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ABSTRACT

Progress in deep learning for the analysis of clinical EEG data has been hin-
dered by label noise and labeled data sample sizes. While self-supervised learn-
ing (SSL) offers a promising solution by learning representations without la-
bels, their practical utility for clinical applications remains poorly understood.
Through systematic evaluation using two large clinical EEG datasets, we pro-
vide a comprehensive assessment of SSL for pathology detection while control-
ling for demographic confounds. We introduce a novel yet simple contrastive
learning approach that explicitly encodes between-subject information, achieving
superior detection of both neurological and psychiatric pathology compared to
existing methods. We use data subsampling to highlight differences in the dy-
namics of representation learning between the neurological and psychiatric do-
main. Our evaluations help characterize the strengths and limitations of cur-
rent SSL approaches, thereby providing guidance for applying and developing
SSL methods for clinical EEG. Code and pretrained models are available at
https://github.com/SamGijsen/SubCLR/\

1 INTRODUCTION

There is a longstanding and rapidly growing need and interest in the clinical use of neural signals
for the diagnosis of pathology. Such applications are widely used in critical areas, such as magnetic
resonance imaging for degenerative disease (Filippi et al., 2016; Jack Jr et al., [2016; INICE, 2018)
and electroencephalography (EEG) for epilepsy (Binnie & Stefan, |1999; Jing et al., 2020) and sleep
disorders (Malhotra & Avidan| 2013). While traditional analysis methods rely mostly on expert in-
terpretation, the recent success of deep learning in computer vision and natural language processing
has sparked interest in automated diagnostic applications. EEG presents a compelling opportunity
due to its mobile, low-cost, and non-invasive nature. However, despite initial optimism, statistical
modeling of neuroimaging data has proven challenging, especially in psychiatric domains, limiting
its clinical relevance (Marek & Laumann, 2024).

The challenges in clinical neuroimaging applications stem from disease heterogeneity in both neu-
rological disorders (e.g., seizure types, dementia subtypes) and psychiatric conditions (e.g., anxiety,
depression variants). This heterogeneity manifests in varying symptoms, severity levels, and neural
correlates across subgroups (Moretti et al.l 2010; Price et al., 2017; Loo et al., 2018; Newson &
Thiagarajan, |2019). Predicting neurological disorders is generally easier than psychological con-
ditions, as neurological disorders like epilepsy can be diagnosed through visual EEG inspection,
reflecting distinct signal-to-noise regimes. In contrast, psychological conditions exhibit marked la-
bel noise due to low inter-rater reliability and evolving diagnostic criteria (Freedman et al., |2013}
Reed et al., 2018), though neurological conditions also face similar challenges (Dubois et al., 2021}
Koch et al} [2021). Consequently, framing disease detection as an end-to-end supervised problem
may be suboptimal, as models struggle to learn normative data distributions and identify heteroge-
neous pathological anomalies, further compounded by data noise and limited neuroimaging sample
sizes (Gazzar et al., 2022)).

Self-supervised learning (SSL) has been posited as a promising method to alleviate multiple of
these issues as it allows for the pretraining of models without the use of labels. Particular success
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in computer vision has been achieved by a family of methods which train a deep encoder model
to be invariant to a set of hand-picked data augmentations which preserve semantic information
(Chen et al., [2020; (Grill et al.l 2020). The performance on downstream tasks has been attributed
to the richness of the learned high-dimensional features. Such methods may thus hold promise
for modeling the heterogeneity and disease subtypes found in clinical neuroimaging. Furthermore,
label noise is circumvented during pretraining by omitting labels, which has the additional benefit
of enabling the use of larger sample sizes as unlabeled data becomes available.

Initial studies applying SSL to EEG data have shown promising results, with explorations beyond
augmentation-based methods (Mohsenvand et al., 2020; Yang et al.| [2021) including those based on
the temporal ordering of EEG (Banville et al., 2021) or signal reconstruction (Jiang et al.| [2024).
Nevertheless, current work on SSL approaches for EEG analysis suffers from several limitations.
Studies typically evaluate methods using different pretraining datasets, model architectures, and pa-
rameter counts, making it difficult to isolate the impact of the representation learning strategy itself.
Moreover, the field lacks systematic comparisons with simpler baselines, leaving open questions
about when complex SSL approaches truly add value. Overall, it is challenging to draw conclusions
about how to learn meaningful representations of neural data.

This paper presents a systematic analysis of representation learning using SSL for pathology detec-
tion in neuroimaging. We compare various SSL approaches against baseline methods while control-
ling for architecture and training data. To this end, we use the TUAB dataset (Obeid & Piconel 2016)
which features mainly neurological pathology and the Healthy Brain Network dataset (Alexander
et al.l 2017), which contains a variety of psychiatric disorders. Through careful dataset subsam-
pling and controlling for demographic confounds, we investigate four key questions: (1) How do
learned representations compare for pathology detection? (2) Can SSL methods differentiate be-
tween healthy and pathological cases using unlabeled data? (3) What are the scaling dynamics of
SSL methods with dataset size? (4) Can learned representations be transferred to small, external
data? (5) Do these representation learning dynamics differ between neurological and psychological
domains? As we perform our experiments on two clinical datasets, we provide insights into the
practical utility of representation learning for different types of disorders.

2 RELATED WORK

EEG-Based Pathology Detection. The use of machine learning with EEG data for neurological
pathology detection has been shown to be effective with accuracies well above 80% (Gemein et al.|
2020; |[Khan et al.l [2022). Self-supervised learning was found to be particularly useful when lim-
ited labeled data is available (Banville et al., 2021} (Gijsen & Ritter, [2024). However, with more
labeled data, expert-based features have enabled similar performance as supervised deep learning
(Gemein et al.l [2020; [Kiessner et al., [2024). Given that this is also observed for tasks such as motor
imagery decoding (Schirrmeister et al.,[2017)), general factors such as signal-to-noise ratios may be
the cause. However, such domains have very limited data. Meanwhile, for neurological pathology it
is a common observation despite significantly larger datasets and a variety of predominantly CNN-
based architectures (Roy et al.,[2019;|Gemein et al., 2020; Western et al., 2021} [Kiessner et al., 2024;
Darvishi-Bayazi et al.,[2024). Multiple authors have posited that label noise in clinical settings may
be constraining further improvement (Engemann et al., 2018} |Gemein et al.l 2020).

The extent to which psychiatric conditions can be predicted based on neuroimaging data is difficult
to gauge from the literature, as many of the numerous studies rely on small sample sizes and often
include poor evaluation methodology. As a result, prediction accuracies are reported across wide
ranges, with negative correlations between model accuracy and study sample sizes indicating inflated
reported results (Arbabshirani et al., |2017; Kambeitz et al.l [2018} [Flint et al., 2021). Whereas this
has received more attention in magnetic resonance imaging, this has also been found in EEG (Watts
et al., [2022). Although the Healthy Brain Network dataset has made such analyses possible on a
larger dataset (Alexander et al., 2017) which even spurred a benchmark competition (Langer et al.,
2022), we are not aware of published results.

Self-supervised learning with EEG. Initial studies applying SSL to EEG data have shown promis-
ing results. |[Banville et al.|(2021) investigated SSL for pathology detection by developing pretraining
tasks relying on the temporal ordering of epochs of EEG data. SSL was shown to outperform su-
pervised baseline models when a considerable subset of labels was withheld. In subsequent work,
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augmentation-based SSL was found to be more performative on various tasks, including pathology
detection (Mohsenvand et al.,[2020). Further literature has studied this type of SSL for EEG demon-
strating enhanced label-efficiency, but predominantly for cases of sleep staging (Yang et al.|, | 2021;
Rommel et al., [2022), emotion recognition (Zhang et al.| 2022b), and motor imagery (Cheng et al.,
2020; Rommel et al.| 2022). Yet, detailed baseline comparisons are often omitted, complicating
attempts to infer the practical utility of such methods for EEG data. These findings highlight the
potential utility of SSL in clinical settings, which often face significant shortages of labeled data.
Recent work has focused on scaling, leveraging multiple datasets for pretraining in combination with
large transformers, often pretrained for signal reconstruction (Jiang et al.| 2024; Yang et al., 2024;
Dimofte et al} 2025). Finally, a novel avenue is being explored by integrating natural language
during pretraining (Gijsen & Ritter, |2024).

3 METHODS

3.1 DATA AND PREDICTION TASKS

We based our analyses on two large EEG datasets with available pathology information. First,
the Temple University Hospital Abnormal EEG Corpus (TUAB; (Obeid & Picone, 2016))), which
contains clinical EEG data predominantly of adults recorded in a hospital setting. Pathology is
described to largely be neurological, including epilepsy, stroke, and Alzheimer’s disease, among
others (Gemein et al.,|2020), although a precise characterization is not available. Each recording was
labeled by physicians as normal or pathologically abnormal, which we used as a binary classification
prediction target. The dataset comes split into a training (n=2711) and evaluation (n=276) set, of
which we use the latter as a hold-out test set.

Second, we used EEG recordings of the Healthy Brain Network (HBN; (Alexander et al., 2017)),
which is a clinical, pediatric dataset mainly covering psychiatric disorders. The dataset contains
considerable comorbidity, with the most common disorder categories as per the DSM-V being
attention-deficit/hyperactivity disorders, anxiety disorders, specific learning disorders, autism spec-
trum disorders, disruptive disorders, communication disorders, and depression disorders (Langer
et al., [2022). For 2707 subjects we downloaded complete resting state EEG data with the required
phenotypic and meta data. We sampled 15% of subjects to constitute a hold-out test set, balanced
based on age, sex, and diagnoses. This yields a training set of 2300 subjects and a test set of 407
subjects. To enable classification, we construct a binary target which aims to capture the overall
level of behavioural functioning. To this end, we relied on the Children’s General Assessment Scale
(Shaffer et al.,|1983)), which is commonly used by mental health clinicians and ranges from 1 to 100.
While higher scores correspond to better functioning, lower scores often result from one or multiple
psychiatric conditions. We perform ’extreme-group’ prediction, differentiating between individuals
with moderate-to-severe functional impairment versus those with minimal impairment. To simplify
notation, we henceforth refer to these groups as pathological and normal respectively, but we stress
that in both datasets no subsets can be confidently stated to represent the healthy population due to
the clinical setting in which data collection took place.

3.1.1 DATASET SUBSAMPLING AND PREPROCESSING

Since participant sex and age strongly affect EEG signals, models may considerably rely on these
(confounding) factors. To ensure models need to rely on information directly related to pathology,
we subsample the datasets to match sex and age distributions between pathological and normal
groups (Table[I] with precise information in Appendix[A.3.T). Whereas this is sometimes performed
for downstream evaluation, we importantly also do this for the pretraining data. In Appendix[A.3.T),
we also detail the EEG preprocessing, which follows literature standards.

3.2 SELF-SUPERVISED LEARNING

The goal of self-supervised learning is to generate data representations useful for downstream tasks.
A common approach involves training a deep encoder, such as a convolutional neural network, to
become invariant to data augmentations. This method, widely adopted in computer vision, has
demonstrated strong performance across various tasks (Chen et al.| 2020 |Grill et al.| 2020). Differ-
ences in EEG recording techniques, such as channel counts and montages, make translating between
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Table 1: Dataset statistics. The *SSL samples’ column indicates the amount of samples used for
SSL pretraining, which operates on single-channels of EEG-crops.

Data subset EEG files Crops (10s) SSL Samples % Male Mean Age (std)
TUAB train (PAT+NOR) 928 60K 1.2M 50.0 49.3 (16.8)
TUAB train (NOR) 928 60K 1.2M 50.0 48.8 (16.5)
TUAB test 276 18K 377K 53.6 50.7 (18.3)
HBN train (PAT+NOR) 476 10K 1.1M 66.8 10.9 (3.6)
HBN train (NOR) 476 10K 1.1M 59.2 10.6 (3.3)
HBN test 138 3K 312K 65.2 11.0(3.3)

datasets challenging, severely limiting flexibility in downstream tasks. To overcome this issue we
pretrain a single-channel encoder model, which is agnostic to the channel-layout, as employed in
Mohsenvand et al.| (2020). For the downstream task, the linear probe then is trained on the con-
catenated representations of each of the channels. This enables us to evaluate whether learned rep-
resentations generalize to small external datasets, which is commonly required in clinical contexts.
Consequently, the input data for the pretraining task is a batch of single-channel EEG epochs x and
we aim to learn a representation h to be used for the downstream tasks of binary pathology detection
on the TUAB and HBN datasets. For every analysis, we perform five pretraining runs with different
random initializations.

We compare various SSL methods by the predictive performance of their representations on down-
stream tasks. Specifically, we compare to SImCLR (Chen et al.,[2020), Bootstrap- Your-Own-Latent
(BYOL; Grill et al., 2020), VICReg (Bardes et al., [2021)), and Contrast with the World Represen-
tation (ContraWR; Yang et al., 2022a). For a description of these methods, please see Appendix
[A.3.2] We describe the used data augmentations in Appendix[A.3.3]

3.2.1 CONTRASTIVE LEARNING WITHOUT AUGMENTATIONS: SUBCLR

Given the difficulty of designing data augmentations for EEG, we sought to construct a method not
requiring any augmentations. We assume that the pathology-related statistics we aim to learn from
data can be characterised as a source of between-subject information. Whereas Banville et al.|(2021])
focused on the temporal order of epochs and thereby constructed a proxy-label for self-supervised
learning, we rely on the subject identity of samples as a proxy-label. This becomes possible as we
do not focus on within-subject tasks such as sleep-staging. This allows for the formulation of a
simple contrastive method that does not require augmentations and has a simpler loss objective to
interpret. Specifically, we maximize the similarity of embeddings with identical subject identities
(i.e. those recorded from the same subject) and minimize the similarity with respect to all samples in
a batch with different subject identities. Given the batch embeddings z, we initially follow SimCLR
by computing the pairwise cosine similarity:

s = (1)
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"
S::? 2)
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where LSM = log (softmax(S)) which features a temperature parameter and is used to compute
log-probabilities.

As conventional batch sampling is entirely stochastic, there is no guarantee to avoid sampling only
a single sample for a given subject, which prevents the similarity computation. SubCLR addresses
this limitation by introducing a parameter u that controls the number of unique subject identities per
batch (where N mod w = 0 and u > 1). The sampling process first selects u random subjects, then
samples % EEG recordings per subject to maintain a constant batch size N. Empirical evaluation
on the TUAB training set showed optimal performance with v = 8 and temperature 7 = 0.02, with
the method being relatively robust to hyperparameter choices (Appendix Figure ).

3.2.2 MODELS

Architecture We use the same neural network architecture for all analyses unless indicated oth-
erwise. For the encoder model fy, we use a residual 1D-convolutional neural network applying
variable kernel sizes of 4, 8, and 16 samples in parallel. For the projection head g4, we used a 2-
layer MLP. We provide further details on the used architecture as well as optimization in Appendix

[0b] and [A.3. 4] respectively.

Evaluation We evaluate the learned representations h on the downstream classification task by
freezing the encoder’s weights and training a linear logistic regression model. Specifically, a repre-
sentation h.. is obtained for each of C' EEG channels, which are concatenated to yield an epoch-level
representation h.. By predicting the binary labels y we thus yield epoch-level predictions, which
are averaged within-subject to derive subject-level predictions. We perform a grid-search for L2
regularization over nine logarithmically-spaced values between 10~% and 108.

Baselines We further compare SSL methods to supervised deep learning for which we use the same
EEG encoder as during pretraining, handcrafted features describing either the time-series or power
spectrum based on frequency bands |Gemein et al.| (2020); Engemann et al. (2022), as well as a
Riemmanian filterbank approach (Sabbagh et al., [2019} 2020). These methods have been shown to
be strong baselines and we detail their implementation and tuning in Appendix[A.3.3]

4 RESULTS

4.1 HOW DO LEARNED REPRESENTATIONS COMPARE FOR PATHOLOGY DETECTION?

Upon comparing SSL pretraining approaches, predictive performance is in general considerably
higher for neurological disorders (TUAB) compared to psychiatric ones (HBN; Figure [T]A). Many
of the methods exhibit broadly similar performance and show comparable scaling properties as the
number of exposed labels is increased. We observe that SubCLR scores much better for the HBN
data and ranks first and second for the TUAB subsets. Remaining SSL methods show variability in
their rank across subsets. BYOL or ContraWR score well on TUAB but none of the augmentation-
based methods perform well for the psychiatric HBN data.

All augmentation-based SSL methods perform highly similar to the baselines methods and therefore,
as well as visual clarity, we compare to SubCLR as the best performing SSL method (Figure [TB).
We note that while the rank-ordering of models changes between datasets, SubCLR performs well
across both datasets. Whereas both SSL and supervised deep learning enabled better prediction than
expert-based methods for TUAB, we did not observe this for HBN. This may suggest different levels
of complexity of pathology-related features across these two domains.

Besides absolute performance of SSL methods (Figure[TJA), we also present differences compared to
using random weights (i.e. an untrained encoder model; Figure [T[C). This delta more clearly shows
how much pretraining improved representations as the untrained model controls for inductive biases
present in the CNN architecture. However, we note that this comes with some arbitrariness. While
we find that larger residual CNNs outperform previously used smaller CNNs (Appendix Figure [5),
this difference is markedly larger when models are untrained (Appendix Figure[5). As the random-
weights baseline appears to strongly depend on model architecture choices, SSL can appear less
effective compared to the literature due to a more performative baseline. We find that benefits over
a randomly initialized CNN are surprisingly modest, especially when the NOR subset is used for
pretraining.
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Figure 1: A) A comparison of SSL methods on the TUAB and HBN datasets via averaged AUC
scores. Models were trained on a subsample of each dataset consisting of either no pathological
subject (NOR) or an equal amount of subjects with and without pathology (PAT+NOR). B) The
best performing SSL method is compared against baselines models. C) A different view of results
presented in subfigure A. Average scores obtained from using random weights is indicated by the
dotted horizontal line. Colored lines indicate average difference scores of SSL methods compared
to random weights. Error bars show the standard deviation across cross-validation folds.

Some methods even decrease downstream performance, suggesting inappropriate types of invariance
are learned. The used data augmentations were optimized for neurological pathology detection,
sleep staging, and emotion recognition by Mohsenvand et al.| (2020). This indicates that the benefits
of augmentations are dataset and task-specific (Rommel et al.,|2022), which we confirm for TUAB
and HBN in Appendix Figure [0} This highlights the advantage of SubCLR bypassing the need
for searching over augmentations, as it is computationally expensive and may increase the risk of
overfitting.

4.2 DO SSL METHODS BENEFIT FROM UNLABELED PATHOLOGICAL SAMPLES DURING
PRETRAINING?

We also examined whether methods are able to utilize pathological samples during pretraining. We
compare downstream performance following pretraining datasets which were matched for age, sex,
and sample size, but either included or excluded pathological subjects (Figure[T]A). For TUAB, we
find that ContraWR, VICReg, and SubCLR benefit from their inclusion, whereas we observe no
such effects for the HBN dataset. This difference is likely related to the more pronounced signatures
of neurological pathology for TUAB. Interestingly, a significant portion of SubCLR performance,
especially for the HBN data, may be obtained from pretraining on normal samples. One explana-
tion concerns the possibility that psychiatric-related features exhibit considerable variation in less
affected populations. These findings may however also indicate that learned representations are of
relatively low specificity with respect to pathology.
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Figure 2: Effects on performance from transfer learning (TL) and data fusion (DF) strategies. A)
A visualisation of relative scores of linear evaluation of models pretrained with and without TL or
DF. The top and bottom rows use TUAB and HBN as target datasets respectively. Error bars show
the standard deviation across cross-validation folds. B) Scatter plot of the absolute scores of models
without ("base’) and with TL or DF.

4.3 CAN LEARNED REPRESENTATIONS BE TRANSFERRED TO SMALL, EXTERNAL DATA?

Whereas so far we analysed predictive performance within datasets, we also investigated whether
external datasets can be used during pretraining to aid downstream pathology classification on small
downstream datasets (Figure[2). This is particularly important for the clinical domain, which often
features small sample sizes. Transfer learning: We evaluated cross-dataset transfer by pretraining
on a complete source dataset (either TUAB with n=2711 or HBN with n=2300) and fine-tuning
on small subsets (n~100) of a target dataset. Specifically, these small subsets are obtained by
subsampling the training set and creating five age, sex, and pathology matched subsets without
overlap (further details in Appendix [A.3.T). Data fusion: Additionally, we explored combining
smaller target data subsets (n~125 times four without overlap) with a source data subset (n~=500)
during pretraining to evaluate potential performance improvements while controlling age and sex
distributions.

We observe considerable variation due to simulating small sample sizes, with both significant per-
formance gains and losses. On average, the best performance gains for TUAB are seen when using
transfer learning after augmentation-based pretraining on HBN. When HBN is the target, data fusion
with TUAB produces better results for both methods. Transfer learning working better for TUAB
may indicate that finetuning with limited data is sufficient for neurological but not for psychiatric
pathology. The latter domain may rely on more general features of lesser specificity, which can be
learned by introducing additional non-psychiatric data via data fusion.

4.4 WHAT ARE THE SCALING DYNAMICS OF SSL METHODS WITH DATASET SIZE?

We additionally investigated how the size of the in-distribution pretraining dataset affects down-
stream performance (Figure [3). We compare downstream performance after pretraining five models
on the entire training set (n=2711/2300), the matched subsets (n=928/476), and each of the non-
overlapping subsets used to evaluate transfer learning (n=100/94). This analysis also helps under-
stand whether the aforementioned results of transfer learning and data fusion with ’external’ data
may depend on shifts in data distribution. However, this explanation appears unlikely as we do not
observe considerably better downstream performance (while always evaluating at n=100) by increas-
ing pretraining dataset size in the current setting. A minor exception includes TUAB showing more
consistent performance gains with SUbCLR, albeit of moderate size. In order to investigate whether
the poor scaling of models was due to a lack of parameters in the encoder model, we performed
the scaling analyses using an encoder model with twice the width and twice the depth (6M instead
of 747K parameters). In a further analysis, we had the encoder model operate on time-frequency
data instead of the EEG signal directly. Neither of these adjustments materially affected the scaling
behaviour (Appendix Figure[7).

To assess whether limited scaling was specific to pathology detection, we evaluated performance on
age- and sex-prediction tasks (Appendix Figure[8)). SubCLR again performed better but plateaued at
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Figure 3: A,B) The effect of increases in pretraining sample sizes on downstream performance is
inspected for augmentation-based SSL (blue; ContraWR) and subject-based SSL (SubCLR; orange).
Dotted horizontal lines indicate the average AUC across the five data subsets (n=100 under A and
n=94 under B). Error bars show the standard deviation across cross-validation folds. We include
visualisations of t-SNE projections of learned representations.

100 recordings, while augmentation-based methods showed better scaling but lower overall per-
formance. T-SNE visualizations of learned representations for pathology, age, and sex showed
no meaningful progression with increased sample sizes (Figure [3). This early saturation suggests
learned representations have limited complexity, aligning with findings from the 46M parameter
LaBraM model on TUAB, which gained only ~21.5% performance when increasing pretraining data

from 100 to 2500 hours 2024).

5 DISCUSSION

We present various insights into the use of SSL for pathology detection with EEG data. First, we
show that subject identities can be used to explicitly promote the encoding of between-subject in-
formation during SSL, improving pathology detection over augmentation-based methods on two
datasets. We furthermore contrast various analyses between the detection of neurological and psy-
chiatric pathology. We observe that only for the neurological domain does SSL outperform all
baseline methods and can learn better features by including pathological samples during pretrain-
ing. Furthermore, the efficacy of transfer learning and data fusion depended on the target domain.
However, we observed limited scaling with respect to pretraining sample size. And although SSL
performed well on both datasets, learned representations may be of low complexity and specificity.
These findings have important implications for clinical applications and suggest that the clinical
domain should be considered.

Some considerations of the current study deserve mention. First, the investigated datasets differed
not only in the domain of pathology, but also in other regards including demographics, EEG system,
and sample size. These may therefore have contributed to the observed differences between datasets.
Although we filtered out pathological cases from data subsets based on labels, it is expected they
still contained variable degrees of pathology, likely making our empirical contrast imperfect. While
concurrent work explores alternative SSL approaches, our results highlight the importance of de-
veloping methods that can effectively scale with data size and capture domain-specific pathological
patterns, particularly for psychiatric applications.
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MEANINGFULNESS STATEMENT

Neural recordings during rest capture fundamental aspects of human life, including pathological
variations in brain function. These deviations from typical function are not merely abnormalities, but
represent essential dimensions of life that meaningful representations must capture. Our systematic
investigation of how self-supervised learning encodes such information, particularly the distinct
signatures of neurological versus psychiatric conditions, advances our understanding of how to learn
representations that respect both the universality and diversity of human neural function. This work
contributes to the broader goal of developing more comprehensive and nuanced models of human
brain activity.
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A APPENDIX

A.1 ADDITIONAL ANALYSES
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Figure 4: An exploration of the sensitivity of SubCLR to hyperparameters. These include the tem-
perature parameter used in the softmax operation of the loss computation as well as the amount of
unique subjects sampled for each batch (u). Pretraining as well as linear evaluation of pretrained
models is performed on subsets of the TUAB training set without test set overlap. We find relative
insensitivity to the hyperparameters. Even extremes of u (two or 512 different subjects are included
in each batch) only result in minor performance degradation. In our study, we use © = 8 and a
temperature of 0.02.
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Figure 5: The ShallowNet model introduced by [Schirrmeister et al.[(2017) is used in
(2021)) for pathology detection on the TUAB dataset. Besides using the model for SSL, it was also
used as a baseline comparison with randomly initialized weights. Left: ShallowNet with random
weights was compared against the untrained residual network used in the present work. The set-up as
described in[Banville et al.| (2021)) is presented in green, which operates on all 21 EEG channels and
is evaluated on an epoch level. (Using balanced accuracy, performance plateaus around 67%, which
is similar to the authors’ presented results.) The current study, however, performs subject-level
inference by averaging model predictions across epochs in a within-subject fashion, which is shown
for ShallowNet in brown. The residual network shows considerably better performance without
training, both when operating on all 21 EEG channels or when operating on a single-channel basis
(yellow and orange respectively). Right: We pretrain ShallowNet using the SubCLR method (brown)
and compare it against the residual model (orange). A clear difference in predictive performance is
observed. We further show that disabling dropout in ShallowNet during pretraining (green) reduces
the delta in performance.
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Effect of data augmentations on SubCLR performance
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Figure 6: The effect of data augmentations when using SubCLR as a pretraining objective. For
TUAB (left), except for larger data regimes the inclusion of data augmentations increases perfor-
mance, whether the NOR or PAT+NOR data subset is used. Meanwhile, for HBN (right) including
data augmentations hurts performance for both data subsets and all number of labeled subjects.
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Figure 7: The analyses of the scaling properties with respect to pretraining sample sizes are repli-
cated for the following two model adjustments. First, the input data undergoes a time-frequency
decomposition into three bands ([1-7Hz, 8-30Hz, 31-49Hz]), denoted *'TF’. For the ContraWR im-
plementation, we only sample from the Gaussian noise, time-shift, and bandstop-filter data augmen-
tations and apply these to the EEG signal prior to the decomposition. The encoder model thus now
operates on three input channels instead of one. Second, the encoder model is made twice as deep
and wide, increasing the amount of parameters from 747K to 6M (thus denoted ’6M’). Due to the
increased computational demands these models were pretrained only once, with error bars therefore
reflecting only the standard deviation across K-Fold cross-validation of the linear evaluation (5 repe-
titions with K = 5, n = 100). Results suggest no clear violation of the main results, with significant
pretraining sample size increases of up to 23x and 27x yielding very minor or even no classification
improvements. An exception is observed for SubCLR-TF on HBN, where an improvement is ob-
served of 0.06 AUC at n = 476. However, this improvement merely matches the performance of
the base SubCLR model at n = 94 (Figure [3) and does not persist at n = 2300, indicating it may
be due to randomness in pretraining. Our findings appear therefore not dependent on the choice of
input data or a lack of parameters in the encoder model. Horizontal, dotted lines indicate the average
score across the five smallest subsamples (n = 94 or 100).
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Figure 8: The scaling analysis of pretraining sample size was repeated for downstream age and sex
prediction. Linear evaluation is performed using 100 labeled EEG recordings (error bars indicate
standard deviations of 5 repetitions of K-Fold cross-validation with K = 5). We find for both
targets on both datasets of TUAB (A) and HBN (B) higher performance for SubCLR (orange) than
ContraWR (blue). We further observe that while SubCLR performance on these tasks has saturated
at 100 EEG recordings, ContraWR scales with pretraining sample size except for age prediction on
the HBN dataset. However, it remains uncertain whether ContraWR can match or exceed SubCLR
with additional data.

A.2 EXTENDED DISCUSSION

The explicit encoding of between-subject information via SubCLR is found to yield representa-
tions better suited for pathology detection than augmentation-based SSL on both datasets across
all investigated sample sizes. This may result from SubCLR better encoding pathology-related in-
formation per se. Alternatively, features related to non-pathological, between-subject factors (e.g.
demographics) may be better learned and could be informative for pathology. That is, insofar as
data dimensions relating to pathology and other between-subject factors overlap, encoding any such
information via SubCLR may have aided downstream pathology detection. For example, oscillatory
activity in frequency bands of up to 30 Hz (i.e., delta, theta, alpha, and beta bands) has been infor-
mative to predict both age (Al Zoubi et al., [2018}; |[Neuhaus et al.,[2021}; [Khayretdinova et al., [2022)
and sex (Van Putten et al.| [2018; |Cave & Barry, 2021} Neuhaus et al.,|2021). These features have
also been correlated with pathology detection on TUAB (Gemein et al.,|2020) and specific patholo-
gies present in the corpus such as epilepsy (T'sipourasl 2019; Wang & Mengoni, [2022). Moreover,
such evidence is also reported for pediatric and psychiatric pathology as found in the HBN cohort
(Newson & Thiagarajan, [2019; Neuhaus et al., |2021)). In line with this possibility, additional anal-
yses indicated that features learned via SubCLR enabled better age and sex prediction, although it
remains unknown to what extent this contributed to the better pathology detection. Meanwhile, as
augmentation-based methods were often not able to improve pathology detection considerably over
arandomly initialized CNN, their learned features appear to be unspecific to the pathology detection
task.

A further finding concerns the similar performance of the augmentation-based SSL methods within
each dataset. |Yang et al.[(2021)), in their introduction of ContraWR for sleep staging with EEG data,
provide a comparison with BYOL and SimCLR, among others. Although ContraWR performed
best, differences between models appeared small, with the rank-order of models changing across
the number of exposed labels, potentially indicating considerable noise. While similar performance
may be regarded as unsurprising given that these methods all promote augmentation-invariance in
the encoder model, it is not consistently found in the computer vision literature. Indeed, BYOL and
VICReg were developed in response to SimCLR (Chen et al.| [2020) and can show notably better
performance, although this is dependent on the specific dataset (Grill et al.l 2020; [Bardes et al.,
2021). This is commonly attributed to these methods being less prone to suffer informational col-
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lapse, where representations span a space of reduced dimensionality (Bardes et al.,[2021; Jing et al.,
2021). The homogeneity of performance observed in the present work may indicate that differing
levels of informational collapse did not meaningfully affect results. This is likely when models learn
predominantly lower-order, surface statistics of data and thus do not require the efficient and maxi-
mal use of the available representational capacity. Compared to natural images, neuroimaging data
such as EEG has a markedly lower signal-to-noise ratio (de Jongh et al., 2005; (Goldenholz et al.,
2009; |Piastra et al, 2021)). This reduces the ability to accurately compare similar models per se,
potentially contributing to the observations made here and the results of |Yang et al.[(2021). Second,
noise likely also reduces the complexity of learnable data statistics. The need for high dimensional
representations may thereby be reduced which, in turn, could lessen the impact of informational
collapse, reducing the variability between methods.

The interpretation that learned representations are of low-complexity fits with the remarkable perfor-
mance of using an untrained encoder. As we find that gaps in performance between the currently em-
ployed residual CNN and a smaller CNN (ShallowNet by (Schirrmeister et al.,|2017)) considerably
shrink following pretraining, the inherent inductive biases of CNNs may account for a considerable
portion of performance. These CNNs share some such biases, including local connectivity (adjacent
time points are more related than distance ones), translation invariance (features are independent of
their position in time), and a non-linear mapping between input and output (LeCun et al., [1995).
Meanwhile, inductive biases also depend on specific aspects of model architecture: the additional
convolutional layers of the residual CNN enable feature learning across different temporal scales
and the iterative pooling operations assume different levels of informational redundancy. The ob-
servation that randomly initialized CNNs are powerful models is widely recognized in the machine
learning literature (Ulyanov et al.,[2018), inspired early version of the BYOL approach (Grill et al.,
2020), and was found to scale with network depth (Cao & Wul [2022), which is compatible with our
observations. Yet, while for computer vision augmentation-based pretraining may add a minimum
of 10% absolute accuracy (Cao & Wul|2022), we observe considerably lower gains.

Whereas positive results for transfer learning have been reported for fully-supervised learning in do-
mains such as sleep staging (Yang et al.,[2023)) and motor imagery classification (Zhang et al.,|2021)),
its benefit for pathology remains uncertain. Recent work investigated transfer learning and data fu-
sion for pathology detection on TUAB and an additional pathology dataset (Darvishi-Bayazi et al.,
2024). TUAB was used as the source dataset for transfer learning, where only one of four investi-
gated models showed an improvement by being pretrained on TUAB. Data fusion analyses worked
better using TUAB as a source, improving classification for three out of four cases. Meanwhile, data
fusion using TUAB as a target dataset lead to performance decreases for all four models.

On possible low complexity of learned representations and scaling limitations

While similar performance across augmentation-invariant methods might seem expected, it contrasts
with computer vision, where BYOL and VICReg often outpace SimCLR (Chen et al.| 2020), al-
though this is dataset dependent (Grill et al.|[2020; [Bardes et al.,2021)). This is commonly attributed
to these methods being less prone to suffer informational collapse, where representations span a
space of reduced dimensionality (Bardes et al., 2021} Jing et al., 2021)). The homogeneity of perfor-
mance observed in the present work may indicate that differing levels of informational collapse did
not meaningfully affect results. This is likely when models learn predominantly lower-order, surface
statistics of data and thus do not require the efficient and maximal use of the available representa-
tional capacity. Compared to natural images, neuroimaging data such as EEG has a markedly lower
signal-to-noise ratio (de Jongh et al., 2005} |Goldenholz et al., |2009; [Piastra et al., [2021). This im-
pairs model differentiation and simplifies learnable features, reducing the need for high-dimensional
representations and muting collapse effects.

The interpretation that learned representations are of low-complexity fits with the remarkable per-
formance of using an untrained encoder. Pretraining shrinks gaps between our residual CNN and
ShallowNet (Schirrmeister et alJ [2017)), hinting CNN biases drive a considerable portion of the
result. These biases vary by design: extra layers in the residual CNN capture multi-scale temporal
features, while pooling assumes redundancy. The observation that randomly initialized CNNs are
powerful models is widely recognized in the machine learning literature (Ulyanov et al.| 2018)), in-
spired early version of the BYOL approach (Grill et al., [2020), and was found to scale with network
depth (Cao & Wu,2022), which is compatible with our observations. Yet, while for computer vision
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augmentation-based pretraining may add a minimum of 10% absolute accuracy (Cao & Wu, |2022),
we observe considerably lower gains.

The performance plateau with more pretraining data might reflect multiple issues. Architectural
constraints, like our CNN'’s focus on local patterns, could saturate early, which is not alleviated by
scaling up the encoder model to 6M parameters. Furthermore, single-channel pretraining naturally
limits the complexity of learned representations as spatial relationships are not present in the input.
EEG signal limitations, high signal-to-noise, likely place a ceiling on complexity too, also seen in
LaBraM’s modest scaling (Jiang et al., [2024). We propose that alternative pretraining strategies
may offer a solution when they promote the learning of more finegrained information which is not
restricted to mere subject-level differences or based on difficult-to-formulate EEG augmentations.

Novelty compared to related work

In this work, we advance the application of self-supervised learning (SSL) to clinical EEG data by
introducing SubCLR, a novel contrastive learning approach that explicitly encodes between-subject
information using subject identity as a proxy, bypassing the need for data augmentations—a key
departure from prior augmentation-based SSL methods like SimCLR, BYOL, and VICReg (e.g.,
(Chen et al., [2020; |Grill et al.| [2020; |Bardes et al., [2021)). Unlike earlier work that often relied on
unmatched datasets, architectures, and limited baseline comparisons, we conduct a systematic evalu-
ation on two large clinical EEG datasets (TUAB and HBN), controlling for demographic confounds
and benchmarking multiple SSL strategies against supervised deep learning and handcrafted feature
baselines. Our approach uniquely achieves superior pathology detection across both neurological
and psychiatric domains, revealing distinct representation learning dynamics—such as SubCLR’s
robustness to limited labeled data and its ability to leverage unlabeled pathological samples, par-
ticularly in neurological contexts. Additionally, we explore scaling dynamics with dataset size and
transferability to small external datasets, aspects underexplored in prior EEG SSL research, pro-
viding new insights into the practical utility and limitations of SSL for clinical applications. These
contributions collectively offer a more nuanced understanding of representation learning for EEG,
tailored to the heterogeneity of clinical pathology, beyond what has been previously demonstrated.

A.3 EXTENDED METHODS
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Figure 9a. The carried out analyses involve multiple
dataset subsampling steps to allow a comparison of per-
formance between differing pretraining setups. In A),
the dataset subsampling is visualized. Meanwhile, B)
includes an overview of the undertaken analyses, which
involve varying conditions of label-free pretraining and
an appropriate evaluation setup.
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Figure 9b. A visual depiction of the employed CNN
architectures. The encoder backbone is used for all
SSL pretraining analyses as well as supervised learn-
ing comparisons. The encoder is combined with the
projection head during pretraining and discarded af-
terwards, while the classifier head is used for super-
vised learning. D: Output dimensionality, K: Kernel
size, ¢: Number of EEG channels
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A.3.1 DATA PREPROCESSING AND SUBSAMPLING

Subsampling From the TUAB training set we create subsets containing only normal recordings
(NOR) or an equal amount of abnormal and normal recordings (NOR+PAT). We obtain a female ra-
tio of 0.5 and match the age-distributions, both between the abnormal and normal recordings in the
NOR+PAT subset as well as between the NOR and NOR+PAT subsets themselves, yielding n = 928
for each subset (Table E]) For the HBN dataset, we construct half of the NOR+PAT subset by includ-
ing all subjects with a CGAS score of 50 or lower, resulting in n = 238. Next, the NOR subset is
created by including the n * 2 = 476 subjects with the highest CGAS scores (73 or higher). Finally,
we complete the NOR+PAT subset by sampling 238 subjects from the NOR subset by matching sex
and age distributions. We note, however, that this methodology leads to the NOR and NOR+PAT
subsets of HBN to differ in sex ratios (59.2% and 66.8% male respectively). Avoiding this entirely
would have further shrunk available sample sizes considerably, while our priority was to prevent
models trained on NOR+PAT subsets exploiting sex or age difference between normal and patho-
logical data. From the HBN hold-out test set, we similarly only use the extreme groups (n = 138).
We provide a visualization of the subsampling process in Figure Oa]

Preprocessing. The TUAB EEG recordings feature different amounts of electrodes. As is common
in the literature, we use the 21 electrodes shared across subjects. To reduce the impact of differences
in recording lengths between subjects, we use a maximum of 11 minutes per recording. For the
HBN, we follow (Langer et al.l 2022) by discarding those channels mostly recording muscular ac-
tivity by being located on the chin and neck, including: E1, E8, E14, E17, E21, E25, E32, E48, E49,
E56, E63, E68, E73, E81, E88, E94, E99, E107, E113, E119, E125, E126, E127, and E128, result-
ing in 104 electrodes. The resting-state recording included ’eyes-closed’” and ’eyes-open’ segments,
which we included both in order to maximize the amount of data. Both datasets were bandpass
filtered to 0.1 - 49Hz, the data was resampled to 200Hz, and split into epochs with a length of 10
seconds. Due to the lower amount of channels for TUAB, epochs were rejected using the *Global’
setting of AutoReject (Jas et al.,[2017), which sets a singular peak-to-peak rejection threshold for all
channels. As the HBN dataset featured more channels and we aimed to preserve data given potential
extra noise due to the pediatric nature, the "Local’ setting was used, setting a threshold on a per
channel basis. The default maximum number of channels to be interpolated was increased to ac-
commodate a channel count of 104, performing cross-validation over [4, 16, 46] channels. Finally,
both datasets were re-referenced with an average reference. The Python-based software MNE and
MNE-BIDS-Pipeline were used for preprocessing (Jas et al.l 2018)).

A.3.2 AUGMENTATION-BASED SSL

Given the similarity between methods, we briefly describe the SimCLR method by |Chen et al.|(2020)
and then denote the important differences for subsequent methods. Given x, two batches of different
views X, and X,, are created by applying data augmentations. These are passed through an encoder
model fy creating the representations h,,, and h,,, which in turn are passed through a projection
head g4 to produce embeddings z,, and z,,. At this point, the loss function is applied which for
SimCLR is the InfoNCE contrastive loss (Oord et al.| [2018) combined with the cosine similarity
metric. The set {X,} includes a positive pair of samples X,,, and X,, and the pretraining task may be
formulated as identifying X,, in {X, } x£m given a X,,. In other words, similarity of embedding pairs
(2, Zn,) is increased, while their similarity with every other embedding in the batch is decreased.
Note that the projector g4 is only used during pretraining and is discarded for any downstream task,
where only the encoder fy output is used. This follows from empirical observations (Chen et al.,
2020), possibly due to later layers being too narrowly optimized for the contrastive loss. Note that
trivial solutions in form of identical embeddings for every input are avoided by the negative part of
the contrastive loss, which pushes away embeddings from each other.

Later methods attempt to resolve specific issues of SimCLR, which includes a requirement of large
batch-sizes as well as dimensional collapse, in which embedding vectors span a lower-dimensional
space, hurting performance (Jing et al|2021)). Variance-Invariance-Covariance Regularization (VI-
CReg) aims to avoid collapse explicitly by introducing two regularization terms applied to each of
the two sets of embeddings separately (Bardes et al., 2021). First, a ’variance’ term ensures the
batch-wise standard deviation of each variable of an embedding remains above a threshold, which
prevents shrinkage of the embeddings to zero, leading to a trivial solution. Second, a ’covariance’
term shrinks the batch-wise covariance between every pair of embedding variables, which decorre-
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lates them and prevents dimensional collapse. As a consequence, the contrastive loss is no longer
needed, which is replaced by the mean square distance between embedding vectors, which when
minimized also promotes similarity of the pair X, and X,,.

Bootstrap- Your-Own-Latent (BYOL; |Grill et al| (2020)) takes an alternate approach to avoid col-
lapse and uses two neural networks, referred to as the online and target networks. Both networks
still use an encoder and projection model, with the online encoder model being used for downstream
tasks. The main idea is that the online network attempts to predict the output of the target model.
Collapse is prevented by updating the weights of the target network by using an exponential moving
average of the weights of the online network. As no contrastive loss is required, a mean square
distance of /5 normalized embedding vectors is used. The exponential moving average parameter is
set to the recommended 0.996.

Contrast with the World Representation (ContraWR) is an SSL method that was specifically pro-
posed to improve SSL for EEG and evaluated for automatic sleep staging (Yang et al., 2021). Itis a
contrastive method which uses an aggregated representation of the batch as the negative part. We use
their ”ContraWR+" method which uses a weighted average to create the aggregated representation,
with weights being positively scaled by the relative embedding similarities, effectively creating a
harder pretraining task by increasing the influence of samples which are hard to distinguish. Loss-
function hyperparameters o, 7, d are set to their recommended default values.

A.3.3 AUGMENTATIONS

Here we adopt the augmentations proposed by Mohsenvand et al.| (2020) (see Table[2), who showed
the benefit of these augmentations for pathology detection on TUAB as well as other tasks. As we
apply z-score normalization we reduced the range of the proposed DC shift augmentation.

Data Augmentation Min Max
Amplitude Scale 05 2
Time Shift in samples -50 50
DC shift in mmV -4 4
Zero-Masking in samples 0 150

Additive Gaussian Noise (o) 0 0.2
Band-Stop Filter (SHz width) 2.8 47

Table 2: Data augmentations adapted from Mohsenvand et al.| (2020).

A.3.4 ARCHITECTURE AND OPTIMIZATION

A visualization of the EEG encoder architecture is shown in Figure [0b] and allows for a flexibility
where the amount of residual blocks and number of filters can be easily adapted. We used 4 residual
blocks with each block followed by max pooling with a kernel size and stride of 4, leading to
incremental downsampling. The number of filters per kernel size was set to 32, thus the final average
pooling operation yields a 32x3=96 dimensional representation vector h. This yields a total of
747K trainable parameters in the encoder. For the projector, we used a 2-layer MLP with a hidden
dimension of width 256 and an output dimension of 32. For VICReg, the output dimension is
recommended to be wider and was thus set to 256 (Bardes et al.,2021).

For optimization, we follow recommendations for large-batch SSL pretraining (Grill et al., [2020).
The LARS optimizer is used in combination with a cosine decay learning rate schedule of 50 epochs
with a linear warm-up period of 5 epochs (You et al., 2017). As HBN data was recorded with con-
siderably more electrodes, resulting in more highly correlated samples, models were pretrained for
25 epochs with 3 warm-up epochs. The base learning rate is set to 0.3, scaled with the batch size
(LearningRate = 0.2 x BatchSize/256). We use weight decay of 0.0001 while excluding batch nor-
malization and bias parameters from weight decay and LARS adaptation. As methods use different
amounts of memory, batch size was set to 2048 for SimCLR, ContraWR, and SubCLR and 1024 for
BOYL and VICReg. Either an Nvidia GeForce RTX 3090 or a Tesla V100 GPU was used.
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A.3.5 BASELINE MODELS

Supervised deep learning. For supervised learning we employed the same encoder model as for
the SSL approaches, but instead of the projector head used a classification head. This consisted
of a spatial convolution with 32 filters which was applied across all EEG channels after which
output was flattened and passed through a 3-layer MLP with dropout (p = 0.5). We use the Adam
optimizer with a weight-decay of 0.001, and reduce the learning rate by half when validation loss
does not improve for three consecutive epochs, with early stopping after six consecutive epochs
without improvement (Kingma & Bal [2014)). For TUAB, we use a batch size of 180 and a learning
rate of 0.0003, while the larger number of EEG sensors for HBN necessitates a smaller batch size of
36 and a lower learning rate of 0.0001.

Handcrafted features. Machine learning using EEG data has commonly relied on extracting hand-
crafted features from data with considerable success (Miiller-Gerking et al., |1999; Van Putten et al.,
2005;|Ang et al.,|2008). Indeed, when compared with deep learning-based methods, they have been
shown to yield highly competitive performance as in |(Gemein et al.| (2020) and [Engemann et al.
(2022), thus providing a valuable baseline comparison for the current study. We follow the sugges-
tions of these authors and use a set of summary statistics which described either the time-series or
power spectrum based. Specifically, these include statistical measures (standard deviation, kurto-
sis, skewness, mean, peak-to-peak amplitude, and quantiles), spectral measures (power in frequency
bands: 6 [0-2 Hz], § [2-4 Hz], o [4-8 Hz], Biow [8-13 Hzl, Bmia [13-18 Hzl], Buign [18-24 Hz], v
[24-30 Hz], Yhigh [30-49 Hz], and spectral entropy), and complexity measures (approximate entropy,
sample entropy, SVD entropy, Hurst exponent, Hjorth parameters, line length, wavelet coefficient
energy, Higuchi fractal dimension, zero crossing rate, and SVD-based Fisher information). Features
were extracted using MNE. The features are extracted per-epoch and per-channel, after which they
are concatenated across channels. These features are fit using a random forest with 500 estimators
and a grid search over the maximum depth of a tree (4, 8, 16, None) and the maximum number
of features to evaluate for splitting at each node (sqrt, log2). This method was found to work well
by generating subject-level predictions by averaging the features within-subject and across epochs
(Gemein et al., 2020; Engemann et al.| [2022). However, as the current analyses differ in terms of
dataset size and number of labels, we investigate on the training sets of both datasets whether predic-
tive performance is higher when models are trained to predict on a per-epoch basis. In this case, the
resulting predictions are averaged across epochs instead of features (as for SSL evaluation). Indeed,
we find this to improve performance slightly and thus use this set-up for the final analyses.

Riemannian Filterbank. Covariance-based filterbank approaches use the spatial and spectral de-
composition of EEG signals to expose the underlying neuronal activity. The application of Rieman-
nian geometry to the covariance matrices of the EEG signals allows for an effective description of
the data across different frequency bands (Sabbagh et al.,[2019;[2020). Specifically, the framework
corrects for distortions which arise from the linear mixing of recorded scalp-level signals arising
from non-linear neural sources. The resulting features are invariant to field spread. The method as-
sumes the covariance matrices to be full rank (Sabbagh et al.,2020), which is commonly violated, as
it is here for both datasets due to the application of an average reference. In such cases of low-rank, it
is suggested to project the data using principal component analysis and to only keep the components
capturing the most variance. Given C' EEG channels, we therefore keep C' — 1 components. How-
ever, as we linearly interpolate bad channels for HBN and thereby reduce the rank of the covariance
matrices of some subjects, we use the training set to investigate whether fewer components lead to
superior performance. We do not find this to be the case and therefore use the method with C' — 1
components for both datasets. The resulting features are fitted using a logistic regression model,
using the same L2 regularization hyperparameter-grid as for SSL evaluation. Similarly to the hand-
crafted features, we use the training sets to compare using epoch-level or subject-level predictions
and find the former to perform better on TUAB and the latter on HBN.
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