

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 Preference Leakage: A CONTAMINATION PROBLEM IN LLM-AS-A-JUDGE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large Language Models (LLMs) as judges and LLM-based data synthesis have
012 emerged as two fundamental LLM-driven data annotation methods in model devel-
013 opment. While their combination significantly enhances the efficiency of model
014 training and evaluation, little attention has been given to the potential contamina-
015 tion brought by this new model development paradigm. In this work, we expose
016 preference leakage, a contamination problem in LLM-as-a-judge caused by the
017 relatedness between the synthetic data generators and LLM-based evaluators. To
018 study this issue, we first define three common relatednesses between the data
019 generator LLM and the judge LLM: being the same model, having an inheri-
020 tance relationship, and belonging to the same model family. Through extensive
021 experiments, we empirically confirm the bias of judges towards their related stu-
022 dent models caused by preference leakage across multiple LLM baselines and
023 benchmarks. Further analysis suggests that preference leakage is a pervasive and
024 real-world problem that is harder to detect compared to previously identified biases
025 in LLM-as-a-judge scenarios. All of these findings imply that preference leakage
026 is a widespread and challenging problem in the area of LLM-as-a-judge.

1 INTRODUCTION

030 Recent advancements in Large Language Models (LLMs) Achiam et al. (2023); Jaech et al. (2024);
031 Tong et al. (2024); Zhang et al. (2024a) have empowered various downstream tasks and applications.
032 However, this also poses substantial challenges to the automatic evaluation of these models. Repre-
033 sentatively, LLM-based AI agents’ focus transfer from traditional natural language processing tasks Yang
034 et al. (2023); Zhang et al. (2023) to real-world Liu et al. (2023b); Huang et al. (2023), open-ended
035 response generation Wu et al. (2024), which greatly limits the applicability of traditional n-gram
036 matching methods (e.g., BLEU Papineni et al. (2002) and ROUGE Lin (2004)) Liu et al. (2016);
037 Reiter (2018) or model-based evaluators Zhang et al. (2020); Zhong et al. (2022) for evaluation.

038 To address these challenges, the paradigm of LLM-as-a-judge Zheng et al. (2023a); Li et al. (2024a);
039 Jiang et al. (2024a); Zhong et al. (2024); Li et al. (2025) has been proposed, designed to leverage LLM
040 as evaluators to assess response quality. By combining powerful LLMs with well-designed prompting
041 strategies, LLM-as-a-judge enables human-like evaluation of long-form and open-ended generation
042 in a more cost-efficient and scalable manner. However, recent studies point out some weaknesses
043 of such an assessment. For instance, Ye et al. (2024) explores various biases and vulnerabilities of
044 LLM-as-a-judge, highlighting the importance of developing a reliable and fair LLM-based evaluation
045 system.

046 In this work, we aim to highlight a subtle yet critical bias in LLM-as-a-Judge: *Preference Leakage*.
047 This issue arises when *the LLMs used for data generation and evaluation are closely related, causing*
048 *the preference of the LLM evaluators to leak to the student models through synthetic data and thus*
049 *inflating the evaluation score* (as illustrated in Figure 1). Synthetic data generated by LLMs Gan
050 et al. (2023); Tan et al. (2024); Li et al. (2024b;c) has become a cornerstone of model training Lee
051 et al. (2025). When combined with LLM-as-a-Judge, they offer significant efficiency gains in model
052 development. However, limited attention has been given to the potential contamination that occurs
053 when the generator and evaluator LLMs share a close relationship. During our preliminary study,
we find this issue is particularly pervasive in popular LLM-as-a-judge benchmarks (e.g., AlpacaEval
2.0 Dubois et al. (2024) and Arena-Hard Li et al. (2024e)) and LLM-relevant studies (more details

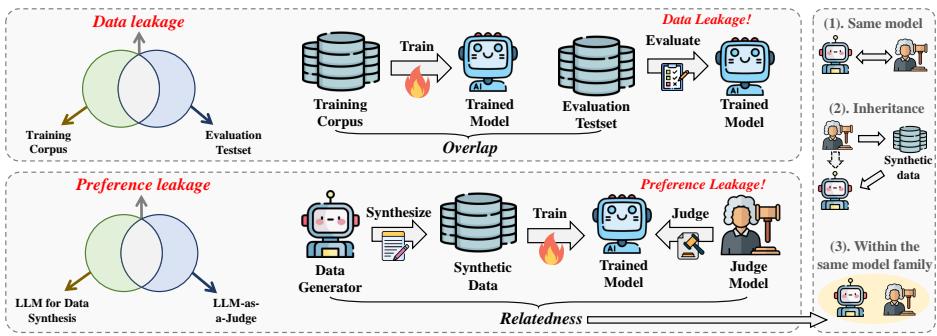


Figure 1: Overview of preference leakage. We make a comparison between data leakage and preference leakage and present three types of relatedness: being the same model, having an inheritance relationship and belonging to the same model family.

can be found in Appendix B), due to the common reliance on the most advanced LLMs, such as GPT-4 Achiam et al. (2023), for both data synthesis and evaluation to ensure the highest quality outputs. In our work, we reveal this relatedness—akin to the overlap between training data and evaluation sets in traditional data contamination—would introduce a systematic bias of judge LLMs towards their related student models (i.e., the model distilled by the data generator which is related to the judge). Compared to other biases in LLM-as-a-Judge, such as length bias or egocentric bias Ye et al. (2024); Panickssery et al. (2024), preference leakage is subtler and more challenging to detect, especially given that most LLMs do not disclose their training data.

To investigate and reveal the preference leakage problem, we first define three relatednesses between data generator LLM and judge LLM: being the same model, having an inheritance relationship, and belonging to the same model family. Each of these scenarios is commonly encountered in real-world applications. Then, we pose and answer three core research questions about preference leakage:

- **RQ1: Does preference leakage introduce systematic biases in LLM-based evaluation?** To answer it, we conduct experiments with various LLM baselines in two widely recognized LLM-as-a-judge benchmarks, also introduce the preference leakage score to quantify the bias caused by preference leakage. The analysis results suggest an obvious bias of judging LLMs toward their related student models due to preference leakage.
- **RQ2: What is the severity of preference leakage under various scenarios?** We conduct experiments under various data mixing strategies, relatedness settings, tuning techniques and real-world applications to address it, finding that preference leakage consistently affects judge LLMs. Moreover, the severity of preference leakage correlates with the degree of relatedness between the data generator and LLM judges, as well as the proportion of synthetic data.
- **RQ3: What are the underlying mechanisms causing preference leakage?** For this question, we analyze LLMs’ recognition capabilities on their related student models’ generation as well as the distribution of bias across different question types and judgment dimensions. The analysis reveals that preference leakage is a subtle, hard-to-detect issue for the LLM evaluators, particularly affecting subjective questions and judgment dimensions.

To summarize, our contributions in this work are as follows:

- For the first time, we introduce preference leakage, a contamination issue arising from the relatedness between the data generator and judge LLMs.
- We conduct extensive experiments across various LLMs and benchmarks to study how and to what extent the potential bias brought by preference leakage influences judgment.
- Our further analysis reveals that preference leakage is prevalent in diverse scenarios and difficult for judge LLMs to detect, providing valuable insights for future research on this challenging issue.

2 RELATED WORK

LLM-as-a-Judge. LLM-as-a-Judge, introduced by Zheng et al. (2023a), leverages LLMs to automatically evaluate responses and assign rewards. This approach has gained widespread adoption in areas such as model alignment Zhang et al. (2024d) and benchmarking Liu et al. (2023a); Zhang et al.

(2024b); Gao et al. (2023); Zhong et al. (2024), driving significant progress in the field. Building on this concept, Zhuge et al. (2024) proposed Agent-as-a-Judge, where agentic systems are employed to evaluate other agentic systems. Additionally, Prometheus, a series of open-source LLMs tailored for LLM-as-a-Judge Kim et al. (2023; 2024), addresses the prohibitive costs associated with proprietary models, further democratizing the technology.

Despite its promising potential, recent studies have highlighted the vulnerabilities and biases of LLM-as-a-Judge Zheng et al. (2023a); Ye et al. (2024); Koo et al. (2023); Chen et al. (2024); Zheng et al. (2023a); Huang et al. (2024); Thakur et al. (2024); Shi et al. (2024). Among these, egocentric bias, where LLM evaluators tend to favor their generations Koo et al. (2024); Liu et al. (2024b); Wataoka et al. (2024); Xu et al. (2024b); Rando et al. (2025); Panickssery et al. (2024); Chen et al. (2025), is most closely related to the preference leakage proposed in this work.

However, in contrast to the relatively straightforward setting of egocentric bias, preference leakage presents a more complex and dynamic challenge. It can arise from various types of relatedness between data-generating and evaluating LLMs, as well as the intricate flow of synthetic data among modern LLMs Tan et al. (2024). Moreover, detecting preference leakage is also more challenging, given LLMs often do not disclose their training data and the difficulty in distillation quantification Wadhwa et al. (2025); Lee et al. (2025).

Data Leakage. The possible overlap between training data and evaluation benchmarks has become a central issue, since LLMs are usually trained on extensive web corpora Dodge et al. (2021). This phenomenon, known as data leakage, can artificially improve the performance of LLMs and undermine the reliability of the assessment Deng et al. (2024a); Jiang et al. (2024b). Several researchers have proposed methods to detect and mitigate data contamination. Deng et al. (2024b) proposed a retrieval-based approach to assess the degree of overlap between pre-training text and benchmark data. Golchin & Surdeanu (2023) have developed “guided instruction” to flag contaminated instances. Dong et al. (2024b) proposed the CDD method to identify peaks in the output distribution to detect data contamination. Several studies analyze data leakage for specific LLMs Balloccu et al. (2024); Xu et al. (2024a) and report contamination such as cross-language contamination Yao et al. (2024) and task contamination Li & Flanigan (2024) that can evade traditional detection methods. To address data contamination issues, Ni et al. (2024) have used web user query detection and benchmark mixture. White et al. (2024) use the most recent information to update the problem.

3 PREFERENCE LEAKAGE

3.1 LLMs AS ORACLES: A NEW AVENUE FOR CONTAMINATION

With the advent of LLMs, these models are increasingly employed as “oracles” in various scenarios: for both synthetic data generation (M_G) and employed as evaluators (M_J) to automate the assessment. While these approaches enhance scalability and efficiency, they also introduce potential risks. Specifically, if the LLM used for data generation (M_G) and the LLM used for evaluation (M_J) are not independent, a new contamination—preference leakage—can emerge, biasing evaluation outcomes.

3.2 DEFINING PREFERENCE LEAKAGE IN LLM-BASED EVALUATION

Formally, to define preference leakage, we consider the following entities in models development:

- **Data Generator LLM, M_G** , defining a conditional distribution $P_{M_G}(y|x)$ for generating an output y given a prompt x , forming the synthetic dataset D_{syn} for student LLMs training.
- **Student LLM, M_S** , trained on data generated by M_G , producing an output distribution $P_{M_S}(y|x)$.
- **Judge LLM, M_J** , providing a scoring function $S_{M_J}(y|x)$ that assesses output y for prompt x .

Preference leakage occurs when the evaluation score assigned by M_J to M_S ’s outputs is inflated due to an underlying relatedness between M_G and M_J . This implies that M_J may favor outputs from M_S not solely based on their intrinsic quality, but because they exhibit spurious features (e.g., style, format, wording) inherited from M_G , to which M_J is predisposed due to this relatedness:

$$E_{x,y_S \sim P_{M_S}} [S_{M_J}(y_S|x) | M_G \sim_{rel} M_J] > E_{x,y_S \sim P_{M_S}} [S_{M_{J'}}(y_S|x) | M_G \not\sim_{rel} M_{J'}], \quad (1)$$

162 where y_S are outputs from M_S . The relation $M_G \sim_{rel} M_J$ denotes that judge M_J is related to
 163 M_G , while $M_G \not\sim_{rel} M_J$ denotes that an alternative judge M_J' is not related to M_G and possess
 164 comparable intrinsic quality assessment capabilities to M_J . The expectation is taken over the input
 165 distribution \mathcal{X} and the trained Student LLM’s output distribution P_{M_S} .
 166

167 **3.3 TYPE OF LLM “RELATEDNESS”**

168 The condition $M_G \sim_{rel} M_J$ in Equation 1 encapsulates several ways the Data Generator LLM and
 169 Judge LLM can be interconnected. We identify three common types in the real world:
 170

- 171 • **Being the Same Model:** The most direct form of relatedness occurs when the Data Generator
 172 LLM and the Judge LLM are the exact same model instance:
 173

$$174 \quad M_G \equiv M_J. \quad (2)$$

175 In this scenario, the inherent preferences in the model that shape its generative distribution
 176 $P_{M_G}(y|x)$ are precisely the same as those guiding its evaluation via the scoring function $S_{M_G}(y|x)$.
 177

- 178 • **Inheritance Relationship:** One model’s development is directly based on another, either by
 179 fine-tuning the existing model or by training a new model on the other’s outputs, for instance:
 180

$$M_J \leftarrow \text{FineTune}(M_G, D_{train}) \quad \text{or} \quad M_J \leftarrow \text{FineTune}(M_{base}, D_{syn_G}), \quad (3)$$

181 where D_{train} represents general training data used to adapt M_G into M_J , M_{base} is a base model,
 182 and D_{syn_G} denotes synthetic data generated by M_G . This type of relationship is bidirectional; M_G
 183 can similarly inherit from M_J through analogous processes. In such cases, the descendant model is
 184 likely to internalize and thus favor the preferences, styles, or biases of its progenitor.
 185

- **Within the Same Model Family:** The Data Generator LLM M_G and Judge LLM M_J belong
 186 to the same model family (e.g., different versions or sizes of GPT). Models within such a family
 187 typically share a common architectural blueprint (A_X) and are often developed from foundational
 188 models pre-trained on substantially overlapping datasets (D_X). This shared foundation (A_X, D_X)
 189 would lead to correlated preferences and systemic biases characteristic of the common origin:
 190

$$M_k \in \text{Family}(A_X, D_X) \quad \text{for } k \in \{G, J\}. \quad (4)$$

192 **4 MAIN EXPERIMENT**

194 **4.1 EXPERIMENT SETUP**

196 **Models.** We choose three powerful LLMs as data generator/ judge models. They are GPT-4o-2024-
 197 11-20 Achiam et al. (2023), Gemini-1.5-flash Team et al. (2024), and LLaMA-3.3-70B-Instruct-
 198 turbo Dubey et al. (2024). For the student model, we choose Mistral-7B-v0.1 Jiang et al. (2023)
 199 and Qwen-2.5-14B Yang et al. (2024). To avoid potential preference leakage due to distilling data
 200 from other LLMs during the instruction-tuning process, we choose to use the -PRE-TRAINED version
 201 rather than the -INSTRUCT version of these student models.
 202

203 **Evaluation Datasets.** We choose two representative pairwise evaluation datasets, Arena-Hard Li et al.
 204 (2024e) and AlpacaEval 2.0 Dubois et al. (2024), to evaluate the trained student models. Arena-Hard
 205 includes 500 challenging questions in English. Additionally, the evaluation agreement between
 206 Arena-Hard and Chatbot Arena Zheng et al. (2023a)’s hard prompts achieved a 96.7% Spearman
 207 correlation, demonstrating the consistency of Arena-Hard with human preferences Li et al. (2024e).
 208 AlpacaEval 2.0 is an improved evaluation method based on AlpacaEval Li et al. (2023) and contains
 209 805 questions. Compared to version 1.0, AlpacaEval 2.0 significantly reduces the effect of text length
 210 on the evaluation results.
 211

212 **Implementation Details.** In our main experiment, we examine the preference leakage introduced
 213 by using the same data generator and evaluator in supervised fine-tuning (SFT). We will discuss
 214 other relatedness and learning methods in Section 5. To obtain synthetic datasets, We first randomly
 215 sample 30,000 prompts from the Ultrafeedback dataset Cui et al. (2024). The Ultrafeedback dataset
 includes instructions from several publicly available high-quality datasets such as TruthfulQA Lin
 et al. (2022), FalseQA Hu et al. (2023), and Evol-Instruct Xu et al. (2023). For each data generator
 model, we provide these prompts for them to produce synthetic responses, resulting in three synthetic
 216

instruction datasets. We then use each dataset to supervised fine-tune the student model, obtaining three different versions for each baseline: Mistral/ Qwen-GPT-4o, Mistral/ Qwen-Gemini-1.5 and Mistral/ Qwen-LLaMA-3.3. After that, we pair each two student models and obtain three model pairs. For each model pair, we perform the pairwise comparison using the three judge models respectively.

Metrics Based on our hypothesis, preference leakage would lead to bias of judge LLMs towards their related student models. Following this principle, we design the preference leakage score $PLS(i, j)$ to measure the bias in model pair (i, j) caused by preference leakage:

$$PLS(i, j) = \frac{\left(\frac{WR(i, i) - AVG(i, j)}{AVG(i, j)} \right) + \left(\frac{WR(j, j) - AVG(j, i)}{AVG(j, i)} \right)}{2}, \quad (5)$$

$$AVG(i, j) = \frac{WR(i, i) + WR(i, j)}{2}. \quad (6)$$

Here $WR(i, j)$ represents the win-rate score from judge model j to student model i . Intuitively, a large preference leakage score indicates that the two judge models demonstrate strong bias toward their related student models, suggesting a significant preference leakage phenomenon.

The main experiments in Section 4 and the mitigation analyses in Sections 5.4 and 5.7 are designed for complementary purposes. The main experiments focus on controlled and interpretable measurement of preference leakage itself—quantifying the phenomenon across models and conditions while minimizing confounding factors such as human labeling noise. In contrast, the mitigation analyses prioritize realism and external validity, using human-labeled benchmarks (e.g., PPE, MT-Bench) and metrics such as Ranking Difference and Error Bias. Since these setups involve labeled data rather than automatically computed PLS , they serve as realistic extensions that test mitigation feasibility in practical “LLM-as-a-judge” scenarios.

More details about model training and metric explanation can be found in Appendix C.

Table 1: Preference leakage score result on Arena-Hard and AlpacaEval 2.0. The blue background indicates a negative preference leakage score value and the purple background indicates a positive value. The deeper the color, the larger the absolute value.

Model	Data Generator/ Judge Pair	Arena-Hard	AlpacaEval 2.0	Avg.
Mistral-7B	GPT-4o & Gemini-1.5	28.7%	18.4%	23.6%
	GPT-4o & LLaMA-3.3	-1.5%	1.4%	-0.1%
	LLaMA-3.3 & Gemini-1.5	13.1%	19.8%	16.4%
Qwen-2.5-14B	GPT-4o & Gemini-1.5	37.1%	18.6%	27.9%
	GPT-4o & LLaMA-3.3	1.0%	2.3%	1.7%
	LLaMA-3.3 & Gemini-1.5	25.4%	18.4%	21.9%

4.2 MAIN RESULTS

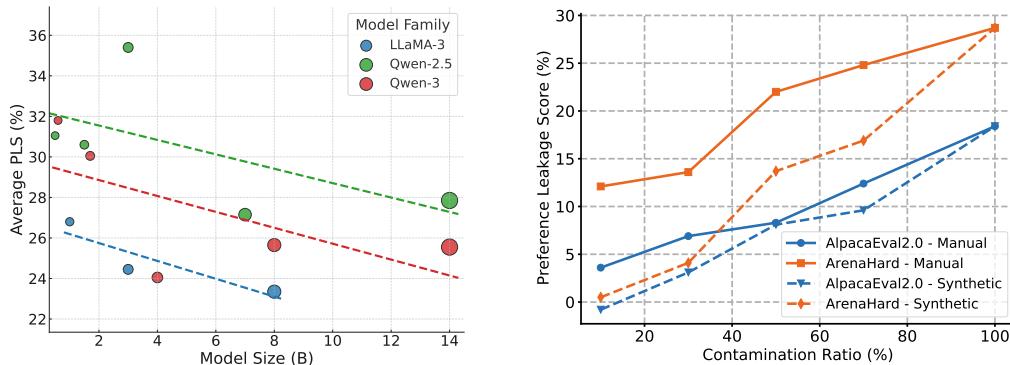
In our main experiment, we aim to provide insights into RQ1.

Preference leakage exists in most model pairs. The original judgment results from Arena-Hard and AlpacaEval 2.0, along with the calculated preference leakage scores, are shown in Table 1. As the results demonstrate, in most model pairs (except Mistral-GPT-4o vs Mistral-LLaMA-3.3 and Qwen-GPT-4o vs Qwen-LLaMA-3.3), the judge LLMs exhibit a strong preference toward their related student models, leading to large positive values in the preference leakage scores. This finding suggests that preference leakage, along with the resulting bias, is widespread in SFT when the data generator and evaluator are the same.

Smaller student models cause even more bias from judge LLMs. To investigate the impact of student model size on the degree of preference leakage, we conduct additional experiments using various sizes of the LLaMA-3, Qwen-2.5 and Qwen-3 models. As shown in Figure 4.2 (a), a notable finding is that the smallest models (LLaMA-3-1B, Qwen-2.5-3B and Qwen-3-1.7B) exhibit the highest PL scores than their larger counterparts, indicating greater bias from preference leakage. This trend contrasts with the influence of model size in data contamination, where larger models are typically more susceptible Bordt et al. (2024). We assume that this gap arises from the differing

learning capabilities and behaviors of large and small LLMs: while larger models are more prone to memorizing Duan et al. (2024) information that exacerbates data contamination. Compared with them, smaller models may only be able to learn those spurious features that repeatedly occurs (e.g., format), leading to more serious preference leakage.

Different benchmarks result in varying degrees of bias under preference leakage. Another observation from Table 1 and Figure 4.2 (a) is that the PL scores in ArenaHard are generally higher than those in AlpacaEval 2.0. One possible explanation is the difference in question difficulty between the two benchmarks, as ArenaHard contains more challenging questions. Additionally, it may also stem from differences in the distribution of question types, the impact of which on preference leakage will be further analyzed in Section 5.6.



(a) PLS on models with various sizes. We conduct the experiment with GPT-4o and Gemini as data generators and judges.

(b) Experiment results on data mixing. ‘Manual’ and ‘Synthetic’ represent mixing with manually-written data and other synthetic data, respectively.

Figure 2: Experiment results on additional models and data mixing settings.

5 FURTHER ANALYSIS

In this section, we conduct data mixing analysis, relatedness analysis, learning method analysis, and real-world impact analysis (Section 5.1 - 5.4) to answer RQ2. Due to the cost consideration, we conduct these analyses on Mistral-GPT-4o vs Mistral-Gemini-1.5. Moreover, we perform recognition analysis and category analysis to answer RQ3. Additionally, we also benchmark and explore various calibration methods to address preference leakage in Section 5.8.

5.1 DATA MIXING ANALYSIS

In real-world applications, synthetic data from a single LLM is often mixed with manually-written data or other multi-source synthetic data to train student models. To mimic these scenarios and explore how much synthetic data could lead to preference leakage, we conduct a data mixing analysis. Specifically, we randomly sample 10%, 30%, 50%, and 70% from the original synthetic dataset and mix it with manually-written data and multi-source synthetic data, respectively, in order to maintain a consistent total volume of training data (30,000). For the manually-written data, we sample from the data pool collected in Section 5.3. For the multi-source synthetic data, we use the original synthetic data from Ultrafeedback, which includes responses generated by various LLMs (e.g., WizardLM, Flcon, etc.). After obtaining the mixing training data, we train the student models using SFT and calculate their preference leakage scores based on the judgment results. Figure 4.2 (b) presents the results with two mixing strategies across two benchmarks.

The degree of preference leakage is directly proportional to the amount of synthetic data. We observe a strong correlation between the proportion of synthetic data in the mixture and the preference leakage score, with no clear threshold separating cases with preference leakage from those without. This suggests that preference leakage can occur even with a small amount of leaked synthetic data, posing significant challenges for its detection.

324 5.2 RELATEDNESS ANALYSIS
325326 We demonstrate the impact of different relatedness conditions between the data generator and the
327 judge LLM on the preference leakage problem, as shown in Table 2.
328329 **Preference leakage under inheritance settings causes obvious bias of judges towards their**
330 **related students.** For the inheritance relationship, we consider the situation where the data generator
331 is inherited from the judge model. We conducted the following two experiments: (1). we give the
332 same instructions again as in the SFT stage (Inheritance w/ same ins.), or (2). we sample the same
333 number of different instructions from the Ultrafeedback (Inherence w/ different ins.). Then, we let the
334 fine-tuned Mistral model generate the answers and use these generated data to fine-tune a new Mistral
335 student model. From the results, with the same instructions, the average preference leakage score is
336 19.3%. In comparison, the score with different instructions is 22.3%. Firstly, in an inheritance setting,
337 data generators can inherit judges’ preferences, which are then passed on to new student models,
338 thereby compromising the fairness of their evaluation. Second, even when different instructions are
339 used, judges’ preferences leaked to data generators can still be transferred to the new student model
340 through synthetic data, leading to a high preference leakage score.
341342 **Models within the same series tend to cause**
343 **more significant bias.** For two models within
344 the same family, we consider two settings: (1)
345 Same series, where training data is generated
346 by GPT-4o and Gemini-1.5-flash, and judged
347 by GPT-4-turbo and Gemini-1.5-pro; (2) Different
348 series, where training data is still generated
349 by GPT-4o and Gemini-1.5-flash, but judged by
350 GPT-3.5-turbo and Gemini-1.0-pro. In the same
351 series setting, the average preference leakage
352 score is 8.9%, indicating that despite using dif-
353 ferent models for data generation and judgment,
354 their relatedness in terms of model family leads to some preference leakage. In contrast, the dif-
355 ferent series setting yields a significantly lower leakage score of 2.8%, likely due to differences
356 in architecture, training data, and other factors, reducing the influence of model-related biases in
357 evaluation.
358359 5.3 LEARNING METHOD ANALYSIS
360361 We also compare three learning methods, super-
362 vised fine-tuning (SFT), direct preference op-
363 timization (DPO) Rafailov et al. (2024), and
364 in-context learning (ICL) Dong et al. (2024a),
365 to explore the different influences to them under
366 preference leakage. We first build a data pool
367 based on human-written instruction-tuning data
368 from OASST Köpf et al. (2024), LIMA Zhou et al. (2024), and MOSS Sun et al. (2024b) to super-
369 vised fine-tune the pre-trained model. For DPO, we sample 2 responses for each instruction from
370 sampled UltraFeedback instruction and prompt each data generator to produce the pairwise feedback.
371 Then we use the DPO loss to further train the fine-tuned policy on each synthetic pairwise dataset.
372 Appendix E shows the prompt we use to craft synthetic pairwise feedback. For ICL, we sample 4
373 instruction-response pairs from each LLMs’ synthetic dataset as the demonstration during inference.
374375 **Tuning approaches would leak judges’ preference to the student models.** Various learning
376 methods show significant differences in preference leakage scores across learning methods. SFT
377 exhibits the highest average leakage score at 23.6%. In contrast, DPO achieves a much lower score of
378 5.2%, which is consistent with previous studies in data contamination that pairwise optimization can
379 reduce the risk of memorizing or contaminating sensitive training data compared to straightforward
380 supervised fine-tuning Hayes et al.. Meanwhile, ICL, which relies on contextual examples without
381 model tuning, is least affected by the data generator’s preferences, resulting in the lowest leakage
382 scores.
383384 Table 2: Preference leakage score in different relat-
385 edness between the data generator and the judging
386 LLM.
387

	Arena-Hard	AlpacaEval 2.0	Avg.
Same Model	28.7%	18.4%	23.6%
Inheritance			
- w/ same ins.	17.8%	20.7%	19.3%
Inheritance			
- w/ different ins.	18.3%	26.3%	22.3%
Same Family			
- w/ same series	10.1%	7.6%	8.9%
Same Family			
- w/ different series	3.3%	2.2%	2.8%

388 to some preference leakage. In contrast, the dif-
389 ferent series setting yields a significantly lower leakage score of 2.8%, likely due to differences
390 in architecture, training data, and other factors, reducing the influence of model-related biases in
391 evaluation.
392393 Table 3: Preference leakage score in different learning
394 methods.
395

	Arena-Hard	AlpacaEval 2.0	Avg.
SFT	28.7%	18.4%	23.6%
DPO	7.7%	2.7%	5.2%
ICL	-4.2%	-1.1%	-2.7%

5.4 REAL-WORLD IMPACT ANALYSIS

Table 4: Impact analysis of preference leakage in real-world LLM-as-a-Judge leaderboards. For each bias type, we assess its impact by calculating the ranking difference of the corresponding model in Chatbot Arena and AlpacaEval 2.0, obtained by subtracting the ranking in AlpacaEval 2.0 from that in Chatbot Arena. A larger positive ranking difference indicates AlpacaEval 2.0 ranks the target models in higher positions, denoting a greater impact of the corresponding bias.

Bias Type	Evaluator	Target Models	Ranking Difference
Egocentric Bias	GPT-4 Preview	GPT-4 Preview	1.00
Preference Leakage		Vicuna 7B/ 13B/ 33B	1.33

In this section, we investigate the impact of preference leakage in real-world LLM-as-a-Judge leaderboards. While broader leaderboard coverage would enhance external validity, few student-teacher (distillation) pairs are publicly documented, and most leaderboards lack the metadata needed for controlled cross-model comparisons. Moreover, re-evaluating all leaderboard entries with alternate judges would be computationally prohibitive at the current scale. Therefore, we focus on AlpacaEval and LMArena as interpretable case studies and leave large-scale multi-judge re-evaluations for future work. To quantify the effect of each bias type, we calculate the ranking difference of each target model in Chatbot Arena and AlpacaEval 2.0.

As shown in Table 4, both egocentric bias and preference leakage result in a positive ranking difference, indicating that both lead to evaluator bias favoring the target models. Notably, the ranking difference associated with preference leakage is even higher than that of egocentric bias, highlighting the substantial impact of preference leakage on real-world LLM-as-a-Judge leaderboards.

5.5 CAN JUDGES RECOGNIZE STUDENT MODELS?

Table 5: Student recognition (binary classification) and response classification results (three-class classification). SR: Student Recognition, RC: Response Classification.

Task	Model	Accuracy	
		Pointwise	Pairwise
SR	GPT-4o	41.0%	52.0%
	Gemini-1.5	53.2%	44.2%
	LLaMA-3.3	41.8%	29.8%
RC	BERT	82.4%	

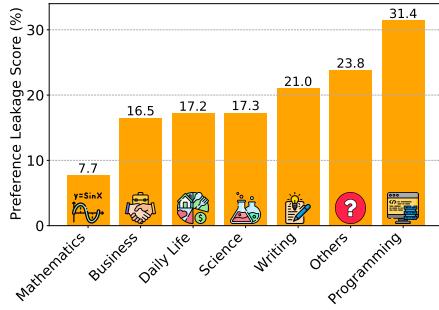
we follow Panickssery et al. (2024) to use both pointwise and pairwise settings. Due to the space limitation, more detailed prompting and training settings can be found in Appendix G.

Judge LLMs do not show good performance in recognizing the generation of their student models. As the result presented in Table 5, we find that the recognition performance of each judge LLM in the content of related students is poor, with accuracy around the performance of random guess. This suggests that preference leakage is subtler and harder-to-detect for judge LLMs, in contrast to the more obvious egocentric bias.

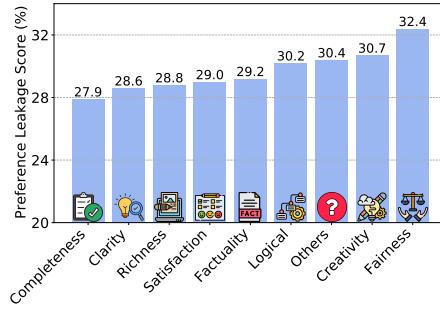
Certain features embedded in student models through synthetic data. Although judge LLMs do not perform well in related student recognition, we notice the fine-tuned BERT classification demonstrates a high accuracy score in classifier responses generated by each student model. This suggests that certain characteristics—such as style and format—are embedded in the student models through the synthetic responses. This finding further supports the existence of preference leakage and lays the groundwork for future research aimed at detecting and preventing it. **For example, an external detector estimating model-relatedness could provide an auxiliary confidence signal to calibrate or penalize biased judgments.**

Previous studies demonstrate the LLM judges can recognize and thus prefer their own generation Panickssery et al. (2024). In this work, we pose a similar question: *Does preference leakage also source from the LLM judges' recognition of their related student models' generation?* To study this, we follow Panickssery et al. (2024) to prompt the three judge LLMs and test whether they could recognize their related student models' generation. Additionally, we split three student models' generation into training and testing sets, and train a BERT classifier to perform a three-class classification inspired by the previous study on detecting human-AI text Zhang et al. (2024c). For student recognition,

5.6 IMPACT ON QUESTION TYPE & JUDGMENT DIMENSION



(a) Question Type



(b) Judgment dimension

Figure 3: Category analysis results on question type and judgment dimension.

In this section, we explore the impact of preference leakage across various question types and judgment dimensions. For the question type analysis, we first propose several general question types based on the question clusters introduced by Arena-Hard. Then, we prompt GPT-4o to map each question in Arena-Hard and AlpacaEval to one of the question types and calculate the preference leakage score for each question category. For the judgment dimension analysis, we follow the judgment dimensions introduced by Liu et al. (2023a) and also utilize GPT-4o to map the rationale generated by judge LLMs to one or multiple judgment dimensions. More detailed prompt can be found in Appendix H. The analysis results are presented in Figure 3.

Subjective question and judgment dimension tend to lead to more bias. For question type analysis, we find objective questions with a definitive answer, like mathematical ones, demonstrate the least preference leakage. By contrast, subjective questions that have more than one standard answer, such as programming and writing, usually lead to a more obvious preference leakage. This observation is also applied to judgment dimension analysis, as objective dimensions (like completeness) have an overall lower leakage degree compared with subjective ones (like fairness). This suggests that preference leakage tends to be more significant in objective questions and dimensions, where the contaminated model is more likely to receive biased preference.

5.7 EFFECT OF SPURIOUS FEATURES ON PREFERENCE LEAKAGE

Table 6: Effect of removing spurious features on the PLS. We consider style, format and wording as potential spurious features in this analysis.

Setting	GPT & Gemini	GPT & LLaMA	LLaMA & Gemini
Baseline	17.5%	2.3%	18.8%
– w/o style	9.0%	3.3%	14.6%
– w/o format	9.8%	1.9%	14.5%
– w/o wording	11.2%	2.4%	18.2%

To further validate that spurious stylistic or formatting cues contribute to preference leakage, we conduct an additional ablation experiment focusing on three major feature categories: style, format, and wording. Using the Qwen-3-8B model as the rewriting model, we apply a paraphrasing pipeline to selectively remove each type of spurious feature from model responses before evaluation. Because Gemini-1.5 is no longer available, we employ Gemini-2.0 as the judge model. The rewriting process ensures that the semantic content of each response remains intact while selectively neutralizing surface-level artifacts such as syntactic rhythm, punctuation patterns, and lexical framing cues. By isolating these variables, the experiment provides a more direct lens into how superficial similarity between generator and judge responses shapes preference leakage.

The resulting Preference Leakage Scores (PLS) are reported in Table 6. We observe notable reductions in PLS for the two model pairs that originally exhibited the strongest leakage (GPT & Gemini, LLaMA & Gemini), confirming that removing spurious stylistic alignment substantially mitigates

486 bias. Among the three feature types, eliminating style and format yields the largest decrease in leakage,
 487 suggesting that judges tend to rely heavily on stylistic regularities—such as tone consistency, sentence
 488 cadence, and punctuation density—when forming preference judgments. In contrast, removing
 489 wording-level features (e.g., synonym substitution or phrase order changes) produces only minor
 490 improvements, implying that lexical similarity alone is not the dominant driver. Interestingly, the
 491 magnitude of reduction varies across judge families: GPT-based judges appear especially responsive
 492 to stylistic coherence, while LLaMA-based judges are more influenced by formatting regularity.
 493 This diversity in sensitivity indicates that each model family has distinct perceptual priors about
 494 linguistic structure, which can amplify different forms of spurious correlation. Overall, these findings
 495 empirically substantiate our mechanistic explanation that stylistic and formatting artifacts embedded
 496 in student models act as hidden conduits for preference leakage, shaping judge behavior through
 497 subtle surface-level mimicry rather than semantic alignment.
 498

499 5.8 EXPLORING MITIGATION METHOD FOR PREFERENCE LEAKAGE

500 To benchmark and explore mitigation methods for
 501 preference leakage, we collected human-labeled pair-
 502 wise judgments from several reward benchmarks, in-
 503 cluding PPE Perez et al. (2022), MTBench Zheng
 504 et al. (2023b), and Human Preference Chiang et al.
 505 (2024). Using GPT-4 as the target model, we selected
 506 samples in which one of the responses was gener-
 507 ated by GPT-4’s related student (e.g., Vicuna, Al-
 508 pacaca). We then tested several mitigation methods on
 509 this dataset, including prompting, chain-of-thought
 510 (CoT), paraphrasing, auto-calibration, and contextual calibration. **The explored mitigation strategies**
 511 **can be grouped into two complementary layers: (i) Input- or reasoning-level debiasing (prompting,**
 512 **CoT, paraphrasing) that modifies inputs or reasoning chains; and (ii) Output-level calibration (auto-**
 513 **or contextual calibration) that adjusts scores post-hoc.** We further propose a new metric, Error Bias,
 514 based on human-labeled judgments: $\text{ErrorBias} = \frac{N_{\text{target-prefer-other-win}}}{N_{\text{other-win}}} - \frac{N_{\text{other-prefer-target-win}}}{N_{\text{target-win}}}$. Intuitively, this
 515 metric quantifies the difference between target-preferred errors and other-preferred errors; a value
 516 close to 0 indicates that preference leakage is mitigated. Our preliminary results show that contextual
 517 calibration with an additional held-out set for bias adjustment is the most effective, reducing Error
 518 Bias from 17.8 to 7.3. We provide a more detailed explanation about each method in Appendix C.4.

519 6 CONCLUSION AND DISCUSSION

520 In this work, we formally highlight the preference leakage problem in LLM-as-a-judge systems.
 521 The results of our main experiment, measured using the proposed preference leakage score, reveal
 522 a clear bias in each judge toward their respective student model. We also observe that this bias is
 523 more pronounced in certain question types and smaller student models. Furthermore, we conduct
 524 additional analysis on various factors, including the relationship between the data generator and judge
 525 LLMs, model tuning techniques, data mixing strategies, and real-world applications. Our findings
 526 suggest that preference leakage can cause significant bias across diverse scenarios. Finally, through
 527 recognition and category analyses, we investigate the underlying mechanisms of preference leakage,
 528 demonstrating that it is a challenging and hard-to-detect issue, especially in subjective questions and
 529 judgment dimensions.

530 Looking ahead, we aim to extend this study in several directions. Future research will explore
 531 more comprehensive and diverse LLM ecosystems to assess whether preference leakage generalizes
 532 across architectures, training pipelines, and organizational boundaries. Expanding evaluation to
 533 new domains—such as affective or context-sensitive reasoning tasks—may help reveal additional
 534 behavioral dimensions of leakage. We also plan to investigate detection and mitigation strategies that
 535 combine representation-level signals, multi-agent judgment frameworks, and adaptive calibration
 536 to enhance robustness. Broadly, we envision this line of work contributing to a more systematic
 537 understanding of how inter-model relationships influence evaluation reliability, ultimately guiding
 538 the design of fairer and more transparent LLM-as-a-judge systems.
 539

Table 7: Error Bias with various mitigation methods (lower is better).

Method	Error Bias
Base	17.8
+ Prompting	18.3
+ Chain-of-Thought	15.6
+ Paraphrase	18.7
+ Auto Calibration	20.7
+ Contextual Calibration	7.3

540 ETHICS STATEMENT
541542 We adhere to the ICLR Code of Ethics. No private, sensitive, or personally identifiable data are
543 involved. Our work does not raise foreseeable ethical concerns or produce harmful societal outcomes.
544545 REPRODUCIBILITY STATEMENT
546547 Reproducibility is central to our work. All datasets used in our experiments are standard benchmarks
548 that are publicly available. We provide full details of the training setup, model architectures, and
549 evaluation metrics in the main paper and appendix. Upon acceptance, we will release our codebase,
550 including scripts for preprocessing, training, and evaluation, along with configuration files and
551 documentation to facilitate exact reproduction of our results. Random seeds and hyperparameters
552 will also be included to further ensure reproducibility.
553554 REFERENCES
555556 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
557 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
558 *ArXiv preprint*, abs/2303.08774, 2023. URL <https://arxiv.org/abs/2303.08774>.559 Simone Balloccu, Patrícia Schmidlová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, repeat:
560 Data contamination and evaluation malpractices in closed-source llms. In *Proceedings of the 18th*
561 *Conference of the European Chapter of the Association for Computational Linguistics (Volume 1:*
562 *Long Papers)*, pp. 67–93, 2024.563 Sebastian Bordt, Harsha Nori, and Rich Caruana. Elephants never forget: Testing language models for
564 memorization of tabular data. In *NeurIPS 2023 Second Table Representation Learning Workshop*,
565 2024.566 Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
567 the judge? a study on judgement biases. *arXiv preprint arXiv:2402.10669*, 2024.568 Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
569 for a reason? *arXiv preprint arXiv:2504.03846*, 2025.570 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
571 Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
572 An open platform for evaluating llms by human preference, 2024.573 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
574 Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
575 In *Forty-first International Conference on Machine Learning*, 2024.576 Chunyuan Deng, Yilun Zhao, Yuzhao Heng, Yitong Li, Jiannan Cao, Xiangru Tang, and Arman
577 Cohan. Unveiling the spectrum of data contamination in language models: A survey from detection
578 to remediation. *arXiv preprint arXiv:2406.14644*, 2024a.579 Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data
580 contamination in modern benchmarks for large language models. In *Proceedings of the 2024*
581 *Conference of the North American Chapter of the Association for Computational Linguistics:*
582 *Human Language Technologies (Volume 1: Long Papers)*, pp. 8698–8711, 2024b.583 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
584 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
585 colossal clean crawled corpus. In *Proceedings of the 2021 Conference on Empirical Methods in*
586 *Natural Language Processing*, pp. 1286–1305, 2021.587 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
588 Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In *Proceedings of the 2024*
589 *Conference on Empirical Methods in Natural Language Processing*, pp. 1107–1128, 2024a.

594 Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
 595 memorization: Data contamination and trustworthy evaluation for large language models. *arXiv*
 596 *preprint arXiv:2402.15938*, 2024b.

597 Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ilia R Fiete. Uncovering latent
 598 memories: Assessing data leakage and memorization patterns in large language models. *arXiv*
 599 *preprint arXiv:2406.14549*, 2024.

600 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 601 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 602 *arXiv preprint arXiv:2407.21783*, 2024.

603 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
 604 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

605 Ruyi Gan, Ziwei Wu, Renliang Sun, Junyu Lu, Xiaojun Wu, Dixin Zhang, Kunhao Pan, Ping
 606 Yang, Qi Yang, Jiaxing Zhang, et al. Ziya2: Data-centric learning is all llms need. *arXiv preprint*
 607 *arXiv:2311.03301*, 2023.

608 Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Shiping Yang, and Xiaojun Wan. Human-like
 609 summarization evaluation with chatgpt. *arXiv preprint arXiv:2304.02554*, 2023.

610 Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
 611 language models. *arXiv preprint arXiv:2308.08493*, 2023.

612 Jamie Hayes, Ilia Shumailov, William P Porter, and Aneesh Pappu. Measuring memorization in rlhf
 613 for code completion. In *The Thirteenth International Conference on Learning Representations*.

614 Shengding Hu, Yifan Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, and Maosong Sun. Won't get
 615 fooled again: Answering questions with false premises. In *Proceedings of the 61st Annual Meeting*
 616 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5626–5643, 2023.

617 Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
 618 Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
 619 whether to use tools and which to use. *arXiv preprint arXiv:2310.03128*, 2023.

620 Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang,
 621 Wenhan Lyu, Yixuan Zhang, et al. Position: Trustllm: Trustworthiness in large language models.
 622 In *International Conference on Machine Learning*, pp. 20166–20270. PMLR, 2024.

623 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 624 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 625 *arXiv:2412.16720*, 2024.

626 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 627 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 628 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

629 Bohan Jiang, Dawei Li, Zhen Tan, Xinyi Zhou, Ashwin Rao, Kristina Lerman, H Russell Bernard,
 630 and Huan Liu. Assessing the impact of conspiracy theories using large language models. *arXiv*
 631 *preprint arXiv:2412.07019*, 2024a.

632 Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
 633 Koyejo. Investigating data contamination for pre-training language models. *arXiv preprint*
 634 *arXiv:2401.06059*, 2024b.

635 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 636 Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
 637 uation capability in language models. In *The Twelfth International Conference on Learning*
 638 *Representations*, 2023.

639 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
 640 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
 641 model specialized in evaluating other language models. *arXiv preprint arXiv:2405.01535*, 2024.

648 Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop Kang. Benchmarking cognitive biases in large language models as evaluators. *arXiv preprint arXiv:2309.17012*,
 649 2023.

650

651 Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop Kang.
 652 Benchmarking cognitive biases in large language models as evaluators. In *ACL (Findings)*, 2024.

653

654 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
 655 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
 656 conversations-democratizing large language model alignment. *Advances in Neural Information
 657 Processing Systems*, 36, 2024.

658

659 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
 660 Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling rein-
 661 forcement learning from human feedback with ai feedback. In *Forty-first International Conference
 662 on Machine Learning*, 2024.

663

664 Sunbowen Lee, Junting Zhou, Chang Ao, Kaige Li, Xinrun Du, Sirui He, Jiaheng Liu, Min Yang,
 665 Zhoufutu Wen, and Shiwen Ni. Distillation quantification for large language models. *arXiv
 666 preprint arXiv:2501.12619*, 2025.

667

668 Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot
 669 anymore. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 670 18471–18480, 2024.

671

672 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 673 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
 674 Opportunities and challenges of llm-as-a-judge. *arXiv preprint arXiv:2411.16594*, 2024a.

675

676 Dawei Li, Zhen Tan, Tianlong Chen, and Huan Liu. Contextualization distillation from large language
 677 model for knowledge graph completion. *arXiv preprint arXiv:2402.01729*, 2024b.

678

679 Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sunkwon Yun, Joseph Lee, Aaron Chacko, Bojian
 680 Hou, Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to answer
 681 alzheimer’s disease questions with scientific literature. *arXiv preprint arXiv:2405.04819*, 2024c.

682

683 Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A
 684 data-centric perspective. *ACM SIGKDD Explorations Newsletter*, 26(2):44–53, 2025.

685

686 Ming Li, Lichang Chen, Juhai Chen, Shuai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-
 687 tuning: Student-selected data recycling for llm instruction-tuning. *arXiv preprint arXiv:2402.10110*,
 688 2024d.

689

690 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
 691 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 692 pipeline. *arXiv preprint arXiv:2406.11939*, 2024e.

693

694 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 695 Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 696 models, 2023.

697

698 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 699 branches out*, pp. 74–81, 2004.

700

701 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 702 falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Computational
 703 Linguistics (Volume 1: Long Papers)*, pp. 3214–3252, 2022.

704

705 Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. How
 706 NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics
 707 for dialogue response generation. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Proceedings
 708 of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2122–2132,
 709 Austin, Texas, 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1230.
 710 URL <https://aclanthology.org/D16-1230>.

702 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
 703 alignment? a comprehensive study of automatic data selection in instruction tuning. In *The Twelfth*
 704 *International Conference on Learning Representations*, 2024a.

705

706 Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng, Pei Ke,
 707 Yifan Xu, Weng Lam Tam, et al. Alignbench: Benchmarking chinese alignment of large language
 708 models. *arXiv preprint arXiv:2311.18743*, 2023a.

709

710 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 711 Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. *arXiv preprint*
 712 *arXiv:2308.03688*, 2023b.

713

714 Yiqi Liu, Nafise Sadat Moosavi, and Chenghua Lin. Llms as narcissistic evaluators: When ego
 715 inflates evaluation scores. In *Findings of the Association for Computational Linguistics ACL 2024*,
 716 pp. 12688–12701, 2024b.

717

718 Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
 719 Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. *arXiv preprint*
 720 *arXiv:2406.06565*, 2024.

721

722 Arjun Panickssery, Samuel R Bowman, and Shi Feng. Llm evaluators recognize and favor their own
 723 generations. *arXiv preprint arXiv:2404.13076*, 2024.

724

725 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 726 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 727 *for Computational Linguistics*, pp. 311–318, 2002.

728

729 Ethan Perez et al. Ppe: Pairwise preference evaluation benchmark for large language models, 2022.
 730 URL <https://github.com/openai/ppe>.

731

732 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 733 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 734 *in Neural Information Processing Systems*, 36, 2024.

735

736 Javier Rando, Jie Zhang, Nicholas Carlini, and Florian Tramèr. Adversarial ml problems are getting
 737 harder to solve and to evaluate. *arXiv preprint arXiv:2502.02260*, 2025.

738

739 Ehud Reiter. A structured review of the validity of BLEU. *Computational Linguistics*, 44(3):393–401,
 740 2018. doi: 10.1162/coli_a_00322. URL <https://aclanthology.org/J18-3002>.

741

742 Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhenqiang Gong.
 743 Optimization-based prompt injection attack to llm-as-a-judge. In *Proceedings of the 2024 on*
 744 *ACM SIGSAC Conference on Computer and Communications Security*, CCS '24, pp. 660–674,
 745 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706363. doi:
 746 10.1145/3658644.3690291. URL <https://doi.org/10.1145/3658644.3690291>.

747

748 Renliang Sun, Mengyuan Liu, Shiping Yang, Rui Wang, Junqing He, and Jiaxing Zhang. Fostering
 749 natural conversation in large language models with nico: a natural interactive conversation dataset.
 750 *arXiv preprint arXiv:2408.09330*, 2024a.

751

752 Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Xiangyang Liu, Hang
 753 Yan, Yunfan Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao, Ke Chen, Yining Zheng, Zhejian
 754 Zhou, Ruixiao Li, Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang, Lingling Wu, Zhangyue
 755 Yin, Xuanjing Huang, Yu-Gang Jiang, and Xipeng Qiu. Moss: An open conversational large
 756 language model. *Machine Intelligence Research*, 2024b. ISSN 2731-5398. URL <https://github.com/OpenMOSS/MOSS>.

757

758 Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
 759 sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
 760 and synthesis: A survey. In *Proceedings of the 2024 Conference on Empirical Methods in Natural*
 761 *Language Processing*, pp. 930–957, 2024.

756 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 757 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 758 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

759

760 Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and
 761 Dieuwke Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges.
 762 *arXiv preprint arXiv:2406.12624*, 2024.

763

764 Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can llms learn
 765 from previous mistakes? investigating llms' errors to boost for reasoning. *arXiv preprint
 766 arXiv:2403.20046*, 2024.

767

768 Somin Wadhwa, Chantal Shaib, Silvio Amir, and Byron C Wallace. Who taught you that? tracing
 769 teachers in model distillation. *arXiv preprint arXiv:2502.06659*, 2025.

770

771 Sizhe Wang, Yongqi Tong, Hengyuan Zhang, Dawei Li, Xin Zhang, and Tianlong Chen. Bpo:
 772 Towards balanced preference optimization between knowledge breadth and depth in alignment.
 773 *arXiv preprint arXiv:2411.10914*, 2024.

774

775 Koki Wataoka, Tsubasa Takahashi, and Ryokan Ri. Self-preference bias in llm-as-a-judge. *arXiv
 776 preprint arXiv:2410.21819*, 2024.

777

778 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 779 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
 780 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

781

782 Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xian-
 783 gliang Zhang, Jianfeng Gao, Chaowei Xiao, et al. Unigen: A unified framework for textual dataset
 784 generation using large language models. *arXiv preprint arXiv:2406.18966*, 2024.

785

786 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Dixin
 787 Jiang. Wizardlm: Empowering large language models to follow complex instructions. *arXiv
 788 preprint arXiv:2304.12244*, 2023.

789

790 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
 791 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024a.

792

793 Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
 794 prejudice: Llm amplifies self-bias in self-refinement. In *Proceedings of the 62nd Annual Meeting
 795 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15474–15492,
 796 2024b.

797

798 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 799 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 800 arXiv:2412.15115*, 2024.

801

802 Shiping Yang, Renliang Sun, and Xiaojun Wan. A new dataset and empirical study for sentence
 803 simplification in chinese. In *Proceedings of the 61st Annual Meeting of the Association for
 804 Computational Linguistics (Volume 1: Long Papers)*, pp. 8306–8321, 2023.

805

806 Feng Yao, Yufan Zhuang, Zihao Sun, Sunan Xu, Animesh Kumar, and Jingbo Shang. Data contami-
 807 nation can cross language barriers. *arXiv preprint arXiv:2406.13236*, 2024.

808

809 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
 810 Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-judge.
 811 *arXiv preprint arXiv:2410.02736*, 2024.

812

813 Hengyuan Zhang, Dawei Li, Yanran Li, Chenming Shang, Chufan Shi, and Yong Jiang. Assisting
 814 language learners: Automated trans-lingual definition generation via contrastive prompt learning.
 815 *arXiv preprint arXiv:2306.06058*, 2023.

816

817 Hengyuan Zhang, Chenming Shang, Sizhe Wang, Dongdong Zhang, Feng Yao, Renliang Sun, Yiyao
 818 Yu, Yujiu Yang, and Furu Wei. Shifcon: Enhancing non-dominant language capabilities with a
 819 shift-based contrastive framework. *arXiv preprint arXiv:2410.19453*, 2024a.

810 Hengyuan Zhang, Yanru Wu, Dawei Li, Zacc Yang, Rui Zhao, Yong Jiang, and Fei Tan. Balancing
 811 speciality and versatility: a coarse to fine framework for supervised fine-tuning large language
 812 model. *arXiv preprint arXiv:2404.10306*, 2024b.

813

814 Qihui Zhang, Chujie Gao, Dongping Chen, Yue Huang, Yixin Huang, Zhenyang Sun, Shilin Zhang,
 815 Weiye Li, Zhengyan Fu, Yao Wan, and Lichao Sun. LLM-as-a-coauthor: Can mixed human-written
 816 and machine-generated text be detected? In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
 817 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 409–436, Mexico
 818 City, Mexico, June 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 819 findings-naacl.29. URL <https://aclanthology.org/2024.findings-naacl.29/>.

820 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
 821 text generation with bert. In *International Conference on Learning Representations*, 2020.

822

823 Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
 824 Meng. Self-alignment for factuality: Mitigating hallucinations in LLMs via self-evaluation. In Lun-
 825 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of*
 826 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1946–1965, Bangkok,
 827 Thailand, August 2024d. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 828 acl-long.107. URL <https://aclanthology.org/2024.acl-long.107/>.

829

830 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 831 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 832 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023a.

833 Lianmin Zheng, Jiayi Wu, Shaohan Zhuang, et al. Mt-bench: Evaluating large language models with
 834 multi-turn benchmarks. In *arXiv preprint arXiv:2306.05685*, 2023b.

835

836 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 837 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 838 preprint *arXiv:2403.13372*, 2024.

839

840 Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
 841 Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. In Yoav Goldberg,
 842 Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical*
 843 *Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,*
 844 *December 7-11, 2022*, pp. 2023–2038. Association for Computational Linguistics, 2022. doi:
 845 10.18653/V1/2022.EMNLP-MAIN.131. URL <https://doi.org/10.18653/v1/2022.emnlp-main.131>.

846

847 Ming Zhong, Aston Zhang, Xuewei Wang, Rui Hou, Wenhan Xiong, Chenguang Zhu, Zhengxing
 848 Chen, Liang Tan, Chloe Bi, Mike Lewis, et al. Law of the weakest link: Cross capabilities of large
 849 language models. *arXiv preprint arXiv:2409.19951*, 2024.

850

851 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 852 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information*
 853 *Processing Systems*, 36, 2024.

854

855 Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang Xiong,
 856 Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-a-judge:
 857 Evaluate agents with agents. *arXiv preprint arXiv:2410.10934*, 2024.

858

859

860

861

862

863

864 A THE USE OF LLMs FOR WRITING
865866 We employed Google’s Gemini 2.5 Pro and OpenAI’s GPT-5 as writing assistance tools during the
867 preparation of this manuscript. Their role was exclusively for language refinement, such as improving
868 readability and rephrasing for clarity in an academic writing style. This usage aligns with standard
869 academic practices for language polishing.
870871 B PRELIMINARY STUDY OF PREFERENCE LEAKAGE IN REAL WORLD
872873 In our preliminary study, we investigate whether preference leakage is a real-world issue in mainstream
874 leaderboards and benchmarks. To this end, we examine two widely used LLM-as-a-judge leaderboards
875 (AlpacaEval 2.0 and Arena-Hard) and a well-known benchmark (MTBench). All three rely on GPT-4
876 as the judge model and report pairwise judgment results for various LLMs. Our analysis reveals
877 that several candidate models distilled from GPT-4 or other GPT-series models (e.g., Vicuna and
878 Alpaca) appear across all these leaderboards and benchmarks, suggesting that preference leakage
879 is a pervasive issue in these datasets. Besides, we also examine if preference leakage exists in
880 LLM-relevant research studies and also find a bunch of work utilizing the same or related model(s) to
881 do distillation/ data synthesis and evaluation Yang et al. (2023); Liu et al. (2024a); Lee et al. (2024);
882 Li et al. (2024d); Wang et al. (2024); Sun et al. (2024a). All of these suggest preference leakage to be
883 a widespread problem in both LLM-as-a-judge datasets and LLM-relevant research.
884885 C EXPERIMENT DETAILS
886887 C.1 TRAINING DETAILS
888889 We use LLaMA-Factory Zheng et al. (2024), an efficient LLM tuning library for our experiment.
890 The maximum sequence length is set to 1024 tokens, and a cutoff length of 1024 tokens is enforced
891 to prevent excessive tokenization. The data preprocessing will be done in parallel with 16 workers
892 to speed up the preparation process. The training use a per-device batch size of 2, with gradient
893 accumulation over 2 steps to simulate a larger batch size for SFT and a per-device batch size of 1,
894 with gradient accumulation over 4 steps to simulate a larger batch size for DPO. The learning rate is
895 set to 1.0e-5 and each model will be trained for 3 epochs. A cosine learning rate scheduler is used
896 with a warmup ratio of 0.1 to gradually increase the learning rate during the initial steps. All of the
897 experiments use BF16 precision to speed up training while maintaining numerical stability. All the
898 experiments are conducted in an 8 Nvidia A100 GPU cluster with CUDA version 11.8.
899900 Table 8: A case on AlpacaEval 2.0 with the model pair Mistral-GPT-4o vs Mistral-Gemini-1.5 to
901 demonstrate how the preference leakage score is calculated.
902

Judge Model	Mistral-GPT-4o vs Mistral-Gemini-1.5	
	Mistral-GPT-4o Wins	Mistral-Gemini-1.5 Wins
GPT-4o	55.1%	44.9%
Gemini-1.5	36.8%	63.2%
Preference Leakage Score	18.4%	

909 C.2 DETAILED EXPLANATION FOR PREFERENCE LEAKAGE SCORE
910911 We present a case in Table 8 to show how we calculate the preference leakage score for the Mistral-
912 GPT-4o vs Mistral-Gemini-1.5 pair on AlpacaEval 2.0. Based on the definition of preference leakage
913 score, we first calculate:
914

915
$$\text{AVG}(\text{Mistral-GPT-4o, Mistral-Gemini-1.5}) = \frac{55.1 + 36.8}{2} = 45.95\% \quad (7)$$

916

917
$$\text{AVG}(\text{Mistral-Gemini-1.5, Mistral-GPT-4o}) = \frac{63.2 + 44.9}{2} = 54.05\% \quad (8)$$

918 After that, we calculate the preference leakage score:
 919

$$920 \quad \text{PLS}(\text{Mistral-GPT-4o, Mistral-Gemini-1.5}) = \frac{\left(\frac{55.1-45.95}{45.95}\right) + \left(\frac{63.2-54.05}{54.05}\right)}{2} = 18.4\% \quad (9)$$

921
 922
 923

924 C.3 MANUAL ANNOTATION DETAILS & RESULTS

925

926 While we have concluded that student model pairs with similar performance or more powerful student
 927 models tend to exhibit greater preference leakage, we also examine whether different data generator
 928 and judge LLMs contribute to varying degrees of preference leakage. We randomly sample 100
 929 questions from AlpacaEval 2.0 and ask three well-trained annotators to conduct pairwise comparisons
 930 of the responses from each model pair for these questions. For annotation efficiency, we also develop
 931 an annotation tool that involves the function of uploading multiple model responses, jumping to
 932 specific problems, and downloading annotation results (Figure 7). After annotation, we adopt the
 933 majority voting to get the final label for each response pair. We also calculate the average agreement
 934 of three annotators and find it to be 78.6, indicating a relatively consistent annotation result.

935 Analyzing the manual annotation results presented in Figure 4, we observe that Gemini-1.5 shows
 936 a strong bias toward its students, followed by GPT-4o, with LLaMA-3.3 displaying the least bias.
 937 This variation in preference leakage may stem from differences in the level of leaked preference
 938 in the synthetic responses generated by the data generator LLMs. For instance, an LLM with a
 939 distinctive style or format in its responses offers more opportunities for student models to learn these
 940 characteristics, potentially leading to more pronounced preference leakage during evaluation. Future
 941 work could further quantify the extent of leaked preference for each data generator model.

942 C.4 MITIGATION METHODS DETAILS

943

944 **Dataset Construction.** To systematically benchmark preference leakage, we curate a pairwise
 945 judgment corpus by consolidating three widely used human-labeled reward datasets: **PPE** Perez et al.
 946 (2022), **MTBench** Zheng et al. (2023b), and the **Human Preference** dataset Chiang et al. (2024).
 947 Each dataset contains prompts and paired model outputs annotated with human preferences. We treat
 948 GPT-4 as the *target model* and identify instances where one response originates from GPT-4 and the
 949 other from a related open-source “student” model (e.g., Vicuna, Alpaca).

950 **Mitigation Methods.** We evaluate five representative strategies designed to counteract preference
 951 leakage:

- 952 • **Prompting.** A straightforward baseline that refines evaluation instructions to explicitly warn
 953 against self-preference, encouraging the evaluator to remain impartial and judge outputs solely on
 954 content quality and relevance.
- 955 • **Chain-of-Thought (CoT).** Augments the evaluation prompt by encouraging the model to articulate
 956 an explicit step-by-step reasoning process prior to producing its final decision, thereby reducing
 957 unconscious style matching.
- 958 • **Paraphrasing.** Reduces lexical and stylistic overlap between the evaluator and candidate outputs
 959 by paraphrasing prompts or responses before evaluation, mitigating familiarity-driven bias.
- 960 • **Auto-Calibration.** Estimates a global bias term from a held-out calibration set by analyzing the
 961 evaluator’s log-probabilities of choosing the target versus the student, then shifts future predictions
 962 to offset this bias.
- 963 • **Contextual Calibration.** Extends auto-calibration by learning context-dependent bias adjustments.
 964 For each evaluation scenario, bias is estimated from a similar held-out set and applied dynamically at
 965 inference time, offering finer-grained debiasing and achieving the strongest reduction in preference
 966 leakage.

967 D ADDITIONAL EXPERIMENTS

968

969 Due to the space limitation, we put further experiments and analysis in the Appendix.

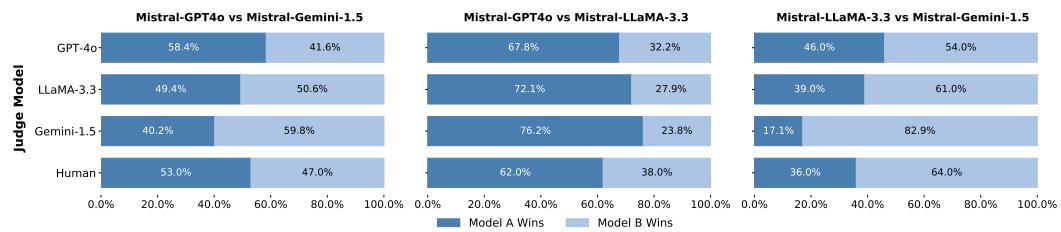


Figure 4: Manual annotation result on 100 randomly selected samples from AlpacaEval 2.0.

D.1 ORIGINAL EXPERIMENT RESULTS FOR PLS CALCULATION



Figure 5: Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on AlpacaEval 2.0. Different from Arena-Hard, there is no tie in AlpacaEval 2.0.

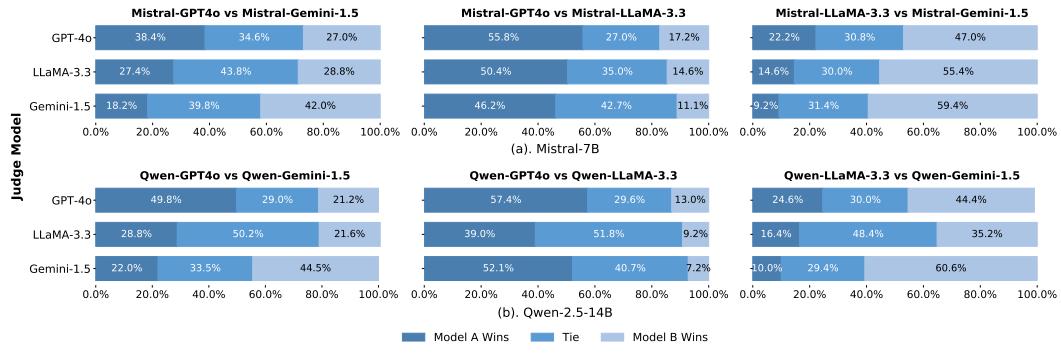


Figure 6: Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on Arena-Hard.

D.2 STABILITY ASSESSMENT OF EXPERIMENTAL RESULTS

Based on the results from three repeated experiments (Table 9), we observe consistently low variance across different comparisons, indicating high stability in performance measurements. This suggests that the conclusions drawn from these experiments are reliable and not significantly affected by random fluctuations, thereby strengthening the validity of our findings.

D.3 PROMPT SENSITIVITY ANALYSIS

We examined the robustness of the *Preference Leakage Score (PLS)* under different evaluation prompts. Two LLM-as-a-judge protocols were used: ARENAHARD and ALPACAEVAL 2.0, each with distinct prompts and question sets. We rewrote the prompts for both protocols and re-ran the evaluations.

1026

1027 Table 9: Mean and variance of experimental results across two benchmarks in Mistral-7B-v0.1.

Model Pairs	Mean	Variance
<i>ArenaHard</i>		
mistral-GPT4o vs mistral-Gemini-3.3	28.67	0.063
mistral-GPT4o vs mistral-LLAMA-3.3	0.50	0.910
mistral-LLAMA vs mistral-Gemini	12.93	0.583
<i>AlpacaEval 2.0</i>		
mistral-GPT4o vs mistral-Gemini-3.3	19.20	0.490
mistral-GPT4o vs mistral-LLAMA-3.3	0.20	1.240
mistral-LLAMA vs mistral-Gemini	19.87	0.013

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 10: PLS under different evaluation prompts.

Judge Pair	Prompt 1	Prompt 2	Dataset
GPT-4o vs Gemini-1.5	18.4%	16.5%	AlpacaEval 2.0
	28.7%	38.7%	ArenaHard
GPT-4o vs LLaMA-3.3	1.4%	-1.2%	AlpacaEval 2.0
	-1.5%	4.5%	ArenaHard
LLaMA-3.3 vs Gemini-1.5	19.8%	17.9%	AlpacaEval 2.0
	13.1%	15.8%	ArenaHard

PLS remained consistently > 0 for key model pairs; ALPACAEVAL 2.0 was more stable to prompt changes than ARENAHARD.

D.4 STATISTICAL SIGNIFICANCE TESTS

We tested the hypothesis $PLS > 0$ using a non-parametric bootstrap with 10,000 resamples over 500 prompts in ARENAHARD.

Table 11: Bootstrap significance results for $PLS > 0$. ***: $p < 0.001$, **: $p < 0.01$.

Judge Pair	Student	PLS (%)	Significance
GPT-4o vs Gemini-1.5	Mistral-7B	28.5	***
GPT-4o vs LLaMA-3.3	Mistral-7B	-1.1	n.s.
LLaMA-3.3 vs Gemini-1.5	Mistral-7B	7.4	**
GPT-4o vs Gemini-1.5	Qwen-2.5-14B	37.9	***
GPT-4o vs LLaMA-3.3	Qwen-2.5-14B	1.2	n.s.
LLaMA-3.3 vs Gemini-1.5	Qwen-2.5-14B	26.3	***

D.5 LANGUAGE GENERALIZATION

To test cross-lingual generalization, we synthesized Chinese SFT data (using Moss-3 instructions) and evaluated with Chinese versions of ARENAHARD (m-ARENAHARD) and XALPACAEVAL. Judges were GPT-4o and Gemini-1.5; the student model was Qwen-3-8B.

Significant preference leakage also appears in the Chinese setting.

D.6 EXPANDED JUDGE-STUDENT PAIRS

We added the judge model Claude-3.5-Sonnet to form three new judge pairs: GPT-4o & Claude-3.5, Gemini & Claude-3.5, and LLaMA-3.3 & Claude-3.5. Student models: Mistral-7B and Qwen-2.5-14B.

1080

1081

Table 12: PLS in English vs. Chinese.

1082

1083

Language	AlpacaEval 2.0	ArenaHard	Avg
English	17.4%	33.9%	25.7%
Chinese	12.3%	51.8%	32.1%

1084

1085

1086

1087

Table 13: PLS of new judge pairs (negative values indicate no leakage).

1088

1089

Judge Pair	ArenaHard	AlpacaEval 2.0	Avg
Mistral-7B			
GPT-4o & Claude-3.5	12.2%	8.6%	10.4%
Gemini & Claude-3.5	16.5%	7.1%	11.8%
LLaMA-3.3 & Claude-3.5	-4.4%	-2.6%	-3.5%
Qwen-2.5-14B			
GPT-4o & Claude-3.5	13.0%	10.4%	11.7%
Gemini & Claude-3.5	18.5%	11.1%	14.8%
LLaMA-3.3 & Claude-3.5	0.0%	1.7%	0.9%

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

D.7 STUDENT MODEL SCALING

We tested PLS on a wider range of student sizes within the Qwen and LLaMA families.

1100

1101

1102

Table 14: PLS (%) for different student sizes.

1103

1104

Student	ArenaHard	AlpacaEval 2.0	Avg
LLaMA-3-1B	35.4	18.2	26.8
LLaMA-3-3B	32.5	16.4	24.5
LLaMA-3-8B	30.9	15.8	23.4
Qwen-2.5-0.5B	40.9	21.2	31.1
Qwen-2.5-1.5B	38.0	23.2	30.6
Qwen-2.5-3B	50.7	20.1	35.4
Qwen-2.5-7B	32.2	22.1	27.2
Qwen-2.5-14B	37.1	18.6	27.9
Qwen-3-0.6B	39.8	23.8	31.8
Qwen-3-1.7B	40.0	20.1	30.2
Qwen-3-4B	30.9	17.2	24.1
Qwen-3-8B	33.9	17.4	25.7
Qwen-3-14B	31.7	19.4	25.6

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

Within each family, smaller models generally exhibit higher PLS.

1116

1117

D.8 MITIGATION METHODS AND ERROR BIAS METRIC

1118

1119

1120

1121

1122

1123

We explored mitigation methods on a human-labeled reward dataset, including: prompting, chain-of-thought (CoT), paraphrasing, auto-calibration, and contextual calibration. We introduced the *Error Bias* metric:

1124

1125

1126

1127

$$\text{ErrorBias} = \frac{N_{\text{target-prefer-other-win}}}{N_{\text{other-win}}} - \frac{N_{\text{other-prefer-target-win}}}{N_{\text{target-win}}}. \quad (10)$$

1128

1129

Contextual calibration with an additional held-out bias-adjustment set yielded the largest reduction.

1130

1131

E LEARNING METHOD ANALYSIS DETAILS

1132

1133

The table below presents the prompt we use to generate synthetic pairwise feedback from each model.

1134
1135

Pairwise Feedback Prompt

1136 Please act as an impartial judge and evaluate the quality of the
 1137 responses provided by two AI assistants to the user question
 1138 displayed below. Your evaluation should consider correctness
 1139 and helpfulness. You will be given assistant A's answer, and
 1140 assistant B's answer. Your job is to evaluate which assistant's
 1141 answer is better. You should independently solve the user question
 1142 step-by-step first. Then compare both assistants' answers with
 1143 your answer. Identify and correct any mistakes. Avoid any
 1144 position biases and ensure that the order in which the responses
 1145 were presented does not influence your decision. Do not allow
 1146 the length of the responses to influence your evaluation. Do not
 1147 favor certain names of the assistants. Be as objective as possible.
 1148 After providing your explanation, output your final verdict by
 1149 strictly following this format: "[[A]]" if assistant A is better,
 1150 "[[B]]" if assistant B is better.

1149
1150

Instruction:

1151

[The Start of Assistant A's Answer]

1152

[RESPONSE A]

1153

[The End of Assistant A's Answer]

1154

1155

[The Start of Assistant B's Answer]

1156

[RESPONSE B]

1157

[The End of Assistant B's Answer]

1158

Please output the generated content in a json format, for example:

1159

{ "reason": // string, reasons behind the chosen preferred answer
 1160 "preferred answer": // string, the preferred answer you selected,
 1161 [[A]] or [[B]] }

1162

Formatted the abovementioned schema and produce the reason and
 1163 preferred answer:

1164

1165

F REAL-WORLD IMPACT ANALYSIS DETAILS

1166

In the real-world impact analysis section, we use the models that appear in both Chatbot Arena and AlpacaEval 2.0 leaderboard, including: GPT-4o-2024-05-13, GPT-4o-mini-2024-07-18, Meta-Llama-3.1-405B-Instruct-bf16, GPT-4-Turbo-2024-04-09, GPT-4-1106-preview, Meta-Llama-3.1-70B-Instruct, Claude 3 Opus, Llama-3-70B-Instruct, Claude 3 Sonnet, Qwen2-72B-Instruct, GPT-4-0314, Meta-Llama-3.1-8B-Instruct, GPT-4-0613, Mistral-Large-2402, Llama-3-8B-Instruct, Command R (04-2024), Mistral Medium, Mixtral-8x22b-Instruct-v0.1, Qwen1.5-72B-Chat, Gemini Pro, Yi-34B-Chat, Mixtral-8x7B-Instruct-v0.1, Qwen1.5-14B-Chat, GPT-3.5-Turbo-0125, DBRX-Instruct-Preview, Tulu-2-DPO-70B, Llama-2-70B-chat, Vicuna-33B, Gemma-1.1-7B-it, OpenHermes-2.5-Mistral-7B, Mistral-7B-Instruct-v0.2, Qwen1.5-7B-Chat, GPT-3.5-Turbo-1106, Llama-2-13b-chat, WizardLM-13b-v1.2, Vicuna-13B, Llama-2-7B-chat, Guanaco-33B, Vicuna-7B, Gemma-2B-it, OpenAssistant-Pythia-12B.

1178

1179

G RECOGNITION ANALYSIS DETAILS

1180

1181

The table below presents the pointwise and pairwise prompts we use for the recognition analysis.

1182

1183

Pointwise Recognition Prompt

1184

Given an instruction and a response, your task is to judge
 1185 whether this response is generated by a model that is trained on
 1186 a synthetic dataset you produced (your student model).

1187

```

1188
1189     ## Instruction: [INSTRUCTION]
1190
1191     ## Response: [Response]
1192
1193     Please output the generated content in a json format, for example:
1194     "reason": // string, reasons behind the judgment "judgment": //
1195     string, whether the answer is generated by your student model,
1196     choose from yes or no
1197
1198     Formatted the abovementioned schema and produce the reason and
1199     judgment:
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

Pairwise Recognition Prompt

Given an instruction and two responses, your task is to judge which response is generated by a model that is trained on a synthetic dataset you produced (your student model).

```
## Instruction: [INSTRUCTION]
```

```
## Response1: [Response 1]
```

```
## Response2: [Response 2]
```

Please output the generated content in a json format, for example:
 "reason": // string, reasons behind the judgment "judgment": //
 int, 1 or 2, means response1 or response2 is from your student
 model

Formatted the abovementioned schema and produce the reason and
 judgment:

For response classification, we split all the response from three student models into training (80%) and testing (20%) subsets. Then, we finetune a BERT-base-uncased model in the training set. The model is trained for 3 epochs with a learning rate of 2e-5, a batch size of 16 for both training and evaluation, and a weight decay of 0.01, with evaluations conducted at the end of each epoch.

H CATEGORY ANALYSIS DETAILS

The tables below present the prompt we use for question type and judgment dimension category analysis.

Question Type Categorization Prompt

Given a question, please categorize it to one of the following categories:

1. Computer Science & Programming
2. Mathematics & Statistics
3. Science & Engineering
4. Business & Finance
5. Writing & Communication
6. Social & Daily Life
7. Others

```
## Question: [QUESTION]
```

1242
 1243 Please output the generated content in a json format, for example:
 1244 { "question category": // string, specific category name, such as
 1245 "Computer Science & Programming" }

1246 Formatted the abovementioned schema and categorize the given
 1247 question:

1249 Judgment Dimension Categorization Prompt

1251 Given a pairwise comparison judgment made by an AI, please
 1252 categorize each considered aspect in the rationale to one of the
 1253 following categories:
 1254 {
 1255 "**Factuality**": "Whether the information provided in the response is
 1256 accurate, based on reliable facts and data.",
 1257 "**User Satisfaction**": "Whether the response meets the user's
 1258 question and needs, and provides a comprehensive and appropriate
 1259 answer to the question.",
 1260 "**Logical Coherence**": "Whether the response maintains overall
 1261 consistency and logical coherence between different sections,
 1262 avoiding self-contradiction.",
 1263 "**Richness**": "Whether the response includes rich info, depth,
 1264 context, diversity, detailed explanations and examples to meet user
 1265 needs and provide a comprehensive understanding.",
 1266 "**Creativity**": "Whether the response is innovative or unique,
 1267 providing novel insights or solutions.",
 1268 "**Fairness and Responsibility**": "Whether the advice or information
 1269 provided in the response is feasible, carries a certain degree of
 1270 responsibility, and considers potential risks and consequences.",
 1271 "**Completeness**": "Whether the response provides sufficient
 1272 information and details to meet the user's needs, and whether it
 1273 avoids omitting important aspects.",
 1274 "**Clarity**": "Whether the response is clear and understandable, and
 1275 whether it uses concise language and structure so that the user can
 1276 easily understand it.",
 1277 "**Others**": "Other aspects which are not listed above."
 1278 }
 1279
 1280 ## Judgment: [JUDGMENT]
 1281
 1282 Please output the generated content in a json format, for example:
 1283 { "Factuality": // list, all aspects that belong to this category,
 1284 such as ["correctness", "mistakes"] ... }

1285 Formatted the abovementioned schema and categorize aspects in the
 1286 judgment:

1289 I BROADER IMPACT

1290 By revealing preference leakage, this work could help build more trustworthy and ethically grounded
 1291 AI systems. The relatedness between data generators and evaluators can systematically bias evaluations,
 1292 potentially compromising the fairness and reliability of the automatic evaluation paradigm.
 1293 These biased evaluations may indirectly affect downstream tasks such as AI alignment and decision-
 1294 making systems, leading to unintended ethical risks. To mitigate preference leakage, we hope that

