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ABSTRACT

Nonstationary time series forecasting suffers from the distribution shift issue due to
the different distributions that produce the training and test data. The distributions
can be regarded as governed by a time structure which itself may be subject to some
probabilistic law. Existing methods attempt to alleviate the dependence by, e.g.,
removing low-order moments from each individual sample. These solutions fail to
capture the underlying time-evolving structure across samples and do not model
the complex time structure. In this paper, we aim to address the distribution shift in
the frequency space by considering all possible time structures. To this end, we
propose a Time-Invariant Frequency Operator (TIFO), which learns stationarity-
aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-
stationary ones, thereby mitigating the distribution shift issue in time series. To
justify our method, we show that the Fourier transform of time series data implicitly
induces eigen-decomposition in the frequency space. Learning the data-specific
eigenvalues has the natural interpretation of weighting up frequency components
responsible for distributional discrepancies. TIFO is a plug-and-play approach
that can be seamlessly integrated into various forecasting models. Experiments
demonstrate our method achieves 18 top-1 and 6 top-2 results out of 28 forecasting
settings. Notably, it yields 33.3% and 55.3% improvements in average MSE on
the ETTm?2 dataset. In addition, TIFO reduces computational costs by 60% -70%
compared to baseline methods, demonstrating strong scalability across diverse
forecasting models. Our code can be found at this anonymous GitHub repository'.

1 INTRODUCTION

Time series forecasting is vital to decision-making in real-world applications like industrial system
control and stock market tracking (Thompson & Wilson, 2016). However, a crucial challenge is
the non-stationary nature of real-world time series that often leads to poor generalization to unseen
data beyond the training set. In this paper, we analyze this issue and existing normalization-based
solutions (Kim et al., 2021; Fan et al., 2023; Liu et al., 2023; Han et al., 2024) from a data generation
perspective. We thus introduce a principled new solution derived from this analysis.

From a distributional perspective, a time series is sampled from a distribution « ~ p(x|t), where ¢
denotes a temporal condition (e.g., the ¢-th sliding window) drawn from a time-evolving distribution
p(t). Consider the normal distribution N(j1¢, o) for example, it suggests that the mean and variance
are conditional on ¢. Therefore, a forecasting model trained on training data Zin ~ p(2|tyain) may
not perform well on test data Zyesy ~ P(&|tiest) SINCE tirain, trest can be vastly different, referred to as
the distributional shift issue.

Existing methods tackle this issue by weakening the dependency of = on ¢ through normalizing the
data distribution (Kim et al., 2021; Liu et al., 2023; Fan et al., 2023; Han et al., 2024), so that the
time-dependent low-order moments (mean and variance) are removed from both training and test
sets to obtain a standard distribution, in the normal case A/(0,1). While this kind of method has
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shown some promise, it implicitly assumes that (1) this standard reference distribution represents the
underlying distribution of the entire dataset, and (2) low-order statistics are sufficient to describe the
complex data distribution and avoids modeling the time parameter distribution p(¢). It may cause poor
performance when the assumption does not hold, e.g., the distribution has more complex dependency
over time, such as modality, high-order moments, or its functional form. To address this challenge,
this paper proposes a novel frequency-based method and provides its theoretical foundation.

From a signal processing perspective, non-stationarity in real-world time series often manifests as
changes in frequency characteristics (Proakis & Manolakis, 1996), such as shifts in dominant spectral
modes or time-dependent amplitudes. Mean and variance characterize the overall amplitude and
spread of a time series, but they fail to capture how energy is distributed across different frequency
components (Piao et al., 2024). In the existing works, normalizing low-order statistics may help
align total energy but not its spectral structure, such as the location of that energy in the frequency
space. As a result, frequency shifts (i.e., changes in the dominant frequencies over time) may persist,
especially when spectral characteristics differ significantly across training and testing datasets.

In this work, we propose to address distributional shift by working in the frequency space and by
considering all possible time conditions via p(z) = [ p(t)p(x|t)dt. Specifically, frequency-domain
analysis provides a disentangled view of underlying temporal features, enabling the model to capture
fine-grained stationarity. Crucially, such analysis is conducted across samples at the dataset level: the
observed distribution p(x) is formulated as a weighted average of the conditional distributions p(z|t)
over all possible time conditions, where the weights are given by p(t). Thus, we can achieve the
same goal (weakening the dependency of x on t) but account for the full temporal variability. To this
end, we propose Time-Invariant Frequency Operator (TIFO) for stationarity-aware representation
learning, which consistes two stages. Stage-I: We apply the Discrete Fourier Transform (DFT) to all
samples in a given time series dataset to obtain their frequency components. For each frequency, we
then conduct cross-sample statistical analysis and use a lightweight neural network layer to learn a
weight that quantifies its time-invariant relevance for mitigating distributional shift. Through this
data-driven weighting, our method emphasizes relatively stationary components (via higher weights)
while suppressing non-stationary ones (via lower weights), effectively learning a weighted average
over all time conditions embedded in the dataset. Stage-II: After weighting, we perform an inverse
DFT (IDFT) to project the adjusted frequencies back into the time domain. These transformed time
series are then fed into forecasting models. The weighted composition of fine-grained frequency
components enables the model to approximate more complex, temporally-evolving distributions.
Moreover, this paper takes a first step toward providing a theoretical foundation to justify our method.
We adopt a non-stationary stochastic process perspective and characterize time series through their
frequency characteristics. We show that by classical harmonic analysis results, the Fourier transform
on time series data implicitly induces a kernel in the frequency space, which in turn permits a set
of orthonormal basis functions formed by spectral eigen-decomposition (Berg et al., 1984). By
learning data-specific eigenvalues, the frequency components that are responsible for distributional
discrepancies can be captured as a weighted sum of eigenfunctions. Our contributions are as follows:

Summary of Key Contribution

(Perspective) We provide a data generation-based formulation of non-stationary time series and
distributional shift, offering a unified theoretical framework that both explains and generalizes
existing normalization methods.

(Method) We propose to learn stationarity and non-stationarity across samples in the frequency
domain. Our method enables fine-grained feature extraction to handle complex temporal dy-
namics, and can be seamlessly integrated into various forecasting models. We also provide a
theoretical analysis to justify the soundness of our method.

(Experiments) We apply TIFO to popular forecasting models, including DLinear (Zeng et al.,
2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b) to validate its effective-
ness across seven datasets. In non-stationary datasets such as ETTm2, we improve PatchTST and
iTransformer by 33.3% and 55.3%, respectively. Compared to existing normalization methods,
TIFO achieves 18 top-1 and 6 top-2 results out of 28 settings. Analysis on data distribution
shows that TIFO reduces the difference between training and testing datasets by up to 88%,
improving robust forecasting for non-stationary data. Computational efficiency analysis shows
that TIFO achieves improvements of 60% to 70% in 16 out of 28 settings.
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2 BACKGROUND AND PRELIMINARY ANALYSIS

We consider multivariate time series forecasting, where we are given a set of input X = {X® 1}V
and the corresponding target Y = {Y W} in discrete time, where N denotes the number of
sequences. Let C, L,, L, respectively denote the number of variables, the input-sequence length,
and the model prediction length, then the goal can be formulated as that given an input sequence
X () e RE=*C predict the target values Y9 e RLv*C,

2.1 ANALYZE DISTRIBUTIONAL SHIFT FROM A DATA GENERATION PERSPECTIVE

In this paper, we tackle the distributional shift issue in time series forecasting by analyzing the data
generation process. Time ¢ can be viewed as the index of a structured temporal sequence (e.g., the
t-th sampling window) drawn from a distribution p(¢). Once ¢ is sampled, a corresponding time
series segment X is then drawn from the conditional distribution p(z|t) (Adak, 1998), reflecting
various events (e.g., industrial sensors) occurring within that segment. This formulation highlights
that time series datasets X = {X("}¥ | can be viewed as being generated from different realizations
of temporal indices {¢()}¥,, where each ¢ induces its own conditional distribution p(z|t). As
time evolves, these context-dependent distributions naturally shift, reflecting the non-stationary
characteristics of time series. As such, the distributional difference of p(x|tyain) # P(2|test) thus
arises from the underlying variation in temporal contexts. In practice, this shift is often quite large,
since testing or future time series naturally change with time and differ from the training contexts.

2.2 NORMALIZATION METHODS WEAKEN 2 DEPENDENCY ON TIME CONDITION ¢

Methods such as RevIN (Kim et al., 2021) and SAN (Liu et al., 2023) are based on a key concept: they
aim to estimate time-dependent statistics (e.g., mean and variance) and remove them from the input
time series. This process reduces the conditional dependence on ¢, transforming the time-varying
distribution p(x|¢) closer to a stationary form p(z). We provide more discussion in Appendix A.1.

Formally, take a Gaussian distribution N (u, 07) for example, its mean and standard deviation are
subject to time changes. They estimate (., o) for each time segment z; via a function fy(z;),
where fy(-) can be either a numerical computation (Kim et al., 2021) or a neural network (Fan et al.,

2023; Liu et al., 2023; Han et al., 2024). By removing these statistics from the data via Z; = “U;t’“,

the time-dependent N (j1¢, 02) is transformed into a standard Gaussian A(0, 1). Consequently, the
distributional shift between training and test datasets is mitigated, since Zyin, Tiest ~ N (0, 1).

Nonetheless, some limitations remain in existing normalization methods:

1. Inadequate Data Distribution Modeling. This approach handles each sample individually that
implicitly assumes the reference N (0, 1) as the dataset-level ground truth distribution, i.e., Vt €
{train, test}, p(#;) = N(0,1). This suppresses meaningful cross-sample stationary distributions
and prevents the model from capturing how data evolves globally across training and test domains.

2. Simplistic Distribution Characterization. Existing methods primarily rely on low-order statistics
(1, o) to standardize data, which assumes that the data distribution can be described by Gaussian-
like behavior. However, real-world time series often exhibit far more complex characteristics (e.g.,
non-stationary frequency dynamics) and distributions (consider the Student’s t distribution, for
instance). Even after normalization, residual distributional shifts may persist.

2.3 PROBLEM FORMULATION

The above discussion suggests that distributional shift in time series should be understood in terms
of how data evolves globally across multiple samples, and in identifying which characteristics can
capture such evolution. The key question in this paper becomes:

Problem 1. which aspects of the data distribution are consistent across multiple samples, and which
are unstable and lead to shifts between training and testing domains?

Let each sample be generated as « ~ p(z|t) with ¢t ~ p(t) denoting a latent temporal condition.
Given a training dataset X = {X@ 1 the objective is to learn a transformation f(-) such that
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Figure 1: Overview of TIFO. Before training, we first transfer all samples into the frequency domain
and measure their cross-sample stationarity at the dataset level (steps 1 & 2). These features are then
used to learn frequency weights that measure frequency stationarity (step 3). During training, each
input sample is transformed into the frequency domain and then weighted by the learned stationarity
weights. Finally, they are transformed to the time domain to serve as input to the forecasting models
(steps 4 & 5). TIFO is optimized using the forecasting loss along with the backbone model.

the resulting representations satisfy two requirements: emphasizes stationary components across all
samples from f(X') while preserves important characteristics unique to each sample f (X(i)), since
time series data often contain stochastic variations and local structures (Piao et al., 2024). To this end,
we develop a novel two-stage framework that mitigates distributional shift and is plug-and-play for
diverse forecasting models, similar to normalization methods (Kim et al., 2021; Ye et al., 2024).

3 PROPOSED METHOD

In this section, we introduce our novel framework TIFO. We begin by introducing our design of
TIFO in Section 3.1. This design is supported by a detailed theoretical analysis in Section 3.2.

3.1 TIFO: SYSTEM OVERVIEW AND FEEDFORWARD PIPELINE

Figure 1 shows the processing pipeline of TIFO. It includes a two-stage modeling: (i) pre-training:
measuring frequency stationarity in the entire training set; (ii) in-training: adaptively re-weighting
frequency coefficients of each input sequence.

Stage-1: Dataset-level Stationarity Learning

« Step 1. For each sample X € RX*® from a multi-channel time series training dataset X =
{X®}N |, we take the Discrete Fourier Transform (DFT) and obtain the amplitudes A (k, c)
for frequency k and channel c. Where L represents the length of each sample, C is the number of
channels, and K is the number of frequency components.

» Step 2. We aggregate across the training set to measure the stationarity of frequencies using
Mz‘Elrain(A(i) (k7 C))

O—iEtrain(A(i) (k, C))

, where 1;ctrain(+) and 0;ctrain () are the mean and standard deviation of the amplitude A® (k,c)

in all samples. A larger ;+ means a higher energy proportion, while a greater o denotes higher
sample dispersion. Thus, a higher S(k, ¢) reflects more stationary frequency behavior.

S(k,c) =
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» Step 3. In this step, we save the calculated S from Step 2 and pass it to the forecasting model.
Through S, the model can access cross-sample variation information, while the MLPs in Stage II
can further optimize the weights through training. This aims to allow the forecasting model to
learn the overall stationarity of each component across the dataset, and use this information to
learn a stationary representation of data during the training.

Stage-I1: Sample-specific Learning & Forecasting

s Step 4. In the training stage, given an input sample X € RL*®, we compute its DFT and
obtain real and imaginary coefficients R,I € RX*¢ Based on the pre-computed stationarity
S € REXC we use two independent MLPs to generate frequency weights:

A, = MLP,(S), \; = MLP;(S). (1)

The weighted coefficients are then obtained by element-wise multiplication: R,, = R ©®
Ar, I, = I ® ). We model the real and imaginary parts separately to ensure that when
the weighted coefficients are mapped to the time domain through the inverse DFT, the resulting
amplitudes remain non-negative, allowing the inverse DFT to output real-valued sequences. In this
stage, TIFO serves as a lightweight frequency stationarity filter, enhancing stationary components
(those with a high stationarity score) while suppressing non-stationary ones, thereby addressing
the distribution shift problem defined in Section 2.

* Step 5. Finally, the weighted coefficients (R, I,,,)) are transformed to the time domain via inverse

DFT X = iDFT(R,, + iL,), and fed into the backbone forecasting models. X € R is
the final output of TIFO and the input of the backbone model, where H denotes the forecasting
horizon. The whole framework is optimized end-to-end using the forecasting MSE loss.

3.2 THEORETICAL ANALYSIS

Our frequency weighting in the previous section is the result of the following theoretical analysis.
This section connecting nonstationarity to spectrum analysis is novel to the best of our knowledge.

Existence of Time-Averaged Representation. We connect the learning of frequency weights Eq.(1)
to spectrum analysis by noticing that these weights correspond eigenvalues that characterize frequency
space representations that discern frequency components responsible for distributional shifts. We
begin our analysis with the assumption:

Assumption 1. The time series dataset X = {X(i) N | is composed of multiple samples from

t; ~ p(t) and D ~ p(x|t;) so it can sufficiently representation the distributions.

We assume that the time series dataset can sufficiently represent the time variations. This assumption
is realistic in many real-world datasets such as electricity or stock markets that collect data on
many-year-basis. These datasets compose a challenge to normalization methods, since removing
empirical estimates ji, & from a batch does not equal removing 1, , 04, that is governed by a specific
t;. It is intractable to identify which data batch is governed by a unique time structure. Our method
instead turns to a time-averaged representation. We integrate over time by applying Fourier transform
on data. The next theorem formalizes this idea.

Theorem 1 (Bochner’s Theorem (Scholkopf & Smola, 2001)). A kernel function k(z,y) > 0is a
distance measure of input x,y. It is valid if and only if there exists a probability density that is the
Fourier transform of the kernel.

The fact that we assume data is generated by t; ~ p(t), z® ~ p(z|t;) plus we apply Fourier
transform to X" imply that a kernel function exists on the frequency domain:

k(wl,w2)|m — / eit(w17w2)‘)(‘dt — Et [eit(wlfwz)] (2)
R

x

where we use |, to denote the dependency on . While in practice the dataset X’ needs to be infinitely
large to sufficiently represent the distributions, we can expect that with a reasonably sized dataset that
comprises multiple samples of ¢, the existence of a kernel is guaranteed. As the result of integration
over time, it is also reasonable to expect that the kernel as a time-averaged representation should
perform better than the normalization methods.
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Adapting Time-Averaged Representation to Data. The kernel function in Eq. (2) is implicit since
we know it exists but have no access to it. To exert the kernel as a distance measure, we can adapt it to
input data so the distances between important and unimportant frequency components are emphasized
most. To this end, we explicitly learn the kernel in a data-driven way based on the Mercer’s theorem.

Theorem 2 (Mercer’s Theorem (Mercer, 1909)). A valid, positive definite kernel function can be
represented by a set of eigenfunctions that form an orthonormal basis {(; }ien with associated
eigenvalues A\ > Ao > - -+ > 0 such that:

F(wr,wa) = Xii(w)Gi(wa), 3
i=1
where the convergence of the infinite series holds absolutely and uniformly.

Because the kernel must exist in the frequency space, by Mercer’s theorem it must permit the
eigen-decomposition that forms a set of orthonormal basis in the space. Moreover, if we impose a
structure on the eigenfunctions (, then the kernel varies with the eigenvalues A. Therefore, learning
the eigenvalues given data is equivalent to learning the kernel itself (Wilson et al., 2016).

We follow (Xu et al., 2019) to employ the assumption that the kernel is periodic, which is natural
for frequencies. Therefore, the kernel has the Fourier basis as its eigenfunctions: ¢ (w) = 1,

G2j(w) = cos (@)&gﬁl(w) = sin (2”%) forj = 1,2,.... Now A\;,7 = 1,2,... become the
corresponding Fourier coefficients to weight the contribution of each (. Therefore, we have concluded

the theoretical analysis on the role played by A introduced in Eq.(1).

4 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQI. Forecasting
Accuracy. Does TIFO improve forecasting performance on non-stationary datasets? RQ2. Addressing
Distribution Shift. Does learning A mitigate the distribution shift? RQ3. Frequency Feature Learning.
How do X affect the backbone models to capture informative frequency characteristics? We first
introduce the experimental datasets and settings, followed by detailed results and analysis to answer
each of the above questions. We also conduct efficiency analysis and ablation studies.

4.1 EXPERIMENT SETTINGS

Datasets. We benchmark our models on seven widely used multivariate time-series datasets: Elec-
tricity Transformer Temperature (ETT) with four subsets at hourly (ETTh1, ETTh2) and 15-minute
(ETTm1, ETTm?2) resolutions; Electricity consumption of 321 clients; Traffic volumes from 862
San Francisco sensors; and Weather recordings of 21 meteorological variables. We follow the
Time—Series-Library split (7:2:1) with a fixed window length L = 96 and apply per-channel z-score
normalisation; this rescales variables but leaves cross-instance non-stationarity intact. Models are
trained with the Mean-Squared-Error loss and evaluated in the time domain by MSE and MAE.

Baselines. We selected RevIN (Kim et al., 2021), SAN (Liu et al., 2023), and FAN (Ye et al., 2024)
as our baselines. RevIN is widely used as a fundamental module in various forecasting models,
including PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024b), among others (Wang et al.,
2024). SAN is a normalization-based method that outperforms several non-stationary forecasting
modules (Kim et al., 2021; Fan et al., 2023). We also selected FAN, it introduces a frequency-domain
modeling normalization-based method to address the distributional shift issue.

Backbones and Setup. For fair comparisons, we selected three forecasting models, including
DLinear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b),
as the backbones, and deployed all non-stationary modules (TIFO, RevIN, SAN, and FAN) for
evaluation. DLinear is a simple yet efficient forecasting model with an architecture solely involving
MLPs. PatchTST and iTransformer are two well-known Transformer methods that frequently serve
as baselines in various forecasting research (Liu et al., 2024b;a; Piao et al., 2024; Zhang et al., 2024).
We followed the implementation and setup provided in (Liu et al., 2023) and (Liu et al., 2024b).

Experiments Details. All experiments were implemented on a single NVIDIA RTX A6000 48GB
GPU. More details of the datasets are in Appendix A.3, the preprocessing are in A.4, the baselines
are in A.5, the backbones and setup are in A.6, and other details of the experiments are in A.7.
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4.2 EXPERIMENT RESULTS

Table 1: Multivariate forecasting results (average) with forecasting lengths H € {96,192, 336, 720}
for all datasets and fixed input sequence length L = 96.

Models PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + TIFO | Ori + TIFO | Ori
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETThl | 0.438 £0024 0437 +£0035 0480 +0037 04810031 | 0.445+0017 0.443+0.026 0.511 +0.033  0.496 +0.036
ETTh2 | 0.379 £0.032 0.380 £0.038 0.604 £0.130 0.524 £0.027 | 0.376 £ 0.041  0.400 £ 0.057 0.813 £0.134  0.666 = 0.072
ETTml | 0.390 £0.027 0.398 £0.025 0.419+£0.055 0.432+0.047 | 0.396 +£0.026 0.406 +0.056 0.447 +£0.026 0.457 £ 0.061
ETTm2 | 0.280 £0.032 0.325+£0.031 0.420£0.035 04240044 | 0.283+£0.020 0.327 £0.026 0.633 £0.055 0.489 +0.041
Electricity | 0.197 £0.027 0.296 +:0.033 0218 £0.31  0.307 £0.032 | 0.169 £0.035 0.262£0.041 0.179 £0.028 0.279 £ 0.046
Traffic | 0.427 £0.029 0.285+£0.025 0.619 0077 0.365+0.029 | 0.424 £0.031 0.282+£0.027 0.576 £0.069 0.372 £ 0.035
Weather | 0.25140.019 0.276 £0.017 0.255+£0.021 03120031 | 0.246 £0.023 0.274 0017 0.274£0.029  0.320 £ 0.041

Main Results. To answer RQ1, we conduct our proposal on backbone models across seven datasets,
and report the overall forecasting accuracy in Table 1. We set the forecasting lengths as H €
{96,192, 336, 720}, with the input sequence length L = 96. Here, we present the averaged MSE
and MAE over four forecasting lengths. Applying TIFO consistently improved the performance
of the backbone models across all datasets. More importantly, in datasets with complex frequency
characteristics, such as ETTm2, TIFO improves PatchTST and iTransformer by 33.3% (0.420 —
0.280) and 55.3% (0.633 — 0.283), respectively. This improvement is attributed to the learned
Fourier basis coefficients A, allowing these backbones to forecast based on a stationary representation
of the input time series.

Comparison with Baseline Non-stationary Methods. Table 2 further presents the average com-
parison results between TIFO and the baseline non-stationary methods, i.e., RevIN, SAN, and
FAN. We use the same parameters and forecasting length as in Table 1. For iTransformer, the input
sequence length is L = 96, and L = 336 for DLinear. As shown, TIFO achieves 18 top-1 results
and 6 top-2 results out of 28 settings. For instance, in the ETTh1 dataset, TIFO improves the MSE
values for DLinear and iTransformer to 0.407 and 0.445, outperforming RevIN (0.460 and 0.463)
and SAN (0.421 and 0.466). Similarly, in the Traffic dataset, TIFO improves the MSE value to
0.430, compared to RevIN (0.624), SAN (0.440) and FAN(0.541). Here, TIFO * represents the
incorporation of SAN into the backbones, which further improves the second-best results (underlined
in the table) to the best.

Frequency Domain Shift Analysis. To answer RQ2, we further measure the frequency-domain
distribution difference between the train and test dataset amplitude spectra to link accuracy gains
to reduced spectral distributional shift. For each frequency w;, we gather its amplitudes across all
training and testing samples to build two empirical distributions. Jensen—Shannon divergence squared
(JSD?) is a symmetric, bounded average of the forward and reverse Kullback—Leibler divergences, so
it can tell us how much the two distributions differ overall (Mateos et al., 2017; Igbal et al., 2021).
Kolmogorov—Smirnov statistic (KS) measures the largest gap between the cumulative distribution
functions, highlighting the most significant mismatch between training and testing data (Wang &
Wang, 2010). Here, JSD? evaluates the overall shift in amplitude distributions, while KS measures
the worst-case deviation between training and test data for each frequency component.

Table 3 presents the JSD? and KS statistics for the original data (Before) and after applying RevIN,
FAN, SAN, and TIFO across four benchmark datasets. Lower values indicate smaller distributional
discrepancies between training and test sets. On ETTh1, TIFO reduces JSD? from 0.3637 to 0.0435
(a reduction of 88%), and on Electricity from 0.1443 to 0.0423 (71%). KS values also decrease
significantly, ranging from 43% to 80% reductions across the same datasets. Figure 5 shows the per-
frequency JSD? values on the Electricity dataset. Each spoke represents a frequency component, and
the gray shadowed circle area serves as a reference band that indicates the region within which 60% of
the frequency components fall. A smaller area reflects a lower overall distributional discrepancy. As
shown in the figure, TIFO considers all frequency components and significantly reduces distributional
differences, achieving effective alignment between training and test datasets. RevIN and SAN, which
operate in the time domain, exhibit minimal changes before and after learning, as evidenced by the
near overlap between the green line and the gray reference circle. FAN, which explicitly operates in
the frequency domain, shows improved performance. However, it focuses only on the top-k frequency
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Table 2: Multivariate forecasting results (average) with H € {96,192, 336,720} for all datasets
and fixed input sequence length L = 96. The best and second best results are highlighted. TIFO *
represents the results where both TIFO and SAN are used in the backbones.

Models MLP-based (DLinear(Zeng et al., 2023)) Transformer-based (iTransformer(Liu et al., 2024b))
Methods | +TIFO* | +TIFO | +SAN | +FAN | +RevIN +TIFO* | +TIFO +SAN |  +FAN | +RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETThl ‘ 0413 0424 0407 0419 0421 0427 0469 0473 0460 0.456 ‘ 0455 0449 0445 0443 0466 0455 0504 0488 0.463 0452
ETTh2 | 0339 0.384 0337 0.384 0342 0387 0459 0469 0561 0518 | 0.378 0408 0376 0400 0392 0413 0543 0515 0385 0412
ETTml | 0.341 0372 0357 0375 0344 0376 0367 0392 0413 0407 | 0389 0398 0396 0406 0401 0406 0424 0428 0406 0410
ETTm2 | 0255 0316 0256 0313 0260 0318 0278 0339 0350 0413 ]0.285 0334 0.283 0.327 0287 0336 0337 0385 0294 0337
Electricity ‘ 0.161 0.257 0.168 0.262 0.163 0260 0.176 0277 0.225 0316 ‘ 0.175 0273 0.169 0.262 0.195 0.283 0.180 0.276 0205 0.272
Traffic | 0432 0297 0430 0291 0440 0302 0541 0346 0.624 0383 | 0459 0313 0424 0282 0520 0341 0536 0339 0430 0312
Weather | 0.224 0.271 0237 0272 0227 0276 0258 0305 0.265 0317 | 0.244 0282 0246 0274 0247 0291 0251 0298 0263 0.288
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Figure 2: Train-Test Distance Compactness: This figure shows a visualization of the JSD? amplitudes
distribution distance between the train and test datasets on the electricity data. Each scatter point
represents one frequency component. A smaller radius indicates a smaller distributional gap. Green
and red colors represent the results before and after applying the learning method, respectively.

Table 3: Frequency-domain distribution distance between the train and test set. Both the JSD? (|
and the KS statistic (/) are computed on amplitudes; bold marks the best per row.

Dataset Before ReVIN FAN SAN TIFO
ISD? KS ISD? KS ISD? KS JSD? KS ISD? KS

ETThl  0.36367 0.35982 0.08100 0.08937 0.14759 0.27057 0.04745 0.08389 0.04353 0.07357
weather 0.11156 0.19926 0.02175 0.09172 0.05328 0.12149 0.01739 0.09566 0.01687 0.07934
ECL 0.14431 0.16804 0.08060 0.11924 0.10394 0.16537 0.07740 0.11639 0.04225 0.09581

components, affecting only a subset of spokes. Overall, TIFO consistently outperforms all baselines,
and more results can be found in Appendix B.2.

Fourier Basis Learning Evaluation To answer RQ3, after analyzing the impact of TIFO on the
distributional difference, we further investigate how TIFO affects the deep forecasting models to
learn frequency features. Figure 10 shows the Fourier basis functions in three cases, from left to
right are: (i) basis functions before any processing (Before), (ii) after applying FAN, and (iii) after
applying TIFO, respectively. We use DLinear as the forecasting model in this evaluation, and results
for other models are given in Appendix B.2. The coefficients A of the Fourier basis functions (,, ,
are A = 1.0 in the unprocessed case (Before). FAN sets the A of the top-k high-amplitude frequencies
to zero and leaves the \ of the rest frequencies unchanged. In contrast, TIFO learns a data-driven A
for each basis function. The line plots display ground truth and corresponding forecasting results in
the frequency domain for each case, with local peak components marked by red diamonds. Without
any processing, the original model failed to capture these local peaks. FAN, which affects deep
forecasting models via frequency modeling, shows improved performance. However, it still failed to
capture most local peak components. In contrast, after applying the TIFO, the model successfully
captures all four local peak components, outperforms other cases.
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B Ground Truth EEEM Forecasting (,, Fourier Basis (sin) 4 Local Peak Components

Amplitude

Figure 3: Frequency-domain analysis of Fourier basis Learning. From left to right: unprocessed
spectra (Before), after FAN, and after applying TIFO. Each panel is a 3D box with time, frequency,
and amplitude axes. We visualize four Fourier basis waves, (,,,.,, to illustrate how each processing
method alters the basis functions. In the frequency—amplitude plane, we plot three forecasting cases:
the ground truth in blue and the forecasting results based on the processed input in red. The red
diamonds mark key local peak frequencies.

Table 4: Running time (s), fixed L = 96. Table 5: Ablation study (MAE |, mean=+std).

Speed-ups over +SAN in parentheses. Bold = best.

Model Norm H ETThl ETTml Model Variant H ETThl ETTml
5 +TIFO 96 3.004 (165.5%) 13.456 (163.1%) 5 +TIFO 96 0.3714+0.032 0.299+0.021
g 720 3.082 (160.5%) 13.124 (164.2%) g 720 0.428+0.039 0.42540.032
5 +SAN 96 8.688 36.706 5 +Random 96 0.379+0.025 0.305+0.022

720 8.054 36.564 720 0.435+0.036 0.431£0.031

= +TIFO 96 7.952(151.6%) 54.526(114.3%) 5  +TIFO 96 0.389+0.023 0.330+0.035
% 720 8.215(146.2%) 28.944 (156.0%) § 720 0.496+0.034 0.475+0.043
% +SAN 96 16.226 63.686 g +Random 96 0.401+0.017 0.335+0.033
~ 720 15.309 65.839 = 720 0.502+0.029 0.48340.047

Running Time and Ablation Study. Table 4 presents the running time results for TIFO and SAN
across two datasets. The results show the average time (in seconds per epoch) using DLinear and
PatchTST as backbones. TIFO consistently outperforms SAN across all datasets. The full results
are in B.3. Notably, we achieved improvements of 60% to 70% in 16 out of 28 experiment settings.
These improvements are primarily because TIFO only utilizes FFT and MLP during the training
phase, minimizing its impact on computation time. Table 5 shows an ablation in which we replace
the computed starting point s with a random vector, while keeping the MLPs and all parameters
unchanged. This variant assigns random starting points for the MLPs. The drop in forecasting
accuracy compared to TIFO demonstrates that initializing the MLPs with s is essential to help deep
forecasting models learn the frequency representations.

5 CONCLUSION

Nonstationary time series forecasting suffers from distributional shift due to the different distributions
that produce the training and test data. As a result, a model trained on the training data may perform
poorly on the test data. These distributions can be regarded as governed by a time structure. A
time series can be considered as first sampling from a time structure distribution, then from a time-
conditional observation distribution. Existing methods attempt to alleviate the issue by normalizing
the distributions. To this end, we propose a Time-Invariant Frequency Operator (TIFO), which
learns stationarity-aware weights over the frequency spectrum across the entire dataset. The weight
representation highlights stationary frequency components while suppressing non-stationary ones,
thereby mitigating the distribution shift issue in time series. Extensive experiments demonstrate that
the proposed method achieves superior performance, yielding 18 top-1 and 6 top-2 results out of 28
settings compared to the baselines.
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6 REPRODUCIBILITY STATEMENT

To complement the model presented in Section 3.1, we provide pseudocode and an anonymous
repository that illustrate our approach. Algorithm 1 shows how frequency-wise stability s is computed
from the training data. Algorithm 2 demonstrates how these scores are used to adaptively re-weight
Fourier coefficients through independent MLP mappings, before transforming back to the time
domain. The complete implementation, including model training and experimental setup, is available
at our anonymous repository: https://anonymous.4open.science/r/TIFO-6BEL.

Algorithm 1: Compute Stability Scores s; Algorithm 2: Apply Fourier Coefficients \;
def compute_stability_scores (X) : def weight_spectra(x, s, f_cos, f_sin):
X: (N, T) training set f_x: learnable MLP layers
amp = np.abs(np.fft.fft (X, axis=1)) X = np.fft.fft (x)
mean = amp.mean (axis=0) X[0::2] *= f_cos(s[0::2])
# per—-freqg mean # re-weight real parts
std = amp.std(axis=0) + le-5 X[1l::2] = f_sin(s[1l::2])
# per—-freq std # re-weight imag parts
return mean / std # s_j return np.fft.ifft (X, n=len(x))
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A ADDITIONAL DISCUSSIONS AND DETAILS

A.1 ADDITIONAL DISCUSSION ABOUT BACKGROUND

Here, we conduct a schematic case
study using a synthetic time series
dataset to illustrate further the discus-
sions in Section 2.2.

As shown in Figure 4, for each
temporal condition ¢;, we generate
50 independent samples, each gov-
erned by different temporal structures.
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Here, we generate different temporal
structures by mixing low- and high-
frequency components, as shown in
the Figure 4 (bottom). For exam-
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Then, we use the numerical distribu-
tion of = and the Power Spectral Den-
sity (PSD) to evaluate the data distri-
bution in both the time domain and
the frequency domain, respectively.
The figure visualizes the data before
and after applying z-score normaliza-
tion. In the time domain, normaliza-
tion successfully transfers the distribu-
tions from different ¢; into a common
Gaussian shape, thereby reducing distributional gaps. However, when examining the same data in the
frequency domain, we find a very different result: the spectral energy distributions remain distinct and
non-overlapping, revealing that the z-score does not address discrepancies in temporal dependencies
or frequency compositions.

Figure 4: Illustration of z-score normalization in both time
and frequency domains. (Top) Data generating distributions
p(x|t;) across different temporal structures ¢; are aligned
after z-score, sharing a common location and scale. (Bottom)
Frequency-domain power spectra before and after z-score.
The frequency-domain distribution remains divergent after
normalization.

This is because the z-score operates only on first- and second-order statistics, ignoring higher-order
temporal structure information. In contrast, periodicity and other temporal dynamics are preserved
in the signal and are clearly reflected in the frequency features. In other words, while z-score
normalization alters the numerical distribution of the data, it preserves the underlying temporal
organization. Thus, the distribution shift in the frequency domain remains unchanged.

A.2 RELATED WORKS

Time Series Forecasting. Transformer-based architectures have become the mainstream in time
series forecasting (Nie et al., 2023; Zhang & Yan, 2023; Jiang et al., 2023; Liu et al., 2024b).
Meanwhile, simple multilayer perceptron (MLP) models, such as DLinear (Zeng et al., 2023; Chen
etal., 2023; Zhou et al., 2022a), have also attracted attention due to their lower computational costs
and forecasting accuracy comparable to transformer-based models.

Normalization-based Methods. Existing methods aim to quantify and explicitly eliminate non-
stationary components from both training and test data, thereby aligning distributions and enhancing
generalization. A normalization is performed by subtracting the empirical mean and dividing by the
variance computed from the data. At the forecasting stage, denormalization is applied to reintroduce
these descriptive statistics to model outputs. RevIN (Kim et al., 2021) is an innovative work that
focuses on z-score normalization. Dish-TS (Fan et al., 2023) utilizes learned mean and variance for
denormalization. SAN (Liu et al., 2023) models non-stationarity in a set of fine-grained sub-series
and proposes an additional loss function to predict their statistics. Instead of mean and variance,

13
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SIN (Han et al., 2024) proposes an independent neural network to learn features as the objectives
of normalization and denormalization adaptively. However, existing methods focus on modeling
statistical variations in the time domain. A recent FAN (Ye et al., 2024) has taken an initial step in
learning predominant frequency components as non-stationarities. FAN uses heuristic top-k masking
of the largest-amplitude frequencies, zeroing out a subset of components. However, this heuristic
selection may risk discarding critical periodic patterns embedded in high-energy regions and introduce
sub-optimal frequency correlations into the model, inadvertently misleading the model training.

Frequency Domain Modeling. Frequency domain modeling has proven highly effective in time
series forecasting. Mainstream works employ neural networks to automatically learn frequency
representations directly in the raw Fourier domain (Wu et al., 2021; Zhou et al., 2022b; Wang et al.,
2022; Wu et al., 2023; Yi et al., 2023), but such approaches can be vulnerable to noise and to
frequency components that vary significantly over time. Some other methods are designed to select
informative components via sparse selection (Zhou et al., 2022b; Woo et al., 2022; Zhou et al., 2022a;
Ye et al., 2024) or local normalization in the frequency domain (Piao et al., 2024), yet these still rely
on heuristics, such as top-k selection, or rely on the model to identify the key frequency features.
In contrast, our method learns and adjusts the coefficients of the Fourier basis functions, naturally
encoding the relative importance of different spectral components and allowing seamless deployment
on any forecasting backbone. Notably, FAN uses heuristic top-k masking of the largest-amplitude
frequencies, zeroing out a subset of components. In contrast, TIFO learns a data-driven coefficient
for every Fourier basis function, enabling dynamic weighting of the contribution of each component.

A.3 DETAILS OF THE DATASETS.

Weather contains 21 channels (e.g., temperature and humidity) and is recorded every 10 minutes in
2020. ETT (Zhou et al., 2021) (Electricity Transformer Temperature) consists of two hourly-level
datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). Electricity (Lai et al.,
2018), from the UCI Machine Learning Repository and preprocessed by, is composed of the hourly
electricity consumption of 321 clients in kWh from 2012 to 2014. Solar-Energy (Lai et al., 2018)
records the solar power production of 137 PV plants in 2006, sampled every 10 minutes. Traffic
contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area freeways
from January 2015 to December 2016. More details of these datasets can be found in Table.6.

Table 6: Overview of Datasets

Dataset Source Resolution Channels Time Range
Weather Autoformer(Wu et al., 2021)  Every 10 minutes 21 (e.g., temperature, humidity) 2020
ETThl Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2016-2017
ETTh2 Informer(Zhou et al., 2021) ~ Hourly 7 states of a electrical transformer 2017-2018
ETTml Informer(Zhou et al., 2021) ~ Every 15 minutes 7 states of a electrical transformer 2016-2017
ETTm2 Informer(Zhou et al., 2021)  Every 15 minutes 7 states of a electrical transformer 2017-2018
Electricity UCI ML Repository Hourly 321 clients’ consumption 2012-2014
Traffic Informer(Zhou et al., 2021)  Hourly 862 sensors’ occupancy 2015-2016

A.4 PREPROCESSING AND EVALUATION DETAILS

Given the raw multivariate time-series data X € RT*C we first slide a window of length L = 96

over X with stride 1. This produces overlapping segments W = { X;.;4yr—1 |i=1,...,T— L+1}.
Each segment is of shape (L, C'). We order the segments chronologically and split IV into training
(70%), validation (20%), and test (10%) sets. On the training set, we compute per-variable means
1t and standard deviations o; for j = 1,...,C. We then apply per-variable z-score normalization

to every segment in all splits: w; ; = “=H2 Vw e W, i = {1,...,L}, j ={1,...,C}. The

T
normalized segments form Dy;ain, Dyal, and Diest, ready for model training and evaluation.
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Algorithm 3: Pre-processing for Time-Series Forecasting

Input: Time-series X € R7*¢, window length L, split ratios (0.7,0.2,0.1)
Output: Normalized sets Diyain, Dvals Drest
Slice X into overlapping windows W < {X;,.r—1 |i=1,..., T — L+ 1};
Split W into train/val/test by first 70%, next 20 %, last 10 %;
Compute p1; = mean({wi?j | we Dtrain});
Compute 0; = std({wm- | w e Dtrain});
foreach segment w € W do

for variable j = 1,...,C do

| wj < (wj — py)/05:

end

Add w to its split’s dataset;
end
return Dtraina Dvala Dtest

A.5 DETAILS OF THE BASELINES

Reversible Instance Normalization. Reversible Instance Normalization (Revin) normalizes each
input sample using z-score normalization while preserving the original mean and variance. Revin
reverses the normalization to model outputs by using the saved statistics and applies learnable scaling
and shifting parameters (v and ().

Sequential Adaptive Normalization. Sequential Adaptive Normalization (SAN) has two training
phases. In the first phase, SAN is trained to learn the relationships between patches of input and
target data by mapping their means and variances. In the second phase, SAN parameters are frozen,
and only the forecasting model is trained. During inference, input data is normalized using SAN, and
the model output is reverse-normalized with predicted statistics by SAN.

Frequency Adaptive Normalization (FAN) is a deep learning approach for time series forecasting
that decomposes input sequences into frequency components using FFT/RFFT. The algorithm
separates the top-k dominant frequency components from residual signals, then employs an MLPfreq
network to model the main frequency patterns while handling residuals separately. By processing
frequency and temporal information through parallel pathways and combining them via learnable
weights, FAN achieves improved forecasting accuracy through frequency-domain feature extraction
and adaptive normalization. The method is particularly effective for capturing periodic patterns and
long-term dependencies in time series data.

Algorithm 4: Reversible Instance Normalization (Revin)

Input: Time-series data X, Forecasting model F
Output: Forecasted data X ;
for each instance X; in X do
Compute mean x; < mean(X;);
Compute variance o < variance(X;) ;
Normalize X; < XU;”,
Store 1; and 07 ;
end
X «— {Xl,XQ,...7XN} 5
Y « F(X);
for each forecasted instance Y; do
Reverse Normalize Y; < }77 X o+ Wi ;
Apply learnable parameters Y; <— v X Y; + 3 ;
end

return X = {",Ya,..., YN}

15



Under review as a conference paper at ICLR 2026

Algorithm 5: Sequential Adaptive Normalization (SAN)
Stage 1: Train SAN;
Input: Training data X and targets Y Divide X and Y into patches { X, } and {Y, }
for each pair of patches (X,,Y,) do
Compute means px < mean(X,), pty < mean(Y,) ;
Compute variances 0% < variance(X,), o3 <+ variance(Y}) ;
Train SAN to map (px,0%) to (iy, 0% ) using loss on py and o2 ;
Stage 2: Train Forecasting Model Freeze SAN parameters;
for each training iteration do
Divide input X into patches {X,} ;
for each patch X,, do
‘ Normalize X, XPU_% using SAN’s learned 1y and 0%
end
Forecast Y + F(X);
Divide Y into patches {Y,} ;
for each forecasted patch }71, do

‘ Predict 1y, 02 using SAN Reverse Normalize Y, Y/p X oy + [ty
end

end

Compute loss £(Y,Y) ;
Update forecasting model parameters € via backpropagation ;

end
return Trained forecasting model F ;

A.6 DETAILS OF THE BACKBONES AND SETUP

In our study, we selected three distinct forecasting models to evaluate the effectiveness of our proposed
normalization techniques. DLinear is an MLP-based model renowned for its lightweight architecture,
utilizing two separate multilayer perceptrons (MLPs) to learn the periodic and trend components of
the data independently.

PatchTST and iTransformer are both Transformer-based models with unique approaches to handling
time-series data. PatchTST introduces a patching operation that samples each input time series into
multiple patches, which are then used as input tokens for the transformer, effectively capturing local
temporal patterns. In contrast, iTransformer emphasizes channel-wise attention by treating the entire
sequence of each channel as a transformer token and employing self-attention mechanisms to learn
the relationships between different channels.

For all models, we first compute the starting point (Coefficient of variation) across the entire training
dataset, a fixed computational process that typically takes less than five seconds. Following this, we
apply a simple, parameter-free normalization and denormalization method. After normalization, the
input data is processed through our custom weighting layer before being fed into the forecasting
models.

A.7 OTHER EXPERIMENTS DETAILS

Loss Function. For our experiments, we adhere to a conventional approach by employing the
Mean Squared Error (MSE) loss function, implemented as nn.MSELoss in our framework. The
MSE loss quantifies the average squared difference between the predicted values and the actual
target values, providing a straightforward measure of prediction accuracy. Mathematically, the MSE
loss is expressed as Lysg = % vazl (9; — y,-)Q, where N is the number of samples, §J; represents
the predicted value, and y; denotes the true target value for the ¢-th sample. This loss function
effectively penalizes larger errors more heavily, encouraging the model to achieve higher precision in
its predictions.
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Algorithm 6: Frequency Adaptive Normalization (FAN)

Stage 1: Frequency Decomposition;
Input: Input sequence z € REXT*N top-k frequency components k, RFFT flag
Function MAINFREQPART(z, k, rfft);
if rfft = True then
|z + RFFT(z,dim=1);
else
| x5+ FFT(z,dim=1);
end
indices < TopK(|z |, k,dim = 1) ;
mask < zeros_like(zy) ;
mask.scatter(indices, 1) ;
:c‘}hefed < xy ©mask ;
if rfft = True then
‘ xﬁltered — IRFFT(l‘t}ltered, dim = 1) :
else
‘ pfiltered H:;l:;T(xf}llered7 dim = 1) :
end
xresidual — r— Iﬁltered .

s

return xresidual7 xﬁltered :

Stage 2: Train FAN Model;

Input: Training data X, sequence length T, prediction length O, channels N, freq_topk &
Initialize MLPfreq model M q with parameters e ;

Initialize learnable weights w € R2xN .

for each training iteration do

Normalization Phase:;

(presidualpfiltered) o MAINFREQPART(X, k, rfft) ;

jjmain — Mfreq(xﬁltered7x) :

Forward Pass:;

ghorm xresidual ;

Denormalization Phase:;

gresidual o ForecasterOutput ;

i,ﬁnal — i.residual + jmain :

Loss Computation:;

(yresidual “gmain) ¢ MAINFREQPART(Yiue, K, rfft) ;
L« MSE(,@main, ymain) + N[SE(aAjresidual7 yresidual) :

Update parameters 0fq and w via backpropagation ;

end

Stage 3: MLPfreq Architecture;

Input: Main frequency signal z™" € REXN*T
hfreq <= ReLU(Lineary_, g4 (z™™)) ;

heoncar < Concat([freq, x|, dim = —1) ;

hhidden — ReLU(Linear(64+T)—>128 (hconcat)) 5
output <— Linearlggﬁo(hhidden) ;

return Trained FAN model with frequency decomposition capability ;

, original input z € RBXN*T

Computational Resources. All experiments were conducted on an NVIDIA RTX A6000 GPU with
48GB of memory, utilizing CUDA version 12.4 for accelerated computation. This high-performance
computational setup facilitated efficient training and evaluation of our forecasting models, ensuring
timely execution of experiments even with large-scale time-series data.
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B THE FULL RESULTS.

B.1 FULL LONG-TERM FORECASTING RESULTS.

Table 7 and Table 8 present the full comprehensive results discussed in the main paper. This table
includes the prediction accuracy outcomes on the [Electricity, ETThl, ETTh2, ETTml1, ETTm2,
Traffic, Weather] dataset, utilizing the [DLinear, PatchTST, iTransformer] as the backbone model.
We have compared our method against all baseline models across all forecasting horizons (H €
{96, 192,336, 720}).

Table 7: Detailed results of comparing our proposal and other normalization methods. The best
results are highlighted in bold. The second best are underlined.

Models DLinear (Zeng et al., 2023) PatchTST (Nie et al., 2023 iTransformer (Liu et al., 2024b)
Methods +Ours* |  +Ours | +SAN | +RevIN +Ours* |  +Ours | +SAN | +RevIN +Ours* | +Ours +SAN | +RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE | MSE MSE MAE MSE MAE MSE MAE

MAE
0234  0.210 0278 | 0.175 0.266 0.190 0280 0.182 0.271 0212 0297 | 0.145 0244 0.143 0.237 0.171 0262 0.152 0.251

296 | 0135 0.230 0.140
2192|0149 0245 0.155 0.247  0.210 0304 | 0.183 0.273 0.195 0286 0.186 0.276 0213 0300 | 0.169 0266 0.159 0.252 0.180 0270 0.165 0.255
3336|0165 0262 0.171 0.264 0.223  0.309 | 0.198 0.289 0211 0301 0.200 0.290 0.227 0314 | 0.178 0271 0.172 0.266 0.194 0284 0.180 0.272
=720 | 0198 0.291  0.208 0295 0.257 0349 | 0.233 0317 0253 0334 0237 0322 0268 0344 | 0210 0311 0.205 0.295 0237 0319 0227 0312
— 96 | 0375 0398 0.371 0399 0396 0410 | 0.380 0401 0374 0395 0.387 0405 0392 0413 | 0.380 0.400 0.389 0404 0398 0411 039 0.409
£ 192 | 0410 0417 0.404 0.419 0445 0440 | 0442 0439 0424 0428 0445 0440 0448 0436 | 0.429 0427 0447 0440 0438 0435 0460 0449
E 336 | 0.430 0.427 0.426 0432 0487 0465 | 0480 0.456 0471 0452 0505 0471 0489 0456 | 0.479 0451 0492 0463 0481 0456 0501 0475
720 | 0437 0455 0.428 0459 0512 0510 | 0.519 0.501 0514 0500 0.527 0.507 0.525 0.503 .
~ 96 0273 0335 0273 0.338  0.344 0397 | 0.292 0.347 0301 0349 0.314 0361 0344 0397
£ 19210335 0374 0336 0.378 0485 0481 | 0.385 0402 0.380 0399 0391 0421 0389 0411
E 336 | 0361 0399 0.355 0398 0.582 0.536 | 0431 0438 0.410 0.451
720 | 0.388 0.429 0.384 6 0435 0836 0.659 | 0429 0461 0.422 0.481 4
— 96 | 0285 0.339 0.299 8 0342 0353 0374 | 0322 0359 0.321 0.374 | 0.326 0.361 0.330 0.370 0331 0373 0.341 0.376
E 1920321 0359 0336 0363 0.391 0.392 | 0.350 0.379 0.365 0.401 | 0.365 0.384 0.374 0.391 0376 0381 0.380 0.394
E: 336 | 0.355 0.380 0.370 7 0384 0423 0413 | 0381 0.401 0.407 0.413 | 0.395 0.403 0408 0414 0412 0418 0419 0418
® 720 | 0405 0411 0425 0.415 0486 0449 | 0.446 0.436 0.464 0.459 | 0471 0.447 0475 0449 0485 0453 0486 0.455
a 96 | 0163 0255 0.165 0.258 0.194 0293 | 0.177 0272 0.179 0262 0.184 0277 0.185 0272 ] 0.178 0272 0.176 0.258 0.180 0272 0.200 0.281
E 1920222 0300 0220 0302 0.283 0.360 | 0.245 0319 0.240 0300 0.249 0.325 0252 0320 | 0247 0311 0.241 0302 0248 0315 0252 0312
E: 336 | 0272 0329 0.273 0331 0.371 0450 | 0.298 0.253 0310 0347 0.330 0378 0315 0351 | 0.307 0351 0.307 0.347 0308 0352 0314 0.352
=720 | 0365 0383 0368 0.384 0.555 0.509 | 0.405 0.401 0409 0404 0423 0431 0415 0408 | 0.409 0403 0410 0402 0412 0407 0411 0.405
, 96 | 0410 0286 0.408 0.288  0.648 0.396 | 0.497 0.342 0.527 0339 0.530 0.340 0.650 0396 | 0400 0271 0.394 0.268 0.502 0329 0401 0.277
£ 192 | 0427 0.283 0.422 0.297 0.598 0.370 | 0.499 0339 0502 0331 0516 0.338 0.597 0359 | 0470 0319 0413 0277 0490 0331 0421 0.282
E 336 | 0439 0305 0.436 0306 0.605 0.373 | 0.520 0.349 0.510 0.327 0.533 0343 0.605 0362 | 0489 0333 0.428 0.283 0512 0341 0434 0.389
720 | 0.454 0311 0.455 0319 0.645 0.395 | 0.550 0.349 0.545 0345 0.575 0.367 0.642 0381 | 0478 0330 0463 0.301 0.576 0364 0465 0.302
5 96 | 0150 0208 0.162 0210 0.196 0.256 | 0.167 0.225 0.166 0.207 0.170 0.229 0.195 0235 ] 0.165 0221 0.162 0.204 0.170 0227 0.175 0.225
—.E 192 | 0.194 0251 0.207 0254 0.238 0.299 | 0.208 0.263 0216 0253 0.211 0270 0240 0270 | 0.212 0261 0.213 0.252 0214 0270 0225 0.257
O 336 | 0.243  0.289 0.256 0294 0.281 0330 | 0.255 0301 0273 0295 0.261 0310 0291 0306 | 0.261 0304 0271 0.295 0.265 0309 0280 0.307
Z 720 | 0311 0339 0325 0346 0.346  0.384 | 0.326 0.349 0351 0346 0332 0359 0364 0353 | 0.338 0345 0340 0.347 0342 0358 0373 0.366

Table 8: Detailed results of comparing TIFO and FAN. The best results are highlighted in bold. The
second best are underlined.

Models DLinear (Zeng et al., 2023) iTransformer (Liu et al., 2024b)
Methods +TIFO* | +TIFO | + FAN | +RevIN +TIFO* | +TIFO | + FAN | +RevIN
Metric | MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0135 0.230 0.140 0.237 0.146 0.248 0.210 0278 | 0.145 0.244 0.143 0.237 0.158 0.254 0.152 0.251
192 | 0.149 0.245 0.155 0.249 0.163 0264 0210 0.304 | 0.169 0266 0.159 0.252 0.170 0.263 0.165 0.255
336 | 0.165 0.262 0.171 0.267 0.180 0282 0223 0.309 | 0.178 0271 0.172 0.266 0.183 0.281 0.180 0.272
720 | 0.198 0.291 0.208 0.298 0.216 0316 0.257 0.349 | 0210 0311 0.205 0.295 0.208 0.306 0.227 0.312

96 | 0.375 0398 0.371 0.392 0414 0431 0396 0410 | 0.380 0.400 0389 0.404 0425 0434 0.394 0409
192 | 0410 0417 0404 0412 0446 0451 0445 0440 | 0.429 0427 0447 0440 0483 0.468 0460 0.449
336 | 0.430 0427 0426 0426 0476 0474 0487 0465 | 0479 0451 0492 0463 0.528 0495 0501 0475
720 | 0437 0455 0428 0.448 0539 0538 0.512 0510 | 0.491 0471 0496 0482 0.582 0.555 0.521 0.504

9 | 0.273 0335 0.273 0.336 0.316 0376 0344 0397 | 0.298 0.352 0.297 0.345 0358 0.408 0.300 0.349
192 | 0.335 0374 0336 0376 0384 0423 0485 0481 | 0.371 0402 0.380 0.395 0458 0469 0381 0415
336 | 0.361 0.399 0.355 0395 0465 0479 0.582 0.536 | 0425 0435 0.420 0428 0.570 0.533 0433 0442
720 | 0.388 0429 0.384 0.423 0.671 059 0.836 0.659 | 0420 0.444 0.410 0432 0.786 0.651 0.426 0.445

96 | 0.285 0.339 0299 0.341 0.302 0352 0353 0374 | 0.326 0.361 0.330 0.370 0.360 0.390 0.341 0.376
192 | 0.321 0359 0.336 0364 0342 0376 0391 0392 | 0.365 0.384 0.374 0.391 0.398 0.408 0380 0.394
336 | 0.355 0.380 0.370 0.383 0385 0.402 0423 0413 | 0.395 0.403 0408 0414 0435 0436 0419 0418
720 | 0.405 0.411 0425 0414 0442 0439 0486 0449 | 0471 0.447 0475 0449 0.503 0478 0.486 0.455

96 | 0.163 0.255 0.165 0.254 0.170 0.262 0.194 0293 | 0.178 0.272 0.176 0.258 0.195 0.293 0.200 0.281
192 | 0222 0.300 0.220 0.291 0.230 0306 0283 0.360 | 0247 0311 0.241 0.302 0.276 0350 0.252 0312
336 | 0.272  0.329 0.273 0.325 0293 0351 0371 0450 | 0.307 0351 0.307 0.347 0336 0385 0314 0352
720 | 0.365 0.383 0.368 0.383 0420 0.436 0.555 0.509 | 0.409 0.403 0410 0.402 0.539 0512 0411 0405

96 | 0410 0.286 0.408 0.277 0.524 0.340 0.648 0396 | 0400 0.271 0.394 0.268 0.525 0.341 0401 0.277
192 | 0427 0.288 0.422 0.283 0.523 0338 0.598 0.370 | 0.470 0319 0.413 0.277 0.517 0336 0421 0.282
336 | 0439 0.305 0.436 0.295 0537 0343 0.605 0.373 | 0489 0333 0.428 0.283 0.530 0.339 0434 0.389
720 | 0.454 0.311 0455 0311 0581 0362 0.645 0.395 | 0478 0330 0.463 0.301 0.573 0.339 0465 0.302

96 | 0.150 0.208 0.162 0.212 0.187 0242 0.196 0.256 | 0.165 0.221 0.162 0.204 0.178 0235 0.175 0.225
192 | 0.194 0.251 0207 0.251 0.227 0.280 0.238 0299 | 0.212 0.261 0.213 0.252 0220 0.275 0.225 0.257

336 | 0.243 0289 0.256 0.288 0.278 0.330 0.281 0.330 | 0.261 0.304 0.271 0.295 0267 0314 0280 0.307

720 | 0.311 0.339 0.325 0.337 0341 0368 0.346 0.384 | 0.338 0.345 0.340 0.347 0340 0.369 0.373 0.366

Electricity

ETThl

ETTh2

ETTml

ETTm2

Traffic

Weather
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B.2 ANALYSIS RESULTS
B.2.1 FOURIER DISTRIBUTION ANALYSIS

In the main text we describe using Jensen—Shannon divergence squared (JSD?) and the Kol-
mogorov—Smirnov (KS) statistic to quantify spectral distribution shift between training and test
sets. Here we show another result and the algorithms.

JSD? Computation. For each frequency wj, let a = {ampi’ j |ie ttmin}, b= {ampL j |ie
trest } We build histograms of a and b, normalize to probability mass functions, and compute the

o

Jensen—Shannon divergence squared via the Python Library "SciPy" ‘jensenshannon‘ function.

Algorithm 7: Compute JSD? between two samples

Input: Arrays a, b; number of bins B

Output: Jensen—Shannon divergence squared D jgp2

Umin < Min(min a, min b);

Umax  max(max a, maxb);

Compute histogram h,, < histogram(a; B, [Vmin, Vmax));
Compute histogram hy, < histogram(b; B, [Umin, Umax]);
Normalize: p < ho/ > has  q 4 ho/ D he;

Djsp <+ jensenshannon(p, g, base = 2);

DJSD2 — D%SD;

return D jgpe2

KS Statistic Computation. For each frequency index wj;, using the same samples a and b, we
compute their empirical cumulative distribution functions (ECDFs) and take the maximum absolute
difference.

Algorithm 8: Compute Kolmogorov—Smirnov statistic

Input: Arrays a,b

Output: KS statistic Dkg

Sort a — agsorted,  SOIt b — bsorted;

Let V « unique({asortcd} U {bsortcd});

foreach v € V do
Fa(v)%ﬁ’{xEQ:xSU}
Fb(v)eﬁ’{xebzmgv};
Compute A(v) < |F,(v) — Fy(v)][;

end

Dks <+ max,ecy A(v);

return Dxgg

bl

B.2.2 FOURIER BASIS LEARNING EVALUATION

We include here further 3D views of the ground truth vs. predicted amplitude spectra, sampled from
different time-series examples and channels. The forecasting horizon is fixed to 720. For each plot,
we pick a specific sample index and a specific channel, to show that our TIFO consistently helps the
model recover spectral peaks across the dataset:

e Compute amplitudes. For each method tag (Before, FAN, TIFO), we load a 1D
slice data[...,sample, channel], take the real FFT via rf ft, then smooth with
gaussian_filterld and clip tO [Zmin, Zmax)-

* Frequency-to-axis mapping. We linearly map the frequency index range [fimin, fmax] tO
the extended Y-axis interval, and map amplitude values into the Z-axis range plus a constant
offset (Z_OFFSET).

* True vs. predicted curves. We plot the smoothed true spectrum (in blue) and the predicted
spectrum (in red) at a constant x-plane (X_PLANE), using 3D line plots.
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Scatters: ® Before @ After} [60% Reference Band: (O Before After]

SAN FAN TIFO

RevIN

Figure 5: More results on train-test distance compactness: This figure shows another visualization of
the JSD? amplitudes distribution distance between the train and test datasets on the electricity data
(on a different channel). Each scatter point represents one frequency component. A smaller radius
indicates a smaller distributional gap. Green and red colors represent the results before and after

applying the learning method, respectively.

B Ground Truth BN Forecasting (,, Fourier Basis (sin) 4 Local Peak Components

Amplitude

Before FAN TIFO

Figure 6: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #1.

B Ground Truth HEEEE Forecasting (,, Fourier Basis (sin) 4 Local Peak Components

Amplitude

Before FAN TIFO

Figure 7: Frequency-domain analysis of Fourier basis Learning. ETTm1 dataset, Channel #2.
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BN Ground Truth BB Forecasting (,, Fourier Basis (sin) 4 Local Peak Components

Amplitude

FAN TIFO

Figure 8: Frequency-domain analysis of Fourier basis Learning. Traffic dataset, Channel #237.

B Ground Truth SN Forecasting (,, Fourier Basis (sin) @ Local Peak Components

Amplitude

Before FAN TIFO

Figure 9: Frequency-domain analysis of Fourier basis Learning. ETTh1 dataset, Channel #6.

B Ground Truth SN Forecasting (,, Fourier Basis (sin) @ Local Peak Components

Before FAN TIFO

Figure 10: Frequency-domain analysis of Fourier basis Learning. Weather dataset, Channel #7.

B.3 RUNNING TIME

Table 9 presents the running time comprehensive results of our paper. This table includes the
prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Weather]
dataset, utilizing the [DLinear, PatchTST] as the backbone model. We compare our method against

SAN across forecasting horizons H € {96, 720}.
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Table 9: Running time comparison with forecasting lengths H € {96, 720} for all datasets and fixed
input sequence length L = 96. The best results are highlighted.

Model | Electricity ETThl ETTh2 ETTml1 ETTm2 Traffic Weather
H | 9% 720 96 720 96 720 96 720 96 720 96 720 96 720

DLinear (Zeng et al., 2023)

+TIFO | 16718 27.545  3.004  3.082 2.820 3.222 13456 13.124 11.839 12949 23217 43413 13970 16.536

+ SAN 19.159 34914 8.688 8.054 8373 7.811 36.706 36.564 36.620 36.550 31.378  54.518 37.739 40.731

IMP(%) | 128%  21.1% 655% 60.5% 66.6% 583% 631% 642% 678% 643% 26.0% 203% 63.0% 59.9%
PatchTST (Nie et al., 2023)

+TIFO | 99.104 103.781 7.952 8215 14.687 14.122 54.526 28.944 59.406 26.233 209.006 215718 69.107 49.628

+SAN | 313.697 322.083 16.226 15.309 16.078 14.998 63.686 65.839 65978 66.798 550.026 557.730 81.973 81.462

IMP(%) | 684% 67.7% 51.6% 462% 8.00% 520% 143% 56.0% 10.0% 60.7% 61.6% 61.2% 159% 39.8%

C LLM USAGE STATEMENT

We used large language models (LLMs) solely for writing support, including grammar correction,
sentence refinement, and clarity improvements. All conceptual contributions, algorithm design, code
development, experiments, and analyses were conducted entirely by the authors.
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