
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TIFO: TIME-INVARIANT FREQUENCY OPERATOR FOR
STATIONARITY-AWARE REPRESENTATION LEARNING
IN TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Nonstationary time series forecasting suffers from the distribution shift issue due to
the different distributions that produce the training and test data. The distributions
can be regarded as governed by a time structure which itself may be subject to some
probabilistic law. Existing methods attempt to alleviate the dependence by, e.g.,
removing low-order moments from each individual sample. These solutions fail to
capture the underlying time-evolving structure across samples and do not model
the complex time structure. In this paper, we aim to address the distribution shift in
the frequency space by considering all possible time structures. To this end, we
propose a Time-Invariant Frequency Operator (TIFO), which learns stationarity-
aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-
stationary ones, thereby mitigating the distribution shift issue in time series. To
justify our method, we show that the Fourier transform of time series data implicitly
induces eigen-decomposition in the frequency space. Learning the data-specific
eigenvalues has the natural interpretation of weighting up frequency components
responsible for distributional discrepancies. TIFO is a plug-and-play approach
that can be seamlessly integrated into various forecasting models. Experiments
demonstrate our method achieves 18 top-1 and 6 top-2 results out of 28 forecasting
settings. Notably, it yields 33.3% and 55.3% improvements in average MSE on
the ETTm2 dataset. In addition, TIFO reduces computational costs by 60% -70%
compared to baseline methods, demonstrating strong scalability across diverse
forecasting models. Our code can be found at this anonymous GitHub repository1.

1 INTRODUCTION

Time series forecasting is vital to decision-making in real-world applications like industrial system
control and stock market tracking (Thompson & Wilson, 2016). However, a crucial challenge is
the non-stationary nature of real-world time series that often leads to poor generalization to unseen
data beyond the training set. In this paper, we analyze this issue and existing normalization-based
solutions (Kim et al., 2021; Fan et al., 2023; Liu et al., 2023; Han et al., 2024) from a data generation
perspective. We thus introduce a principled new solution derived from this analysis.

From a distributional perspective, a time series is sampled from a distribution x ∼ p(x|t), where t
denotes a temporal condition (e.g., the t-th sliding window) drawn from a time-evolving distribution
p(t). Consider the normal distribution N (µt, σ

2
t) for example, it suggests that the mean and variance

are conditional on t. Therefore, a forecasting model trained on training data xtrain ∼ p(x|ttrain) may
not perform well on test data xtest ∼ p(x|ttest) since ttrain, ttest can be vastly different, referred to as
the distributional shift issue.

Existing methods tackle this issue by weakening the dependency of x on t through normalizing the
data distribution (Kim et al., 2021; Liu et al., 2023; Fan et al., 2023; Han et al., 2024), so that the
time-dependent low-order moments (mean and variance) are removed from both training and test
sets to obtain a standard distribution, in the normal case N (0, 1). While this kind of method has

1https://anonymous.4open.science/r/TIFO-6BE1

1

https://anonymous.4open.science/r/TIFO-6BE1
https://anonymous.4open.science/r/TIFO-6BE1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

shown some promise, it implicitly assumes that (1) this standard reference distribution represents the
underlying distribution of the entire dataset, and (2) low-order statistics are sufficient to describe the
complex data distribution and avoids modeling the time parameter distribution p(t). It may cause poor
performance when the assumption does not hold, e.g., the distribution has more complex dependency
over time, such as modality, high-order moments, or its functional form. To address this challenge,
this paper proposes a novel frequency-based method and provides its theoretical foundation.

From a signal processing perspective, non-stationarity in real-world time series often manifests as
changes in frequency characteristics (Proakis & Manolakis, 1996), such as shifts in dominant spectral
modes or time-dependent amplitudes. Mean and variance characterize the overall amplitude and
spread of a time series, but they fail to capture how energy is distributed across different frequency
components (Piao et al., 2024). In the existing works, normalizing low-order statistics may help
align total energy but not its spectral structure, such as the location of that energy in the frequency
space. As a result, frequency shifts (i.e., changes in the dominant frequencies over time) may persist,
especially when spectral characteristics differ significantly across training and testing datasets.

In this work, we propose to address distributional shift by working in the frequency space and by
considering all possible time conditions via p(x) =

∫
p(t)p(x|t)dt. Specifically, frequency-domain

analysis provides a disentangled view of underlying temporal features, enabling the model to capture
fine-grained stationarity. Crucially, such analysis is conducted across samples at the dataset level: the
observed distribution p(x) is formulated as a weighted average of the conditional distributions p(x|t)
over all possible time conditions, where the weights are given by p(t). Thus, we can achieve the
same goal (weakening the dependency of x on t) but account for the full temporal variability. To this
end, we propose Time-Invariant Frequency Operator (TIFO) for stationarity-aware representation
learning, which consistes two stages. Stage-I: We apply the Discrete Fourier Transform (DFT) to all
samples in a given time series dataset to obtain their frequency components. For each frequency, we
then conduct cross-sample statistical analysis and use a lightweight neural network layer to learn a
weight that quantifies its time-invariant relevance for mitigating distributional shift. Through this
data-driven weighting, our method emphasizes relatively stationary components (via higher weights)
while suppressing non-stationary ones (via lower weights), effectively learning a weighted average
over all time conditions embedded in the dataset. Stage-II: After weighting, we perform an inverse
DFT (IDFT) to project the adjusted frequencies back into the time domain. These transformed time
series are then fed into forecasting models. The weighted composition of fine-grained frequency
components enables the model to approximate more complex, temporally-evolving distributions.
Moreover, this paper takes a first step toward providing a theoretical foundation to justify our method.
We adopt a non-stationary stochastic process perspective and characterize time series through their
frequency characteristics. We show that by classical harmonic analysis results, the Fourier transform
on time series data implicitly induces a kernel in the frequency space, which in turn permits a set
of orthonormal basis functions formed by spectral eigen-decomposition (Berg et al., 1984). By
learning data-specific eigenvalues, the frequency components that are responsible for distributional
discrepancies can be captured as a weighted sum of eigenfunctions. Our contributions are as follows:

Summary of Key Contribution

(Perspective) We provide a data generation-based formulation of non-stationary time series and
distributional shift, offering a unified theoretical framework that both explains and generalizes
existing normalization methods.
(Method) We propose to learn stationarity and non-stationarity across samples in the frequency
domain. Our method enables fine-grained feature extraction to handle complex temporal dy-
namics, and can be seamlessly integrated into various forecasting models. We also provide a
theoretical analysis to justify the soundness of our method.
(Experiments) We apply TIFO to popular forecasting models, including DLinear (Zeng et al.,
2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b) to validate its effective-
ness across seven datasets. In non-stationary datasets such as ETTm2, we improve PatchTST and
iTransformer by 33.3% and 55.3%, respectively. Compared to existing normalization methods,
TIFO achieves 18 top-1 and 6 top-2 results out of 28 settings. Analysis on data distribution
shows that TIFO reduces the difference between training and testing datasets by up to 88%,
improving robust forecasting for non-stationary data. Computational efficiency analysis shows
that TIFO achieves improvements of 60% to 70% in 16 out of 28 settings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND PRELIMINARY ANALYSIS

We consider multivariate time series forecasting, where we are given a set of input X = {X(i)}Ni=1

and the corresponding target Y = {Y(i)}Ni=1 in discrete time, where N denotes the number of
sequences. Let C,Lx, Ly respectively denote the number of variables, the input-sequence length,
and the model prediction length, then the goal can be formulated as that given an input sequence
X(i) ∈ RLx×C , predict the target values Y(i) ∈ RLy×C .

2.1 ANALYZE DISTRIBUTIONAL SHIFT FROM A DATA GENERATION PERSPECTIVE

In this paper, we tackle the distributional shift issue in time series forecasting by analyzing the data
generation process. Time t can be viewed as the index of a structured temporal sequence (e.g., the
t-th sampling window) drawn from a distribution p(t). Once t is sampled, a corresponding time
series segment X is then drawn from the conditional distribution p(x|t) (Adak, 1998), reflecting
various events (e.g., industrial sensors) occurring within that segment. This formulation highlights
that time series datasets X = {X(i)}Ni=1 can be viewed as being generated from different realizations
of temporal indices {t(i)}Ni=1, where each t induces its own conditional distribution p(x|t). As
time evolves, these context-dependent distributions naturally shift, reflecting the non-stationary
characteristics of time series. As such, the distributional difference of p(x|ttrain) ̸= p(x|ttest) thus
arises from the underlying variation in temporal contexts. In practice, this shift is often quite large,
since testing or future time series naturally change with time and differ from the training contexts.

2.2 NORMALIZATION METHODS WEAKEN x DEPENDENCY ON TIME CONDITION t

Methods such as RevIN (Kim et al., 2021) and SAN (Liu et al., 2023) are based on a key concept: they
aim to estimate time-dependent statistics (e.g., mean and variance) and remove them from the input
time series. This process reduces the conditional dependence on t, transforming the time-varying
distribution p(x|t) closer to a stationary form p(x). We provide more discussion in Appendix A.1.

Formally, take a Gaussian distribution N (µt, σ
2
t) for example, its mean and standard deviation are

subject to time changes. They estimate (µt, σt) for each time segment xt via a function fθ(xt),
where fθ(·) can be either a numerical computation (Kim et al., 2021) or a neural network (Fan et al.,
2023; Liu et al., 2023; Han et al., 2024). By removing these statistics from the data via x̂t =

xt−µt

σt
,

the time-dependent N (µt, σ
2
t) is transformed into a standard Gaussian N (0, 1). Consequently, the

distributional shift between training and test datasets is mitigated, since x̂train, x̂test ∼ N (0, 1).

Nonetheless, some limitations remain in existing normalization methods:

1. Inadequate Data Distribution Modeling. This approach handles each sample individually that
implicitly assumes the reference N (0, 1) as the dataset-level ground truth distribution, i.e., ∀t ∈
{train, test}, p(x̂t) = N (0, 1). This suppresses meaningful cross-sample stationary distributions
and prevents the model from capturing how data evolves globally across training and test domains.

2. Simplistic Distribution Characterization. Existing methods primarily rely on low-order statistics
(µ, σ) to standardize data, which assumes that the data distribution can be described by Gaussian-
like behavior. However, real-world time series often exhibit far more complex characteristics (e.g.,
non-stationary frequency dynamics) and distributions (consider the Student’s t distribution, for
instance). Even after normalization, residual distributional shifts may persist.

2.3 PROBLEM FORMULATION

The above discussion suggests that distributional shift in time series should be understood in terms
of how data evolves globally across multiple samples, and in identifying which characteristics can
capture such evolution. The key question in this paper becomes:
Problem 1. which aspects of the data distribution are consistent across multiple samples, and which
are unstable and lead to shifts between training and testing domains?

Let each sample be generated as x ∼ p(x|t) with t ∼ p(t) denoting a latent temporal condition.
Given a training dataset X = {X(i)}Ni=1, the objective is to learn a transformation f(·) such that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training database

Fo
ur

ie
r t

ra
ns

fo
rm

4. Adjust S using sample-
level information

5. Use adjusted data
for forecasting

Apply S in the traning stage

Fo
ur

ie
r t

ra
ns

fo
rm

R
ea

l
Im

ag
in

ar
y

M
LP

M
LP

In
ve

rs
e

Fo
ur

ie
r

Fo
re

ca
st

in
g

m
od

el

1. Transform each sample into
frequnecy amplitudes

sample

 in
all samples

3. Calculate dataset-level
statistics from training database

In
pu

t s
am

pl
e

sam
plesAmplitude

2. Track the frequnecy
shift across samples

Amplitude

Stationary Frequency
Non-stationary Frequency

0

1

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Figure 1: Overview of TIFO. Before training, we first transfer all samples into the frequency domain
and measure their cross-sample stationarity at the dataset level (steps 1 & 2). These features are then
used to learn frequency weights that measure frequency stationarity (step 3). During training, each
input sample is transformed into the frequency domain and then weighted by the learned stationarity
weights. Finally, they are transformed to the time domain to serve as input to the forecasting models
(steps 4 & 5). TIFO is optimized using the forecasting loss along with the backbone model.

the resulting representations satisfy two requirements: emphasizes stationary components across all
samples from f(X) while preserves important characteristics unique to each sample f(X(i)), since
time series data often contain stochastic variations and local structures (Piao et al., 2024). To this end,
we develop a novel two-stage framework that mitigates distributional shift and is plug-and-play for
diverse forecasting models, similar to normalization methods (Kim et al., 2021; Ye et al., 2024).

3 PROPOSED METHOD

In this section, we introduce our novel framework TIFO. We begin by introducing our design of
TIFO in Section 3.1. This design is supported by a detailed theoretical analysis in Section 3.2.

3.1 TIFO: SYSTEM OVERVIEW AND FEEDFORWARD PIPELINE

Figure 1 shows the processing pipeline of TIFO. It includes a two-stage modeling: (i) pre-training:
measuring frequency stationarity in the entire training set; (ii) in-training: adaptively re-weighting
frequency coefficients of each input sequence.

Stage-I: Dataset-level Stationarity Learning

• Step 1. For each sample X(i) ∈ RL×C from a multi-channel time series training dataset X =
{X(i)}Ni=1, we take the Discrete Fourier Transform (DFT) and obtain the amplitudes A(i)(k, c)
for frequency k and channel c. Where L represents the length of each sample, C is the number of
channels, and K is the number of frequency components.

• Step 2. We aggregate across the training set to measure the stationarity of frequencies using

S(k, c) =
µi∈train

(
A(i)(k, c)

)
σi∈train

(
A(i)(k, c)

)
, where µi∈train(·) and σi∈train(·) are the mean and standard deviation of the amplitude A(i)(k, c)
in all samples. A larger µ means a higher energy proportion, while a greater σ denotes higher
sample dispersion. Thus, a higher S(k, c) reflects more stationary frequency behavior.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Step 3. In this step, we save the calculated S from Step 2 and pass it to the forecasting model.
Through S, the model can access cross-sample variation information, while the MLPs in Stage II
can further optimize the weights through training. This aims to allow the forecasting model to
learn the overall stationarity of each component across the dataset, and use this information to
learn a stationary representation of data during the training.

Stage-II: Sample-specific Learning & Forecasting

• Step 4. In the training stage, given an input sample X ∈ RL×C , we compute its DFT and
obtain real and imaginary coefficients R, I ∈ RK×C . Based on the pre-computed stationarity
S ∈ RK×C , we use two independent MLPs to generate frequency weights:

λr = MLPr(S), λi = MLPi(S). (1)

The weighted coefficients are then obtained by element-wise multiplication: Rw = R ⊙
λr, Iw = I ⊙ λi. We model the real and imaginary parts separately to ensure that when
the weighted coefficients are mapped to the time domain through the inverse DFT, the resulting
amplitudes remain non-negative, allowing the inverse DFT to output real-valued sequences. In this
stage, TIFO serves as a lightweight frequency stationarity filter, enhancing stationary components
(those with a high stationarity score) while suppressing non-stationary ones, thereby addressing
the distribution shift problem defined in Section 2.

• Step 5. Finally, the weighted coefficients (Rw, Iw) are transformed to the time domain via inverse
DFT X̃ = iDFT(Rw + i Iw), and fed into the backbone forecasting models. X̃ ∈ RH×C is
the final output of TIFO and the input of the backbone model, where H denotes the forecasting
horizon. The whole framework is optimized end-to-end using the forecasting MSE loss.

3.2 THEORETICAL ANALYSIS

Our frequency weighting in the previous section is the result of the following theoretical analysis.
This section connecting nonstationarity to spectrum analysis is novel to the best of our knowledge.

Existence of Time-Averaged Representation. We connect the learning of frequency weights Eq.(1)
to spectrum analysis by noticing that these weights correspond eigenvalues that characterize frequency
space representations that discern frequency components responsible for distributional shifts. We
begin our analysis with the assumption:

Assumption 1. The time series dataset X = {X(i)}Ni=1 is composed of multiple samples from
ti ∼ p(t) and x(i) ∼ p(x|ti) so it can sufficiently representation the distributions.

We assume that the time series dataset can sufficiently represent the time variations. This assumption
is realistic in many real-world datasets such as electricity or stock markets that collect data on
many-year-basis. These datasets compose a challenge to normalization methods, since removing
empirical estimates µ̄, σ̄ from a batch does not equal removing µti , σti that is governed by a specific
ti. It is intractable to identify which data batch is governed by a unique time structure. Our method
instead turns to a time-averaged representation. We integrate over time by applying Fourier transform
on data. The next theorem formalizes this idea.
Theorem 1 (Bochner’s Theorem (Scholkopf & Smola, 2001)). A kernel function k(x, y) ≥ 0 is a
distance measure of input x, y. It is valid if and only if there exists a probability density that is the
Fourier transform of the kernel.

The fact that we assume data is generated by ti ∼ p(t), x(i) ∼ p(x|ti) plus we apply Fourier
transform to X imply that a kernel function exists on the frequency domain:

k(ω1, ω2)|x =

∫
R
eit(ω1−ω2)Xdt = Et

[
eit(ω1−ω2)

] ∣∣∣∣
x

. (2)

where we use |x to denote the dependency on x. While in practice the dataset X needs to be infinitely
large to sufficiently represent the distributions, we can expect that with a reasonably sized dataset that
comprises multiple samples of t, the existence of a kernel is guaranteed. As the result of integration
over time, it is also reasonable to expect that the kernel as a time-averaged representation should
perform better than the normalization methods.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Adapting Time-Averaged Representation to Data. The kernel function in Eq. (2) is implicit since
we know it exists but have no access to it. To exert the kernel as a distance measure, we can adapt it to
input data so the distances between important and unimportant frequency components are emphasized
most. To this end, we explicitly learn the kernel in a data-driven way based on the Mercer’s theorem.
Theorem 2 (Mercer’s Theorem (Mercer, 1909)). A valid, positive definite kernel function can be
represented by a set of eigenfunctions that form an orthonormal basis {ζi}i∈N with associated
eigenvalues λ1 ≥ λ2 ≥ · · · > 0 such that:

k(ω1, ω2) =

∞∑
i=1

λiζi(ω1)ζi(ω2), (3)

where the convergence of the infinite series holds absolutely and uniformly.

Because the kernel must exist in the frequency space, by Mercer’s theorem it must permit the
eigen-decomposition that forms a set of orthonormal basis in the space. Moreover, if we impose a
structure on the eigenfunctions ζ, then the kernel varies with the eigenvalues λ. Therefore, learning
the eigenvalues given data is equivalent to learning the kernel itself (Wilson et al., 2016).

We follow (Xu et al., 2019) to employ the assumption that the kernel is periodic, which is natural
for frequencies. Therefore, the kernel has the Fourier basis as its eigenfunctions: ζ1(ω) = 1,
ζ2j(ω) = cos

(
2πjω

t

)
, ζ2j+1(ω) = sin

(
2πjω

t

)
for j = 1, 2, Now λi, i = 1, 2, . . . become the

corresponding Fourier coefficients to weight the contribution of each ζ . Therefore, we have concluded
the theoretical analysis on the role played by λ introduced in Eq.(1).

4 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQ1. Forecasting
Accuracy. Does TIFO improve forecasting performance on non-stationary datasets? RQ2. Addressing
Distribution Shift. Does learning λ mitigate the distribution shift? RQ3. Frequency Feature Learning.
How do λ affect the backbone models to capture informative frequency characteristics? We first
introduce the experimental datasets and settings, followed by detailed results and analysis to answer
each of the above questions. We also conduct efficiency analysis and ablation studies.

4.1 EXPERIMENT SETTINGS

Datasets. We benchmark our models on seven widely used multivariate time-series datasets: Elec-
tricity Transformer Temperature (ETT) with four subsets at hourly (ETTh1, ETTh2) and 15-minute
(ETTm1, ETTm2) resolutions; Electricity consumption of 321 clients; Traffic volumes from 862
San Francisco sensors; and Weather recordings of 21 meteorological variables. We follow the
Time–Series-Library split (7:2:1) with a fixed window length L = 96 and apply per-channel z-score
normalisation; this rescales variables but leaves cross-instance non-stationarity intact. Models are
trained with the Mean-Squared-Error loss and evaluated in the time domain by MSE and MAE.

Baselines. We selected RevIN (Kim et al., 2021), SAN (Liu et al., 2023), and FAN (Ye et al., 2024)
as our baselines. RevIN is widely used as a fundamental module in various forecasting models,
including PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024b), among others (Wang et al.,
2024). SAN is a normalization-based method that outperforms several non-stationary forecasting
modules (Kim et al., 2021; Fan et al., 2023). We also selected FAN, it introduces a frequency-domain
modeling normalization-based method to address the distributional shift issue.

Backbones and Setup. For fair comparisons, we selected three forecasting models, including
DLinear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b),
as the backbones, and deployed all non-stationary modules (TIFO, RevIN, SAN, and FAN) for
evaluation. DLinear is a simple yet efficient forecasting model with an architecture solely involving
MLPs. PatchTST and iTransformer are two well-known Transformer methods that frequently serve
as baselines in various forecasting research (Liu et al., 2024b;a; Piao et al., 2024; Zhang et al., 2024).
We followed the implementation and setup provided in (Liu et al., 2023) and (Liu et al., 2024b).

Experiments Details. All experiments were implemented on a single NVIDIA RTX A6000 48GB
GPU. More details of the datasets are in Appendix A.3, the preprocessing are in A.4, the baselines
are in A.5, the backbones and setup are in A.6, and other details of the experiments are in A.7.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENT RESULTS

Table 1: Multivariate forecasting results (average) with forecasting lengths H ∈ {96, 192, 336, 720}
for all datasets and fixed input sequence length L = 96.

Models PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + TIFO Ori + TIFO Ori
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.438 ± 0.024 0.437 ± 0.035 0.480 ± 0.037 0.481 ± 0.031 0.445 ± 0.017 0.443 ± 0.026 0.511 ± 0.033 0.496 ± 0.036

ETTh2 0.379 ± 0.032 0.380 ± 0.038 0.604 ± 0.130 0.524 ± 0.027 0.376 ± 0.041 0.400 ± 0.057 0.813 ± 0.134 0.666 ± 0.072

ETTm1 0.390 ± 0.027 0.398 ± 0.025 0.419 ± 0.055 0.432 ± 0.047 0.396 ± 0.026 0.406 ± 0.056 0.447 ± 0.026 0.457 ± 0.061

ETTm2 0.280 ± 0.032 0.325 ± 0.031 0.420 ± 0.035 0.424 ± 0.044 0.283 ± 0.020 0.327 ± 0.026 0.633 ± 0.055 0.489 ± 0.041

Electricity 0.197 ± 0.027 0.296 ± 0.033 0.218 ± 0.31 0.307 ± 0.032 0.169 ± 0.035 0.262 ± 0.041 0.179 ± 0.028 0.279 ± 0.046

Traffic 0.427 ± 0.029 0.285 ± 0.025 0.619 ± 0.077 0.365 ± 0.029 0.424 ± 0.031 0.282 ± 0.027 0.576 ± 0.069 0.372 ± 0.035

Weather 0.251 ± 0.019 0.276 ± 0.017 0.255 ± 0.021 0.312 ± 0.031 0.246 ± 0.023 0.274 ± 0.017 0.274 ± 0.029 0.320 ± 0.041

Main Results. To answer RQ1, we conduct our proposal on backbone models across seven datasets,
and report the overall forecasting accuracy in Table 1. We set the forecasting lengths as H ∈
{96, 192, 336, 720}, with the input sequence length L = 96. Here, we present the averaged MSE
and MAE over four forecasting lengths. Applying TIFO consistently improved the performance
of the backbone models across all datasets. More importantly, in datasets with complex frequency
characteristics, such as ETTm2, TIFO improves PatchTST and iTransformer by 33.3% (0.420→
0.280) and 55.3% (0.633 → 0.283), respectively. This improvement is attributed to the learned
Fourier basis coefficients λ, allowing these backbones to forecast based on a stationary representation
of the input time series.

Comparison with Baseline Non-stationary Methods. Table 2 further presents the average com-
parison results between TIFO and the baseline non-stationary methods, i.e., RevIN, SAN, and
FAN. We use the same parameters and forecasting length as in Table 1. For iTransformer, the input
sequence length is L = 96, and L = 336 for DLinear. As shown, TIFO achieves 18 top-1 results
and 6 top-2 results out of 28 settings. For instance, in the ETTh1 dataset, TIFO improves the MSE
values for DLinear and iTransformer to 0.407 and 0.445, outperforming RevIN (0.460 and 0.463)
and SAN (0.421 and 0.466). Similarly, in the Traffic dataset, TIFO improves the MSE value to
0.430, compared to RevIN (0.624), SAN (0.440) and FAN(0.541). Here, TIFO * represents the
incorporation of SAN into the backbones, which further improves the second-best results (underlined
in the table) to the best.

Frequency Domain Shift Analysis. To answer RQ2, we further measure the frequency-domain
distribution difference between the train and test dataset amplitude spectra to link accuracy gains
to reduced spectral distributional shift. For each frequency ωj , we gather its amplitudes across all
training and testing samples to build two empirical distributions. Jensen–Shannon divergence squared
(JSD2) is a symmetric, bounded average of the forward and reverse Kullback–Leibler divergences, so
it can tell us how much the two distributions differ overall (Mateos et al., 2017; Iqbal et al., 2021).
Kolmogorov–Smirnov statistic (KS) measures the largest gap between the cumulative distribution
functions, highlighting the most significant mismatch between training and testing data (Wang &
Wang, 2010). Here, JSD2 evaluates the overall shift in amplitude distributions, while KS measures
the worst-case deviation between training and test data for each frequency component.

Table 3 presents the JSD2 and KS statistics for the original data (Before) and after applying RevIN,
FAN, SAN, and TIFO across four benchmark datasets. Lower values indicate smaller distributional
discrepancies between training and test sets. On ETTh1, TIFO reduces JSD2 from 0.3637 to 0.0435
(a reduction of 88%), and on Electricity from 0.1443 to 0.0423 (71%). KS values also decrease
significantly, ranging from 43% to 80% reductions across the same datasets. Figure 5 shows the per-
frequency JSD2 values on the Electricity dataset. Each spoke represents a frequency component, and
the gray shadowed circle area serves as a reference band that indicates the region within which 60% of
the frequency components fall. A smaller area reflects a lower overall distributional discrepancy. As
shown in the figure, TIFO considers all frequency components and significantly reduces distributional
differences, achieving effective alignment between training and test datasets. RevIN and SAN, which
operate in the time domain, exhibit minimal changes before and after learning, as evidenced by the
near overlap between the green line and the gray reference circle. FAN, which explicitly operates in
the frequency domain, shows improved performance. However, it focuses only on the top-k frequency

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Multivariate forecasting results (average) with H ∈ {96, 192, 336, 720} for all datasets
and fixed input sequence length L = 96. The best and second best results are highlighted. TIFO *
represents the results where both TIFO and SAN are used in the backbones.

Models MLP-based (DLinear(Zeng et al., 2023)) Transformer-based (iTransformer(Liu et al., 2024b))
Methods + TIFO * + TIFO +SAN + FAN + RevIN + TIFO * + TIFO +SAN + FAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.413 0.424 0.407 0.419 0.421 0.427 0.469 0.473 0.460 0.456 0.455 0.449 0.445 0.443 0.466 0.455 0.504 0.488 0.463 0.452

ETTh2 0.339 0.384 0.337 0.384 0.342 0.387 0.459 0.469 0.561 0.518 0.378 0.408 0.376 0.400 0.392 0.413 0.543 0.515 0.385 0.412

ETTm1 0.341 0.372 0.357 0.375 0.344 0.376 0.367 0.392 0.413 0.407 0.389 0.398 0.396 0.406 0.401 0.406 0.424 0.428 0.406 0.410

ETTm2 0.255 0.316 0.256 0.313 0.260 0.318 0.278 0.339 0.350 0.413 0.285 0.334 0.283 0.327 0.287 0.336 0.337 0.385 0.294 0.337

Electricity 0.161 0.257 0.168 0.262 0.163 0.260 0.176 0.277 0.225 0.316 0.175 0.273 0.169 0.262 0.195 0.283 0.180 0.276 0.205 0.272

Traffic 0.432 0.297 0.430 0.291 0.440 0.302 0.541 0.346 0.624 0.383 0.459 0.313 0.424 0.282 0.520 0.341 0.536 0.339 0.430 0.312

Weather 0.224 0.271 0.237 0.272 0.227 0.276 0.258 0.305 0.265 0.317 0.244 0.282 0.246 0.274 0.247 0.291 0.251 0.298 0.263 0.288

Count 4 4 3 4 0 0 0 0 0 0 2 1 5 6 0 0 0 0 0 0

0.04 0.36

Before After 60% Reference Band: BeforeScatters: After

SANRevIN TIFOFAN

Figure 2: Train-Test Distance Compactness: This figure shows a visualization of the JSD2 amplitudes
distribution distance between the train and test datasets on the electricity data. Each scatter point
represents one frequency component. A smaller radius indicates a smaller distributional gap. Green
and red colors represent the results before and after applying the learning method, respectively.

Table 3: Frequency-domain distribution distance between the train and test set. Both the JSD2 (↓)
and the KS statistic (↓) are computed on amplitudes; bold marks the best per row.

Dataset Before ReVIN FAN SAN TIFO

JSD2 KS JSD2 KS JSD2 KS JSD2 KS JSD2 KS

ETTh1 0.36367 0.35982 0.08100 0.08937 0.14759 0.27057 0.04745 0.08389 0.04353 0.07357
weather 0.11156 0.19926 0.02175 0.09172 0.05328 0.12149 0.01739 0.09566 0.01687 0.07934
ECL 0.14431 0.16804 0.08060 0.11924 0.10394 0.16537 0.07740 0.11639 0.04225 0.09581

components, affecting only a subset of spokes. Overall, TIFO consistently outperforms all baselines,
and more results can be found in Appendix B.2.

Fourier Basis Learning Evaluation To answer RQ3, after analyzing the impact of TIFO on the
distributional difference, we further investigate how TIFO affects the deep forecasting models to
learn frequency features. Figure 10 shows the Fourier basis functions in three cases, from left to
right are: (i) basis functions before any processing (Before), (ii) after applying FAN, and (iii) after
applying TIFO, respectively. We use DLinear as the forecasting model in this evaluation, and results
for other models are given in Appendix B.2. The coefficients λ of the Fourier basis functions ζω1:4

are λ = 1.0 in the unprocessed case (Before). FAN sets the λ of the top-k high-amplitude frequencies
to zero and leaves the λ of the rest frequencies unchanged. In contrast, TIFO learns a data-driven λ
for each basis function. The line plots display ground truth and corresponding forecasting results in
the frequency domain for each case, with local peak components marked by red diamonds. Without
any processing, the original model failed to capture these local peaks. FAN, which affects deep
forecasting models via frequency modeling, shows improved performance. However, it still failed to
capture most local peak components. In contrast, after applying the TIFO, the model successfully
captures all four local peak components, outperforms other cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0
1

FAN

0

TIFO

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

Figure 3: Frequency-domain analysis of Fourier basis Learning. From left to right: unprocessed
spectra (Before), after FAN, and after applying TIFO. Each panel is a 3D box with time, frequency,
and amplitude axes. We visualize four Fourier basis waves, ζω1:4 , to illustrate how each processing
method alters the basis functions. In the frequency–amplitude plane, we plot three forecasting cases:
the ground truth in blue and the forecasting results based on the processed input in red. The red
diamonds mark key local peak frequencies.

Table 4: Running time (s), fixed L = 96.
Speed-ups over +SAN in parentheses.

Model Norm H ETTh1 ETTm1

D
L

in
ea

r +TIFO 96 3.004 (↑65.5%) 13.456 (↑63.1%)
720 3.082 (↑60.5%) 13.124 (↑64.2%)

+SAN 96 8.688 36.706
720 8.054 36.564

Pa
tc

hT
ST

+TIFO 96 7.952 (↑51.6%) 54.526 (↑14.3%)
720 8.215 (↑46.2%) 28.944 (↑56.0%)

+SAN 96 16.226 63.686
720 15.309 65.839

Table 5: Ablation study (MAE ↓, mean±std).
Bold = best.

Model Variant H ETTh1 ETTm1
D

L
in

ea
r +TIFO 96 0.371±0.032 0.299±0.021

720 0.428±0.039 0.425±0.032

+Random 96 0.379±0.025 0.305±0.022
720 0.435±0.036 0.431±0.031

iT
ra

ns
fo

rm
er +TIFO 96 0.389±0.023 0.330±0.035

720 0.496±0.034 0.475±0.043

+Random 96 0.401±0.017 0.335±0.033
720 0.502±0.029 0.483±0.047

Running Time and Ablation Study. Table 4 presents the running time results for TIFO and SAN
across two datasets. The results show the average time (in seconds per epoch) using DLinear and
PatchTST as backbones. TIFO consistently outperforms SAN across all datasets. The full results
are in B.3. Notably, we achieved improvements of 60% to 70% in 16 out of 28 experiment settings.
These improvements are primarily because TIFO only utilizes FFT and MLP during the training
phase, minimizing its impact on computation time. Table 5 shows an ablation in which we replace
the computed starting point s with a random vector, while keeping the MLPs and all parameters
unchanged. This variant assigns random starting points for the MLPs. The drop in forecasting
accuracy compared to TIFO demonstrates that initializing the MLPs with s is essential to help deep
forecasting models learn the frequency representations.

5 CONCLUSION

Nonstationary time series forecasting suffers from distributional shift due to the different distributions
that produce the training and test data. As a result, a model trained on the training data may perform
poorly on the test data. These distributions can be regarded as governed by a time structure. A
time series can be considered as first sampling from a time structure distribution, then from a time-
conditional observation distribution. Existing methods attempt to alleviate the issue by normalizing
the distributions. To this end, we propose a Time-Invariant Frequency Operator (TIFO), which
learns stationarity-aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-stationary ones,
thereby mitigating the distribution shift issue in time series. Extensive experiments demonstrate that
the proposed method achieves superior performance, yielding 18 top-1 and 6 top-2 results out of 28
settings compared to the baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

To complement the model presented in Section 3.1, we provide pseudocode and an anonymous
repository that illustrate our approach. Algorithm 1 shows how frequency-wise stability s is computed
from the training data. Algorithm 2 demonstrates how these scores are used to adaptively re-weight
Fourier coefficients through independent MLP mappings, before transforming back to the time
domain. The complete implementation, including model training and experimental setup, is available
at our anonymous repository: https://anonymous.4open.science/r/TIFO-6BE1.

Algorithm 1: Compute Stability Scores sj

def compute_stability_scores(X):
"""
X: (N, T) training set
"""
amp = np.abs(np.fft.fft(X, axis=1))
mean = amp.mean(axis=0)

per-freq mean
std = amp.std(axis=0) + 1e-5

per-freq std
return mean / std # s_j

Algorithm 2: Apply Fourier Coefficients λj

def weight_spectra(x, s, f_cos, f_sin):
"""
f_*: learnable MLP layers
"""
X = np.fft.fft(x)
X[0::2] *= f_cos(s[0::2])

re-weight real parts
X[1::2] *= f_sin(s[1::2])

re-weight imag parts
return np.fft.ifft(X, n=len(x))

REFERENCES

Sudeshna Adak. Time-dependent spectral analysis of nonstationary time series. Journal of the
American Statistical Association, 93(444):1488–1501, 1998.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer, Berlin,
1984.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-ts:
A general paradigm for alleviating distribution shift in time series forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 7522–7529, 2023.

Lu Han, Han-Jia Ye, and De-Chuan Zhan. SIN: Selective and interpretable normalization for
long-term time series forecasting. In Forty-first International Conference on Machine Learning,
2024.

Turab Iqbal, Karim Helwani, Arvindh Krishnaswamy, and Wenwu Wang. Enhancing audio augmen-
tation methods with consistency learning. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 646–650. IEEE, 2021.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In AAAI, pp. 4365–4373, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The International ACM SIGIR Conference on
Research & Development in Information Retrieval, pp. 95–104, 2018.

Harshavardhan Liu, Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, B Aditya Prakash, et al.
Time-series forecasting for out-of-distribution generalization using invariant learning. In Forty-first
International Conference on Machine Learning, 2024a.

10

https://anonymous.4open.science/r/TIFO-6BE1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024b.

Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adaptive
normalization for non-stationary time series forecasting: A temporal slice perspective. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

D. M. Mateos, L. E. Riveaud, and P. W. Lamberti. Detecting dynamical changes in time series by
using the jensen shannon divergence. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(8):083118, 08 2017.

James Mercer. Xvi. functions of positive and negative type, and their connection the theory of integral
equations. Philosophical transactions of the royal society of London. Series A, containing papers
of a mathematical or physical character, 209(441-458):415–446, 1909.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, 2024.

John G. Proakis and Dimitris G. Manolakis. Digital signal processing (3rd ed.): Principles, algorithms,
and applications. 1996.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

James R. Thompson and James R. Wilson. Multifractal detrended fluctuation analysis: Practical
applications to financial time series. In Mathematics and Computers in Simulation, pp. 63–88,
2016.

Fanggang Wang and Xiaodong Wang. Fast and robust modulation classification via kolmogorov-
smirnov test. IEEE Transactions on Communications, 58(8):2324–2332, 2010.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. In arXiv preprint arXiv:2407.13278,
2024.

Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou. Learning
latent seasonal-trend representations for time series forecasting. In Advances in Neural Information
Processing Systems, 2022.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.
370–378, 2016.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Etsformer:
Exponential smoothing transformers for time-series forecasting. 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention with
functional time representation learning. In Advances in Neural Information Processing Systems,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weiwei Ye, Songgaojun Deng, Qiaosha Zou, and Ning Gui. Frequency adaptive normalization
for non-stationary time series forecasting. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series
forecasting. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Xinyu Zhang, Shanshan Feng, Jianghong Ma, Huiwei Lin, Xutao Li, Yunming Ye, Fan Li, and
Yew Soon Ong. Frnet: Frequency-based rotation network for long-term time series forecasting. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
3586–3597, 2024.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. In Advances
in neural information processing systems, pp. 12677–12690, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, pp. 1–12, 2022b.

APPENDIX / SUPPLEMENTAL MATERIAL

Contents

A Additional Discussions and Details 13

A.1 Additional Discussion about background . 13

A.2 Related Works . 13

A.3 Details of the datasets. 14

A.4 Preprocessing and Evaluation details . 14

A.5 Details of the baselines . 15

A.6 Details of the backbones and setup . 16

A.7 Other experiments details . 16

B The Full Results. 18

B.1 Full Long-term Forecasting results. 18

B.2 Analysis Results . 19

B.2.1 Fourier Distribution Analysis . 19

B.2.2 Fourier Basis Learning Evaluation . 19

B.3 Running Time . 21

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C LLM Usage Statement 22

A ADDITIONAL DISCUSSIONS AND DETAILS

A.1 ADDITIONAL DISCUSSION ABOUT BACKGROUND

Before normalization After normalization

Ti
m

e-
do

m
ai

n
da

ta
 d

is
tri

bu
tio

n
Fr

eq
ue

nc
y-

do
m

ai
n

da
ta

 d
is

tri
bu

tio
n

Time-domain distributions aligned after z-score.

Frequnecy distributions remain different after normalization.

Figure 4: Illustration of z-score normalization in both time
and frequency domains. (Top) Data generating distributions
p(x|ti) across different temporal structures ti are aligned
after z-score, sharing a common location and scale. (Bottom)
Frequency-domain power spectra before and after z-score.
The frequency-domain distribution remains divergent after
normalization.

Here, we conduct a schematic case
study using a synthetic time series
dataset to illustrate further the discus-
sions in Section 2.2.

As shown in Figure 4, for each
temporal condition ti, we generate
50 independent samples, each gov-
erned by different temporal structures.
Here, we generate different temporal
structures by mixing low- and high-
frequency components, as shown in
the Figure 4 (bottom). For exam-
ple, t1 mainly contains low-frequency
features, while the energy distribu-
tion of t4 primarily exists in the high-
frequency bands.

Then, we use the numerical distribu-
tion of x and the Power Spectral Den-
sity (PSD) to evaluate the data distri-
bution in both the time domain and
the frequency domain, respectively.
The figure visualizes the data before
and after applying z-score normaliza-
tion. In the time domain, normaliza-
tion successfully transfers the distribu-
tions from different ti into a common
Gaussian shape, thereby reducing distributional gaps. However, when examining the same data in the
frequency domain, we find a very different result: the spectral energy distributions remain distinct and
non-overlapping, revealing that the z-score does not address discrepancies in temporal dependencies
or frequency compositions.

This is because the z-score operates only on first- and second-order statistics, ignoring higher-order
temporal structure information. In contrast, periodicity and other temporal dynamics are preserved
in the signal and are clearly reflected in the frequency features. In other words, while z-score
normalization alters the numerical distribution of the data, it preserves the underlying temporal
organization. Thus, the distribution shift in the frequency domain remains unchanged.

A.2 RELATED WORKS

Time Series Forecasting. Transformer-based architectures have become the mainstream in time
series forecasting (Nie et al., 2023; Zhang & Yan, 2023; Jiang et al., 2023; Liu et al., 2024b).
Meanwhile, simple multilayer perceptron (MLP) models, such as DLinear (Zeng et al., 2023; Chen
et al., 2023; Zhou et al., 2022a), have also attracted attention due to their lower computational costs
and forecasting accuracy comparable to transformer-based models.
Normalization-based Methods. Existing methods aim to quantify and explicitly eliminate non-
stationary components from both training and test data, thereby aligning distributions and enhancing
generalization. A normalization is performed by subtracting the empirical mean and dividing by the
variance computed from the data. At the forecasting stage, denormalization is applied to reintroduce
these descriptive statistics to model outputs. RevIN (Kim et al., 2021) is an innovative work that
focuses on z-score normalization. Dish-TS (Fan et al., 2023) utilizes learned mean and variance for
denormalization. SAN (Liu et al., 2023) models non-stationarity in a set of fine-grained sub-series
and proposes an additional loss function to predict their statistics. Instead of mean and variance,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SIN (Han et al., 2024) proposes an independent neural network to learn features as the objectives
of normalization and denormalization adaptively. However, existing methods focus on modeling
statistical variations in the time domain. A recent FAN (Ye et al., 2024) has taken an initial step in
learning predominant frequency components as non-stationarities. FAN uses heuristic top-k masking
of the largest-amplitude frequencies, zeroing out a subset of components. However, this heuristic
selection may risk discarding critical periodic patterns embedded in high-energy regions and introduce
sub-optimal frequency correlations into the model, inadvertently misleading the model training.
Frequency Domain Modeling. Frequency domain modeling has proven highly effective in time
series forecasting. Mainstream works employ neural networks to automatically learn frequency
representations directly in the raw Fourier domain (Wu et al., 2021; Zhou et al., 2022b; Wang et al.,
2022; Wu et al., 2023; Yi et al., 2023), but such approaches can be vulnerable to noise and to
frequency components that vary significantly over time. Some other methods are designed to select
informative components via sparse selection (Zhou et al., 2022b; Woo et al., 2022; Zhou et al., 2022a;
Ye et al., 2024) or local normalization in the frequency domain (Piao et al., 2024), yet these still rely
on heuristics, such as top-k selection, or rely on the model to identify the key frequency features.
In contrast, our method learns and adjusts the coefficients of the Fourier basis functions, naturally
encoding the relative importance of different spectral components and allowing seamless deployment
on any forecasting backbone. Notably, FAN uses heuristic top-k masking of the largest-amplitude
frequencies, zeroing out a subset of components. In contrast, TIFO learns a data-driven coefficient
for every Fourier basis function, enabling dynamic weighting of the contribution of each component.

A.3 DETAILS OF THE DATASETS.

Weather contains 21 channels (e.g., temperature and humidity) and is recorded every 10 minutes in
2020. ETT (Zhou et al., 2021) (Electricity Transformer Temperature) consists of two hourly-level
datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). Electricity (Lai et al.,
2018), from the UCI Machine Learning Repository and preprocessed by, is composed of the hourly
electricity consumption of 321 clients in kWh from 2012 to 2014. Solar-Energy (Lai et al., 2018)
records the solar power production of 137 PV plants in 2006, sampled every 10 minutes. Traffic
contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
from January 2015 to December 2016. More details of these datasets can be found in Table.6.

Table 6: Overview of Datasets

Dataset Source Resolution Channels Time Range

Weather Autoformer(Wu et al., 2021) Every 10 minutes 21 (e.g., temperature, humidity) 2020
ETTh1 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2016-2017
ETTh2 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2017-2018
ETTm1 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2016-2017
ETTm2 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2017-2018
Electricity UCI ML Repository Hourly 321 clients’ consumption 2012-2014
Traffic Informer(Zhou et al., 2021) Hourly 862 sensors’ occupancy 2015-2016

A.4 PREPROCESSING AND EVALUATION DETAILS

Given the raw multivariate time-series data X ∈ RT×C , we first slide a window of length L = 96
over X with stride 1. This produces overlapping segments W = {Xi:i+L−1 | i = 1, . . . , T −L+1}.
Each segment is of shape (L,C). We order the segments chronologically and split W into training
(70%), validation (20%), and test (10%) sets. On the training set, we compute per-variable means
µj and standard deviations σj for j = 1, . . . , C. We then apply per-variable z-score normalization
to every segment in all splits: w̃i,j =

wi,j−µj

σj
, ∀w ∈ W, i = {1, . . . , L}, j = {1, . . . , C}. The

normalized segments form Dtrain, Dval, and Dtest, ready for model training and evaluation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3: Pre-processing for Time-Series Forecasting

Input: Time-series X ∈ RT×C , window length L, split ratios (0.7, 0.2, 0.1)
Output: Normalized sets Dtrain,Dval,Dtest

Slice X into overlapping windows W ← {Xi:i+L−1 | i = 1, . . . , T − L+ 1};
Split W into train/val/test by first 70%, next 20 %, last 10 %;
Compute µj = mean

(
{wi,j | w ∈ Dtrain}

)
;

Compute σj = std
(
{wi,j | w ∈ Dtrain}

)
;

foreach segment w ∈W do
for variable j = 1, . . . , C do

w̃j ← (wj − µj)/σj ;
end
Add w̃ to its split’s dataset;

end
return Dtrain, Dval, Dtest

A.5 DETAILS OF THE BASELINES

Reversible Instance Normalization. Reversible Instance Normalization (Revin) normalizes each
input sample using z-score normalization while preserving the original mean and variance. Revin
reverses the normalization to model outputs by using the saved statistics and applies learnable scaling
and shifting parameters (γ and β).

Sequential Adaptive Normalization. Sequential Adaptive Normalization (SAN) has two training
phases. In the first phase, SAN is trained to learn the relationships between patches of input and
target data by mapping their means and variances. In the second phase, SAN parameters are frozen,
and only the forecasting model is trained. During inference, input data is normalized using SAN, and
the model output is reverse-normalized with predicted statistics by SAN.

Frequency Adaptive Normalization (FAN) is a deep learning approach for time series forecasting
that decomposes input sequences into frequency components using FFT/RFFT. The algorithm
separates the top-k dominant frequency components from residual signals, then employs an MLPfreq
network to model the main frequency patterns while handling residuals separately. By processing
frequency and temporal information through parallel pathways and combining them via learnable
weights, FAN achieves improved forecasting accuracy through frequency-domain feature extraction
and adaptive normalization. The method is particularly effective for capturing periodic patterns and
long-term dependencies in time series data.

Algorithm 4: Reversible Instance Normalization (Revin)
Input: Time-series data X , Forecasting model F
Output: Forecasted data X̂ ;
for each instance Xi in X do

Compute mean µi ← mean(Xi);
Compute variance σ2

i ← variance(Xi) ;
Normalize X̃i ← Xi−µi

σi
;

Store µi and σ2
i ;

end
X̃ ← {X̃1, X̃2, . . . , X̃N} ;
Ỹ ← F(X̃) ;
for each forecasted instance Ỹi do

Reverse Normalize Yi ← Ỹi × σi + µi ;
Apply learnable parameters Yi ← γ × Yi + β ;

end
return X̂ = {Y1, Y2, . . . , YN} ;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 5: Sequential Adaptive Normalization (SAN)
Stage 1: Train SAN;
Input: Training data X and targets Y Divide X and Y into patches {Xp} and {Yp}
for each pair of patches (Xp, Yp) do

Compute means µX ← mean(Xp), µY ← mean(Yp) ;
Compute variances σ2

X ← variance(Xp), σ2
Y ← variance(Yp) ;

Train SAN to map (µX , σ2
X) to (µY , σ

2
Y) using loss on µY and σ2

Y ;
Stage 2: Train Forecasting Model Freeze SAN parameters;
for each training iteration do

Divide input X into patches {Xp} ;
for each patch Xp do

Normalize Xp ← Xp−µX

σX
using SAN’s learned µX and σ2

X

end
Forecast Ỹ ← F(X) ;
Divide Ỹ into patches {Ỹp} ;
for each forecasted patch Ỹp do

Predict µY , σ2
Y using SAN Reverse Normalize Yp ← Ỹp × σY + µY

end
end
Compute loss L(Y, Ŷ) ;
Update forecasting model parameters θ via backpropagation ;

end
return Trained forecasting model F ;

A.6 DETAILS OF THE BACKBONES AND SETUP

In our study, we selected three distinct forecasting models to evaluate the effectiveness of our proposed
normalization techniques. DLinear is an MLP-based model renowned for its lightweight architecture,
utilizing two separate multilayer perceptrons (MLPs) to learn the periodic and trend components of
the data independently.

PatchTST and iTransformer are both Transformer-based models with unique approaches to handling
time-series data. PatchTST introduces a patching operation that samples each input time series into
multiple patches, which are then used as input tokens for the transformer, effectively capturing local
temporal patterns. In contrast, iTransformer emphasizes channel-wise attention by treating the entire
sequence of each channel as a transformer token and employing self-attention mechanisms to learn
the relationships between different channels.

For all models, we first compute the starting point (Coefficient of variation) across the entire training
dataset, a fixed computational process that typically takes less than five seconds. Following this, we
apply a simple, parameter-free normalization and denormalization method. After normalization, the
input data is processed through our custom weighting layer before being fed into the forecasting
models.

A.7 OTHER EXPERIMENTS DETAILS

Loss Function. For our experiments, we adhere to a conventional approach by employing the
Mean Squared Error (MSE) loss function, implemented as nn.MSELoss in our framework. The
MSE loss quantifies the average squared difference between the predicted values and the actual
target values, providing a straightforward measure of prediction accuracy. Mathematically, the MSE
loss is expressed as LMSE = 1

N

∑N
i=1 (ŷi − yi)

2, where N is the number of samples, ŷi represents
the predicted value, and yi denotes the true target value for the i-th sample. This loss function
effectively penalizes larger errors more heavily, encouraging the model to achieve higher precision in
its predictions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 6: Frequency Adaptive Normalization (FAN)
Stage 1: Frequency Decomposition;
Input: Input sequence x ∈ RB×T×N , top-k frequency components k, RFFT flag
Function MAINFREQPART(x, k, rfft);
if rfft = True then

xf ← RFFT(x, dim = 1) ;
else

xf ← FFT(x, dim = 1) ;
end
indices← TopK(|xf |, k, dim = 1) ;
mask← zeros_like(xf) ;
mask.scatter(indices, 1) ;
xfiltered
f ← xf ⊙mask ;

if rfft = True then
xfiltered ← IRFFT(xfiltered

f , dim = 1) ;
else

xfiltered ← IFFT(xfiltered
f , dim = 1) ;

end
xresidual ← x− xfiltered ;
return xresidual, xfiltered ;

Stage 2: Train FAN Model;
Input: Training data X , sequence length T , prediction length O, channels N , freq_topk k
Initialize MLPfreq modelMfreq with parameters θfreq ;
Initialize learnable weights w ∈ R2×N ;
for each training iteration do

Normalization Phase:;
(xresidual, xfiltered)← MAINFREQPART(X, k, rfft) ;
x̂main ←Mfreq(x

filtered, X) ;
Forward Pass:;
xnorm ← xresidual ;
Denormalization Phase:;
x̂residual ← ForecasterOutput ;
x̂final ← x̂residual + x̂main ;
Loss Computation:;
(yresidual, ymain)← MAINFREQPART(Ytrue, k, rfft) ;
L ← MSE(x̂main, ymain) + MSE(x̂residual, yresidual) ;
Update parameters θfreq and w via backpropagation ;

end

Stage 3: MLPfreq Architecture;
Input: Main frequency signal xmain ∈ RB×N×T , original input x ∈ RB×N×T

hfreq ← ReLU(LinearT→64(x
main)) ;

hconcat ← Concat([hfreq, x], dim = −1) ;
hhidden ← ReLU(Linear(64+T)→128(hconcat)) ;
output← Linear128→O(hhidden) ;
return Trained FAN model with frequency decomposition capability ;

Computational Resources. All experiments were conducted on an NVIDIA RTX A6000 GPU with
48GB of memory, utilizing CUDA version 12.4 for accelerated computation. This high-performance
computational setup facilitated efficient training and evaluation of our forecasting models, ensuring
timely execution of experiments even with large-scale time-series data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B THE FULL RESULTS.

B.1 FULL LONG-TERM FORECASTING RESULTS.

Table 7 and Table 8 present the full comprehensive results discussed in the main paper. This table
includes the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2,
Traffic, Weather] dataset, utilizing the [DLinear, PatchTST, iTransformer] as the backbone model.
We have compared our method against all baseline models across all forecasting horizons (H ∈
{96, 192, 336, 720}).

Table 7: Detailed results of comparing our proposal and other normalization methods. The best
results are highlighted in bold. The second best are underlined.

Models DLinear (Zeng et al., 2023) PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.175 0.266 0.190 0.280 0.182 0.271 0.212 0.297 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.183 0.273 0.195 0.286 0.186 0.276 0.213 0.300 0.169 0.266 0.159 0.252 0.180 0.270 0.165 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.198 0.289 0.211 0.301 0.200 0.290 0.227 0.314 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.233 0.317 0.253 0.334 0.237 0.322 0.268 0.344 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.401 0.374 0.395 0.387 0.405 0.392 0.413 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.442 0.439 0.424 0.428 0.445 0.440 0.448 0.436 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.480 0.456 0.471 0.452 0.505 0.471 0.489 0.456 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.519 0.501 0.514 0.500 0.527 0.507 0.525 0.503 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.277 0.338 0.344 0.397 0.292 0.347 0.301 0.349 0.314 0.361 0.344 0.397 0.298 0.352 0.297 0.345 0.302 0.354 0.300 0.349
192 0.335 0.374 0.336 0.376 0.340 0.378 0.485 0.481 0.385 0.402 0.380 0.399 0.391 0.421 0.389 0.411 0.371 0.402 0.380 0.395 0.383 0.402 0.381 0.415
336 0.361 0.399 0.355 0.395 0.356 0.398 0.582 0.536 0.431 0.438 0.410 0.424 0.444 0.466 0.437 0.451 0.425 0.435 0.420 0.428 0.435 0.441 0.433 0.442
720 0.388 0.429 0.384 0.423 0.396 0.435 0.836 0.659 0.429 0.461 0.422 0.443 0.467 0.484 0.430 0.481 0.420 0.444 0.410 0.432 0.448 0.457 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.288 0.342 0.353 0.374 0.322 0.359 0.321 0.362 0.325 0.361 0.353 0.374 0.326 0.361 0.330 0.370 0.331 0.373 0.341 0.376
192 0.321 0.359 0.336 0.364 0.323 0.363 0.391 0.392 0.350 0.379 0.365 0.388 0.355 0.381 0.391 0.401 0.365 0.384 0.374 0.391 0.376 0.381 0.380 0.394
336 0.355 0.380 0.370 0.383 0.357 0.384 0.423 0.413 0.381 0.401 0.407 0.408 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.412 0.418 0.419 0.418
720 0.405 0.411 0.425 0.414 0.409 0.415 0.486 0.449 0.446 0.436 0.464 0.442 0.450 0.437 0.486 0.459 0.471 0.447 0.475 0.449 0.485 0.453 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.166 0.258 0.194 0.293 0.177 0.272 0.179 0.262 0.184 0.277 0.185 0.272 0.178 0.272 0.176 0.258 0.180 0.272 0.200 0.281
192 0.222 0.300 0.220 0.291 0.223 0.302 0.283 0.360 0.245 0.319 0.240 0.300 0.249 0.325 0.252 0.320 0.247 0.311 0.241 0.302 0.248 0.315 0.252 0.312
336 0.272 0.329 0.273 0.325 0.272 0.331 0.371 0.450 0.298 0.253 0.310 0.347 0.330 0.378 0.315 0.351 0.307 0.351 0.307 0.347 0.308 0.352 0.314 0.352
720 0.365 0.383 0.368 0.383 0.380 0.384 0.555 0.509 0.405 0.401 0.409 0.404 0.423 0.431 0.415 0.408 0.409 0.403 0.410 0.402 0.412 0.407 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.497 0.342 0.527 0.339 0.530 0.340 0.650 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.499 0.339 0.502 0.331 0.516 0.338 0.597 0.359 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.520 0.349 0.510 0.327 0.533 0.343 0.605 0.362 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.550 0.349 0.545 0.345 0.575 0.367 0.642 0.381 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.152 0.210 0.196 0.256 0.167 0.225 0.166 0.207 0.170 0.229 0.195 0.235 0.165 0.221 0.162 0.204 0.170 0.227 0.175 0.225

192 0.194 0.251 0.207 0.251 0.196 0.254 0.238 0.299 0.208 0.263 0.216 0.253 0.211 0.270 0.240 0.270 0.212 0.261 0.213 0.252 0.214 0.270 0.225 0.257
336 0.243 0.289 0.256 0.288 0.246 0.294 0.281 0.330 0.255 0.301 0.273 0.295 0.261 0.310 0.291 0.306 0.261 0.304 0.271 0.295 0.265 0.309 0.280 0.307
720 0.311 0.339 0.325 0.337 0.315 0.346 0.346 0.384 0.326 0.349 0.351 0.346 0.332 0.359 0.364 0.353 0.338 0.345 0.340 0.347 0.342 0.358 0.373 0.366

Table 8: Detailed results of comparing TIFO and FAN. The best results are highlighted in bold. The
second best are underlined.

Models DLinear (Zeng et al., 2023) iTransformer (Liu et al., 2024b)
Methods + TIFO * + TIFO + FAN + RevIN + TIFO * + TIFO + FAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.146 0.248 0.210 0.278 0.145 0.244 0.143 0.237 0.158 0.254 0.152 0.251

192 0.149 0.245 0.155 0.249 0.163 0.264 0.210 0.304 0.169 0.266 0.159 0.252 0.170 0.263 0.165 0.255
336 0.165 0.262 0.171 0.267 0.180 0.282 0.223 0.309 0.178 0.271 0.172 0.266 0.183 0.281 0.180 0.272
720 0.198 0.291 0.208 0.298 0.216 0.316 0.257 0.349 0.210 0.311 0.205 0.295 0.208 0.306 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.414 0.431 0.396 0.410 0.380 0.400 0.389 0.404 0.425 0.434 0.394 0.409
192 0.410 0.417 0.404 0.412 0.446 0.451 0.445 0.440 0.429 0.427 0.447 0.440 0.483 0.468 0.460 0.449
336 0.430 0.427 0.426 0.426 0.476 0.474 0.487 0.465 0.479 0.451 0.492 0.463 0.528 0.495 0.501 0.475
720 0.437 0.455 0.428 0.448 0.539 0.538 0.512 0.510 0.491 0.471 0.496 0.482 0.582 0.555 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.316 0.376 0.344 0.397 0.298 0.352 0.297 0.345 0.358 0.408 0.300 0.349
192 0.335 0.374 0.336 0.376 0.384 0.423 0.485 0.481 0.371 0.402 0.380 0.395 0.458 0.469 0.381 0.415
336 0.361 0.399 0.355 0.395 0.465 0.479 0.582 0.536 0.425 0.435 0.420 0.428 0.570 0.533 0.433 0.442
720 0.388 0.429 0.384 0.423 0.671 0.596 0.836 0.659 0.420 0.444 0.410 0.432 0.786 0.651 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.302 0.352 0.353 0.374 0.326 0.361 0.330 0.370 0.360 0.390 0.341 0.376
192 0.321 0.359 0.336 0.364 0.342 0.376 0.391 0.392 0.365 0.384 0.374 0.391 0.398 0.408 0.380 0.394
336 0.355 0.380 0.370 0.383 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.435 0.436 0.419 0.418
720 0.405 0.411 0.425 0.414 0.442 0.439 0.486 0.449 0.471 0.447 0.475 0.449 0.503 0.478 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.170 0.262 0.194 0.293 0.178 0.272 0.176 0.258 0.195 0.293 0.200 0.281
192 0.222 0.300 0.220 0.291 0.230 0.306 0.283 0.360 0.247 0.311 0.241 0.302 0.276 0.350 0.252 0.312
336 0.272 0.329 0.273 0.325 0.293 0.351 0.371 0.450 0.307 0.351 0.307 0.347 0.336 0.385 0.314 0.352
720 0.365 0.383 0.368 0.383 0.420 0.436 0.555 0.509 0.409 0.403 0.410 0.402 0.539 0.512 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.524 0.340 0.648 0.396 0.400 0.271 0.394 0.268 0.525 0.341 0.401 0.277
192 0.427 0.288 0.422 0.283 0.523 0.338 0.598 0.370 0.470 0.319 0.413 0.277 0.517 0.336 0.421 0.282
336 0.439 0.305 0.436 0.295 0.537 0.343 0.605 0.373 0.489 0.333 0.428 0.283 0.530 0.339 0.434 0.389
720 0.454 0.311 0.455 0.311 0.581 0.362 0.645 0.395 0.478 0.330 0.463 0.301 0.573 0.339 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.187 0.242 0.196 0.256 0.165 0.221 0.162 0.204 0.178 0.235 0.175 0.225

192 0.194 0.251 0.207 0.251 0.227 0.280 0.238 0.299 0.212 0.261 0.213 0.252 0.220 0.275 0.225 0.257
336 0.243 0.289 0.256 0.288 0.278 0.330 0.281 0.330 0.261 0.304 0.271 0.295 0.267 0.314 0.280 0.307
720 0.311 0.339 0.325 0.337 0.341 0.368 0.346 0.384 0.338 0.345 0.340 0.347 0.340 0.369 0.373 0.366

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 ANALYSIS RESULTS

B.2.1 FOURIER DISTRIBUTION ANALYSIS

In the main text we describe using Jensen–Shannon divergence squared (JSD2) and the Kol-
mogorov–Smirnov (KS) statistic to quantify spectral distribution shift between training and test
sets. Here we show another result and the algorithms.

JSD2 Computation. For each frequency ωj , let a =
{

ampi,j | i ∈ ttrain
}
, b =

{
ampi,j | i ∈

ttest
}
. We build histograms of a and b, normalize to probability mass functions, and compute the

Jensen–Shannon divergence squared via the Python Library "SciPy" ‘jensenshannon‘ function.

Algorithm 7: Compute JSD2 between two samples
Input: Arrays a, b; number of bins B
Output: Jensen–Shannon divergence squared DJSD2

vmin ← min(min a,min b);
vmax ← max(max a,max b);
Compute histogram ha ← histogram(a;B, [vmin, vmax]);
Compute histogram hb ← histogram(b;B, [vmin, vmax]);
Normalize: p← ha/

∑
ha, q ← hb/

∑
hb;

DJSD ← jensenshannon(p, q, base = 2);
DJSD2 ← D2

JSD;
return DJSD2

KS Statistic Computation. For each frequency index ωj , using the same samples a and b, we
compute their empirical cumulative distribution functions (ECDFs) and take the maximum absolute
difference.

Algorithm 8: Compute Kolmogorov–Smirnov statistic
Input: Arrays a, b
Output: KS statistic DKS

Sort a→ asorted, sort b→ bsorted;
Let V ← unique({asorted} ∪ {bsorted});
foreach v ∈ V do

Fa(v)← 1
|a|

∣∣{x ∈ a : x ≤ v}
∣∣;

Fb(v)← 1
|b|

∣∣{x ∈ b : x ≤ v}
∣∣;

Compute ∆(v)← |Fa(v)− Fb(v)|;
end
DKS ← maxv∈V ∆(v);
return DKS

B.2.2 FOURIER BASIS LEARNING EVALUATION

We include here further 3D views of the ground truth vs. predicted amplitude spectra, sampled from
different time-series examples and channels. The forecasting horizon is fixed to 720. For each plot,
we pick a specific sample index and a specific channel, to show that our TIFO consistently helps the
model recover spectral peaks across the dataset:

• Compute amplitudes. For each method tag (Before, FAN, TIFO), we load a 1D
slice data[...,sample,channel], take the real FFT via rfft, then smooth with
gaussian_filter1d and clip to [zmin, zmax].

• Frequency-to-axis mapping. We linearly map the frequency index range [fmin, fmax] to
the extended Y-axis interval, and map amplitude values into the Z-axis range plus a constant
offset (Z_OFFSET).

• True vs. predicted curves. We plot the smoothed true spectrum (in blue) and the predicted
spectrum (in red) at a constant x-plane (X_PLANE), using 3D line plots.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.04 0.36

Before After 60% Reference Band: BeforeScatters: After

SANRevIN TIFOFAN

Figure 5: More results on train-test distance compactness: This figure shows another visualization of
the JSD2 amplitudes distribution distance between the train and test datasets on the electricity data
(on a different channel). Each scatter point represents one frequency component. A smaller radius
indicates a smaller distributional gap. Green and red colors represent the results before and after
applying the learning method, respectively.

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0

FAN

0

TIFO

Figure 6: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #1.

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0

FAN

0

TIFO

Figure 7: Frequency-domain analysis of Fourier basis Learning. ETTm1 dataset, Channel #2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de
Before

0

FAN

0

TIFO

Figure 8: Frequency-domain analysis of Fourier basis Learning. Traffic dataset, Channel #237.

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0

FAN

0

TIFO

Figure 9: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #6.

ForecastingGround Truth Fourier Basis (sin) Local Peak Components

0

Frequency

80

240

1

Time
0

15

A
m

pl
itu

de

Before

0

FAN

0

TIFO

Figure 10: Frequency-domain analysis of Fourier basis Learning. Weather dataset, Channel #7.

B.3 RUNNING TIME

Table 9 presents the running time comprehensive results of our paper. This table includes the
prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Weather]
dataset, utilizing the [DLinear, PatchTST] as the backbone model. We compare our method against
SAN across forecasting horizons H ∈ {96, 720}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Running time comparison with forecasting lengths H ∈ {96, 720} for all datasets and fixed
input sequence length L = 96. The best results are highlighted.

Model Electricity ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather

H 96 720 96 720 96 720 96 720 96 720 96 720 96 720

DLinear (Zeng et al., 2023)
+ TIFO 16.718 27.545 3.004 3.082 2.820 3.222 13.456 13.124 11.839 12.949 23.217 43.413 13.970 16.536
+ SAN 19.159 34.914 8.688 8.054 8.373 7.811 36.706 36.564 36.620 36.550 31.378 54.518 37.739 40.731
IMP(%) 12.8% 21.1% 65.5% 60.5% 66.6% 58.3% 63.1% 64.2% 67.8% 64.3% 26.0% 20.3% 63.0% 59.9%

PatchTST (Nie et al., 2023)
+ TIFO 99.104 103.781 7.952 8.215 14.687 14.122 54.526 28.944 59.406 26.233 209.006 215.718 69.107 49.628
+ SAN 313.697 322.083 16.226 15.309 16.078 14.998 63.686 65.839 65.978 66.798 550.026 557.730 81.973 81.462
IMP(%) 68.4% 67.7% 51.6% 46.2% 8.00% 5.20% 14.3% 56.0% 10.0% 60.7% 61.6% 61.2% 15.9% 39.8%

C LLM USAGE STATEMENT

We used large language models (LLMs) solely for writing support, including grammar correction,
sentence refinement, and clarity improvements. All conceptual contributions, algorithm design, code
development, experiments, and analyses were conducted entirely by the authors.

22

	Introduction
	Background and Preliminary Analysis
	Analyze Distributional Shift from a Data Generation Perspective
	Normalization methods weaken x dependency on time condition t
	Problem Formulation

	Proposed Method
	TIFO: System Overview and FeedForward Pipeline
	Theoretical Analysis

	Experiments
	Experiment Settings
	Experiment Results

	Conclusion
	Reproducibility statement
	Additional Discussions and Details
	Additional Discussion about background
	Related Works
	Details of the datasets.
	Preprocessing and Evaluation details
	Details of the baselines
	Details of the backbones and setup
	Other experiments details

	The Full Results.
	Full Long-term Forecasting results.
	Analysis Results
	Fourier Distribution Analysis
	Fourier Basis Learning Evaluation

	Running Time

	LLM Usage Statement

