual, ymain)← MAINFREQPART(Ytrue, k, rfft) ;
L ← MSE(x̂main, ymain) + MSE(x̂residual, yresidual) ;
Update parameters θfreq and w via backpropagation ;

end

Stage 3: MLPfreq Architecture;
Input: Main frequency signal xmain ∈ RB×N×T , original input x ∈ RB×N×T

hfreq ← ReLU(LinearT→64(x
main)) ;

hconcat ← Concat([hfreq, x], dim = −1) ;
hhidden ← ReLU(Linear(64+T )→128(hconcat)) ;
output← Linear128→O(hhidden) ;
return Trained FAN model with frequency decomposition capability ;

Computational Resources. All experiments were conducted on an NVIDIA RTX A6000 GPU with
48GB of memory, utilizing CUDA version 12.4 for accelerated computation. This high-performance
computational setup facilitated efficient training and evaluation of our forecasting models, ensuring
timely execution of experiments even with large-scale time-series data.
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B THE FULL RESULTS.

B.1 FULL LONG-TERM FORECASTING RESULTS.

Table 7 and Table 8 present the full comprehensive results discussed in the main paper. This table
includes the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2,
Traffic, Weather] dataset, utilizing the [DLinear, PatchTST, iTransformer] as the backbone model.
We have compared our method against all baseline models across all forecasting horizons (H ∈
{96, 192, 336, 720}).

Table 7: Detailed results of comparing our proposal and other normalization methods. The best
results are highlighted in bold. The second best are underlined.

Models DLinear (Zeng et al., 2023) PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.175 0.266 0.190 0.280 0.182 0.271 0.212 0.297 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.183 0.273 0.195 0.286 0.186 0.276 0.213 0.300 0.169 0.266 0.159 0.252 0.180 0.270 0.165 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.198 0.289 0.211 0.301 0.200 0.290 0.227 0.314 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.233 0.317 0.253 0.334 0.237 0.322 0.268 0.344 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.401 0.374 0.395 0.387 0.405 0.392 0.413 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.442 0.439 0.424 0.428 0.445 0.440 0.448 0.436 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.480 0.456 0.471 0.452 0.505 0.471 0.489 0.456 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.519 0.501 0.514 0.500 0.527 0.507 0.525 0.503 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.277 0.338 0.344 0.397 0.292 0.347 0.301 0.349 0.314 0.361 0.344 0.397 0.298 0.352 0.297 0.345 0.302 0.354 0.300 0.349
192 0.335 0.374 0.336 0.376 0.340 0.378 0.485 0.481 0.385 0.402 0.380 0.399 0.391 0.421 0.389 0.411 0.371 0.402 0.380 0.395 0.383 0.402 0.381 0.415
336 0.361 0.399 0.355 0.395 0.356 0.398 0.582 0.536 0.431 0.438 0.410 0.424 0.444 0.466 0.437 0.451 0.425 0.435 0.420 0.428 0.435 0.441 0.433 0.442
720 0.388 0.429 0.384 0.423 0.396 0.435 0.836 0.659 0.429 0.461 0.422 0.443 0.467 0.484 0.430 0.481 0.420 0.444 0.410 0.432 0.448 0.457 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.288 0.342 0.353 0.374 0.322 0.359 0.321 0.362 0.325 0.361 0.353 0.374 0.326 0.361 0.330 0.370 0.331 0.373 0.341 0.376
192 0.321 0.359 0.336 0.364 0.323 0.363 0.391 0.392 0.350 0.379 0.365 0.388 0.355 0.381 0.391 0.401 0.365 0.384 0.374 0.391 0.376 0.381 0.380 0.394
336 0.355 0.380 0.370 0.383 0.357 0.384 0.423 0.413 0.381 0.401 0.407 0.408 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.412 0.418 0.419 0.418
720 0.405 0.411 0.425 0.414 0.409 0.415 0.486 0.449 0.446 0.436 0.464 0.442 0.450 0.437 0.486 0.459 0.471 0.447 0.475 0.449 0.485 0.453 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.166 0.258 0.194 0.293 0.177 0.272 0.179 0.262 0.184 0.277 0.185 0.272 0.178 0.272 0.176 0.258 0.180 0.272 0.200 0.281
192 0.222 0.300 0.220 0.291 0.223 0.302 0.283 0.360 0.245 0.319 0.240 0.300 0.249 0.325 0.252 0.320 0.247 0.311 0.241 0.302 0.248 0.315 0.252 0.312
336 0.272 0.329 0.273 0.325 0.272 0.331 0.371 0.450 0.298 0.253 0.310 0.347 0.330 0.378 0.315 0.351 0.307 0.351 0.307 0.347 0.308 0.352 0.314 0.352
720 0.365 0.383 0.368 0.383 0.380 0.384 0.555 0.509 0.405 0.401 0.409 0.404 0.423 0.431 0.415 0.408 0.409 0.403 0.410 0.402 0.412 0.407 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.497 0.342 0.527 0.339 0.530 0.340 0.650 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.499 0.339 0.502 0.331 0.516 0.338 0.597 0.359 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.520 0.349 0.510 0.327 0.533 0.343 0.605 0.362 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.550 0.349 0.545 0.345 0.575 0.367 0.642 0.381 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.152 0.210 0.196 0.256 0.167 0.225 0.166 0.207 0.170 0.229 0.195 0.235 0.165 0.221 0.162 0.204 0.170 0.227 0.175 0.225

192 0.194 0.251 0.207 0.251 0.196 0.254 0.238 0.299 0.208 0.263 0.216 0.253 0.211 0.270 0.240 0.270 0.212 0.261 0.213 0.252 0.214 0.270 0.225 0.257
336 0.243 0.289 0.256 0.288 0.246 0.294 0.281 0.330 0.255 0.301 0.273 0.295 0.261 0.310 0.291 0.306 0.261 0.304 0.271 0.295 0.265 0.309 0.280 0.307
720 0.311 0.339 0.325 0.337 0.315 0.346 0.346 0.384 0.326 0.349 0.351 0.346 0.332 0.359 0.364 0.353 0.338 0.345 0.340 0.347 0.342 0.358 0.373 0.366

Table 8: Detailed results of comparing TIFO and FAN. The best results are highlighted in bold. The
second best are underlined.

Models DLinear (Zeng et al., 2023) iTransformer (Liu et al., 2024b)
Methods + TIFO * + TIFO + FAN + RevIN + TIFO * + TIFO + FAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.146 0.248 0.210 0.278 0.145 0.244 0.143 0.237 0.158 0.254 0.152 0.251

192 0.149 0.245 0.155 0.249 0.163 0.264 0.210 0.304 0.169 0.266 0.159 0.252 0.170 0.263 0.165 0.255
336 0.165 0.262 0.171 0.267 0.180 0.282 0.223 0.309 0.178 0.271 0.172 0.266 0.183 0.281 0.180 0.272
720 0.198 0.291 0.208 0.298 0.216 0.316 0.257 0.349 0.210 0.311 0.205 0.295 0.208 0.306 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.414 0.431 0.396 0.410 0.380 0.400 0.389 0.404 0.425 0.434 0.394 0.409
192 0.410 0.417 0.404 0.412 0.446 0.451 0.445 0.440 0.429 0.427 0.447 0.440 0.483 0.468 0.460 0.449
336 0.430 0.427 0.426 0.426 0.476 0.474 0.487 0.465 0.479 0.451 0.492 0.463 0.528 0.495 0.501 0.475
720 0.437 0.455 0.428 0.448 0.539 0.538 0.512 0.510 0.491 0.471 0.496 0.482 0.582 0.555 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.316 0.376 0.344 0.397 0.298 0.352 0.297 0.345 0.358 0.408 0.300 0.349
192 0.335 0.374 0.336 0.376 0.384 0.423 0.485 0.481 0.371 0.402 0.380 0.395 0.458 0.469 0.381 0.415
336 0.361 0.399 0.355 0.395 0.465 0.479 0.582 0.536 0.425 0.435 0.420 0.428 0.570 0.533 0.433 0.442
720 0.388 0.429 0.384 0.423 0.671 0.596 0.836 0.659 0.420 0.444 0.410 0.432 0.786 0.651 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.302 0.352 0.353 0.374 0.326 0.361 0.330 0.370 0.360 0.390 0.341 0.376
192 0.321 0.359 0.336 0.364 0.342 0.376 0.391 0.392 0.365 0.384 0.374 0.391 0.398 0.408 0.380 0.394
336 0.355 0.380 0.370 0.383 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.435 0.436 0.419 0.418
720 0.405 0.411 0.425 0.414 0.442 0.439 0.486 0.449 0.471 0.447 0.475 0.449 0.503 0.478 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.170 0.262 0.194 0.293 0.178 0.272 0.176 0.258 0.195 0.293 0.200 0.281
192 0.222 0.300 0.220 0.291 0.230 0.306 0.283 0.360 0.247 0.311 0.241 0.302 0.276 0.350 0.252 0.312
336 0.272 0.329 0.273 0.325 0.293 0.351 0.371 0.450 0.307 0.351 0.307 0.347 0.336 0.385 0.314 0.352
720 0.365 0.383 0.368 0.383 0.420 0.436 0.555 0.509 0.409 0.403 0.410 0.402 0.539 0.512 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.524 0.340 0.648 0.396 0.400 0.271 0.394 0.268 0.525 0.341 0.401 0.277
192 0.427 0.288 0.422 0.283 0.523 0.338 0.598 0.370 0.470 0.319 0.413 0.277 0.517 0.336 0.421 0.282
336 0.439 0.305 0.436 0.295 0.537 0.343 0.605 0.373 0.489 0.333 0.428 0.283 0.530 0.339 0.434 0.389
720 0.454 0.311 0.455 0.311 0.581 0.362 0.645 0.395 0.478 0.330 0.463 0.301 0.573 0.339 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.187 0.242 0.196 0.256 0.165 0.221 0.162 0.204 0.178 0.235 0.175 0.225

192 0.194 0.251 0.207 0.251 0.227 0.280 0.238 0.299 0.212 0.261 0.213 0.252 0.220 0.275 0.225 0.257
336 0.243 0.289 0.256 0.288 0.278 0.330 0.281 0.330 0.261 0.304 0.271 0.295 0.267 0.314 0.280 0.307
720 0.311 0.339 0.325 0.337 0.341 0.368 0.346 0.384 0.338 0.345 0.340 0.347 0.340 0.369 0.373 0.366
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B.2 ANALYSIS RESULTS

B.2.1 FOURIER DISTRIBUTION ANALYSIS

In the main text we describe using Jensen–Shannon divergence squared (JSD2) and the Kol-
mogorov–Smirnov (KS) statistic to quantify spectral distribution shift between training and test
sets. Here we show another result and the algorithms.

JSD2 Computation. For each frequency ωj , let a =
{

ampi,j | i ∈ ttrain
}
, b =

{
ampi,j | i ∈

ttest
}
. We build histograms of a and b, normalize to probability mass functions, and compute the

Jensen–Shannon divergence squared via the Python Library "SciPy" ‘jensenshannon‘ function.

Algorithm 7: Compute JSD2 between two samples
Input: Arrays a, b; number of bins B
Output: Jensen–Shannon divergence squared DJSD2

vmin ← min(min a,min b);
vmax ← max(max a,max b);
Compute histogram ha ← histogram(a;B, [vmin, vmax]);
Compute histogram hb ← histogram(b;B, [vmin, vmax]);
Normalize: p← ha/

∑
ha, q ← hb/

∑
hb;

DJSD ← jensenshannon(p, q, base = 2);
DJSD2 ← D2

JSD;
return DJSD2

KS Statistic Computation. For each frequency index ωj , using the same samples a and b, we
compute their empirical cumulative distribution functions (ECDFs) and take the maximum absolute
difference.

Algorithm 8: Compute Kolmogorov–Smirnov statistic
Input: Arrays a, b
Output: KS statistic DKS

Sort a→ asorted, sort b→ bsorted;
Let V ← unique({asorted} ∪ {bsorted});
foreach v ∈ V do

Fa(v)← 1
|a|

∣∣{x ∈ a : x ≤ v}
∣∣;

Fb(v)← 1
|b|

∣∣{x ∈ b : x ≤ v}
∣∣;

Compute ∆(v)← |Fa(v)− Fb(v)|;
end
DKS ← maxv∈V ∆(v);
return DKS

B.2.2 FOURIER BASIS LEARNING EVALUATION

We include here further 3D views of the ground truth vs. predicted amplitude spectra, sampled from
different time-series examples and channels. The forecasting horizon is fixed to 720. For each plot,
we pick a specific sample index and a specific channel, to show that our TIFO consistently helps the
model recover spectral peaks across the dataset:

• Compute amplitudes. For each method tag (Before, FAN, TIFO), we load a 1D
slice data[...,sample,channel], take the real FFT via rfft, then smooth with
gaussian_filter1d and clip to [zmin, zmax].

• Frequency-to-axis mapping. We linearly map the frequency index range [fmin, fmax] to
the extended Y-axis interval, and map amplitude values into the Z-axis range plus a constant
offset (Z_OFFSET).

• True vs. predicted curves. We plot the smoothed true spectrum (in blue) and the predicted
spectrum (in red) at a constant x-plane (X_PLANE), using 3D line plots.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.04 0.36
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SANRevIN TIFOFAN

Figure 5: More results on train-test distance compactness: This figure shows another visualization of
the JSD2 amplitudes distribution distance between the train and test datasets on the electricity data
(on a different channel). Each scatter point represents one frequency component. A smaller radius
indicates a smaller distributional gap. Green and red colors represent the results before and after
applying the learning method, respectively.
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Figure 6: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #1.
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Figure 7: Frequency-domain analysis of Fourier basis Learning. ETTm1 dataset, Channel #2.
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Figure 8: Frequency-domain analysis of Fourier basis Learning. Traffic dataset, Channel #237.
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Figure 9: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #6.
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Figure 10: Frequency-domain analysis of Fourier basis Learning. Weather dataset, Channel #7.

B.3 RUNNING TIME

Table 9 presents the running time comprehensive results of our paper. This table includes the
prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Weather]
dataset, utilizing the [DLinear, PatchTST] as the backbone model. We compare our method against
SAN across forecasting horizons H ∈ {96, 720}.
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Table 9: Running time comparison with forecasting lengths H ∈ {96, 720} for all datasets and fixed
input sequence length L = 96. The best results are highlighted.

Model Electricity ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather

H 96 720 96 720 96 720 96 720 96 720 96 720 96 720

DLinear (Zeng et al., 2023)
+ TIFO 16.718 27.545 3.004 3.082 2.820 3.222 13.456 13.124 11.839 12.949 23.217 43.413 13.970 16.536
+ SAN 19.159 34.914 8.688 8.054 8.373 7.811 36.706 36.564 36.620 36.550 31.378 54.518 37.739 40.731
IMP(%) 12.8% 21.1% 65.5% 60.5% 66.6% 58.3% 63.1% 64.2% 67.8% 64.3% 26.0% 20.3% 63.0% 59.9%

PatchTST (Nie et al., 2023)
+ TIFO 99.104 103.781 7.952 8.215 14.687 14.122 54.526 28.944 59.406 26.233 209.006 215.718 69.107 49.628
+ SAN 313.697 322.083 16.226 15.309 16.078 14.998 63.686 65.839 65.978 66.798 550.026 557.730 81.973 81.462
IMP(%) 68.4% 67.7% 51.6% 46.2% 8.00% 5.20% 14.3% 56.0% 10.0% 60.7% 61.6% 61.2% 15.9% 39.8%

C LLM USAGE STATEMENT

We used large language models (LLMs) solely for writing support, including grammar correction,
sentence refinement, and clarity improvements. All conceptual contributions, algorithm design, code
development, experiments, and analyses were conducted entirely by the authors.
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