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Abstract
We investigate an alternative approach to neural network training, which is a non-convex optimization
problem, through the lens of another convex problem — to solve a monotone variational inequality
(MVI) - inspired by the work of [13]. MVI solutions can be found by computationally efficient
procedures, with performance guarantee of ℓ2 and ℓ∞ bounds on model recovery and prediction
accuracy under the theoretical setting of training a single-layer linear neural network. We study
the use of MVI for training multi-layer neural networks by proposing a practical and completely
general algorithm called stochastic variational inequality (SVI). We demonstrate its applicability in
training networks with various architectures (SVI is completely general for training any network).
We show the competitive or better performance of SVI compared to the widely-used stochastic
gradient descent method (SGD) on both synthetic and real data prediction tasks regarding various
performance metrics, especially in the improved efficiency in the early stage of training.

1. Introduction

Neural network (NN) training [12, 15, 26, 27] is the essential process in the study of deep models.
Optimization guarantee for training loss as well as generalization error have been obtained with
over-parametrized networks [1–3, 6, 20, 21]. However, due to the inherent non-convexity of loss
objectives, theoretical developments are still diffused and lag behind the vast empirical successes.

Recently, the seminal work [13] presented a somewhat surprising result: that some non-convex
issues can be circumvented in special cases through problem reformulation. In particular, it was shown
that one can formulate the parameter estimation problem of generalized linear models (GLM) as
solving a monotone variational inequality (MVI), a general form of convex optimization. This differs
from minimizing a least-square loss function, which leads to a non-convex optimization problem,
and thus, no guarantees can be obtained for global convergence or model recovery. Consequently,
the formulation through MVI leads to strong performance guarantees and computationally efficient
procedures.

In this paper, drawing inspiration from [13] and considering the fact that certain GLM (such as
logistic regression) can be viewed as the simplest network with only one layer, we propose a new
scheme for training generic neural networks based on MVI. This marks a significant departure from
the widely employed gradient descent algorithm for neural network training. In our approach, we
replace the gradient of a loss function with operators inspired by MVI theory. The advantages of
this approach are as follows: (i) In special cases, we can establish strong training and prediction
guarantees; (ii) For general cases, through extensive numerical studies on synthetic and real data,
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our approach showcases faster convergence to a local solution compared to gradient descent in a
comparable setup.

Related work. Variational inequality has been studied mainly in the optimization problem context
[7, 14]. More recently, MVI has been used to solve min-max problems in Generative Adversarial
Networks [19] and reinforcement learning [16]. Our theory and techniques are inspired by [13], but
we offer a thorough investigation of using MVI to train multi-layer neural networks. A recent work [4]
proposed a similar VI-inspired approach in training neural networks, with corresponding convergence
guarantees of model parameters. In contrast to our SVI, their proposed method cannot train multiple
layers simultaneously and the method only demonstrated improved empirical performance over
gradient-based methods on training the last layer of deep neural network.

Our contribution. First, we develop a general and practical algorithm called stochastic varia-
tional inequality (SVI) to train multi-layer neural networks. Second, we reformulate the last-layer
neural network training as solving a monotone variational inequality, with guarantees on model
recovery and prediction accuracy. Third, we compare SVI with widely-used stochastic gradient
descent methods to demonstrate that SVI is flexible and competitive on various tasks, especially
yielding faster convergence in the early stage of training.

MVI preliminaries. Given a parameter set θ ⊂ Rp, we call a continuous mapping (operator)
F : θ → Rp monotone if for all θ1, θ2 ∈ θ, ⟨F (θ1) − F (θ2), θ1 − θ2⟩ ≥ 0 [13]. The operator is
called strongly monotone with modulus κ if for all θ1, θ2 ∈ θ,

⟨F (θ1)− F (θ2), θ1 − θ2⟩ ≥ κ∥θ1 − θ2∥22. (1)

For a monotone operator F on θ, the problem VI[F,θ] is to find an θ̄ ∈ θ such that for all θ ∈ θ,

⟨F (θ̄), θ − θ̄⟩ ≥ 0. VI[F,θ] (2)

It is known that if θ is compact, then (2) has at least one solution [22, Proposition 4.1]. In addition,
if κ > 0 in (1), then (2) has exactly one solution [22, Proposition 4.4]. Under mild computability
assumptions, the solution can be efficiently solved to high accuracy using iterative schemes [13].

2. MVI for neural network training

Assume a generic feature X ∈ Rd, where d denotes the feature dimension. Suppose the
conditional expectation E[Y |X] of the categorical1 response vector Y ∈ {1, . . . ,K} is modeled by
an L-layer neural network G(X, θ) :

E[Y |X, θ] = G(X, θ) = ϕL(gL(XL, θL)), (3)

where XL = ϕL−1(gL−1(XL−1, θL−1)), X1 = X denote the nonlinear feature transformation
from the previous layer, θ = {θ1, . . . , θL} denotes model parameters, and each ϕl denotes the
non-decreasing activation function at layer l. In particular, assume there exists θ∗ so that E[Y |X] =
G(X, θ∗).

Our goal is to train θ so as to approximate E[Y |X] as closely as possible.

1The techniques and theory in this work can be used to model the conditional expectation of continuous random
variables.
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Figure 1: Gradient descent (GD) vs. SVI: the only difference lies in the skipping of differentiation
of the activation ϕ with respect to pre-activation values.

Single-layer training. Suppose L = 1 in (3) with a particular form of pre-activation: g(X, θ) =
η(X)θ, where η(X) is a fixed feature transformation. Such network formulation is typically the last
layer of a deep neural network, and it is mathematically equivalent to a GLM [13]. As in [13], we
construct the monotone operator F as

F (θ) = EX,Y {η⊺(X)[ϕ(η(X)θ)− Y ]}, (4)

where η⊺(X) denotes the transpose of η(X). Denote F̂ as the empirical sample version of F . Then
the typical training of θ based on MVI is the projected gradient descent

θ ← Projθ(θ − γF̂ (θ)). (5)

where γ > 0 is the step-size and Projθ projects back estimates to the feasible parameter domain
θ. Note that (5) differs from the vanilla stochastic gradient descent (SGD) where the gradient of a
certain loss objective takes the role of the monotone operator F̂ .

Multi-layer training. We first present a mathematically equivalent view of F (θ) in (4) for single-
layer training. Assume we have the mean-squared-error (MSE) loss L(Ŷ , Y ) = 1/2∥Ŷ − Y ∥22 and
the pre-activation mapping X̃ = η(X)θ. Denote Ŷ = ϕ(X̃) as the prediction. By chain rule

F (θ) := EX,Y {η⊺(X)[ϕ(η(X)θ)− Y ]} = EX,Y {∇Ŷ L ◦ ∇θX̃}. (6)

Note that (6) comprises of two terms. The first term ∇Ŷ L is the gradient of the loss objective with
respect to the network prediction Ŷ . The second term ∇θX̃ is the gradient of the pre-activation
mapping X̃ with respect to the parameter θ. In particular, (6) is well-defined for any loss objective L
and at any hidden layer l—X̃ would be the pre-activation value at the l-th layer, where Ŷ would be
the post-activation value at the l-th layer.

Thus, we propose SVI in Algorithm 1 to train any neural network represented in (3); Figure 1
illustrates the idea. In retrospect, compared to the commonly used gradient∇θL in backpropagation,
Algorithm 1 only differs by skipping the derivative of the point-wise non-linearity ϕ with respect to
its input. Therefore, SVI barely differs in terms of computational cost against SGD.

There are two main benefits of Algorithm 1. First, the Algorithm is applicable to arbitrary form
of network layers gl(Xl, θl), nonlinear activations ϕl, and the loss function L. Second, it is easy to
implement by leveraging automatic differentiation [23]. Specifically, we implement the skipping idea
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Algorithm 1 Stochastic variational inequality (SVI).

Require: Inputs (a) Training data {(Xi, Yi)}Ni=1, (b) An L-layer network G(X, θ) =
{ϕl(gl(Xl, θl))}Ll=1 as in (3), (c) Loss function L = L(G(X, θ), Y ), (d) Learning rate γ > 0.

Ensure: Trained model parameters θ̂ = {θ̂l}Ll=1

1: Initialize the network with some θ̂.
2: while Training do
3: Store {(X̃l+1, Xl+1)}Ll=1 in forward pass on data, where X̃l+1 = gl(Xl, θ̂l) and Xl+1 =

ϕl(X̃l+1).
4: Obtain {∇Xl+1

L}Ll=1.
5: for Layer l = 1, . . . , L do
6: Compute the surrogate loss L̃l = sum(X̃l+1 ⊙∇Xl+1

L).
7: Obtain Fl(θ̂l) = ∇θ̂l

L̃l.
8: end for
9: Update θ̂l = θ̂l − ηFl(θ̂l) for l = 1, . . . , L.

10: end while

via backpropagating the layer-wise surrogate loss L̃l in line 6 with respect to θl. Note that this loss
L̃l is simple to compute: the quantity X̃l+1 is available during the forward pass on training data X ,
and gradients∇Xl+1

L are available upon backpropagating the original loss L with respect to outputs
of each layer l. In practice, one can also expect that SVI results in more significant amount of weight
updates than SGD due to skipping (e.g., in the context of ReLU activation), which experimentally
seems to speed up the initial model convergence. We illustrate this phenomenon in Figure 2.

3. Guarantee of model recovery by MVI

We now present training and estimation guarantees on model recovery for the last-layer training,
assuming gL(XL, θL) = ηL(XL)θL in (3) and previous layers are estimated with ϵ accuracy in ℓ2

norm. Specifically, let θ̂(T )
L be the estimated parameter after T training iterations. For a test feature

Xt and the output X̂t,L, consider

Ê[Yt|Xt] = ϕL(η(X̂t,L)θ̂
(T )
L ), (7)

which is the estimated prediction using θ̂
(T )
L . We will measure Ê[Yt|Xt] against the true model

E[Yt|Xt]. More precisely, we will provide error bound on ∥Ê[Yt|Xt] − E[Yt|Xt]∥p, p ≥ 2 which
crucially depends on the strong monotonicity modulus κ in (1) for F (θL).

Modulus κ greater than 0 We first state several assumptions used in convergence analyses.

Assumption 1 (ϵ-approximate estimate from previous layers) Let X∗
L = f∗

1:L−1(X) and X̂L =

f̂1:L−1(X) be the oracle and estimated output from the previous L− 1 layers given a generic input
feature X . There exists ϵ > 0 such that EX∥X∗

L − X̂L∥2 ≤ ϵ.

Assumption 2 (Regularity conditions) (1) The oracle parameter θ∗L of the last layer satisfies the
MVI inequality (2) for F . (2) The mapping η(·) is D-Lipschitz continuous. (3) For any θL ∈ θ,
∥θL∥2 ≤ B.
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Proposition 3 (Prediction error bound for model recovery, strongly monotone F ) Under Assump-
tions 1 and 2, we have for a given test signal Xt, t > N that for p ∈ [2,∞],

E
X,θ̂

(T )
L

{∥Ê[Yt|Xt]− E[Yt|Xt]∥p} ≤ (T + 1)−1Ct + Cϵ,

where Ê[Yt|Xt] is defined in (7) under constants Ct = [4M2Kλmax(η
⊺(X̂t,L)η(X̂t,L))]/κ

2 and
C=KDB. In particular, p = 2 yields the sum of squared error bound on prediction and p =∞ yields
entry-wise bound.

The same order of convergence holds when F in (4) is estimated by the empirical average of mini-
batches of training data. In particular, the proof of Proposition 3 only requires access to an unbiased
estimator of F so that the batch size can range from one to N , where N is the size of training data.

Modulus κ equal to 0 We may also encounter cases where the operator F is only monotone but
not strongly monotone. For instance, let ϕ be the softmax function, which satisfies∇ϕ(z)1 = 0 for
any z ∈ Rn [9, Proposition 2]. Then, the minimum eigenvalue of ∇ϕ(z) is always zero, leading to
κ = 0. In this case, we use the extrapolation methoed (OE) [16] to obtain a similar but weaker ℓp
prediction guarantee.

Proposition 4 (Prediction error bound for model recovery, monotone F ) Suppose we run the
OE algorithm [16] for T iterations with λt = 1, γt = [4K2]

−1, where K2 is the Lipschitz constant
of F . Let R be uniformly chosen from {2, 3, . . . , T}. Then for p ∈ [2,∞],

E
θ̂
(R)
L

{∥EX{σmin(η
⊺(X̂L))[Ê[Yt|Xt]− E[Yt|Xt]]}∥p} ≤ T−1/2C

′′
t ,

where σmin(·) denotes the minimum singular value of its input matrix and the constant C
′′
t =

3σ+12K2

»
2∥θ∗L∥22 + 2σ2/L2, in which σ2 = E[(Fi(θL)−F (θL))

2] is the variance of the unbiased
estimator.

The convergence rate in Proposition 4 is also unaffected by the batch size, which only serves to
reduce the variance. In addition, Proposition 4 requires R be uniformly chosen from {2, 3, . . . , T},
so that the theoretical guarantee holds at a random training epoch. In theory, this assumption is
necessary to ensure a decrease of the norm of the monotone operator ([16], Eq. (3.20)). In practice,
we observed that the epoch that leads to the highest validation accuracy might not occur at the end of
T training epochs, so this assumption is reasonable based on empirical evidence.

4. Experiments

We test and compare SVI in Algorithm 1 with SGD on various synthetic and real-data examples.
We demonstrate the consistently competitive or better performance by SVI, especially in the im-
proved efficiency in the early stage of training against the SGD baseline. Additional details including
hyperparameter selection are described in Appendix B.1.

Simulation on one-layer probit model We start with binary classification on data generated from
a one-layer probit model, where the convergence of SVI model recovery is proven in Section 3. We
generate data as follows: for each i ≥ 1, yi ∈ {0, 1} and E[yi|Xi, θ

∗] = Φ(XT
i β

∗ + b∗), where

Xi ∈ Rp, Xij
i.i.d.∼ N (0.05, 1), β∗

j
i.i.d.∼ N (−0.05, 1), and b∗ ∼ N (−0.1, 1). Here, Φ(z) = P(Z ≤
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(a) Losses under MSE objective (b) Losses under NLL objective (c) Accuracies on the same test data

Figure 2: One-layer FC model training. In (a) and (b), we plot training and test losses for both SGD
(black) and SVI (orange). The loss choice for SGD is the mean-squared error (MSE) in (a) and the
negative log-likelihood (NLL) in (b). The SVI update for one-layer training is based on (4), which
does not depend on the loss objective, so we compute the MSE or NLL losses for comparison. In (c),
we show the prediction accuracies by SVI in orange, SGD by MSE (SGD-MSE) in black, and SGD
by NLL (SGD-NLL) in blue.

z) for Z ∼ N (0, 1). Figure 2 shows the training and test performances by both methods. We see
that SVI consistently yields smaller losses and higher prediction accuracies than SGD under both
MSE and NLL objectives during training.

Real experiment on large graphs We demonstrate the applicability of SVI on the ogbn-arxiv
graph provided by the Open Graph Benchmark [10, 11]. The graph nodes are arxiv papers to be
classified into categories and edges denote citation among papers; this large graph has∼170 thousand
nodes, 1.16 million edges, 128-dimensional node features, and 40 node classes. We train four-layer
GCN models of various hidden neuron sizes. Table 1 compares SVI against SGD under various
network sizes. We see that SVI consistently reaches higher initial and final classification accuracies
on training, validation, and test data.

Additional experiments In Appendix B, we perform additional simulation and real-data experi-
ments. For simulation, we train GCN on graphs with increasing number of nodes (Appendix B.2).
For real-data experiments, we consider solar ramping event detection (Appendix B.3), traffic flow
anomaly detection (Appendix B.4), and image classification (Appendix B.5). In all experiments, we
consistently observe faster initial convergence by SVI agianst SGD, with competitive or better final
performance by SVI as well.

Table 1: Classification accuracies on the large ogbn-arxiv dataset under varying sizes of the
GCN. “Initial” (resp. “Final”) results indicate prediction accuracies after training 100 (resp. 1000)
epochs. Entries in bracket show standard deviation over three independent trials.

SVI SGD

# hidden
neurons

result type Train Valid Test Train Valid Test

128
Initial 39.64 (1.99) 39.52 (1.84) 39.83 (1.95) 6.95 (4.36) 7.05 (4.37) 6.91 (4.31)

Final 63.55 (0.25) 63.44 (0.26) 63.47 (0.23) 51.62 (2.22) 51.38 (2.15) 51.63 (2.29)

256
Initial 52.02 (0.95) 51.84 (1.04) 52.02 (1.01) 23.38 (3.86) 23.35 (3.9) 23.43 (3.86)

Final 66.56 (0.08) 66.2 (0.13) 66.26 (0.09) 59.24 (1.56) 59.14 (1.59) 59.1 (1.48)

512
Initial 57.88 (0.36) 57.57 (0.39) 57.68 (0.42) 33.55 (2.42) 33.46 (2.58) 33.64 (2.46)

Final 69.12 (0.13) 68.52 (0.07) 68.72 (0.07) 64.28 (0.77) 63.99 (0.71) 64.07 (0.88)
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Appendix A. Proofs

To prove Proposition 3, we first bound the recovered parameters following techniques in [13].

Lemma 5 (Parameter recovery guarantee) Under Assumption 2, suppose that there exists M <
∞ such that ∀θL ∈ θ,

EX,Y [θL]∥η(X̂L)Y [θL]∥2 ≤M,

where E[Y [θL]|X] = ϕ(η(X̂L)θL). Choose adaptive step sizes γ = γt = [κ(t+ 1)]−1 in (5). The
sequence of estimates {θ̂(T )

L }T≥1 obeys the error bound

E
θ̂
(T )
L

{∥θ̂(T )
L − θ∗L∥22} ≤

4M2

κ2(T + 1)
. (8)

Proof The proof employs classical techniques when analyzing the convergence of projection descent
in stochastic optimization [13].

First, for any θL ∈ θ,

E(X,Y [θL]){∥η
⊺(X̂L)ϕ(η(X̂L)θL)∥2} = EX{∥EY [θL]{η(X̂L)Y [θL]}∥2}

≤ EXEY [θL]{∥η(X̂L)Y [θL]}∥2} [Jensen’s Inequality]

= E(X,Y [θL]){∥η(X̂L)Y [θL]}∥2} ≤M.

By the form of F , we then have that EX,Y {∥F (θL)∥22} ≤ 4M2 for any θL.
Next, note that each θ̂

(t)
l is a deterministic function of ZN = {(Xi, Yi)}Ni=1. Define the difference

of estimation and its expected value as

Dt(Z
N ) =

1

2
∥θ̂(t)l − θ∗L∥22, dt = EZN {Dt(Z

N )}.
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As a result,

Dt(Z
N ) =

1

2
∥Projθ

î
θ̂
(t−1)
l − γtF

T
1:N (θ̂

(t−1)
l )− θ∗L

ó
∥22

≤ 1

2
∥θ̂(t−1)

l − γtF
T
1:N (θ̂

(t−1)
l )− θ∗L∥22 [The projection is a contraction]

=
1

2
∥θ̂(t−1)

l − θ∗L∥22 − γtF
T
1:N (θ̂

(t−1)
l )(θ̂

(t−1)
l − θ∗L) +

1

2
γ2t ∥F T

1:N (θ̂
(t−1)
l )∥22.

Taking expectation of both sides with respect to ZN yields

dt ≤
1

2
dt−1 − γtEZN

î
F T
1:N (θ̂

(t−1)
l )(θ̂

(t−1)
l − θ∗L)

ó
+ 2γ2tM

2

≤ (1− 2κγt)dt−1 + 2γ2tM
2,

where the last inequality follows by noting that F1:N is an unbiased estimator of F , which satisfies

F (θL)
T (θL − θ∗L) ≥ κ∥θL − θ∗L∥2,

due to Assumption 2 on F (θ∗L). Then, using triangle inequality yields the result.
Lastly, we prove by induction that if we define R = (2M2)/κ2, γt = 1/κ(t+ 1), we have

dt ≤
R

t+ 1
.

(Base case when t = 0.) Let B be the ∥ · ∥2 diameter of θ (e.g., ∥θ1 − θ2∥22 ≤ B2 ∀(θ1, θ2) ∈ θ.
Denote θ+L , θ

−
L ∈ B to satisfy ∥θ+L − θ−L∥22 = B2. By the definition of κ,

⟨F (θ+L )− F (θ−L ), θ
+
L − θ−L ⟩ ≥ κ∥θ+L − θ−L∥

2
2 = κB2.

Meanwhile, the Cauchy-Schwarz inequality yields

⟨F (θ+L )−F (θ−L ), θ
+
L − θ−L ⟩ = ⟨η(X̂L)(ϕ(η(X̂L))θ

+
L )− η(X̂L)(ϕ(η(X̂L))θ

−
L ), θ

+
L − θ−L ⟩ ≤ 2MB.

Thus, B ≤ 2M/κ. As a result, B2/2 ≤ 2M2/κ2 = R. Because d0 = ∥θ̂(0)l − θ∗L∥22 ≤ B2,

d0 ≤ 2R =
4M2

κ2
.

(The inductive step from t− 1 to t.) Note that by the definition of γt, κγt = 1/(t+ 1) ≤ 1/2. Thus,

dt ≤ (1− 2κγt)dt−1 + 2γ2tM
2

=
R

t
(1− 2

t+ 1
) +

R

(t+ 1)2
≤ R

t+ 1
,

whereby the proof is complete by the definition of dt and R.

Proof [Proof of Proposition 3] Define

Ẽ[Yt|Xt] = ϕ(η⊺(X̂t,L)θ
∗
L), (9)

10
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which uses the true parameter θ∗L. Note that when p = 2,

E
X,θ̂

(T )
L

{∥Ê[Yt|Xt]− E[Yt|Xt]∥2}

≤E
X,θ̂

(T )
L

{∥Ê[Yt|Xt]− Ẽ[Yt|Xt]∥2︸ ︷︷ ︸
(a)

+ ∥Ẽ[Yt|Xt]− E[Yt|Xt]∥2︸ ︷︷ ︸
(b)

}.

We now bound (a) and (b) separately.
Bound of (a). We have that

E
X,θ̂

(T )
L

{∥Ê[Yt|Xt]− Ẽ[Yt|Xt]∥2} = E
X,θ̂

(T )
L

{∥ϕ(η⊺(X̂t,L)θ̂
(T )
L )− ϕ(η⊺(X̂t,L)θ

∗
L)∥2}

≤ E
X,θ̂

(T )
L

{K∥η⊺(X̂t,L)[θ̂
(T )
L − θ∗L]∥2}

≤ Kλmax(η(X̂t,L)η
⊺(X̂t,L))EX,θ̂

(T )
L

{∥θ̂(T )
L − θ∗L∥2}.

We can then use the bound on Eθ̂(T ){∥θ̂(T ) − θ∥2} from the previous lemma to complete the proof.
In addition, because p-norm is decreasing in p, we have that the bound holds for any p ∈ [2,∞].

Bound of (b). We have by Assumptions 1 and 2 that

E
X,θ̂

(T )
L

{∥Ẽ[Yt|Xt]− E[Yt|Xt]∥2} = E
X,θ̂

(T )
L

{ϕ(η⊺(X̂t,L)θ
∗
L)− ϕ(η⊺(X∗

t,L)θ
∗
L)}

≤ E
X,θ̂

(T )
L

{K∥η⊺(X̂t,L)θ
∗
L − η⊺(X∗

t,L)θ
∗
L∥2}

≤ EX{KDB∥X̂t,L −X∗
t,L∥2}

≤ KDBϵ.

Proof [Proof of Proposition 4] The crux is to bound the expected value of the norm of F evaluated at
the stochastic OE estimate. This bound results from [16, Proposition 3.8], where in general, for any
θL ∈ θ, we can use the residual

E[res(θL)] ≤ δ, res(θL) = min
y∈−Nθ(θL)

∥y − F (θL)∥2

as the termination criteria for the recurrence under a certain choice of the Bregman’s distance V (a, b);
we let V (a, b) = ∥a− b∥22/2 in our case. The quantity Nθ(θL) = {y ∈ Rp|⟨y, θ′ − θL⟩, ∀θ′ ∈ θ}
denotes the normal cone of θ at θL. Then, under the assumptions on F and choices of step sizes, we
can restate [16, Proposition 3.8] in our special case as

E
θ̂
(R)
l

[res(θ̂(R)
l )] ≤ 3σ√

T
+

12K2

»
2∥θ∗L∥22 +

2σ2

L2√
T

.

When we assume θ is the entire space, Nθ(θL) = {0} whereby res(θ̂(R)
l ) = ∥F (θ̂

(R)
l )∥2.

Furthermore, note that for any matrix A ∈ Rm×n and vectors x, x′ ∈ Rn, we have

∥x− x′∥2 ≤ ∥A(x− x′)∥2/σmin(A),

11
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Table 2: Hyper-parameter selection for each experiment. The exact same hyper-parameters are used
for SVI vs. SGD.

Dataset Train & Test size Batch size Epochs Learning
rate

One-layer probit
model

2000 train, 500 test 200 200 0.005

Two-layer GCN
model

2000 train, 2000 test 100 200 0.001

Solar ramping
event

365 train, 365 test 30 100 0.001

Traffic anomaly
detection

6138 train, 2617 test 600 100 0.001

OGB node
classification

90941 training nodes, 29799
validation nodes, 48603 test nodes

all training
nodes

1000 0.001

MNIST
classification

60000 train, 10000 test 128 20 0.005

CIFAR-10
classification

50000 train, 10000 test 128 200 0.005

where σmin(A) denotes the smallest singular value of A. As a result, by letting A = η(X̂L), x =
Ê[Yt|Xt], x

′ = E[Yt|Xt] we have in expectation that

E
θ̂
(R)
l

{∥EX{σmin(η(X̂L))[Ê[Yt|Xt]− E[Yt|Xt]}∥p} ≤ E
θ̂
(R)
l

∥F (θ̂
(R)
l )∥2 = E

θ̂
(R)
l

[res(θ̂(R)
l )],

where we used the fact F (θ̂
(R)
l ) = EX,Y {η⊺(X̂L)[ϕL(η(X̂L)θ̂

(R)
l )−Y ]} = EX{η⊺(X̂L)[Ê[Yt|Xt]−

E[Yt|Xt]]]}.

Appendix B. Additional experiments

B.1. Hyper-parameter choices

All implementation are done using PyTorch [24] and PyTorch Geometric [8] (for GNN).
To ensure fair comparisons, we ensure the following hyperparameters are identical to both SVI-based
and gradient-based methods in each experiment; Table 2 provides the complete list of hyper-parameter
selection for each experiment.

• Data: (a) the size of training and test data (b) batch (batch size and samples in mini-batches).

• Model: (a) architecture (e.g., layer choice, activation function, hidden neurons) (b) loss
function in empirical risk minimization.

• Training regime: (a) parameter initialization (b) hyperparameters for optimizers (e.g., learning
rate) (c) total number of epochs.

In short, all except the way gradients are defined are kept the same for each comparison—our
proposed SVI implements the “skipping” idea in Algorithm 1 and SGD uses the gradient of the loss
with respect to parameters in each hidden layer.

12
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Table 3: Two-layer GCN model on random graphs with increasing number of graph nodes. We show
the training and test ℓ2 error as defined in (10) along the training epochs. Entries in brackets indicates
standard deviation over 3 independent initialization of model parameters.

Epoch 50 Epoch 100 Epoch 200
# nodes SGD train SVI train SGD test SVI test SGD train SVI train SGD test SVI test SGD train SVI train SGD test SVI test

15 0.110
(2.01e-2)

0.104
(1.72e-2)

0.107
(1.63e-2)

0.101
(1.34e-2)

0.099
(1.79e-2)

0.089
(1.21e-2)

0.097
(1.46e-2)

0.087
(9.09e-3)

0.084
(1.43e-2)

0.073
(5.81e-3)

0.082
(1.17e-2)

0.071
(4.11e-3)

40 0.102
(1.60e-2)

0.096
(1.39e-2)

0.101
(1.60e-2)

0.095
(1.38e-2)

0.092
(1.45e-2)

0.083
(1.04e-2)

0.092
(1.47e-2)

0.083
(1.05e-2)

0.079
(1.21e-2)

0.069
(5.76e-3)

0.079
(1.26e-2)

0.068
(6.20e-3)

100 0.092
(1.27e-2)

0.087
(1.13e-2)

0.093
(1.37e-2)

0.088
(1.22e-2)

0.085
(1.18e-2)

0.078
(9.29e-3)

0.086
(1.30e-2)

0.079
(1.03e-2)

0.075
(1.06e-2)

0.066
(6.55e-3)

0.077
(1.19e-2)

0.067
(7.75e-3)

300 0.080
(9.48e-3)

0.077
(8.80e-3)

0.081
(1.04e-2)

0.077
(9.68e-3)

0.076
(9.09e-3)

0.070
(7.86e-3)

0.077
(1.01e-2)

0.071
(8.78e-3)

0.069
(8.61e-3)

0.060
(6.50e-3)

0.070
(9.67e-3)

0.061
(7.49e-3)

600 0.073
(7.63e-3)

0.070
(7.34e-3)

0.074
(8.32e-3)

0.071
(7.98e-3)

0.070
(7.43e-3)

0.064
(6.86e-3)

0.070
(8.14e-3)

0.065
(7.54e-3)

0.064
(7.23e-3)

0.056
(6.05e-3)

0.065
(7.97e-3)

0.056
(6.80e-3)

B.2. Training two-layer GCN

We compare SVI and SGD when training a two-layer GCN model on graphs of varying sizes.
We vary the number of nodes n ∈ {15, 40, 100, 300, 600}. Each graph G = (V, E) has an edge
probability of 0.15 between any two nodes i, j in V . For the graph data, we generate node labels
Yi ∈ {0, 1}n based on an input signal Xi ∈ Rn×2, whose entries are i.i.d. samples from N (0, 1).
Specifically, we design the neural network in (3) that represents E[Yi|Xi, θ] as a two-layer GCN with
two hidden nodes, ReLU activation, and sigmoid output function, Entries of the true parameter θ∗

are i.i.d. samples from N (1, 1).
After training the model with SVI or SGD to obtain θ̂, we compare the error in ℓ2 model recovery

of E[Yi|Xi, θ
∗] on M test samples (Xi, Yi):

ℓ2 model recovery error = M−1
M∑
i=1

∥E[Yi|Xi, θ̂]− E[Yi|Xi, θ
∗]∥2. (10)

Table 3 shows that SVI consistently yields smaller training and test ℓ2 errors along the training
trajectory across different graph sizes.

To better understand how SVI update parameters, Figure 3 zooms in the dynamics for 16 neurons
(right figures in (a) and (b)) and shows the corresponding ℓ2 model recovery errors (left figures in
(a) and (b)). To show neuron dynamics, we follow the visualization techniques in [25, Figure 2].
Specifically, we plot the norm of first-layer neuron weights, where the norm is defined in terms of the

Figure 3: Two-layer GCN model recovery error and neuron dynamics visualization. Left: ℓ2 error in
(10). Right: visualization of the training dynamics by SGD (top) and SVI (bottom).

13
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Table 4: Solar ramping event detection under varying sizes of the GCN. Entries in brackets indicates
standard deviation over 3 independent initialization of model parameters.

MSE Loss Classification error Weighted F1 score

# hidden
neurons

SGD
Training

SVI
Training

SGD
Test

SVI Test SGD
Training

SVI
Training

SGD
Test

SVI Test SGD
Training

SVI
Training

SGD
Test

SVI Test

32 0.224
(4.67e-3)

0.200
(9.95e-4)

0.223
(2.40e-3)

0.204
(1.30e-3)

0.297
(5.88e-3)

0.275
(4.54e-3)

0.333
(1.28e-2)

0.296
(1.13e-2)

0.704
(6.62e-3)

0.727
(4.36e-3)

0.659
(1.46e-2)

0.704
(1.15e-2)

64 0.213
(7.66e-4)

0.191
(8.49e-4)

0.211
(1.67e-3)

0.195
(1.12e-3)

0.283
(4.33e-3)

0.263
(1.59e-3)

0.308
(1.04e-2)

0.272
(1.15e-3)

0.719
(4.57e-3)

0.737
(1.59e-3)

0.689
(1.16e-2)

0.728
(1.14e-3)

128 0.219
(1.79e-3)

0.195
(6.22e-4)

0.217
(1.13e-3)

0.199
(5.14e-4)

0.295
(3.15e-3)

0.267
(2.43e-3)

0.328
(6.13e-3)

0.282
(9.04e-4)

0.706
(3.50e-3)

0.734
(2.41e-3)

0.664
(7.73e-3)

0.718
(9.11e-4)

inner product with initial weights, against that of second-layer neuron weights. One circle represents
one neuron, with arrows representing the direction of movement along the initial weights. We then
connect the initial and final dots to indicate the displacement of neurons. In terms of results, after
200 epochs, SVI displaces the neurons from their initial position further, where such displacement
leads to faster convergence in practice.

B.3. Solar ramping event detection

In this experiment, the goal is to identify ramping events within a network of solar sensors, where
ramping events are defined over abrupt changes of the sensor inputs. The raw solar radiation data are
retrieved from the National Solar Radiation Database for 2017 and 2018. We consider data from 10
city downtown in California, where each city or location is a node in the network. The goal is to
identify ramping events daily, which are abrupt changes in the solar power generation. Thus, Yt,i = 1
if node i at day t experiences a ramping event. We define feature Xt = {Yt−1 . . . , Yt−w} as the
collection of past w days of observation and pick w = 5. We estimate edges via a k-nearest neighbor
approach based on the correlation between training ramping labels, with k = 4. Data in 2017 are
used for training (N = 360) and the rest for testing (N1 = 365), and we let B = 30 and E = 100.

We train three-layer GCN models of varying sizes (i.e., number of hidden nodes). Table 4 shows
that SVI consistently reaches lower test classification error and higher test weighted F1 scores2.
Figure 4 shows faster intermediate convergence results by SVI in terms of both metrics.

B.4. Traffic flow anomaly detection

In this experiment, the goal is to identify multi-class bi-hourly anomalous traffic flow observations
in a sensor network. The raw bi-hourly traffic flow data are from the California Department of
Transportation, where we collected data from 20 non-uniformly spaced traffic sensors in 2020
from https://pems.dot.ca.gov/. Data are available hourly, with Yt,i = 0 denoting normal
observations. Meanwhile, Yt,i = 1 (resp. 2) if the current traffic flow lies outside the upper (resp.
lower) 90% quantile over the past four days of traffic flow of its nearest four neighbors based on
sensor proximity. Feature Xt contains past w days of observation and set w = 4, where the edges
include the nearest five neighbors based on sensor locations. Data in the first nine months are training
data and the rest for testing.

2The F1 scores are weighted by support (the number of true instances for each label).
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(a) 32 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

(b) 64 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

(c) 128 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

Figure 4: Solar ramping event detection under various hidden neurons. Results are plotted with one
standard error bars over three independent trials.

We train three-layer GCN models of varying sizes. Table 5 shows that SVI consistently reaches
lower test classification error and higher test weighted F1 scores. Figure 5 shows faster intermediate
convergence results by SVI in terms of both metrics.

B.5. Image classification

We compare both methods on training image classifiers. Specifically, we train the LeNet [18]
on MNIST [5] and the VGG-16 on CIFAR-10 [17]. On MNIST, we train the initial 10% of total

Table 5: Traffic data multi-class anomaly detection under varying sizes of the GCN. Entries in
brackets indicates standard deviation over 3 independent initialization of model parameters.

MSE Loss Classification error Weighted F1 score

# hidden
neurons

SGD
Training

SVI
Training

SGD
Test

SVI Test SGD
Training

SVI
Training

SGD
Test

SVI Test SGD
Training

SVI
Training

SGD
Test

SVI Test

32 0.529
(2.84e-2)

0.475
(7.64e-3)

0.529
(2.51e-2)

0.477
(5.63e-3)

0.401
(2.49e-2)

0.367
(1.24e-2)

0.404
(2.22e-2)

0.371
(9.59e-3)

0.594
(2.89e-2)

0.629
(1.67e-2)

0.589
(2.76e-2)

0.626
(1.29e-2)

64 0.471
(8.25e-3)

0.457
(6.51e-3)

0.473
(7.67e-3)

0.458
(5.19e-3)

0.344
(9.52e-3)

0.339
(5.86e-3)

0.349
(1.12e-2)

0.345
(6.66e-3)

0.655
(9.91e-3)

0.660
(6.05e-3)

0.651
(1.14e-2)

0.655
(6.71e-3)

128 0.447
(2.70e-3)

0.445
(1.84e-3)

0.448
(2.44e-3)

0.445
(1.98e-3)

0.334
(1.64e-3)

0.334
(2.00e-3)

0.335
(2.03e-3)

0.334
(3.27e-3)

0.665
(1.77e-3)

0.665
(1.97e-3)

0.664
(2.16e-3)

0.666
(3.36e-3)
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(a) 32 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

(b) 64 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

(c) 128 hidden neurons. Left to right: MSE loss, classification error, and weighted F1 score.

Figure 5: Traffic data multi-class anomaly detection under various hidden neurons. Results are
plotted with one standard error bars over three independent trials.

training batches by SVI and the rest 90% by SGD, and we call this hybrid technique SVI-then-SGD.
Figure 6 shows training and test metrics over training batches. On CIFAR-10, SVI consistently
yields higher accuracy and lower less than SGD. On MNIST, the hybrid approach shows faster initial
convergence than SGD due to the use of SVI and also reaches higher accuracy and lower loss by the
end of all training batches.
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(a) MNIST by LeNet: training accuracy (left), test accuracy (middle), and training loss (right).

(b) CIFAR10 by VGG-16: training accuracy (left), test accuracy (middle), and training loss (right).

Figure 6: Classification accuracies and training losses by both methods. We plot the metrics over
training batches in each sub-figure. In the title, “Final” represents the metric at the end of all training
epochs and “Best” represents the highest/lowest metric throughout training epochs. On MNIST,
training before the dashed dotted red line is by SVI, and we continue train the SVI-warm-started
model afterwards by SGD.
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