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Serverless computing is a popular cloud computing paradigm that enables developers to build applications at the function level,
known as serverless applications. The Serverless Application Model (AWS SAM) is the most widely adopted configuration
schema. However, misconfigurations pose a significant challenge due to the complexity of serverless configurations and
the limitations of traditional data-driven techniques. Recent advancements in Large Language Models (LLMs), pre-trained
on large-scale public data, offer promising potential for identifying and explaining misconfigurations. In this paper, we
present SlsDetector , the first framework that harnesses the capabilities of LLMs to perform static misconfiguration detection
in serverless applications. SlsDetector utilizes effective prompt engineering with zero-shot prompting to identify configuration
issues. It designs multi-dimensional constraints aligned with serverless configuration characteristics and leverages the
Chain of Thought technique to enhance LLM inferences, alongside generating structured responses. We evaluate SlsDetector
on a curated dataset of 110 configuration files, which includes correct configurations, real-world misconfigurations, and
intentionally injected errors. Our results show that SlsDetector , based on ChatGPT-4o (one of the most representative LLMs),
achieves a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%, outperforming state-of-the-art data-driven methods
by 53.82, 17.40, and 49.72 percentage points, respectively. We further investigate the generalization capability of SlsDetector
across recent LLMs, including Llama 3.1 (405B) Instruct Turbo, Gemini 1.5 Pro, and DeepSeek V3, with consistently high
effectiveness.
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1 INTRODUCTION
Serverless computing is a popular cloud computing paradigm that allows developers to build and run applications,
known as serverless applications, without managing underlying infrastructure tasks [61]. It has been widely
adopted across diverse application domains [19, 54, 74], attracting growing interest from research communities,
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such as Software Engineering (SE) [61] and Systems [42], and from industry. To support the development and
execution of serverless applications, leading cloud providers have introduced serverless platforms. Among these
providers, Amazon Web Services (AWS) stands out as the leader in serverless computing [34, 61, 62].

Serverless computing includes two primary service models: Function-as-a-Service (FaaS) and Backend-as-a-
Service (BaaS) [26, 32]. FaaS allows developers to build applications as small and event-driven functions (i.e.,
serverless functions). BaaS provides ready-to-use cloud services such as storage (e.g., AWS S3 [2]), database, and
API gateway management. FaaS collaborates with BaaS to enable developers to create serverless applications
efficiently. To configure and manage functions and required cloud resources for serverless applications, AWS
provides the Serverless Application Model (AWS SAM) [5], the most widely adopted configuration schema in
the serverless computing practice [1, 7, 15]. It can streamline the development process and reduce complexities
associated with resource management in serverless applications.

However, misconfigurations have emerged as a major challenge in serverless application development [40, 56,
62], leading to serious security vulnerabilities and operational risks. For instance, as reported [17], a coronavirus
testing company exposed over 50,000 scanned IDs and thousands of test results due to an AWS S3 bucket
misconfiguration [17]. In another case, API misconfigurations within a serverless environment led to a breach
affecting 4.9 million customers [12]. These incidents highlight that misconfigurations are systemic rather than
isolated, underscoring the urgent need for effective detection mechanisms in serverless computing.

Misconfigurations have become one of the major causes of system software failures [71]. Despite the promise of
existing data-driven methods for misconfiguration detection in other scenarios [51, 52, 66, 77, 78], they have low
effectiveness in serverless computing. Data-driven approaches, which rely on anomaly detection or pattern recog-
nition based on training data, suffer from limitations such as incomplete or incorrect datasets [77, 78]. Additional
strategies that incorporate extensive knowledge, such as predefined templates and official documentation, lack
flexibility and adaptability. These problems make the data-driven approach not enough to detect configuration
problems of serverless applications. Moreover, serverless application configurations involve intricate structures,
including domain-specific languages, complex dependency relationships, and nested objects across over 800
cloud resource types, which further complicates their detection.

Recent advancements in Large Language Models (LLMs) offer a promising solution to this challenge. LLMs have
demonstrated significant success in various SE tasks [44], such as code generation [29], code summarization [18],
program repair [28], test generation [45], and log parsing [69]. Trained on large-scale public data, LLMs can
potentially capture configuration patterns, best practices, and common pitfalls, making them well-suited for
detecting misconfigurations in serverless applications.

In this paper, we present SlsDetector , the first LLM-based framework specifically designed to perform static
misconfiguration detection in serverless applications. It does not rely on a large number of real-world training
examples. Leveraging advanced prompt engineering in conjunction with zero-shot prompting, which requires no
prior examples, SlsDetector efficiently identifies configuration problems with minimal effort. Given a serverless
configuration file, it outputs detected misconfigurations along with detailed, structured explanations. SlsDetector
features a prompt generation component that dynamically integrates the configuration file, task description,
multi-dimensional constraints, and customized response template. Multi-dimensional constraints are designed
according to serverless configurations, incorporating resource types, configuration entries and values, as well as
different levels of dependencies to provide context-aware guidance. Additionally, SlsDetector employs the Chain
of Thought reasoning technique [10, 23] to enhance inference quality. The customized response template provides
the content demand and format demand of LLM outputs, ensuring that responses are not only structured but
also actionable answers aligned with detailed explanations. Particularly, SlsDetector targets misconfigurations
within serverless application configuration files. It does not analyze application source code, nor does it detect
misconfigurations related to external systems or environment-specific issues.
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To evaluate SlsDetector , we curate an evaluation dataset of 110 configuration files, including 26 correctly
configured files, 58 with real-world misconfigurations, and 26 with injected errors. Results show that SlsDetector ,
based on ChatGPT-4o (one of the most representative LLMs known for outstanding performance), achieves
a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%. It outperforms the state-of-the-art data-driven
approach by 53.82, 17.40, and 49.72 percentage points, respectively.We further explore the generalization capability
of SlsDetector using other representative LLMs, including Llama 3.1 (405B) Instruct Turbo, Gemini 1.5 Pro, and
DeepSeek V3, with results demonstrating consistently high effectiveness across models.

In summary, this paper makes the following contributions:

• We present SlsDetector , the first LLM-based approach specifically designed for detecting misconfigurations
in serverless computing. Its core is a carefully designed zero-shot prompt, incorporating novel multi-
dimensional constraints that capture the configuration characteristics of serverless computing.

• We construct the first benchmark dataset for misconfiguration detection in serverless computing, releasing
it alongside our scripts and results as a replication package [16].

• We conduct an empirical study using our benchmark dataset to evaluate the effectiveness of our miscon-
figuration detection approach, demonstrating that it outperforms baseline methods.

2 BACKGROUND

2.1 Serverless Computing
Applications developed within the serverless computing paradigm are referred to as serverless applications. These
applications are built around event-driven serverless functions (i.e., FaaS), which represent the core business logic.
Functions collaborate with associated cloud services that facilitate the integration of backend functionalities, i.e.,
BaaS. This combination streamlines the development process [26, 61]. During the development and deployment
of serverless applications, developers define essential execution settings. These settings include the runtime
environment, memory allocation, timeout duration, predefined event triggers, and required cloud resources for
the serverless applications.

2.2 Serverless Application Configurations: AWS SAM
Developers leverage specified configuration files, such as YAML files, to define the execution settings of server-
less applications. In serverless computing, serverless functions are inherently event-driven, meaning that the
relationships between functions and predefined events are not explicitly detailed in the application code. Instead,
these relationships are succinctly captured in the configuration file, which automates infrastructure provisioning.
Thus, the configuration file plays a crucial role in the development process of serverless applications.

Among mainstream serverless platforms, AWS Lambda employs a widely used configuration schema [1, 15]
known as the AWS Serverless Application Model (AWS SAM) [5]. AWS SAM enables developers to easily reuse
proven configurations, streamlining the development and deployment of serverless applications. In contrast, other
platforms, such as Google Cloud Functions [14] and Microsoft Azure Functions [9], lack a formal configuration
schema.They rely on command-line interfaces or platform consoles to manually manage key settings and required
resources. This manual way lacks standardization and the availability of configuration datasets for analysis.
Given AWS Lambda’s widespread use and the advantages offered by AWS SAM’s configuration schema,
our paper focuses on analyzing the configurations of serverless applications built using AWS SAM.

AWS SAM uses a YAML-based configuration file format with specialized template specifications. It builds upon
and extends AWS CloudFormation [3], which is primarily used for provisioning and configuring non-serverless
cloud resources. AWS SAM introduces a syntax specifically designed for defining and managing both serverless
infrastructure (spanning nine categories [6]) and non-serverless infrastructure (covering over 800 categories [4]).
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1 AWSTemplateFormatVersion : ’2010 −09 −09 ’
2 Transform : AWS : : S e r v e r l e s s −2016 −10 −31
3 De s c r i p t i o n : Lambda t h a t r e sponds to S3 even t s
4 Pa rame te r s :
5 P r e E x i s t i n gBu c k e t :
6 D e s c r i p t i o n : ” Does an e x i s t i n g bucke t e x i s t ( not managed by c l oud f o rma t i on ) ”
7 Type : S t r i n g
8 De f a u l t : ’ no ’
9 Al lowedValues :

10 − ’ yes ’
11 − ’ no ’
12 C on s t r a i n tD e s c r i p t i o n : must s p e c i f y yes or no .
13 Cond i t i on s :
14 NeedsSomeBucket : ! Equa l s [ ! Ref P r eEx i s t i n gBucke t , ’ no ’ ]
15 Resour ce s : // define objects with specific resource types (lines 15-39)
16 BucketEventConsumer :
17 Type : AWS : : S e r v e r l e s s : : Func t i on
18 P r o p e r t i e s :
19 Handler : BucketEventConsumer . main . l ambda_hand le r // set configuration entry: the corresponding value
20 Runtime : python3 . 6 // set configuration entry: the corresponding value
21 CodeUri : bund le . z i p
22 Event s :
23 Crea teMetaEvent :
24 # Cond i t i on : NeedsSomeBucket
25 Type : S3
26 P r o p e r t i e s :
27 Bucket : ! Re f SomeBucket // rely on the resource object (line 34), representing value dependency
28 Event s : ” s3 : Ob j e c tC r e a t e d : ∗ ”
29 F i l t e r :
30 S3Key :
31 Ru l e s :
32 − Name : s u f f i x
33 Value : meta . j s on // rely on Name entry (line 32), representing entry dependency
34 SomeBucket :
35 Cond i t i on : NeedsSomeBucket
36 Type : AWS : : S3 : : Bucket
37 P r o p e r t i e s :
38 BucketName : ’ some−bucket −somewhere ’
39 D e l e t i o n P o l i c y : R e t a i n

Fig. 1. An configuration file example of serverless applications.

Serverless application configurations are complex and exhibit unique characteristics. Unlike the simple “flat”
key-value pair format commonly seen in prior configuration studies [21, 51, 56, 59, 70], serverless application
configurations feature intricate structures, including objects, lists, maps, and nested elements. Each cloud re-
source type is represented by custom-named objects, which contain specific configuration entries and their
corresponding values. These values can be strings, lists, maps, or even nested objects representing other cloud
resources. Additionally, serverless configurations introduce resource types specific to serverless environments
(e.g., “AWS::Serverless::Function”) and attributes unique to serverless applications (e.g., Handler, MemorySize,
Timeout). This exhibits that AWS SAM YAML files function as domain-specific languages within the serverless
computing domain, increasing the complexity of configurations.

2.3 Example of Configuration File
We provide a real-world configuration file example [13] from GitHub, a widely used platform for studying

developer issues [35, 36], as shown in Fig. 1. In this example, the developer created a serverless function that
responds to events from the AWS S3 storage service [2]. However, this configuration failed during deployment.
Resolving this issue required nearly 20 rounds of communication involving 26 people and spanned almost five
years before a correct solution was found. The root cause was the unsupported Condition entry mistakenly
added on line 24. This example underscores the critical need for an effective approach to detect misconfigurations
in serverless applications early. Such an approach would quickly pinpoint potential issues, reducing the time,
effort, and communication overhead required to troubleshoot and resolve misconfigurations.
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We explain this configuration file. The content mainly includes Resources section (lines 15-39). It defines the
required execution settings through resource types. The “AWS::Serverless::Function” resource type (named
“BucketEventConsumer”) aims to configure a serverless function, while “AWS::S3::Bucket” (named “SomeBucket”)
represents an AWS S3 bucket, a non-serverless resource that frequently interacts with serverless functions. The
“BucketEventConsumer” object includes configuration entries such as the handler function (line 19), runtime
environment (line 20), code location (line 21), and predefined event (lines 22-33). These entries are allocated
values that conform to the constraints. For example, Runtime is set to “python3.6” (line 20). The function is
triggered when an S3 object is created (lines 27-28) and the object meets the filter rule specified as key-value pairs
(lines 31-33). Name from line 32 and Value from line 33 need to appear together, indicating entry dependencies.
Line 27 illustrates a relationship between Bucket value and the “AWS::S3::Bucket” resource in line 34, showing
that the value dependencies of one configuration value depend on other values.

In addition to the core sections, other parts of the configuration file are also important. The
AWSTemplateFormatVersion section (line 1) specifies the template’s capabilities, with the current valid for-
mat version being “2010-09-09” [8]. The Transform section (line 2) identifies the file as an AWS SAM template
with the value “AWS::Serverless-2016-10-31.” The Description section (line 3) provides a textual description
of the template. The Parameters section (lines 4-12) defines values that are passed to the template at runtime.
The “PreExistingBucket” parameter accepts either “yes” or “no” as values. The Conditions section (lines 13-14)
controls resource creation or property assignment based on the value of a parameter. The “NeedsSomeBucket”
condition checks if the “PreExistingBucket” parameter is set to “no”. If true, the condition evaluates to true,
otherwise, it evaluates to false.

2.4 Prompt Engineering of LLMs
Recent studies [43, 76] have demonstrated the effectiveness of prompt engineering in enhancing LLM performance
across various tasks. Prompt engineering involves designing task-specific instructions, known as prompts, to
guide LLM behavior without modifying the underlying model parameters. This approach allows LLMs to adapt
seamlessly to different tasks based solely on carefully crafted input prompts. We introduce commonly used
prompt engineering techniques:

• Zero-shot prompting: The LLM performs a task without any prior training or examples, relying entirely
on the prompt’s instructions to generate the expected output. This approach tests the model’s ability to
generalize knowledge directly from its pre-trained data.

• Few-shot prompting: The LLM is provided with a limited set of examples within the prompt to infer
patterns and apply learned knowledge to similar tasks. This technique improves response accuracy by
offering contextual cues while still requiring minimal training data.

• Chain-of-Thought (CoT) prompting: The LLM enhances its reasoning capabilities by breaking down
complex tasks into a sequence of intermediate natural language reasoning steps. This structured approach
helps the model generate more logical, coherent, and interpretable responses.

This paper leverages prompt engineering techniques to design specialized prompts for detecting misconfigura-
tions in serverless applications, ensuring effective misconfiguration identification.

3 OUR APPROACH: SLSDETECTOR
We present SlsDetector , an LLM-based framework designed to detect misconfigurations in serverless applications.
SlsDetector takes a configuration file of the serverless application to be detected as input and outputs structured
results, providing a list of detected misconfigurations along with detailed explanations for each issue. The
framework is adaptable and supports various LLMs.

ACM Trans. Softw. Eng. Methodol.
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A Configuration File to be Detected

Task Description

Multi-dimensional Constraints (CoT)

Customized Response

LLM Detected
Results

Resource Type
Constraint

Entry
Constraint

Value
Constraint

Entry
Dependency
Constraint

Value
Dependency
Constraint

Input

ü Resource Type Errors
ü Entry Errors
ü Entry Value Errors
ü Entry Dependency Errors
ü Value Dependency Errors

Output

Content
Demand

Format
Demand

Prompt Generation

Fig. 2. The overview of our approach SlsDetector .

3.1 Overview
Fig. 2 shows an overview of SlsDetector . It converts a misconfiguration detection request into a meticulously
constructed prompt for LLMs. We employ zero-shot prompting to minimize reliance on external sample configu-
rations. This technique, which requires no prior examples, is a popular optimization technique [33, 67, 76]. While
many studies [43, 69, 73] have utilized few-shot prompting to improve effectiveness by learning from examples
during inference, they rely heavily on the quality and selection of labeled samples. In contrast, zero-shot learning
avoids the cost and effort associated with sample collection and curation, making it the preferred technique for
our framework.

In SlsDetector , we design a prompt generation component to construct a tailored prompt focused on the
objective of detecting misconfiguration in serverless applications. This prompt is structured into four parts,
where multi-dimensional constraints are the core of SlsDetector and highly context-aware, shown in Fig. 2. In
particular, this paper novelly introduces multi-dimensional constraints based on configuration characteristics of
our scenario, rather than previous work. Once the prompt is constructed, it is sent to the LLM, which generates
the final output. Next, we introduce the prompt generation component in detail.

3.2 Prompt Generation
We present the prompt content generated by the prompt generation component, which includes: (i) the configu-
ration file to be analyzed, (ii) a task description for the LLMs, (iii) detailed multi-dimensional constraints, and (iv)
a customized response. Fig. 3 illustrates our prompt structure.

3.2.1 Task Description. The task description includes the following elements: (i) a role-playing instruction
designed to enhance the LLM’s ability to detect misconfigurations, which is a common prompt optimization
technique [25, 76]; and (ii) a task description instruction. In our scenario, the role is designed as “You are an
expert at writing AWS SAM configurations for serverless applications”, while the task description asks, “Are
there any misconfigurations in the above configuration file?”. These elements are carefully crafted to clearly
outline the tasks the LLM needs to complete within the assigned role.

3.2.2 Multi-dimensional Constraints. Multi-dimensional constraints are designed based on the distinct hierar-
chical structure of serverless application configurations, as described in Section 2.3. We systematically define
five key constraint dimensions: resource types, configuration entries, values of configuration entries,
entry dependencies, and value dependencies. These elements represent critical and unique configuration
components due to the event-driven, distributed, and auto-scaling nature of serverless computing. While these
components enable flexible and scalable resource management, they also introduce complexity and specific
challenges in configuring and managing resources. Thus, emphasizing these components in the detection process
enhances the LLM’s ability to effectively identify misconfigurations.

ACM Trans. Softw. Eng. Methodol.
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n Role: You are an expert at writing AWS SAM configurations for serverless 
applications.

n Question: Are there any misconfigurations in the above configuration file?

Ø Please consider the following constraints in a category-by-category manner.
ü [Resource Type Constraint]

Configuration File

Task Description

Multi-dimensional Constraints

1. Check whether the resource type is currently supported by AWS
SAM Search the following URL1 to compare all supported AWS
resources listed, noting the letter case.

2. Follow the steps below for a step-by-step check.
Step 1: Check whether each configuration entry under each

resource type actually exists, paying attention to the accuracy of the
name of the configuration entry, including case and singular and
plural forms;

Step 2: If Events exists, also further check whether the
corresponding configuration entry exists under each event source
type, and please point out the non-existence of configuration entries;

Step 3: Check whether the hierarchical level of all configuration
entries is correct, and pay attention to the indentation problem.

3. Check that the value type, constraints, and supported values of the
configuration entry are correct, that the value representation is
accurate, and that the value cannot be defined as null.

4. Check if there are dependencies between configuration entries
and check that they are used in the correct way, e.g. Ref and that the
referenced resource types are correct, and that the relevant required
reference definitions are given. Further check which configuration
entries are or are not required under the PackageType type.

5. Check if there is a dependency (possibly implicit) between the
values of configuration entries. Check that the usage is correct and
that the relevant required reference definitions are given.

ü [Entry Constraint]
ü [Value Constraint]
ü [Entry Dependency Constraint]
ü [Value Dependency Constraint]

Customized Response

n Please summarize the misconfigurations that are absolutely certain. They are 
categorized as [Resource Type Errors], [Configuration Entry Errors], 
[Configuration Entry Value Errors], [Entry Dependency Errors], 
[Value Dependency Errors] (if present).

n Answer format (You MUST follow this): Detected errors are written 
between <START> and <END> tags:

Fig. 3. The prompt structure of SlsDetector .

• Resource Types: Serverless applications often comprise diverse resource types, including serverless functions,
event sources such as API Gateway, S3, and DynamoDB, and resources that support scalability, such as step
functions or queues. In AWS SAM, defining these resource types is critical because serverless applications
are inherently composed of multiple resources that must work together seamlessly. Different from traditional
server-based applications, where resources are fixed and managed manually, serverless applications dynamically
scale and interact based on event triggers. This makes resource type configuration especially important. Fig. 1
shows some resource types in lines 17 and 36. For instance, custom names such as “BucketEventConsumer” (line
16) are assigned to objects tied to specific resource types, such as “AWS::Serverless::Function”. Moreover, resource
type names are case-sensitive.
• Configuration Entries: Serverless applications require specific configuration entries to set execution parameters,
such as the runtime environment, required memory, and event sources. These entries determine the operational
behavior of serverless applications. For example, the Runtime entry defines the runtime environment for a
serverless function, and the Events entry specifies the event triggers (e.g., API Gateway, S3 uploads) for the
serverless function. In Fig. 1, the Runtime (line 20) and Events (line 22) entries are key configuration parameters
that define how the serverless function is executed and what triggers it.
• Values of Configuration Entries: Configuration entries are assigned specific values that are often constrained by
predefined sets. For example, memory size, timeout duration, and other trigger-related values must be accurately
set. In Fig. 1, the Runtime entry in a serverless function configuration only allows certain runtime environments,
such as “python3.6” and “nodejs16.x”. The Bucket entry (line 27) might only accept references to other AWS
objects or resources. These values must be accurate to ensure the serverless application behaves as intended.
• Entry Dependencies: Serverless applications often involvemultiple interconnected services, such as event triggers
or communication between functions. These dependencies must be accurately configured to ensure the correct
flow of events and data. For instance, a serverless function might be triggered by an API Gateway, which itself
needs proper configuration in terms of timeouts, integration, and permissions. The need for precise management
of dependencies between these services is a defining feature of serverless environments, where different functions
and services interact based on events. In this situation, some configuration entries are dependent on others to
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work correctly. For example, Name from line 32 and Value from line 33 need to be configured together for the
configuration to be valid. These dependencies are generally implicit and can be discovered through documentation
or inferred by understanding how AWS services interact.
• Value Dependencies: In serverless computing, values from one resource can influence the configuration of
another. These cross-resource value dependencies are unique to serverless applications, where each resource’s
configuration may directly affect the efficiency of others. For example, the RestApiId entry, which is required for
API Gateway event triggers, depends on the object name of the corresponding “AWS::Serverless::Api” resource.
This shows how values can be linked across different resource types, reflecting the tight integration between
Function-as-a-Service (FaaS) and Backend-as-a-Service (BaaS) resources in serverless environments. This level of
interdependence requires careful validation to avoid conflicts or inefficiencies.

Leveraging these configuration characteristics, we design serverless-specific multi-dimensional constraints
to enhance the LLM’s ability to identify serverless application misconfigurations. These constraints include:
resource type constraint, entry constraint, value constraint, entry dependency constraint, and value
dependency constraint. Importantly, these constraints are internally designed and do not require input from
developers or generation by other tools. Fig. 3 shows their details.

Before explaining constraints, we apply the CoT technique [10, 23, 39]. CoT is a reasoning strategy to guide
the problem-solving process toward more accurate and logical conclusions. Based on its principle, we design our
CoT strategy for detecting misconfigurations of serverless applications by guiding LLMs to consider constraints
in a “category-by-category” manner.

For resource type constraint, we describe it as follows: “Check whether the resource type is currently
supported by AWS SAM. Search the following URL1 to compare all supported AWS resources listed, noting the
letter case.” By providing a direct link to the official documentation, we enable SlsDetector to effectively identify
and compare resource type names, with a particular focus on case sensitivity, a critical aspect in AWS SAM
configurations.

For entry constraint, we adopt a structured three-step reasoning process that follows a coarse-to-fine
validation design: (1) Large-scale constraint validation verifies whether each configuration entry exists under the
corresponding resource type, ensuring structural integrity. (2) Fine-grained entry validation applies additional
checks to essential entries in serverless applications, particularly event-related entries, which are critical for
function execution. (3) Format validation ensures correct entry indentation in YAML-based configuration files, as
improper formatting can lead to misconfigurations. This structured reasoning process refines misconfiguration
detection, enabling a more effective evaluation. This structural design systematically refines constraint validation,
moving from broad checks to fine-grained validation. By progressively narrowing the validation scope, its design
helps the LLM focus on progressively more specific misconfiguration risks. SlsDetector applies these checks using
the CoT technique, following a “step-by-step” process, as shown in Fig. 3. Step 1: SlsDetector checks that each
configuration entry exists under its respective resource type. Step 2: For event-related entries, SlsDetector checks
that configuration entries corresponding to each event source type are present. Step 3: SlsDetector checks the
correct hierarchical structure of all configuration entries, with special attention to indentation. Misplaced or
improperly indented entries may lead to errors, as they will not be recognized under the expected resource type.
This three-step validation process allows SlsDetector to systematically detect errors, ensuring comprehensive and
accurate checks for configuration entries.

For value constraint, SlsDetector validates that each configuration entry has the correct value type, satisfies
the defined constraints and supported values, maintains an accurate value representation, and is not assigned a
null value. These constraints ensure that all values adhere to the required specifications.

1Supported resource types: https://docs.aws.amazon.com/serverlessrepo/latest/devguide/list-supported-resources.html
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For entry dependency constraint, SlsDetector checks whether dependencies exist between configuration
entries and verifies that they are correctly used. We also provide guidelines for validating dependencies, such
as checking the accuracy of referenced resource types, ensuring required reference definitions are present, and
confirming that required entries are properly configured.

For value dependency constraint, SlsDetector checks whether there are dependencies (including implicit
ones) between the values of configuration entries, verifies their correct usage, and ensures that all required
reference definitions are provided. This constraint helps to maintain consistency and correctness in how values
interact and depend on each other within the configurations.

3.2.3 Customized Response. We customize the LLMs’ output by specifying both the content and format re-
quirements for the responses, ensuring their effectiveness and relevance. For the content demand, we aim to
avoid receiving vague or uncertain answers that fail to explicitly identify configuration errors. To achieve it,
we instruct the model with the directive: “Please summarize the misconfigurations that are absolutely certain”.
This ensures that only clear, deterministic errors are returned. Additionally, when applicable, we categorize the
detected misconfigurations into specific groups, including “Resource Type Errors,” “Configuration Entry Errors,”
“Configuration Entry Value Errors,” “Entry Dependency Errors,” and “Value Dependency Errors”.

For the format demand, to eliminate redundant content that does not reveal specific misconfigurations from
the raw output, we use delimiters: “<START>” and “<END>”, to mark the required portion of the response.
In SlsDetector , the desired output is enclosed within these markers, for example: “<START> Resource Type
Errors: …, Value Dependency Errors: … <END>”. This structured way ensures that only the relevant content is
captured. During post-processing, SlsDetector employs regular expressions to extract the information between
these markers efficiently. Although the model might generate additional text beyond the expected response, the
use of locators allows for the seamless extraction of relevant content while discarding unnecessary text.

3.3 Prompt Discussion
The prompt generation process is designed iteratively through systematic trial and error, aiming to maximize
misconfiguration detection effectiveness. The process begins with a minimal prompt that encapsulates only a
generic misconfiguration detection objective, as shown in Fig. 4. However, early evaluations reveal its limited
capability, consistent with the results of the basic LLM method presented in Section 5.2. To enhance detection
effectiveness, we hypothesize that enriching the prompt with configuration-specific features would be beneficial.
Guided by this insight, we analyze the structural and semantic characteristics of configuration files, focusing
on key elements such as resource types, configuration entries, and their values, as well as dependencies among
different elements. Based on this analysis, we iteratively introduce a series of constraints that capture these
essential dimensions. Each iteration involved empirical evaluation of configuration examples, assessing whether
the modified prompt improved the detection of ground-truth misconfigurations.This process included refinements
such as progressing from coarse-grained to fine-grained validation, and incrementally supplementing constraints
to better model the implicit rules governing configuration correctness. Through this iterative refinement, we
arrive at the final optimized prompt shown in Fig. 3, which achieves a practical balance between detection
accuracy and description generalizability. Its effectiveness is further validated by large-scale evaluation results
presented in RQ2, which is attributable to the incorporation of multi-dimensional configuration constraints.

4 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of SlsDetector in identifying misconfigurations within serverless applications,
we present four research questions (Section 4.1). To answer these questions, we detail the evaluation metrics
(Section 4.2), baselines for comparison (Section 4.3), evaluation dataset (Section 4.4), and experimental settings
(Section 4.5).
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Table 1. The explanation of TP, FP, TN, and FN in our scenario.

TP A misconfigured parameter correctly identified as misconfigured
FP A correctly configured parameter mistakenly flagged as misconfigured
TN A correctly configured parameter accurately recognized as valid
FN A misconfigured parameter that is overlooked or incorrectly classified as valid

4.1 ResearchQuestions
• RQ1: How does the effectiveness of SlsDetector compare to traditional data-driven methods?
• RQ2: How effective is SlsDetector without considering our multi-dimensional constraints?
• RQ3: How does the non-determinism of LLMs influence the effectiveness of SlsDetector?
• RQ4: How well does the generalization capability of SlsDetector perform when using different LLMs?

4.2 Evaluation Metrics
We use ?A428B8>=, A420;; , and �1-B2>A4 as evaluation metrics to compare SlsDetector against the baseline methods
at the configuration parameter level, i.e., configuration entries or values. We check whether the detection approach
can accurately determine the validity of each configuration parameter within the configuration file. ?A428B8>=
measures the proportion of correctly identified misconfigured parameters among all parameters flagged as
misconfigured. A420;; quantifies the ability of the approach to detect actual misconfigurations by calculating the
proportion of true misconfigured parameters that are correctly identified. �1-B2>A4 provides a balanced measure
that accounts for the significance of both false positives and false negatives. These metrics are calculated through
True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), explained in Table 1.
?A428B8>= = )%

)%+�% , A420;; =
)%

)%+�# , and �1-B2>A4 = 2 × ?A428B8>=×A420;;
?A428B8>=+A420;; . Values range from 0% to 100%, with scores

closer to 100% indicating greater effectiveness.

4.3 Baseline Methods
We implement three types of baselines to evaluate effectiveness. Given the lack of approaches specifically tailored
for detecting misconfigurations in serverless computing, we first draw on principles from established data-driven
techniques used in prior configuration studies [51, 52, 77, 78]. By adapting these methods, we create a data-driven
baseline suited to the characteristics of serverless applications. Additionally, we introduce LLM-based baselines
as comparisons.
• Baseline 1: Data-driven method. We implement a data-driven approach for serverless applications by learning
configuration patterns from a dataset of configuration files. As no existing dataset specifically focuses on serverless
application configurations, we collect our data from the AWS Serverless Application Repository (SAR) [7], an
official repository for serverless applications where each application is packaged with an AWS SAM template and
links to relevant configuration files. We include all configuration files associated with serverless applications that
have been successfully deployed at least once. This results in a collection of 701 configuration files across 658
serverless applications, with some links providing multiple configuration files representing distinct configurations.
Given the correctness of ensuring the dataset, we conduct a careful manual review of the configuration files.
This review was performed by the first two authors, who have a background in cloud computing. Identified
issues were discussed and resolved with consensus among the authors. To assess the consistency of independent
labeling, we employ Cohen’s Kappa (^) [24], a widely used metric for measuring inter-rater agreement. The
resulting ^ value of 0.916 indicates an almost perfect agreement and a reliable labeling procedure [37].

Using this dataset, we learn configuration patterns, focusing on common resource types, configuration entries,
values, and dependencies among entries and values. We first standardize the configuration files into a uniform
representation. Object names for various resource types are identified, with object names replaced by standardized
labels (e.g., a placeholder “PH+resource type”) for consistency across configuration entries and values. We then
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n Question: Are there any misconfigurations 
in the above configuration file?

Configuration File Task Description Response

Ø Answer format (You MUST follow this):
Detected errors are written between 

<START> and <END> tags:

Fig. 4. The prompt of basic LLM method.

extract the used resource types, entries, and values. To detect dependencies among both entries and values, we
apply association rule mining techniques [72, 75]. Specifically, we use the FP-Growth algorithm [31], which is
known for its scalability. We set a support threshold for frequent itemsets using the formula U × ;4=, where ;4=
represents the total number of configuration files, a deterministic value, and U is a percentage that indicates
the desired mining granularity. Leveraging mined frequent itemsets, we generate association rules by utilizing
traversal way and dividing items into left and right sets, where items in the right set must appear if those in the
left set are present. These rules reveal the configuration dependencies. If the tested file contains all items in a left
set, this approach checks whether it includes the corresponding items in the right set. If any items are missing, it
reports them.
• Baseline 2: Basic LLM method. It is designed using a straightforward prompt that does not take our multi-
dimensional constraints into account. This prompt contains the configuration file content followed by a task
description. Similarly, the output is enclosed within a locator pair, “<START>” and “<END>”, to delimit the
required response. This prompt is shown in Fig. 4.
• Alternative Baselines: We design other LLM-based methods: (1) splitting our multi-dimensional constraints
into separate prompts and integrating their results, denoted as Separated LLM method, and (2) employing few-
shot prompting with a small sample set, denoted as Few-shot LLM method. For the first method, we divide the
constraints into five separate prompts, each corresponding to a specific constraint type. We then aggregate the
results (enclosed within a locator pair, “<START>” and “<END>”) from these prompts. For the second method,
we design a three-shot learning approach inspired by common comparison practices in software engineering
research [46, 49]. We randomly select three configuration files from the 701 correctly configured samples. Two of
these files are injected with misconfigurations, while the third maintains correct configurations without injected
errors. We provide the corresponding detection results for these examples to guide the LLMs.

4.4 Evaluation Dataset
We conduct experimental evaluations on a dataset comprising three types of configurations.The first type includes
error-free configurations, enabling us to evaluate true negatives and false positives in detection. The second
type contains configurations with real-world errors, allowing for the assessment of true positives and false
negatives. Although this second type is somewhat free of data leakage concerns of LLMs, we include a third
type to strengthen the validity of our conclusions. The third type consists of configurations with injected errors,
which are not exposed to LLMs during training, thereby eliminating data leakage concerns. By utilizing these
diverse configurations, we can achieve a valid and comprehensive evaluation.
• Configurations without Errors (26).We manually collect configuration files that have been successfully executed
without errors. This data is separate from the one used to mine configuration patterns in the data-driven approach.

We collect real-world configuration cases from GitHub. GitHub issues provide rich information, including
developer discussions and related code or configuration fragments. We conduct the following steps. First, on
July 2, 2024, the date we collected this data, we searched GitHub using the keywords “AWS,” “serverless,” and
“configuration,” which yielded more than 8,000 relevant configuration-related issues. We then manually reviewed
these issues to extract correct configuration fragments from the problematic cases—a time-consuming and chal-
lenging process. To facilitate this task, the first two authors jointly review the configurations. Initially, they filter
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Table 2. Misconfiguration generation rules (we use generation rules from previous work [40, 41, 56, 70] and customize them
in our scenario.)

Category Subcategory Specification Generation Rules

Syntax
Resource

type Value set = {AWS::Serverless::Function,
AWS::Serverless::Api, …}

Generate a resource type that does not
belong to the value set

Entry Value set = {entry1, entry2, …}, specific en-
tries are used in a certain resource type

Generate an invalid entry for a resource
type

Range

Basic
numeric Valid range constrained by data type Generate values outside the valid range

(e.g., max value+1)
Enum Options, value set = {enum1, enum2, …},

specific values are used in a certain config-
uration entry

Generate a value that does not belong
to set

Dependency
Entry

relationship (%1,+ , �) ↦→ %2, � ∈ {>, ≥,=,≠,<, ≤
, >22DAA4=24 }

Generate invalid entry relationships for
configuration entries (%1,+ ,¬�)

Value
relationship (%1, %2, �), � ∈ {>, ≥,=,≠,<, ≤

, >22DAA4=24 }
Generate invalid value relationship for
configuration entry values (%1, %2,¬�)

through the configuration fragments by searching for terms including “successful,” “successfully,” and “it works”
within the issues to identify correct configurations. For the fragments that matched, they conducted a manual
verification process to ensure that the configurations were indeed error-free. Over two months, the two authors
identified 52 configuration fragments that met our criteria. These error-free real-world configuration fragments
are divided into two sets: 26 (naming from case 1 to case 26) are used to evaluate error-free configurations, while
the remaining 26 (naming from case 27 to case 52) are reserved for generating configurations with injected errors,
which is explained in detail later.
• Real-world Misconfigurations (58). To evaluate the effectiveness of approaches in identifying real-world mis-
configurations in serverless applications, we construct a relevant dataset by mining real-world configuration
issues from GitHub. These issues need to contain clearly identified root causes as ground truths, enabling us to
accurately assess the effectiveness of detection results.

The selection process is as follows: First, we use the same keywords (i.e., “AWS,” “serverless,” and “configuration”)
to search for relevant issues on GitHub on July 2, 2024. Next, we identify satisfied issues based on the following
criteria: (i) the issue is marked as closed, indicating that it has been resolved; (ii) the issue includes a configuration
fragment based on AWS SAM for analysis; and (iii) the discussion concludes with a clearly identified root cause
of the problem. Using these criteria, we select 58 real-world configuration problems encountered in serverless
applications, surpassing the scale of prior studies on configuration-related research [75, 77].

To ensure the accuracy of the configuration errors to be detected, we meticulously review each real-world
configuration file in conjunction with its identified root cause. During this process, we also manually identify and
address any potential configuration issues (e.g., outdated runtime) that could influence the evaluation. Details of
the modifications are available on our GitHub [16].
• Injected Misconfigurations (26). We construct injected misconfigurations by generating various errors in the
correct configuration files. To achieve this, we use 26 error-free configuration files named from case 27 to case
52. Misconfigurations of different types are then generated, following misconfiguration generation rules from
prior studies [40, 41, 43, 56, 70]. Prior studies [40, 43] showed that these rules can cover most configurations. In
addition to utilizing existing rules, we extend specific misconfiguration generation rules tailored to serverless
application configurations, as outlined in Table 2. For each selected configuration file, we randomly sample
a configuration parameter that aligns with the subcategories in Table 2 and generate invalid configurations,
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110 Configuration Files (Evaluation Dataset)

26 Configuration Files 
without Errors

58 Configuration Files 
with Real-world Errors

26 Configuration Files 
with Injected Errors

4,108 Correct Configuration 
Parameters 308 Misconfigured Parameters

90 Misconfigured 
Resource Types

108 Misconfigured 
Entries

48 Misconfigured 
Values

39 Misconfigured 
Entry Dependencies

23 Misconfigured 
Value Dependencies

Fig. 5. The Details of Evaluation Dataset.

creating a new erroneous configuration file for detection. In total, we generate 26 configuration files with injected
misconfigurations for evaluation. Detailed changes are provided on our GitHub [16].

Our evaluation dataset contains 110 configuration files with corresponding ground-truth answers. Fig. 5 shows
its details. Of these, 26 are error-free configuration files, 58 contain real-world errors, and 26 have injected errors.
Across all configuration parameters, there are 4,108 correct configuration parameters and 308 misconfigured ones.
Among the misconfigured parameters, 90 involve incorrect resource types, 108 have misconfigured entries, 48
contain incorrect values, 39 exhibit entry dependency issues, and 23 have value dependency issues. We analyze
the detection results across all configuration parameters to obtain TP, FP, TN, and FN. We then calculate ?A428B8>=,
A420;; , and �1-B2>A4 to evaluate the effectiveness of the detection.

4.5 Experimental Settings
We introduce our parameter settings, experimental repetitions, and environment.
Parameter Settings. For RQ1, the compared data-driven method needs to specify a frequent threshold, U . We
experiment with various threshold levels: low (1%), medium (3% and 5%), and high (10%). A lower threshold
corresponds to a lower support value, enabling the discovery of more dependencies. For comparisons with
SlsDetector , we use a default U value of 5%. Experimental results also show that 5% is optimal for achieving
the best effectiveness results in the data-driven method. We also report results for both SlsDetector and the
data-driven method across other thresholds. For RQ2, we compare SlsDetector with the basic LLM method and
other alternative methods, all of which leverage LLMs. We select ChatGPT-4o as the default LLM due to the
widespread use and outstanding performance of ChatGPT in recent research [43, 76]. A crucial parameter of LLMs
is the temperature, which controls the level of randomness in the generated responses. To ensure reproducibility
and consistency, we follow the previous work [22, 30, 69, 73] to set the temperature to 0 for all identical queries.
For RQ3, we set the temperature to 0 by default to conduct a detailed analysis of the non-determinism of LLMs.
Additionally, we also set the temperature to 0.2 and 0.5 to evaluate the robustness of SlsDetector in real-world
scenarios. For RQ4, we evaluate the generalization capability of SlsDetector across various LLMs, excluding
ChatGPT-4o. Specifically, we utilize an open-source model, Llama 3.1 (405B) Instruct Turbo, and a proprietary
model, Gemini 1.5 Pro. These models are among the top-ranked LLMs [11]. We also leverage DeepSeek V3, a
recently emerging and widely recognized model. As with RQ2, we set the temperature of LLMs to 0 to maintain
consistent outputs across repeated queries.
Experimental Repetitions. For experiments involving stochastic processes, we follow established best prac-
tices [30, 69], repeating each experiment five times and reporting the mean evaluation metrics to reduce the
impact of random variations.
Experimental Environment. Our experiments were conducted on an Ubuntu 18.04.4 LTS server with an Intel
Xeon (R) 4-core processor and 24 GiB of memory. The LLMs were accessed through their respective APIs. While
all methods are implemented in Python, their misconfiguration detection capabilities are independent of the
underlying programming language.

5 EVALUATION RESULTS
This section presents the results of each research question.
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Table 3. RQ1: Results about SlsDetector and the data-driven method.

Methods ?A428B8>= A420;; �1-B2>A4
Data-driven method with 5% threshold (default) 19.06% 70.78% 30.03%
SlsDetector (vs data-driven method with 5% threshold) 72.88% (↑ 53.82%) 88.18% (↑ 17.40%) 79.75% (↑ 49.72%)
Data-driven method with 10% threshold 17.70% 64.61% 27.79%
Data-driven method with 3% threshold 18.83% 70.13% 29.69%
Data-driven method with 1% threshold 18.85% 70.45% 29.75%

Table 4. RQ1: Results* of TP, FN, FP, and TN for data-driven method and SlsDetector .

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Data-driven method (default) 218 (70.78%) 90 (29.22%) 926 (22.54%) 3,182 (77.46%)
SlsDetector (default) 272 (88.31%) Ø 36 (11.69%) Ø 102 (2.48%) Ø 4,006 (97.52%) Ø
* Higher TP and TN are preferable, while lower FN and FP are desired.

5.1 RQ1: Effectiveness of SlsDetector and Data-Driven Method
This section explores the effectiveness of SlsDetector in comparison to the data-driven method. SlsDetector has a
significant advantage in the effectiveness aspect. Table 3 presents their results in detecting misconfigurations in
serverless applications. Specifically, SlsDetector achieves a ?A428B8>= of 72.88%, A420;; of 88.18%, and �1-B2>A4 of
79.75%. In contrast, the data-driven method, with its default threshold of 5%, only reaches a ?A428B8>= of 19.06%,
A420;; of 70.78%, and �1-B2>A4 of 30.03%. SlsDetector outperforms the data-driven method, increasing ?A428B8>=
by 53.82 percentage points, A420;; by 17.40 percentage points, and �1-B2>A4 by 49.72 percentage points, showing
its superior effectiveness.

We investigate why the data-driven method produces less effective results. One major issue is its low ?A428B8>=

(19.06%) and �1-B2>A4 (30.03%). We further observe TP, FN, FP, and TN values obtained by the data-driven method
across all configuration parameters, as shown in Table 4. Results show that the FP value is 926, indicating that
22.54% of the 4,108 correct configuration parameters are mistakenly flagged as misconfigurations. In contrast,
on average, SlsDetector misclassifies only 2.48% of correct configuration parameters as misconfigurations. Thus,
the low effectiveness of the data-driven method is attributed to high false positives. The data-driven method
learns configuration patterns based on historical data, which mainly includes previously used configurations.
This reliance makes it difficult to accurately identify configurations that are either rare or newly supported,
resulting in numerous false positives. Thus, the data-driven method fails to detect some valid configurations that
are indeed supported, leading to its low ?A428B8>= and �1-B2>A4 .

We also compare the effectiveness of the data-driven method under different thresholds U : 10%, 3%, and 1%,
with the results presented in Table 3. As U decreases from 10% to 1%, the evaluation metrics show improvement.
Specifically, ?A428B8>= increases from 17.70% to 18.85%, A420;; rises from 64.61% to 70.45%, and �1-B2>A4 improves
from 27.79% to 29.75%. To further explore the reasons for their changes, we give TP, FN, FP, and TN results of the
data-driven method under different thresholds, as shown in Table 5. The primary reason for improvements is that
lower U mines more dependencies among entries or values. This enables the accurate identification of a larger
number of misconfigured parameters. Specifically, the TP value for the data-driven method at a 10% threshold is
199, whereas at a 1% threshold, it increases to 217. This improvement leads to a higher A420;; , increasing from
64.61% to 70.45%. However, a lower U also increases the risk of generating potentially invalid dependencies,
resulting in correctly configured parameters being mistakenly flagged as misconfigurations. This is evident from
the FP values: the FP value for the data-driven method at a 10% threshold is 925, while at a 1% threshold, it
increases to 934. As a result, ?A428B8>= shows only a modest improvement, from 17.70% to 18.85%. For �1-B2>A4 ,
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Table 5. RQ1: Results of TP, FN, FP, and TN for the data-driven method with different thresholds U .

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Data-driven method with 10% threshold 199 109 925 3,183
Data-driven method with 3% threshold 216 92 931 3,177
Data-driven method with 1% threshold 217 91 934 3,174

Table 6. RQ1: The number of misconfigured parameters correctly identified as misconfigured across different categories for
the data-driven method and our approach.

Methods Misconfigured
resource types (90)

Misconfigured
entries (108)

Misconfigured
values (48)

Misconfigured entry
dependencies (39)

Misconfigured value
dependencies (23)

Data-driven
method 89 (98.89%) Ø 79 (73.15%) 25 (52.08%) 12 (30.77%) 10 (43.48%)

SlsDetector 84 (93.33%) 93 (86.11%) Ø 43 (89.58%) Ø 38 (97.44%) Ø 19 (82.61%) Ø

lowering U enhances the effectiveness of the data-driven method, reaching a value of 29.75%. However, it still
significantly lags behind the 79.75% achieved by SlsDetector .

In addition, we observe that a threshold of 5% for the data-driven method yields superior results compared to
1%, 3%, and 10%, suggesting that 5% is an optimal threshold for the data-driven method in this scenario. In the
threshold of 5%, the FP-growth algorithm can effectively mine relationships without losing valid dependencies or
generating an excessive number of invalid dependencies. However, even at 5%, the effectiveness of the data-driven
method remains significantly lower than that of SlsDetector , with particularly low ?A428B8>= and �1-B2>A4 .

To assess the ability of different methods to identify various types of misconfigurations, we analyze the number
of misconfigured parameters correctly detected across different categories by our approach and the data-driven
method. As shown in Table 6, the data-driven method demonstrates a higher detection rate for resource type
errors (98.89%) compared to SlsDetector (93.33%). This suggests that the 701 historical configuration samples used
by the data-driven method cover the most commonly applied resource types, leading to a stronger effective-
ness in this category. Resource types are relatively high-level objects that encompass multiple configuration
entries, making them less numerous and easier to match against historical data. However, the detection rate of
SlsDetector in this category remains high, exceeding 90% with only a minimal gap. In addition, in most other
misconfiguration categories, SlsDetector outperforms the data-driven method. Specifically, SlsDetector identifies
a higher proportion of errors in configuration entries (86.11%), values (89.58%), entry dependencies (97.44%),
and value dependencies (82.61%). The lower effectiveness of the data-driven method in these categories may be
attributed to several factors. First, many configuration entries and values in real-world settings may not have
been previously encountered in historical data, leading to gaps in coverage. Second, constraints governing values
may be incomplete or underrepresented in the dataset, limiting the effectiveness of historical value matching.
Finally, implicit dependencies—particularly those related to entry relationships and value relationships, which
are complex and context-dependent, making them difficult to extract purely from past configurations. These
results indicate the advantages of SlsDetector in detecting a wider range of misconfigurations, especially in cases
where historical data is insufficient in the data-driven method to generalize to unseen configuration scenarios.

Ans. to RQ1: SlsDetector , which does not rely on learning from a large number of real examples, achieves a
?A428B8>= of 72.88%, A420;; of 88.18%, and �1-B2>A4 of 79.75%, surpassing data-drivenmethods across all metrics.
It shows significant improvements, with increases of 53.82 percentage points in ?A428B8>=, 17.40 percentage
points in A420;; , and 49.72 percentage points in �1-B2>A4 . These results suggest the high effectiveness of
SlsDetector .
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Table 7. RQ2: Results about SlsDetector and the compared LLM-based methods using the default LLM (ChatGPT-4o).

Baseline ?A428B8>= A420;; �1-B2>A4 Our Approach ?A428B8>= A420;; �1-B2>A4

Basic LLM
method

51.65% 65.00% 57.55% SlsDetector
(vs Basic LLM
method)

72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

Sepa-
rated LLM
method

48.20% 87.73% 62.20% SlsDetector (vs
Separated LLM
method)

72.88%
(↑ 24.67%)

88.18%
(↑ 0.45%)

79.75%
(↑ 17.55%)

Few-shot
LLM
method

70.10% 66.95% 68.43% SlsDetector (vs
Few-shot LLM
method)

72.88%
(↑ 2.78%)

88.18%
(↑ 21.23%)

79.75%
(↑ 11.32%)

Table 8. RQ2: Results of TP, FN, FP, and TN for the compared LLM-based methods and SlsDetector ,
on average.

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Basic LLM method (default) 200 (64.94%) 107 (34.74%) 188 (4.58%) 3,920 (95.42%)
Separated LLM method (default) 270 (87.66%) Ø 38 (12.34%) Ø 291 (7.08%) 3,817 (92.92%)
Few-shot LLM method (default) 207 (67.21%) 102 (33.12%) 88 (2.14%) Ø 4020 (97.86%) Ø
SlsDetector (default) 272 (88.31%) Ø 36 (11.69%) Ø 102 (2.48%) Ø 4,006 (97.52%) Ø
* Higher TP and TN are preferable, while lower FN and FP are desired.

5.2 RQ2: Effectiveness of SlsDetector and LLM-based Baselines
We explore the effectiveness of SlsDetector in comparison to the basic LLM method and other alternative methods
(separated LLM method and few-shot LLM method) using the default ChatGPT-4o for detecting misconfigurations
in serverless applications. Table 7 presents their results, showing that SlsDetector is more effective than the
basic LLM method and other alternative methods. Specifically, SlsDetector achieves a ?A428B8>= of 72.88%, a
A420;; of 88.18%, and an �1-B2>A4 of 79.75%. In contrast, the basic LLM method achieves a ?A428B8>= of 51.65%,
A420;; of 65.00%, and an �1-B2>A4 of 57.55%. For the separated LLM method, the results indicate a ?A428B8>= of
48.20%, a A420;; of 87.73%, and an �1-B2>A4 of 62.20%. The few-shot LLM method achieves a ?A428B8>= of 70.10%, a
A420;; of 66.95%, and an �1-B2>A4 of 68.43%. For specific analyses, SlsDetector significantly outperforms the basic
LLM methods across all evaluation metrics, with improvements of 21.23 percentage points in ?A428B8>=, 23.18
percentage points in A420;; , and 22.20 percentage points in �1-B2>A4 . For the separated LLM method, SlsDetector
also shows significant improvements in ?A428B8>= and �1-B2>A4 , with increases of 24.67 and 17.55 percentage
points, respectively. Compared to the few-shot LLM method, SlsDetector significantly achieves gains of 21.23 and
11.32 percentage points on the metrics of A420;; and �1-B2>A4 , respectively. Overall, these results indicate that the
compared methods are less effective than our approach across all evaluation metrics.

We analyze the factors contributing to the lower effectiveness of the compared methods. Table 8 presents TP,
FN, FP, and TN values obtained by each method across all configuration parameters. The results reveal that the
basic LLM and few-shot LLM methods exhibit low TP values of 200 and 207, correctly identifying only 64.94%
and 67.21% of the 308 misconfigured parameters, respectively. In contrast, SlsDetector and the separated LLM
method accurately detect an average of 272 (88.31%) and 270 (87.66%) misconfigured parameters, respectively.
Although the separated LLM method achieves a A420;; comparable to SlsDetector , indicating that most true
misconfigured parameters are correctly identified, it suffers from a lower ?A428B8>= (48.20%) and �1-B2>A4 (62.20%).
This suggests a higher proportion of correctly configured parameters being mistakenly flagged as misconfigured,
as reflected by its high FP value (291, 7.08%) in Table 8. For the few-shot method, while it maintains a low FP
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value (2.14%), it struggles with low TP (67.21%), leading to a lower A420;; (66.95%) and �1-B2>A4 (68.43%) due
to its reduced ability to correctly identify true misconfigured parameters. Overall, these analyses demonstrate
that SlsDetector outperforms the compared methods. By leveraging multi-dimensional constraints, our approach
achieves a better balance between ?A428B8>= and A420;; , effectively reducing false positives while maintaining
high misconfiguration detection accuracy.

To further examine the factors influencing detection effectiveness, we analyze the average number of correctly
identified misconfigured parameters across different categories for both the baselines and our approach. As
shown in Table 9, the basic LLM and few-shot methods consistently underperform compared to SlsDetector across
all categories, detecting fewer errors in resource types (68.89% and 66.67%), entries (76.85% and 63.89%), values
(81.25% and 77.08%), entry dependencies (17.95% and 71.79%), and value dependencies (52.17% and 52.17%). In
contrast, SlsDetector achieves higher detection effectiveness, identifying 93.33% of misconfigured resource types,
86.11% of entries, 89.58% of values, 97.44% of entry dependencies, and 82.61% of value dependencies. These results
confirm that each constraint incorporated into SlsDetector contributes positively to detecting corresponding
misconfigurations.

For the basic LLM method, the most significant gap between basic LLM and SlsDetector is observed in entry
dependency detection. Further analysis reveals that the basic LLM method struggles to identify cross-entry
dependencies, particularly those involving cloud service resources that must co-occur with event sources in
serverless functions. For instance, the configuration entry RestApiId under an event source of type “Api” should
be associated with configuration entries of the “AWS::Serverless::Api” resource type. The basic LLM method
fails to capture such relationships, leading to a high number of undetected misconfigurations. The few-shot
LLM method performs worse than both SlsDetector and the basic LLM method in detecting misconfigured
configuration entries. This is because configuration entries are widely distributed across diverse resource types,
making it challenging to generalize simple examples of the few-shot LLM method across all configurations. The
few-shot prompting in the few-shot LLM method lacks sufficient coverage of constraint detection and contextual
awareness, limiting its ability to guide accurate detection across a wide variety of configuration entries. In
addition, the separated LLM method achieves comparable A420;; to SlsDetector , indicating that it can accurately
detect misconfigurations across different categories, as shown in Table 9. However, it suffers from a high false
positive (FP) rate, as correctly configured parameters are frequently misclassified as misconfigured. This indicates
that splitting multi-dimensional constraints into separate prompts and integrating their results is insufficient for
effective misconfiguration detection. A more holistic approach, incorporating multiple interdependent constraints,
is essential to enhance effectiveness.

Overall, these results highlight the limitations of relying on the raw capabilities of LLMs (basic LLM method),
splitting multi-dimensional constraints into separate prompts (separated LLM method), and employing few-shot
prompting with a small sample set (few-shot method).These baselines rely on isolated prompts or limited examples.
Another possible reason for their weak performance is that they receive less attention during prompt engineering.
The effectiveness of SlsDetector stems from its ability to integrate multi-dimensional constraints holistically,
ensuring that LLM-based inference is guided by contextual dependencies. These constraints are systematically
designed across various configuration dimensions, allowing SlsDetector to capture intricate relationships to obtain
more effective misconfiguration detection.

Ans. to RQ2: SlsDetector outperforms the LLM-based baseline methods across all metrics using the default
ChatGPT-4o. Results also suggest that integrating multi-dimension constraints is beneficial for handling
misconfiguration detection in serverless applications.
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Table 9. RQ2: The average number of misconfigured parameters correctly identified as misconfigured across different
categories for the compared LLM-based methods and our approach SlsDetector .

Methods Resource types (90) Entries (108) Values (48) Entry
dependencies (39)

Value
dependencies (23)

Basic LLM method 62 (68.89%) 83 (76.85%) 39 (81.25%) 7 (17.95%) 12 (52.17%)
Separated LLM method 84 (93.33%) 88 (81.48%) 42 (87.50%) 34 (87.18%) 21 (91.30%)
Few-shot LLM method 60 (66.67%) 69 (63.89%) 37 (77.08%) 28 (71.79%) 12 (52.17%)

SlsDetector 84 (93.33%) 93 (86.11%) 43 (89.58%) 38 (97.44%) 19 (82.61%)

Table 10. RQ3: Evaluation metrics results of SlsDetector across five repetitions.

LLM Factor Metrics Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 Mean

temperature=0
?A428B8>= 71.83% 70.78% 70.35% 75.28% 76.14% 72.88%
A420;; 91.88% 91.23% 84.74% 86.04% 87.01% 88.18%
�1-B2>A4 80.63% 79.72% 76.88% 80.30% 81.21% 79.75%

temperature=0.2
?A428B8>= 67.82% 74.30% 71.71% 72.18% 73.86% 71.97%
A420;; 82.79% 86.36% 83.12% 85.06% 84.42% 84.35%
�1-B2>A4 74.56% 79.88% 76.99% 78.09% 78.79% 77.66%

temperature=0.5
?A428B8>= 77.35% 71.05% 73.70% 71.24% 71.84% 73.04%
A420;; 85.39% 86.04% 82.79% 87.66% 81.17% 84.61%
�1-B2>A4 81.17% 77.83% 77.98% 78.60% 76.22% 78.36%

5.3 RQ3: Impact of Non-determinism on SlsDetector
We explore how the non-determinism of LLMs impacts our evaluation results, with a temperature of 0 by default.
As detailed in Section 4.5, each experiment is repeated five times. We analyze their results shown in Table 10.
Results show that while the non-determinism of LLMs influences evaluation results, its effect is relatively minor,
with a variance of about 5 percentage points. When the temperature of LLMs is 0, SlsDetector consistently
achieves high effectiveness across different trials. ?A428B8>= ranges from 70.35% to 76.14%, A420;; varies between
84.74% and 91.88%, and �1-B2>A4 falls between 76.88% and 81.21%. Even the lowest values, i.e., ?A428B8>= at 70.35%,
A420;; at 84.74%, �1-B2>A4 at 76.88%, are still higher than ?A428B8>= (19.06%), A420;; (70.78%), and �1-B2>A4 (30.03%)
of the data-driven approach. Furthermore, the lowest metric values for SlsDetector remain approximately 20
percentage points higher than the average results (i.e., ?A428B8>= at 51.65%, A420;; at 65.00%, �1-B2>A4 at 57.55%)
of the basic LLM-based method. This suggests that our conclusions regarding SlsDetector are not affected by the
non-determinism of LLMs.

To further assess the robustness of SlsDetector in real-world scenarios, we analyze the experimental results at
temperatures 0.2 and 0.5. As shown in Table 10, there is a relatively minor impact, with a variance of approximately
5 percentage points on the same evaluation metric. Despite these variations, the effectiveness remains consistently
high across all evaluation metrics, comparable to the default setting (temperature = 0). Specifically, when
temperature = 0.2, ?A428B8>= ranges from 67.82% to 74.30%, A420;; varies between 82.79% and 86.36%, and �1-B2>A4
falls between 74.56% and 79.88%, with respective differences of 6.48, 3.57, and 5.32 percentage points. When
temperature = 0.5, ?A428B8>= ranges from 71.05% to 77.35%, A420;; varies between 81.17% and 87.66%, and �1-B2>A4
falls between 76.22% and 81.17%, with respective differences of 6.31, 6.49, and 4.95 percentage points. Overall,
even the lowest observed values surpass those of the data-driven approach. Additionally, the lowest metrics
values remain approximately 20 percentage points higher than the average results of the compared basic LLM
method. These results confirm that SlsDetector maintains strong robustness in real-world settings.

Ans. to RQ3: Our conclusions are not impacted by the non-determinism of LLMs.
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Table 11. RQ4: Results about SlsDetector and basic LLM method using various LLMs.

Basic LLM
Method (BL) ?A428B8>= A420;; �1-B2>A4 SlsDetector ?A428B8>= A420;; �1-B2>A4

GPT-4o 51.65% 65.00% 57.55% GPT-4o (vs BL) 72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

Llama 48.88% 58.38% 53.09% Llama (vs BL) 70.27%
(↑ 21.39%)

78.38%
(↑ 20.00%)

74.05%
(↑ 20.96%)

Gemini 44.41% 22.86% 30.11% Gemini (vs BL) 71.72%
(↑ 27.31%)

74.35%
(↑ 51.49%)

72.93%
(↑ 42.82%)

DeepSeek 56.59% 57.66% 57.11% DeepSeek (vs BL) 70.71%
(↑ 14.12%)

77.86%
(↑ 20.19%)

74.10%
(↑ 16.99%)

Gemini
with Type 45.91% 40.58% 43.06% Llama 3.1 8B 60.42% 75.06% 66.85%

5.4 RQ4: Generalization Capability of SlsDetector
To explore the generalization capability of SlsDetector , we use three additional LLMs: Llama 3.1 (405B) Instruct
Turbo model, Gemini 1.5 Pro model, and DeepSeek V3 model. SlsDetector consistently achieves high effectiveness
across all metrics, with ?A428B8>=, A420;; , and �1-B2>A4 values exceeding 70%, regardless of the LLM utilized.
Table 11 shows their results. Specifically, with the Llama 3.1 (405B) Instruct Turbo, SlsDetector achieves a ?A428B8>=
of 70.27%, A420;; of 78.38%, and an �1-B2>A4 of 74.05%.With the Gemini 1.5 Promodel, SlsDetector yields a ?A428B8>=
of 71.72%, A420;; of 74.35%, and an �1-B2>A4 of 72.93%. With the DeepSeek V3 model, SlsDetector yields a ?A428B8>=
of 70.71%, A420;; of 77.86%, and an �1-B2>A4 of 74.10%. Among these, SlsDetector with ChatGPT-4o offers the
highest effectiveness, while SlsDetector with the Gemini 1.5 Pro model shows comparatively lower metrics but
still achieves a high �1-B2>A4 of 72.93%.

We also evaluate the basic LLM method with different LLMs, shown in Table 11. We observe considerable
variability. While the basic LLM method achieves ?A428B8>=, A420;; , and �1-B2>A4 values approaching or exceed-
ing 50% when using ChatGPT-4o, Llama 3.1 (405B) Instruct Turbo, and DeepSeek V3, its effectiveness drops
substantially with the Gemini 1.5 Pro model, where ?A428B8>= is 44.41%, A420;; is 22.86%, and �1-B2>A4 is 30.11%.
This indicates a key limitation of the basic LLM method: its effectiveness is dependent on the specific LLM used.
In contrast, SlsDetector provides the ability to maintain consistent effectiveness across different models, showing
its generalization.

We compare the effectiveness differences between SlsDetector and the basic LLM method when using the same
LLM. From Table 11, SlsDetector outperforms the basic LLM method by over 20 percentage points across all
evaluation metrics, regardless of ChatGPT-4o and Llama 3.1 (405B) Instruct Turbo models. For the Deepseek V3
model, SlsDetector also improves on all evaluation metrics by almost 20 percentage points, which are respectively
14.12, 20.19, and 16.99. With the Gemini 1.5 Pro model, SlsDetector outperforms the basic LLM method with even
greater gains, achieving 27.31 percentage points higher in ?A428B8>=, 51.49 percentage points higher in A420;; ,
and 42.82 percentage points higher in �1-B2>A4 . The effectiveness gap is especially pronounced with Gemini 1.5
Pro, showing an effectiveness difference of around 50% in A420;; and �1-B2>A4 , underscoring the effectiveness of
our approach. The weak performance shown by the basic LLM method when using the Gemini 1.5 Pro model is
likely related to the type specification of the configuration file given to the LLM, making it difficult for the LLM
to infer the intended task. In this situation, we try to explicitly specify the configuration file type when using the
Gemini 1.5 Pro model in the basic LLM method. Specifically, we indicate that the configuration file is the type of
AWS SAM before performing misconfiguration detection. The obtained values for ?A428B8>=, A420;; , and �1-B2>A4
are 45.91%, 40.58%, and 43.06%, respectively. These results suggest that explicitly specifying the file type leads to
a modest improvement in performance across all metrics, with a particular gain in A420;; , and �1-B2>A4 . While
more misconfigurations are identified under this setting, the performance gap, especially in A420;; , and �1-B2>A4 ,
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remains significant, at approximately 40%, when compared to our proposed approach. Therefore, the relatively
weak performance of the Gemini 1.5 Pro model appears to stem not primarily from the lack of type specification
in the prompt, but from intrinsic limitations of the Gemini model itself.

As consumer hardware becomes increasingly capable of running smaller-scale LLMs, such as Llama 3.1 8B,
evaluating the effectiveness of SlsDetector in smaller LLMs is crucial for real-world applicability. To investigate
this, we apply the Llama 3.1 8B model to our approach and assess its effectiveness. The results indicate that
the obtained ?A428B8>=, A420;; , and �1-B2>A4 are 60.42%, 75.06%, and 66.85%, respectively. Although these values
are relatively lower than those achieved with larger LLMs (ChatGPT-4o, Gemini 1.5 Pro, Llama 3.1 405B, and
DeepSeek V3), they remain superior to the effectiveness of the basic LLM method using large-scale models,
demonstrating the effectiveness of our approach even with smaller LLMs. This underscores the adaptability
and effectiveness of SlsDetector even when applied to smaller, more accessible models. Thus, SlsDetector shows
promise for real-world applications, particularly in contexts where computational resources may be constrained.

Ans. to RQ4: SlsDetector exhibits generalization capability, consistently achieving highly effective results
across various LLMs. In contrast, the effectiveness of the basic LLM method varies significantly depending on
the chosen LLM. When using the Gemini 1.5 Pro model, SlsDetector outperforms the basic LLM method by
approximately 50 percentage points in both A420;; and �1-B2>A4 .

6 THREATS TO VALIDITY
Data Leakage Concerns.One potential risk when using LLMs is data leakage, as these models are trained on vast
datasets. Specifically, open-source configuration data may have been exposed to the LLMs utilized in SlsDetector ,
raising concerns about memorization of our evaluated error-free configurations available on platforms such as
GitHub. However, during our evaluation, we found that the model did not recognize outdated configuration values
as correct, suggesting that the error-free configurations we evaluated were not fully present in the LLM’s training
data. Note that outdated configuration values were manually corrected before our experimental evaluation.

Our evaluation data also includes both real-world and manually injected misconfigurations. The ground truths
for real-world errors are established through an analysis of developer discussions on GitHub to identify root causes.
Injected misconfigurations are deliberately introduced into correct configurations through misconfiguration
generation rules. These misconfigurations were not exposed to the LLM during training. In addition, the number
of configuration files evaluated with errors (58 real-world + 26 injected = 84) significantly exceeded those without
errors (26).Thus, the likelihood of our effectiveness results being significantly affected by data leakage is negligible.

We also compare the effectiveness of the basic LLM method without our multi-dimensional constraints. The
basic LLM method yields a ?A428B8>= of 51.65%, a A420;; of 65.00%, and an �1-B2>A4 of 57.55%, indicating low
effectiveness. If our evaluation dataset had been exposed to the LLMs, we would expect the basic LLM method
to achieve significantly higher results. However, the results do not reflect this, suggesting that our evaluation
dataset was not exposed to the LLMs. SlsDetector incorporates multi-dimensional constraints to detect the same
evaluation dataset, resulting in improved metrics: a ?A428B8>= of 72.88%, a A420;; of 88.18%, and an �1-B2>A4
of 79.75%. These enhancements indicate that our design effectively boosts detection results, rather than being
influenced by potential data leakage.
Impact of LLM Knowledge Limitations. Since SlsDetector relies on the internal knowledge of the LLMs, it may
struggle with misconfigurations involving rarely used dependencies, a challenge faced by traditional data-driven
methods. To assess this, we analyze whether our approach encounters similar limitations, particularly when han-
dling seldom-used configuration dependencies. As shown in Table 6, the data-driven method correctly identifies
only 30.77% of misconfigured entry dependencies and 43.48% of misconfigured value dependencies, whereas our
approach achieves 97.44% and 82.61%, respectively. These results suggest that LLMs possess broader internal
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knowledge, allowing them to detect a wider range of misconfigurations than data-driven methods. However,
100% accuracy is not achieved, indicating that LLMs have inherent knowledge limitations. Some configurations
may not be fully covered in the LLM’s pre-trained knowledge base, leading to occasional misclassifications.
Despite these challenges, our approach achieves significant improvements over traditional data-driven methods
in identifying misconfigured dependencies, highlighting the advantages of leveraging LLMs for misconfiguration
detection while also acknowledging their inherent limitations.
Randomness Concerns. Randomness in evaluation results primarily stems from the inherent nondeterminism
of LLMs. To address this, we set a crucial parameter, specifically initializing temperature as 0, to ensure that the
model produces consistent outputs for the same input. While this can reduce randomness, minor fluctuations
may still arise due to underlying probabilistic mechanisms within the model. To further minimize randomness,
we conduct five independent experiments for each experimental setup and use the mean results as the final
outcome. By combining temperature control with multiple experiment repetitions, we ensure that the impact of
randomness on our evaluation results is effectively minimized.
Deployment Evaluation Limitation. In our experimental evaluation, we do not conduct real-world deployment
to assess the effectiveness of our misconfiguration detection approach. Such deployment introduces numerous
uncontrolled variables, such as hardware differences, network conditions, and external dependencies, making
systematic evaluation highly challenging. This is also why prior misconfiguration detection research [51, 56, 59]
has commonly relied on curated datasets of configuration files with known ground-truth errors rather than
real-world deployment. Our evaluation follows this established practice.

7 DISCUSSION
Generalization of SlsDetector . Although this paper primarily focuses on serverless computing configurations,
the design principles underlying SlsDetector are broadly applicable to various software configuration contexts. The
core methodology of SlsDetector is based on multi-dimensional structural constraints, which define generalized
detection rules by capturing fundamental configuration components of serverless applications rather than
domain-specific parameters. These constraints operate at an abstract level, making them adaptable across different
configurable systems without requiring extensive customization. This characteristic aligns with broader principles
in software configuration research [50, 55]. While serverless platforms like Google Cloud Functions and Microsoft
Azure Functions currently lack a formal configuration schema, our approach remains applicable if standardized
configuration objects are available. The core of SlsDetector relies on analyzing configuration constraints rather
than being tied to a specific cloud provider.

On the other hand, SlsDetector leverages LLMs for misconfiguration detection, allowing it to support diverse
configuration formats, including JSON, XML, infrastructure-as-code templates, and program code. Since the
detection process is structured around high-level constraints, adapting SlsDetector to new environments primarily
requires adjusting key constraint definitions. Furthermore, our evaluation in RQ4 demonstrates that SlsDetector
maintains consistent effectiveness across different LLMs, e.g., ChatGPT-4o, Gemini 1.5 Pro, Llama 3.1 (405B), and
DeepSeek V3, suggesting the generalization capability of SlsDetector . As fine-tuned LLMs continue to advance,
the efficiency of SlsDetector may further improve, making it a practical and scalable solution for a wide range of
software configuration systems.
Scope of Error Detection. The scope of this paper is misconfiguration detection within configuration files of
serverless applications. Therefore, if the application logic is implemented within the configuration file, SlsDetector
can detect related errors.We consider two cases: incorrect function definitions andmisconfigured function triggers.
(1) For function definitions explicitly specified in the “Handler’’ entry of the configuration file, SlsDetector applies
its configuration entry and value checks to detect issues such as missing or improperly defined handlers. However,
if function definitions reside outside the configuration file (e.g., in the application’s source code), they are beyond
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the scope of this work. SlsDetector is specifically designed to validate AWS SAM configurations, not to perform
general-purpose source code analysis. (2) Since function triggers are also defined within the configuration
file, SlsDetector can effectively detect their misconfigurations. It leverages entry- and value-level dependency
analyses to examine the relationships between event sources and their corresponding functions, enabling the
identification of incorrect event-trigger bindings directly within the configuration. Ensuring completely error-free
deployments requires a combination of approaches, including misconfiguration detection, program analysis, and
runtime error detection and repair, similar to practices in traditional software development. This paper focuses
on misconfiguration detection as a critical step toward reliable deployment.
Design Choice. In the context of LLM-based code generation, many approaches rely on iterative refinement
guided by runtime feedback. However, such mechanisms typically require actual deployment, which introduces
significant variability and is not standard practice in misconfiguration detection, as discussed in Section 6.
Therefore, SlsDetector is designed to perform static misconfiguration detection, rather than iterative refinement
based on runtime feedback. Its primary goal is to reduce early-stage deployment failures caused by configuration
file errors, rather than to serve as a comprehensive deployment verification.

8 RELATED WORK

8.1 Serverless Computing
The increasing adoption of serverless computing has attracted widespread interest from the research community,
particularly within SE. A broad range of topics has been explored, including literature reviews [61], evolution
and current state [57], analyses of serverless application characteristics [26, 27], and performance testing [63–
65] and optimization [47]. Additional research has delved into the challenges faced by developers [62], the
development of stateful serverless applications [20], and methods for testing and debugging [38]. For example, a
comprehensive literature review [61] was conducted to explore the breadth and depth of serverless computing
research. Eismann et al. [26] analyzed 89 serverless applications to assess them from multiple dimensions.
Wen et al. [62] identified 36 challenges developers face when developing serverless applications, highlighting
configuration issues as a prominent concern. Despite these efforts, to the best of our knowledge, no prior work has
addressed misconfiguration detection in serverless computing. This paper fills this gap by introducing SlsDetector .

8.2 Traditional Misconfiguration Detection
Existing misconfiguration detection methods can be categorized into two types: white-box and black-box ap-
proaches. White-box approaches [48, 56, 58, 59, 68, 70] generally focus on source code or program analysis to
identify misconfigurations within the codebase, relying on defined domain-specific rules. For example, Rex [48]
detected dependency violations between source code and configurations that must be updated together. Ctest [56]
identified configuration-induced failures in code affected by configuration changes. SPEX [70] employed static
program analysis to infer configuration constraints, designing predefined rules from variables in the source
code to uncover misconfiguration vulnerabilities. However, these methods are not well-suited for detecting
misconfigurations in serverless applications, which rely on YAML-based configuration files rather than source
code structures. Serverless-specific misconfigurations, embedded in configuration files, require new approaches
that extend beyond traditional white-box techniques.

Black-box approaches [51, 52, 60, 77, 78] are generally data-driven and rely on learning configuration patterns
from a dataset of example configurations. For instance, EnCore [77] used numerous configurations to learn
and customize rule templates, inferring correlations and detecting misconfigurations in server applications.
ConfigC [52] analyzed a dataset of correct configurations to build a language model that could detect errors in
new configurations. DRIVE [78] created a Dockerfiles dataset and applied sequential pattern mining to extract
frequent patterns, identifying rule violations through heuristic-based reduction and human intervention. However,
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these data-driven methods have inherent limitations: (i) They require a well-curated dataset, but ensuring the
completeness and correctness of such datasets is challenging. As a result, configurations not represented in
the training data may be missed, while normal configurations might be incorrectly flagged as anomalies due
to dataset gaps. (ii) To compensate for dataset issues, these methods incorporate domain-specific knowledge
(e.g., customized rule templates), requiring significant manual effort and continuous checking. These limitations
hinder the practical application of data-driven approaches. Our results on RQ1 show that such approaches are
less effective in our scenario.

8.3 LLM-based Misconfiguration Detection
LLM-based approaches offer a promising alternative. LogConfigLocalizer [53] addressed configuration-related
error localization on Hadoop by leveraging log analysis and LLM. It worked by parsing runtime log messages and
comparing them with fault-free logs stored in a database. LogConfigLocalizer then used predefined rules and LLM
to localize the suspected root-cause configuration properties. However, LogConfigLocalizer primarily relies on
runtime logs, which limits its ability to detect misconfigurations. In contrast, our approach focuses on identifying
misconfigurations prior to deployment, offering an earlier intervention for preventing potential runtime errors.
A recent paper presented Ciri [43], an LLM-based configuration validator. It demonstrated the potential of LLMs
for detecting misconfigurations in systems such as Alluxio, Django, Etcd, and HDFS. However, Ciri depends on
an external database containing valid configurations, misconfigurations, related questions, and ground-truth
responses. Constructing this database is costly and challenging for various scenarios. In contrast, SlsDetector
employs zero-shot prompting that does not require external datasets, eliminating the need for predefined data.
On the other hand, Ciri used a prompt without any constraint, limiting its ability to detect dependencies [43].
Serverless applications have complex configuration structures and stronger interdependencies, making simple
prompt-based methods less effective. Our results on RQ2 and RQ4 show that such a method (i.e., basic LLM
method) is less effective in our scenario. Instead, SlsDetector incorporates carefully designed multi-dimensional
constraints without predefined data, providing a more effective detection for serverless application configurations.

9 CONCLUSION
Our work opens a promising research direction, showing that LLMs can effectively address configuration issues in
cloud applications built on emerging serverless computing. Specifically, we introduced SlsDetector , the first LLM-
based framework specifically designed for detecting misconfigurations in serverless applications. It did not rely on
learning from a large number of real examples. SlsDetector leveraged advanced prompt engineering and zero-shot
prompting to identify configuration issues with minimal input effort. SlsDetector included a prompt generation
component that integrates the configuration file to be detected, task description, multi-dimensional constraints,
and customized responses. Particularly, the multi-dimensional constraints are tailored to the characteristics of
serverless applications, offering context-aware guidance using the Chain of Thought technique. The customized
responses focused on both content and format demands, ensuring that the LLM outputs deterministic and clearly
explained detection results. Our evaluation on a curated dataset of 110 configuration files demonstrated that
SlsDetector achieved a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%, surpassing state-of-the-art
data-driven methods by 53.82, 17.40, and 49.72 percentage points, respectively. Furthermore, we investigated
the generalization capability of SlsDetector across various LLMs, finding that it consistently maintains high
effectiveness across these models.

A promising direction for future work is the integration of hybrid static-dynamic misconfiguration detec-
tion. While static configuration analysis enables early identification of many classes of configuration issues,
dynamic behaviors introduced during deployment present complementary challenges. In future work, we plan to
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augment our static detection results with selectively captured runtime metadata, broadening the coverage of
misconfiguration detection.
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