
Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting

Paul Engstler Andrea Vedaldi Iro Laina Christian Rupprecht
University of Oxford

{paule,vedaldi,iro,chrisr}@robots.ox.ac.uk

Abstract

3D scene generation has quickly become a challenging
new research direction, fueled by consistent improvements
of 2D generative diffusion models. Current methods gener-
ate scenes by iteratively stitching newly generated images
with existing geometry, using pre-trained monocular depth
estimators to lift the generated images to 3D. The predicted
depth is fused with the existing scene representation through
various alignment operations. In this work, we make two
fundamental contributions to the field of 3D scene genera-
tion. First, we note that lifting images to 3D with a monoc-
ular depth estimation model is suboptimal as it ignores the
geometry of the existing scene, thus prompting the need for
alignment. We introduce a depth completion model to di-
rectly learn the 3D fusion process, resulting in improved
geometric coherence of generated scenes. Second, we intro-
duce a new benchmark to evaluate the geometric accuracy
of scene generation methods. We show that the commonly
used CLIP score between scene prompts and images is un-
suitable for measuring the geometric quality of a scene and
introduce a depth-based metric. Our benchmark thus offers
an additional dimension to gauge the quality of generated
scenes.

1. Introduction
The advent of high-quality image generative models [19,
49, 50] has paved the way for several exciting computer vi-
sion applications. One notable example is novel-view syn-
thesis, which has been significantly transformed by leverag-
ing the visual priors learned by large-scale generative mod-
els. This progress has led to a new emerging direction: 3D
scene generation. The goal here is to generate not just a new
image or view but an entire 3D scene, starting from a single
input image or text description.

Despite the 3D nature of this problem, existing work
has primarily focused on the visual quality of the generated
scenes and, in particular, their semantic alignment with the
input text description, as evaluated by image-text models
like CLIP [18, 43]. This assessment, however, overlooks

the structural quality of the generated scenes.
Current approaches to 3D scene generation employ an

iterative process, alternating between geometry estimation,
moving the camera, and inpainting previously unseen re-
gions using an image-conditional generative model until the
entire scene is generated [11, 16, 20, 70, 71]. Most meth-
ods rely on general-purpose monocular depth estimation
models to estimate the geometry of each frame. However,
this approach leads to inconsistencies because these mod-
els infer depth from a single RGB image and do not con-
sider the geometry of the already-generated scene. As a
result, most methods resort to a post-hoc fusion process,
such as global scale-and-shift optimization [39] or intri-
cate pipelines to align the predicted depth with the existing
scene [70]. These solutions only partially mitigate the issue,
resulting in depth seams and inconsistencies. This issue has
been underexplored because the currently used metrics for
this task mainly evaluate the semantic and visual quality of
the scene.

In this paper, we address the problem of geometric
accuracy in 3D scene generation with two key contribu-
tions. First, at the system level, we introduce DINe (Depth
Inpainting Network), a straightforward depth inpainting ap-
proach that leverages existing geometry, significantly sim-
plifying existing frameworks. Second, we propose a new
benchmark for scene generation, SSG-3D (Structural 3D
Scene Generation Benchmark), that decouples the image
and depth generation components, making it suitable for as-
sessing the structural quality of 3D scenes.

The goal of DINe is to leverage partial depth informa-
tion during the scene generation process and directly inpaint
the missing depth values. This approach leads to smooth,
seamless transitions between existing geometry and newly
predicted depth and obviates the need for post-hoc depth
refinement or other bells and whistles. Specifically, DINe
takes as input an image and an incomplete, sparse depth
map, which are projections from a 3D point cloud of a
scene given a novel (i.e., previously unseen) viewpoint.
The model predicts a complete, dense depth map for the
whole image, consistent with the input geometry. DINe is
trained in a self-supervised manner by fine-tuning an exist-



ing depth prediction model conditioned on partially masked
depth maps. This can be done on a simple image dataset us-
ing pseudo-ground-truth depth maps, simply mimicking the
typical missing depth patterns in iterative scene generation
without relying on camera poses or other annotations.

We use our proposed benchmark, SSG-3D, to evaluate
the geometric quality of our depth inpainting model com-
pared to alternative geometry estimation approaches (e.g.,
depth prediction and fusion) used in prior work. SSG-
3D is designed using real and synthetic scene datasets and
aims to decouple visual quality from geometric quality in
scene generation. The idea is to use ground truth images
and depth and evaluate the geometry of generated scenes
based on depth maps. Given a view of a scene, a method is
tasked with extending it based on a given novel viewpoint,
for which a ground-truth depth map exists. The generated
scene geometry can then be easily evaluated.

Comprehensive evaluation on SSG-3D suggests that
depth prediction and fusion approaches of existing scene
generation methods yield geometric inconsistencies. In
contrast, our DINe, trained to retain geometric consistency
across frames, drastically reduces these artefacts without
compromising visual quality.

2. Related Work
3D Scene Generation. Text-to-3D or image-to-3D scene
generation has seen tremendous progress in recent years,
where the majority of works in this field can either be cate-
gorized as object-centric [14, 23, 30, 32, 33, 41, 42, 44, 53,
54, 56, 59, 63, 69], i.e., focusing on objects without back-
ground, or holistic, generating a single 3D scene or 3D tra-
jectories with a background.

Earlier methods in object-centric generation focus only
on novel view synthesis, not considering the scene’s ge-
ometry. They are often based on layer-structured repre-
sentations [28, 34, 55, 60], e.g., layered depth images, or
more implicit ones, such as in SynSin [65]. More modern
approaches [32, 33, 41, 51, 63] typically distill 2D image
generation priors from models like Stable Diffusion [49]
into a 3D representation, such as a NeRF [35] or 3D Gaus-
sians [26]. Other works directly learn a 3D representation
from 2D images [6, 7, 17, 37, 38, 58].

More holistic methods generate entire scenes beyond a
single object. These methods generally build a scene in a se-
quential manner using supervision from 2D image genera-
tion models. PixelSynth [48] is the first in this line of works,
learning individual depth prediction, outpainting, and re-
finement components from scratch, which are then queried
iteratively to build a scene. Text2Room [20] leverages an
image inpainting model and the depth inpainting model
IronDepth[1], both pre-trained, to build a scene mesh. A
fusion process is applied to attach new frames to the exist-
ing mesh. LucidDreamer [11] operates similarly, but uti-

lizes ZoeDepth [3] instead and generates a pointcloud. Its
fusion process includes depth alignment and extrapolation
at the seams to eliminate discontinuities between generated
frames. WonderJourney [70] follows this framework setup,
relying on MiDaS [46] and a more intricate depth fusion
stage, which includes depth alignment, grouping objects at
similar disparity to planes, and sky depth refinement, to
generate scene “journeys”. Text2NeRF [71] builds a NeRF
representation of a scene, utilizing LeReS [68], aligning
depth and optimizing it with a separately trained refine-
ment network. Further methods like Infinite Nature [31],
SceneScape [16], and Text2Immersion [39] have similar
designs and also rely on an off-the-shelf general-purpose
depth estimation model to project the hallucinated 2D scene
extensions into a 3D representation. PeRF [61] starts from
an existing panorama as opposed to iteratively building a
scene. The Denoising Diffusion Vision Model [52] has
been proposed as a joint RGB and depth prediction network
for scene generation. An in-depth discussion and evalua-
tion of this idea, however, has been left for future work.
Other approaches such as GAUDI [2], ZeroNVS [51], Diff-
Dreamer [5], and InfiniteNature-Zero [29] learn implicit
representations. LDM3D [57], RGBD2 [27], and Xiang
et al. [67] train a model for simultaneous image and depth
prediction. More specialized methods introduce different
representations, such as BlockFusion [66], Worldsheet [21],
and Set-the-Scene [12].

Depth Completion and Inpainting. With the emergence
of depth-sensing technologies, inferring a dense depth map
of a 3D scene from a sparse depth representation and a given
RGB image has gained significant importance. Works in
this field seek to integrate cues from both modalities either
in a 2D [9, 10, 40, 72] or 3D feature space [4, 8, 22, 24, 62]
to produce a complete depth map.

These sparse depth completion methods are able to re-
cover the depth of an entire scene from a possibly very
sparse depth input but have not been designed to complete
depth for regions without any depth information, which nat-
urally occurs in a scene generation task.

For this task, depth inpainting approaches appear more
suitable. IronDepth [1] propagates existing depth informa-
tion between pixels in its iterative depth map refinement,
allowing for more flexible completion. Wei et al. [64] fine-
tuned NLSPN [40] to fill holes in depth maps after remov-
ing detected objects by a clutter segmentation network. Nei-
ther of these methods, however, is specifically designed to
deal with the depth discontinuities encountered in iterative
scene generation.

3. Method
In Sec. 3.1, We outline a general framework shared by cur-
rent scene generation methods [11, 20, 39, 70, 71]. These



methods have three main components. An image-generative
model predicts or completes new frames, a monocular depth
predictor to estimate the geometry of those frames and a fu-
sion component for merging them with the existing scene.

With DINe, we propose a depth inpainting model, which
unifies depth prediction and fusion into a single neural net-
work. This model can be conditioned on partial depth maps
from an existing scene, enabling it to predict depth for new
regions that seamlessly attach. In Sec. 3.2, we describe how
these partial depth maps are obtained from a scene and how
we generate training data and learn the model by outlining
its training scheme.

3.1. Preliminaries: 3D Scene Generation

The task of 3D scene generation from a single image can be
formulated as follows. Let I0 ∈ R3×Ω be the input image,
where Ω = {1, . . . ,H} × {1, . . . ,W} is a lattice repre-
senting pixels. Given an arbitrary viewpoint V = [R|t] ∈
SE(3) and an intrinsic camera matrix K, the task is to gen-
erate a new view of the scene Î(V,K) ∈ R3×Ω that is con-
sistent with the original images and any other views that
have already been generated. Typically, scenes are gener-
ated iteratively, hallucinating unseen regions in new images
Îi, with i = {1, . . . , T}, and then attaching them to an ex-
isting scene representation.

Image generation. To achieve this consistency, the scene
is parameterized in 3D space. In the following, we use
a pointcloud but other representations may be used (such
as a mesh [20] or a NeRF [71]). Let P = {(Cj , Xj)}j
be a cloud of points at 3D locations Xj ∈ R3 with color
Cj ∈ R3. Generating a new view from a pointcloud can be
done by projecting the 3D points to pixels into the image
plane of the new view xj ≡ KV −1Xj (since xj ∈ R2, here
≡ represents the mapping from homogeneous coordinates
to image coordinates). However, this forward projection re-
sults in an incomplete image Ĩ(xi) = Cj , leaving holes
where the viewpoint captures previously unseen regions.

To complete the sparse projection Ĩ one can leverage a
large-scale generative model f (e.g., Stable Diffusion [49])
which has learned a visual prior for a massive collection
of visual data. In particular, we first obtain a binary mask
M = {0, 1}Ω that indicates these holes in the image. We
then use an inpainting variant of the Stable Diffusion model
that has been trained to fill in missing regions in an image
to obtain Î = f(Ĩ ,M).

Pointcloud generation. In 3D scene generation from a
single image or text description, one cannot access a 3D
pointcloud of the scene. Instead, the goal is to build
the pointcloud iteratively by sampling new viewpoints Vi.
By design, this process enforces consistency between each

view of the scene. A natural mapping from images to point-
clouds can be established via depth maps D ∈ RH×W as
it allows the projection of the image pixels into the scene.
Let Pi be the pointcloud at the i-th iteration. Each it-
eration expands the representation with new geometry as
Pi+1 = Pi ∪ P̂i+1.

P̂i =

ViK−1
i

 u
v

Di(u, v)


(u,v)∈Ω

. (1)

A new viewpoint Vi and camera matrix Ki are chosen
at each iteration to expand the scene. The current image Îi
is passed to a depth estimation network to obtain the corre-
sponding depth map Di.

Most existing work uses off-the-shelf depth prediction
models that are not conditional on existing geometry. As a
result, an additional fusion component is necessary to merge
the new prediction with the scene. This may include heuris-
tics such as depth interpolation and global alignment oper-
ations. These depth prediction and fusion components are
thus susceptible to producing strong artifacts.

3.2. DINe: Depth Inpainting for Scene Generation

To condition the depth estimation on existing geometry, we
propose to obtain Di by inpainting a partial depth map. We
define the depth inpainting model as Di = g(Îi,Mi, D̃i).
At the i-th iteration of the scene generation process, the
model takes as input the inpainted image Îi, a mask Mi,
which signifies which pixels are newly generated and thus
have no existing depth estimate, and the corresponding par-
tial depth map D̃i.

Partial depth map generation. The incomplete depth
map D̃i is obtained by projecting the pointcloud Pi−1 into
the current view (and thus contains holes). Note that since
the depth map D̃i is obtained by projecting the existing
point cloud Pi−1 into the current view, only the holes in-
dicated by Mi that get filled in by g contribute new points
to Pi. The other points already exist in the scene.

Our goal is to learn a model g(I,M, D̃) for scene gen-
eration, which provides a robust depth estimate given an
image Î , a depth-mask M , and a partial depth map D̃.

Training dataset. Naturally, DINe can be trained with su-
pervision, given a multi-view dataset with known camera
poses and depth ground truth. However, these datasets are
often comparatively small and usually do not provide dense
ground truth depth for the entire image, leading to a weak
training signal. To circumvent these issues, we utilize an
off-the-shelf general-purpose monocular depth prediction
model gT (I) that predicts unconditional, dense depth from
a single RGB image. We thus train g in a self-supervised
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Figure 1. Overview of a simple 3D scene generation method. Starting from an input image I0, we project it to a point cloud based on a
depth map predicted by a depth estimation network. To extend the scene, we render it from a new viewpoint and query a generative model
to hallucinate beyond the scene’s boundary. Now, we condition the depth estimation network on the depth of the existing scene and the
image of the scene extended by the image inpainting network to produce a geometrically consistent depth map to project the hallucinated
points. This process may be repeated until a 360° scene has been generated.
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Figure 2. Overview of our training procedure. In this com-
pact training scheme, a depth inpainting network g is learned by
jointly training depth inpainting and depth prediction without a
sparse depth input (the ratio is determined by the task probability
p). A teacher network gT is utilized to generate a pseudo-ground-
truth depth map D for a given image I . This depth map is then
masked with a random mask M , to obtain a sparse depth input D̃.

fashion using the predictions from gT (I), which takes on
the role of the teacher model in a student-teacher training
scheme.

Given a dataset of only images Ik, we generate a pseudo-
labelled training dataset for g as follows. For each image in
the dataset, we obtain a target depth map from a teacher gT ,
Dk = gT (Ik). Then, for each depth map, and similar to
the scene generation step, we sample one or more random
viewpoints Vl and camera matrixKl, and we warp the depth
map Dk to the new viewpoint obtaining a mask Mk,l and
reprojected depth Dk,l. We collect all masks generated this
way in a set M = {Mk,l}k,l that represents the typical
occlusion patterns generated by viewpoint changes.

Training scheme. Given the lack of multi-view data, dur-
ing training, we sample a random mask from Mn ∈ M
(1 ≤ n ≤ |M|) for each image Ik. And train g to recon-
struct the pseudo depth Dk guided by the scale-invariant
loss [15], where d̃ = g(Ik,Mn, Dk ⊙Mn), d = Dk, and

ψi = log d̃i − log di.

Ldepth =

√
1

T

∑
i

ψ2
i −

λ

T 2
(
∑
i

ψi)2 (2)

T is the number of pixels in Dk with valid ground-truth
values. This scheme allows learning g only from pseudo-
supervision. A benefit of this formulation is that g can be
initialized with a depth estimation model itself, effectively
fine-tuning it for depth inpainting. Moreover, we can then
retain its original depth prediction (instead of depth inpaint-
ing) capabilities by choosingMn = 0 with probability p, ef-
fectively masking all input depth, and recovering the depth
prediction task. Finally, we can choose gT as a large model
while g can be a more lightweight architecture, which im-
proves g via distillation.

4. Scene Geometry Evaluation Benchmark

Within the fully generative task of scene generation, evalu-
ating the geometric properties of generated scenes is diffi-
cult due to the lack of ground-truth data. As a result, most
existing work resorts to image-text similarity scores, such
as the CLIP score [18], which only measures the global se-
mantic alignment of the generation with a text description.

In Figure 3, we show that this metric does not reflect the
geometric consistency and quality of the depth predictions
used to build the scene.

Consequently, the CLIP score does not evaluate the
depth prediction and fusion components of scene gener-
ation methods. Therefore, we propose a new evaluation
benchmark that quantifies the depth extrapolation ability of
these components in isolation, using a controlled environ-
ment consistent across methods and entirely independent of
image extrapolation. In this benchmark, we seek to mea-
sure the deviation between the ground truth and the depth
continuation on a partial scene.
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Figure 3. Qualitative comparison between LucidDreamer [11] (top) and ours (bottom). Despite high CLIP scores, the original depth
prediction and fusion component in LucidDreamer, based on ZoeDepth [3], yields scenes with distorted geometry. Our model leads to less
torn structures and provides an overall geometrically more sound scene. The CLIP score does not reflect the changes in geometric quality.
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Figure 4. Scene Geometry Evaluation overview. For a given
view pair, we use the ground-truth point cloud (i.e. from a depth
map) of the first frame. Then, we render the representation from
the second viewpoint. We feed the corresponding ground-truth
image and the projected, sparse depth into a depth prediction and
fusion component to extrapolate the missing depth. We calculate
the mean absolute depth error only for extrapolated regions.

4.1. Approach

Starting from a scene representation constructed from the
ground-truth information of one view, we seek to extrapo-
late the depth for another ground-truth view that overlaps
the first one. As the depth is known for the second view,
we compute the error between the generated depth and the
ground-truth depth. We only consider the error in regions
that were extrapolated. A detailed description of this ap-
proach is provided in Figure 4.

We use a point cloud as our representation of choice and
base the overlap of two views ϕ(vi, vj) on the number of
pixels that show part of the vi scene from the viewpoint of
vj . Put differently, if a rendering pipeline renders an image
with dimensions H ×W and assigns a default value x for

a pixel p that does not represent any parts of a scene, we
define ϕ as:

ϕ(vi, vj) =

∑H×W
i,j 1p(i,j)̸=x

H ×W
(3)

4.2. Datasets

In our evaluation, we consider ScanNet [13] and Hyper-
sim [47] as they provide images, dense depth, and camera
poses to reconstruct scenes accurately. As the former is a
real-world dataset featuring indoor scenes and the latter is a
photorealistic one, they lie within the distributions of most
depth estimation models.

For both datasets, we report the average absolute error
on the extrapolated region across all pairs of views across
all scenes.

5. Experiments

Having described the training scheme of DINe in detail,
we now provide details about its implementation. First, in
Section 5.2, we investigate the depth consistency of DINe
as well as other depth prediction and fusion components
with our SSG-3D benchmark. In Section 5.3.1, we embed
DINe into existing scene generation methods, testing if the
improved depth consistency of DINe leads to CLIP score
improvements. This allows us to shed light on the CLIP
score’s limited descriptive power for the scene generation
task. Finally, in Section 5.3, we show that even in a mini-
mal scene generation pipeline, DINe is able to create scenes
that are competitive with existing state-of-the-art methods.



5.1. Implementation Details

We fine-tune a pre-trained ZoeDepth model to obtain our
depth completion model g, re-initializing its patch embed-
ding layer to receive two additional channels apart from the
image input. These channels provide the sparse depth input
D̃ as well as a mask M describing the presence of sparse
depth, i.e., D̃ > 0. While we only replace this layer, we
keep the entire model unfrozen to ensure the additional in-
formation can be integrated in later layers. We set λ = 0.85
in the scale-invariant loss.

We train on images from the NYU Depth v2 [36]
dataset, using the monocular depth estimation network
Marigold [25] as a teacher gT to distill its prediction ca-
pabilities into our depth estimation network g.

To construct the set of warped masks M, which con-
tains typical masking patterns seen with view point changes,
we consider the Places365 [73] dataset, generating one
mask from each image. Images are projected into a three-
dimensional space based on depth predicted by Marigold.
We then define a look-at camera with random elevation and
azimuth values (between [0, 15] degrees) to render the im-
age, where the pixel occupancy yields the mask. Masks are
randomly chosen to be applied to a training sample depth
D. Ensuring we retain the original depth prediction task,
we set the probability to zero out the sparse depth input to
50%.

5.2. Evaluating Scene Geometry with SSG-3D

To validate the capability of our model and compare it with
the depth prediction and fusion component of existing scene
generation methods to faithfully extend scenes, we turn to
our scene geometry evaluation benchmark (see Section 4).
For comparison, we add further state-of-the-art depth pre-
diction methods.

We turn to ZoeDepth with global scale-and-shift depth
alignment (ZoeDepth†) to represent WonderJourney [70],
removing the SAM-based plane construction, which would
reduce geometric accuracy. For LucidDreamer [11], we uti-
lize the same setup but add its depth extrapolation step at
the seams to eliminate depth discontinuities between frames
(ZoeDepth+LD†). Text2Room [20] directly utilizes Iron-
Depth [1] for depth completion. To add more reference
points, we also include CostDCNet [24], NLSPN [40], and
DPT [45].

From the results in Table 1, we find that in both, a real-
world and a photorealistic setting, our inpainting model pro-
duces predictions that are more faithful to the ground-truth
than the other methods.

Interestingly, IronDepth, a depth completion method,
and ZoeDepth†, a depth estimation method with alignment
to the existing scene, appear to perform quite similarly,
possibly explaining why either are used by state-of-the-art
methods.

Component DC/MDE ScanNet Hypersim

CostDCNet [24] DC 0.5854 4.0149
NLSPN [40] DC 0.1826 3.3503
IronDepth [1] DC 0.1085 0.8241

DPT† [45] MDE 0.1719 1.8824
ZoeDepth [3] MDE 0.1924 1.1964
ZoeDepth† MDE 0.1293 0.7872
ZoeDepth+LD† [11] MDE 0.1604 0.8057

Ours DC 0.0816 0.7295

Table 1. SSG-3D benchmark results. Methods are categorized
as depth completion (DC) or monocular depth estimation (MDE)
approaches. † indicates that the predicted depth is aligned with the
existing scene through a global scale-and-shift optimization.

We generally observe a higher error for Hypersim as it
features notably more fine details than ScanNet that can-
not be recovered by models operating at a lower resolution
than its image size, such as ZoeDepth. Second, unlike real-
world depth sensors, the depth in Hypersim is exact with
sharp boundaries, which makes it more difficult for models
trained on real-world data.

5.3. Scene Generation Results

Based on the finding that DINe achieves better geometric
consistency when extending scenes, we investigate if our
depth model also leads to better CLIP scores, when used
as a drop-in replacement for the depth prediction and fusion
component in existing methods. Then, we embed DINe into
a minimal scene generation pipeline that does not have any
fusion steps nor applies further refinement to boost the vi-
sual quality. Here, we show that DINe learned both, depth
prediction and fusion, as required for inpainting, and is suf-
ficient to achieve state-of-the-art results.

5.3.1 Drop-In Replacement

Seeing the geometric improvements of DINe, we now in-
vestigate if they translate into improvements in the CLIP
score, too, which is commonly used as the evaluation met-
ric of choice for scene generation methods. By swapping
out the depth prediction and fusion component of an exist-
ing method, we can isolate its effect and thus measure its
individual contribution to the CLIP score. If the CLIP score
captures scene geometry, we expect it to improve when a
better component is used.

Using DINe as the replacement, which shows superior
depth extrapolation performance, we find that its use does
not degrade the quality of generated scenes for multiple ex-
isting methods (see Table 2). Notably, though, DINe does
not seem to generally improve the CLIP score of generated



Scene kyoto nc prague indoor0 indoor1 indoor2 indoor3

WonderJourney [70] 26.60± 1.15 24.33± 0.78 24.34± 0.78 21.62± 1.06 21.91± 0.75 24.07± 0.74 21.95± 1.06
w/ ours 26.60± 1.15 24.34± 0.79 24.34± 0.79 21.63± 1.06 21.91± 0.73 24.06± 0.05 21.93± 1.05

LucidDreamer [11] 25.69± 0.63 22.19± 0.64 26.72± 0.38 23.22± 0.44 20.62± 0.40 24.24± 0.46 22.76± 0.45
w/ ours 25.70± 0.64 22.18± 0.64 26.72± 0.38 23.23± 0.45 20.62± 0.40 24.26± 0.45 22.76± 0.46

Text2Room [20] 27.58± 0.41 21.56± 0.92 26.75± 0.33 21.84± 0.63 21.63± 0.58 23.07± 0.62 22.12± 0.52
w/ ours 29.40± 0.58 22.86± 0.75 26.76± 0.33 21.97± 0.73 21.64± 0.54 23.00± 0.53 22.05± 0.55

Table 2. CLIP score when using DINe in other scene-generation systems. Both versions receive the same input image and text prompt
(see supplementary materials for details), with a fixed seed, to generate a single new frame, which is then evaluated. We consider 100
samples per scene, reporting the mean and standard deviation. There is no statistically significant difference (validated with t-test) in
semantic similarity, while our method does improve the geometric quality of the scenes (Tab. 1).

scenes either. This shows that the CLIP score is insuffi-
ciently sensitive to geometric (in)accuracy.

5.3.2 Minimal Pipeline

Going a step further, we show that a simple pipeline with
DINe is competitive with existing methods to generate
scenes with high semantic similarity to an appropriate text
prompt, i.e., a high CLIP score. Unlike other methods, it
does not employ any depth refinement steps (e.g., SAM-
based grouping of objects with similar disparity and creat-
ing planes in WonderJourney [70], or depth extrapolation at
frame seams in LucidDreamer [11]). Crucially, we want to
demonstrate that none of these steps are required to generate
scenes of similar quality. This pipeline relies on few, foun-
dational components to generate a scene from a single im-
age: First, in the same vein as current 3D scene generation
methods, we enlist the help of a Stable Diffusion inpainting
model (f ) to hallucinate how a scene looks like beyond its
boundaries. Second, we use our depth inpainting model (g)
to produce an initial depth estimation for the original im-
age and inpaint the depth in subsequent steps to attach the
extrapolations.

Generating the Point Cloud Starting from a given single
image, we obtain a depth estimation to project it to a point
cloud. We use a stationary perspective camera with fixed
intrinsics. With each step, we rotate the camera slightly
further along its azimuth to obtain a view that provides a
canvas for the Stable Diffusion model to inpaint while still
partially including the existing scene.

When inpainting images with Stable Diffusion, distor-
tion artifacts have been known to appear in those regions
that are not supposed to be edited, which has been attributed
to its variational autoencoder [74]. These alterations then
cause a mismatch between the input image and the sparse
depth input, which is difficult to resolve. To minimize these
effects, we utilize an asymmetric autoencoder [74] that em-

phasizes the decoder, making it heavier than the encoder
and providing it with additional information about the in-
painting task. We find that this autoencoder leads to a sig-
nificant decrease in the prevalence of these artifacts.

Once the expanded scene has been visually hallucinated
by Stable Diffusion, we pass the image onto our depth in-
painting model with the depth of the existing scene. We
project all hallucinated pixels based on the depth predic-
tion, which seamlessly connect to the point cloud without
the need for any alignment steps. We observe that depth
predictions might have a gradient instead of a hard bound-
ary at object edges, which leads to floaters radiating around
objects in the point cloud. To minimize their occurrence,
we identify regions in the predicted depth map with a high
gradient, mask them, and assign them new values based on
their nearest neighbors. This snaps pixels in these gradi-
ent regions either to the object or its surrounding, creating a
hard boundary.

We repeat this process until the loop is closed, yielding
a 360° scene. We make sure that the final hallucination step
has a wide canvas to connect both ends of the loop, assum-
ing there has been a slight domain shift between the original
image and the cascade of hallucinated views.

Qualitative Results. Using this minimal pipeline, we can
generate 360° scenes given a single input image as well as
a text prompt. In Figure 5, we show three example scenes
generated by our approach that feature complex geometry.
Our depth inpainting model is able to seamlessly extend
scenes with believable geometry, creating an immersive ex-
perience. We generate these results by rotating the camera
25 degrees along its azimuth with each step, slightly taper-
ing it towards the end to close the loop.

Visual Quality. To compare the visual quality of the
scenes from our pipeline with other scene-generation meth-
ods, we utilize the CLIP score. We use the same input
images and prompts shown in Figure 5 to produce similar



Prompt
Prague during

the golden hour

A street with
traditional buildings

in Kyoto, Japan

A suburban street
in North Carolina on
a bright, sunny day

Input

25◦

50◦

75◦

Cut-Away

Figure 5. Qualitative results of our method on real-world images. We show the first few hallucinated views and the corresponding depth
maps of 360° scenes. We also provide a cut-away view of the generated pointcloud.

Method CLIP Score [18]
Prague Kyoto N. Carolina

PixelSynth [48] 12.75 12.73 14.52
Text2NeRF [71] 23.83 28.04 21.53
Text2Room [20] 26.33 28.24 24.52
LucidDreamer [11] 26.01 29.56 24.96
WonderJourney [70] 27.78 26.67 26.47

Ours 26.87 27.65 24.24

Table 3. Quantitative results for the visual quality of generated
scenes. All methods receive the same input image and text prompt
(see Figure 5) to generate 360° scenes. We use all hallucinated
views to compute the average CLIP score.

scenes with each method.

In Table 3, we observe that despite using a minimal
pipeline without any depth or visual refinement steps, DINe
is sufficient to generate scenes that are competitive with ex-
isting state-of-the-art methods.

6. Conclusion

This paper presents DINe, a depth inpainting model for
scene generation, which can be used to generate immersive
360° scenes.

We show that a straight-forward pipeline based on DINe,
without any bells and whistles, is sufficient for this task and
is competitive with complex, state-of-the-art scene genera-
tion methods. In contrast to prior methods, our approach
eliminates the need for post-hoc depth or visual refinement
steps. We further find that the commonly utilized CLIP
score captures the geometric quality of scenes insufficiently,
prompting the need for a new benchmark. The SSG-3D
benchmark introduced in this paper is a rigorous tool to
measure the depth extrapolation performance of depth pre-
diction and fusion components in scene generation meth-
ods, fully rooted in ground-truth data.

These contributions put geometry back into the lime-
light, highlighting its importance for scene generation.
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