
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Preference Leakage: A CONTAMINATION PROBLEM IN
LLM-AS-A-JUDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) as judges and LLM-based data synthesis have
emerged as two fundamental LLM-driven data annotation methods in model devel-
opment. While their combination significantly enhances the efficiency of model
training and evaluation, little attention has been given to the potential contamina-
tion brought by this new model development paradigm. In this work, we expose
preference leakage, a contamination problem in LLM-as-a-judge caused by the
relatedness between the synthetic data generators and LLM-based evaluators. To
study this issue, we first define three common relatednesses between the data
generator LLM and the judge LLM: being the same model, having an inheri-
tance relationship, and belonging to the same model family. Through extensive
experiments, we empirically confirm the bias of judges towards their related stu-
dent models caused by preference leakage across multiple LLM baselines and
benchmarks. Further analysis suggests that preference leakage is a pervasive and
real-world problem that is harder to detect compared to previously identified biases
in LLM-as-a-judge scenarios. All of these findings imply that preference leakage
is a widespread and challenging problem in the area of LLM-as-a-judge.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) Achiam et al. (2023); Jaech et al. (2024);
Tong et al. (2024); Zhang et al. (2024a) have empowered various downstream tasks and applications.
However, this also poses substantial challenges to the automatic evaluation of these models. Represen-
tatively, LLM-based AI agents’ focus transfer from traditional natural language processing tasks Yang
et al. (2023); Zhang et al. (2023) to real-world Liu et al. (2023b); Huang et al. (2023), open-ended
response generation Wu et al. (2024), which greatly limits the applicability of traditional n-gram
matching methods (e.g., BLEU Papineni et al. (2002) and ROUGE Lin (2004)) Liu et al. (2016);
Reiter (2018) or model-based evaluators Zhang et al. (2020); Zhong et al. (2022) for evaluation.

To address these challenges, the paradigm of LLM-as-a-judge Zheng et al. (2023a); Li et al. (2024a);
Jiang et al. (2024a); Zhong et al. (2024); Li et al. (2025) has been proposed, designed to leverage LLM
as evaluators to assess response quality. By combining powerful LLMs with well-designed prompting
strategies, LLM-as-a-judge enables human-like evaluation of long-form and open-ended generation
in a more cost-efficient and scalable manner. However, recent studies point out some weaknesses
of such an assessment. For instance, Ye et al. (2024) explores various biases and vulnerabilities of
LLM-as-a-judge, highlighting the importance of developing a reliable and fair LLM-based evaluation
system.

In this work, we aim to highlight a subtle yet critical bias in LLM-as-a-Judge: Preference Leakage.
This issue arises when the LLMs used for data generation and evaluation are closely related, causing
the preference of the LLM evaluators to leak to the student models through synthetic data and thus
inflating the evaluation score (as illustrated in Figure 1). Synthetic data generated by LLMs Gan
et al. (2023); Tan et al. (2024); Li et al. (2024b;c) has become a cornerstone of model training Lee
et al. (2025). When combined with LLM-as-a-Judge, they offer significant efficiency gains in model
development. However, limited attention has been given to the potential contamination that occurs
when the generator and evaluator LLMs share a close relationship. During our preliminary study,
we find this issue is particularly pervasive in popular LLM-as-a-judge benchmarks (e.g., AlpacaEval
2.0 Dubois et al. (2024) and Arena-Hard Li et al. (2024e)) and LLM-relevant studies (more details

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Evaluation

Testset

Training

Corpus

Data leakage

Train

Training

Corpus
Evaluation

Testset

Evaluate

Data Leakage!

Synthetic

Data
Data

Generator

Trained

Model

Trained

Model

Trained

Model

Judge

Judge

Model

Preference Leakage!

Relatedness

Overlap

LLM for Data

Synthesis

LLM-as-

a-Judge

Preference leakage

Train

(1). Same model

(2). Inheritance

Synthetic

data

(3). Within the

same model family

Synthesize

Figure 1: Overview of preference leakage. We make a comparison between data leakage and
preference leakage and present three types of relatedness: being the same model, having an inheritance
relationship and belonging to the same model family.

can be found in Appendix B), due to the common reliance on the most advanced LLMs, such as
GPT-4 Achiam et al. (2023), for both data synthesis and evaluation to ensure the highest quality
outputs. In our work, we reveal this relatedness—akin to the overlap between training data and
evaluation sets in traditional data contamination—would introduce a systematic bias of judge LLMs
towards their related student models (i.e., the model distilled by the data generator which is related to
the judge). Compared to other biases in LLM-as-a-Judge, such as length bias or egocentric bias Ye
et al. (2024); Panickssery et al. (2024), preference leakage is subtler and more challenging to detect,
especially given that most LLMs do not disclose their training data.

To investigate and reveal the preference leakage problem, we first define three relatednesses between
data generator LLM and judge LLM: being the same model, having an inheritance relationship, and
belonging to the same model family. Each of these scenarios is commonly encountered in real-world
applications. Then, we pose and answer three core research questions about preference leakage:

• RQ1: Does preference leakage introduce systematic biases in LLM-based evaluation? To
answer it, we conduct experiments with various LLM baselines in two widely recognized LLM-as-
a-judge benchmarks, also introduce the preference leakage score to quantify the bias caused by
preference leakage. The analysis results suggest an obvious bias of judging LLMs toward their
related student models due to preference leakage.

• RQ2: What is the severity of preference leakage under various scenarios? We conduct
experiments under various data mixing strategies, relatedness settings, tuning techniques and
real-world applications to address it, finding that preference leakage consistently affects judge
LLMs. Moreover, the severity of preference leakage correlates with the degree of relatedness
between the data generator and LLM judges, as well as the proportion of synthetic data.

• RQ3: What are the underlying mechanisms causing preference leakage? For this question,
we analyze LLMs’ recognition capabilities on their related student models’ generation as well as
the distribution of bias across different question types and judgment dimensions. The analysis
reveals that preference leakage is a subtle, hard-to-detect issue for the LLM evaluators, particularly
affecting subjective questions and judgment dimensions.

To summarize, our contributions in this work are as follows:

• For the first time, we introduce preference leakage, a contamination issue arising from the related-
ness between the data generator and judge LLMs.

• We conduct extensive experiments across various LLMs and benchmarks to study how and to what
extent the potential bias brought by preference leakage influences judgment.

• Our further analysis reveals that preference leakage is prevalent in diverse scenarios and difficult
for judge LLMs to detect, providing valuable insights for future research on this challenging issue.

2 RELATED WORK

LLM-as-a-Judge. LLM-as-a-Judge, introduced by Zheng et al. (2023a), leverages LLMs to auto-
matically evaluate responses and assign rewards. This approach has gained widespread adoption in
areas such as model alignment Zhang et al. (2024d) and benchmarking Liu et al. (2023a); Zhang et al.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(2024b); Gao et al. (2023); Zhong et al. (2024), driving significant progress in the field. Building on
this concept, Zhuge et al. (2024) proposed Agent-as-a-Judge, where agentic systems are employed to
evaluate other agentic systems. Additionally, Prometheus, a series of open-source LLMs tailored for
LLM-as-a-Judge Kim et al. (2023; 2024), addresses the prohibitive costs associated with proprietary
models, further democratizing the technology.

Despite its promising potential, recent studies have highlighted the vulnerabilities and biases of
LLM-as-a-Judge Zheng et al. (2023a); Ye et al. (2024); Koo et al. (2023); Chen et al. (2024); Zheng
et al. (2023a); Huang et al. (2024); Thakur et al. (2024); Shi et al. (2024). Among these, egocentric
bias, where LLM evaluators tend to favor their generations Koo et al. (2024); Liu et al. (2024b);
Wataoka et al. (2024); Xu et al. (2024b); Rando et al. (2025); Panickssery et al. (2024); Chen et al.
(2025), is most closely related to the preference leakage proposed in this work.

However, in contrast to the relatively straightforward setting of egocentric bias, preference leakage
presents a more complex and dynamic challenge. It can arise from various types of relatedness
between data-generating and evaluating LLMs, as well as the intricate flow of synthetic data among
modern LLMs Tan et al. (2024). Moreover, detecting preference leakage is also more challenging,
given LLMs often do not disclose their training data and the difficulty in distillation quantifica-
tion Wadhwa et al. (2025); Lee et al. (2025).

Data Leakage. The possible overlap between training data and evaluation benchmarks has become a
central issue, since LLMs are usually trained on extensive web corpora Dodge et al. (2021). This
phenomenon, known as data leakage, can artificially improve the performance of LLMs and under-
mine the reliability of the assessment Deng et al. (2024a); Jiang et al. (2024b). Several researchers
have proposed methods to detect and mitigate data contamination. Deng et al. (2024b) proposed a
retrieval-based approach to assess the degree of overlap between pre-training text and benchmark
data. Golchin & Surdeanu (2023) have developed “guided instruction” to flag contaminated instances.
Dong et al. (2024b) proposed the CDD method to identify peaks in the output distribution to detect
data contamination. Several studies analyze data leakage for specific LLMs Balloccu et al. (2024);
Xu et al. (2024a) and report contamination such as cross-language contamination Yao et al. (2024)
and task contamination Li & Flanigan (2024) that can evade traditional detection methods. To address
data contamination issues, Ni et al. (2024) have used web user query detection and benchmark
mixture. White et al. (2024) use the most recent information to update the problem.

3 PREFERENCE LEAKAGE

3.1 LLMS AS ORACLES: A NEW AVENUE FOR CONTAMINATION

With the advent of LLMs, these models are increasingly employed as “oracles” in various scenarios:
for both synthetic data generation (MG) and employed as evaluators (MJ) to automate the assess-
ment. While these approaches enhance scalability and efficiency, they also introduce potential risks.
Specifically, if the LLM used for data generation (MG) and the LLM used for evaluation (MJ) are not
independent, a new contamination—preference leakage—can emerge, biasing evaluation outcomes.

3.2 DEFINING PREFERENCE LEAKAGE IN LLM-BASED EVALUATION

Formally, to define preference leakage, we consider the following entities in models development:

• Data Generator LLM, MG, defining a conditional distribution PMG
(y|x) for generating an output

y given a prompt x, forming the synthetic dataset Dsyn for student LLMs training.
• Student LLM, MS , trained on data generated by MG, producing an output distribution PMS

(y|x).
• Judge LLM, MJ , providing a scoring function SMJ

(y|x) that assesses output y for prompt x.

Preference leakage occurs when the evaluation score assigned by MJ to MS’s outputs is inflated due
to an underlying relatedness between MG and MJ . This implies that MJ may favor outputs from
MS not solely based on their intrinsic quality, but because they exhibit spurious features (e.g., style,
format, wording) inherited from MG, to which MJ is predisposed due to this relatedness:

Ex,yS∼PMS
[SMJ

(yS |x)|MG ∼rel MJ] > Ex,yS∼PMS
[SMJ′ (yS |x)|MG ̸∼rel MJ′], (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where yS are outputs from MS . The relation MG ∼rel MJ denotes that judge MJ is related to
MG, while MG ̸∼rel MJ′ denotes that an alternative judge MJ′ is not related to MG and possess
comparable intrinsic quality assessment capabilities to MJ . The expectation is taken over the input
distribution X and the trained Student LLM’s output distribution PMS

.

3.3 TYPE OF LLM “RELATEDNESS”

The condition MG ∼rel MJ in Equation 1 encapsulates several ways the Data Generator LLM and
Judge LLM can be interconnected. We identify three common types in the real world:

• Being the Same Model: The most direct form of relatedness occurs when the Data Generator
LLM and the Judge LLM are the exact same model instance:

MG ≡MJ . (2)

In this scenario, the inherent preferences in the model that shape its generative distribution
PMG

(y|x) are precisely the same as those guiding its evaluation via the scoring function SMG
(y|x).

• Inheritance Relationship: One model’s development is directly based on another, either by
fine-tuning the existing model or by training a new model on the other’s outputs, for instance:

MJ ← FineTune(MG, Dtrain) or MJ ← FineTune(Mbase, DsynG
), (3)

where Dtrain represents general training data used to adapt MG into MJ , Mbase is a base model,
and DsynG

denotes synthetic data generated by MG. This type of relationship is bidirectional; MG

can similarly inherit from MJ through analogous processes. In such cases, the descendant model is
likely to internalize and thus favor the preferences, styles, or biases of its progenitor.

• Within the Same Model Family: The Data Generator LLM MG and Judge LLM MJ belong
to the same model family (e.g., different versions or sizes of GPT). Models within such a family
typically share a common architectural blueprint (AX) and are often developed from foundational
models pre-trained on substantially overlapping datasets (DX). This shared foundation (AX , DX)
would lead to correlated preferences and systemic biases characteristic of the common origin:

Mk ∈ Family(AX , DX) for k ∈ {G, J}. (4)

4 MAIN EXPERIMENT

4.1 EXPERIMENT SETUP

Models. We choose three powerful LLMs as data generator/ judge models. They are GPT-4o-2024-
11-20 Achiam et al. (2023), Gemini-1.5-flash Team et al. (2024), and LLaMA-3.3-70B-Instruct-
turbo Dubey et al. (2024). For the student model, we choose Mistral-7B-v0.1 Jiang et al. (2023)
and Qwen-2.5-14B Yang et al. (2024). To avoid potential preference leakage due to distilling data
from other LLMs during the instruction-tuning process, we choose to use the -PRE-TRAINED version
rather than the -INSTRUCT version of these student models.

Evaluation Datasets. We choose two representative pairwise evaluation datasets, Arena-Hard Li et al.
(2024e) and AlpacaEval 2.0 Dubois et al. (2024), to evaluate the trained student models. Arena-Hard
includes 500 challenging questions in English. Additionally, the evaluation agreement between
Arena-Hard and Chatbot Arena Zheng et al. (2023a)’s hard prompts achieved a 96.7% Spearman
correlation, demonstrating the consistency of Arena-Hard with human preferences Li et al. (2024e).
AlpacaEval 2.0 is an improved evaluation method based on AlpacaEval Li et al. (2023) and contains
805 questions. Compared to version 1.0, AlpacaEval 2.0 significantly reduces the effect of text length
on the evaluation results.

Implementation Details. In our main experiment, we examine the preference leakage introduced
by using the same data generator and evaluator in supervised fine-tuning (SFT). We will discuss
other relatedness and learning methods in Section 5. To obtain synthetic datasets, We first randomly
sample 30,000 prompts from the Ultrafeedback dataset Cui et al. (2024). The Ultrafeedback dataset
includes instructions from several publicly available high-quality datasets such as TruthfulQA Lin
et al. (2022), FalseQA Hu et al. (2023), and Evol-Instruct Xu et al. (2023). For each data generator
model, we provide these prompts for them to produce synthetic responses, resulting in three synthetic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

instruction datasets. We then use each dataset to supervised fine-tune the student model, obtaining
three different versions for each baseline: Mistral/ Qwen-GPT-4o, Mistral/ Qwen-Gemini-1.5 and
Mistral/ Qwen-LLaMA-3.3. After that, we pair each two student models and obtain three model pairs.
For each model pair, we perform the pairwise comparison using the three judge models respectively.

Metrics Based on our hypothesis, preference leakage would lead to bias of judge LLMs towards their
related student models. Following this principle, we design the preference leakage score PLS(i, j) to
measure the bias in model pair (i, j) caused by preference leakage:

PLS(i, j) =

(
WR(i,i)−AVG(i,j)

AVG(i,j)

)
+

(
WR(j,j)−AVG(j,i)

AVG(j,i)

)
2

, (5)

AVG(i, j) =
WR(i, i) + WR(i, j)

2
. (6)

Here WR(i, j) represents the win-rate score from judge model j to student model i. Intuitively, a
large preference leakage score indicates that the two judge models demonstrate strong bias toward
their related student models, suggesting a significant preference leakage phenomenon.

The main experiments in Section 4 and the mitigation analyses in Sections 5.4 and 5.7 are designed for
complementary purposes. The main experiments focus on controlled and interpretable measurement
of preference leakage itself—quantifying the phenomenon across models and conditions while
minimizing confounding factors such as human labeling noise. In contrast, the mitigation analyses
prioritize realism and external validity, using human-labeled benchmarks (e.g., PPE, MT-Bench) and
metrics such as Ranking Difference and Error Bias. Since these setups involve labeled data rather
than automatically computed PLS, they serve as realistic extensions that test mitigation feasibility in
practical “LLM-as-a-judge” scenarios.

More details about model training and metric explanation can be found in Appendix C.

Table 1: Preference leakage score result on Arena-Hard and AlpacaEval 2.0. The blue background
indicates a negative preference leakage score value and the purple background indicates a positive
value. The deeper the color, the larger the absolute value.

Model Data Generator/ Judge Pair Arena-Hard AlpacaEval 2.0 Avg.
GPT-4o & Gemini-1.5 28.7% 18.4% 23.6%
GPT-4o & LLaMA-3.3 -1.5% 1.4% -0.1%Mistral-7B
LLaMA-3.3 & Gemini-1.5 13.1% 19.8% 16.4%
GPT-4o & Gemini-1.5 37.1% 18.6% 27.9%
GPT-4o & LLaMA-3.3 1.0% 2.3% 1.7%Qwen-2.5-14B
LLaMA-3.3 & Gemini-1.5 25.4% 18.4% 21.9%

4.2 MAIN RESULTS

In our main experiment, we aim to provide insights into RQ1.

Preference leakage exists in most model pairs. The original judgment results from Arena-Hard
and AlpacaEval 2.0, along with the calculated preference leakage scores, are shown in Table 1. As
the results demonstrate, in most model pairs (except Mistral-GPT-4o vs Mistral-LLaMA-3.3 and
Qwen-GPT-4o vs Qwen-LLaMA-3.3), the judge LLMs exhibit a strong preference toward their
related student models, leading to large positive values in the preference leakage scores. This finding
suggests that preference leakage, along with the resulting bias, is widespread in SFT when the data
generator and evaluator are the same.

Smaller student models cause even more bias from judge LLMs. To investigate the impact of
student model size on the degree of preference leakage, we conduct additional experiments using
various sizes of the LLaMA-3, Qwen-2.5 and Qwen-3 models. As shown in Figure 4.2 (a), a notable
finding is that the smallest models (LLaMA-3-1B, Qwen-2.5-3B and Qwen-3-1.7B) exhibit the
highest PL scores than their larger counterparts, indicating greater bias from preference leakage.
This trend contrasts with the influence of model size in data contamination, where larger models
are typically more susceptible Bordt et al. (2024). We assume that this gap arises from the differing

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

learning capabilities and behaviors of large and small LLMs: while larger models are more prone
to memorizing Duan et al. (2024) information that exacerbates data contamination. Compared with
them, smaller models may only be able to learn those spurious features that repeatedly occurs (e.g.,
format), leading to more serious preference leakage.

Different benchmarks result in varying degrees of bias under preference leakage. Another
observation from Table 1 and Figure 4.2 (a) is that the PL scores in ArenaHard are generally higher
than those in AlpacaEval 2.0. One possible explanation is the difference in question difficulty between
the two benchmarks, as ArenaHard contains more challenging questions. Additionally, it may also
stem from differences in the distribution of question types, the impact of which on preference leakage
will be further analyzed in Section 5.6.

2 4 6 8 10 12 14
Model Size (B)

22

24

26

28

30

32

34

36

Av
er

ag
e

PL
S

(%
)

Model Family
LLaMA-3
Qwen-2.5
Qwen-3

(a) PLS on models with various sizes. We conduct
the experiment with GPT-4o and Gemini as data
generators and judges.

20 40 60 80 100
Contamination Ratio (%)

0

5

10

15

20

25

30

Pr
ef

er
en

ce
 L

ea
ka

ge
 S

co
re

 (%
)

AlpacaEval2.0 - Manual
ArenaHard - Manual
AlpacaEval2.0 - Synthetic
ArenaHard - Synthetic

(b) Experiment results on data mixing. ‘Manual’ and
‘Synthetic represent mixing with manually-written data
and other synthetic data, respectively.

Figure 2: Experiment results on additional models and data mixing settings.

5 FURTHER ANALYSIS

In this section, we conduct data mixing analysis, relatedness analysis, learning method analysis, and
real-world impact analysis (Section 5.1 - 5.4) to answer RQ2. Due to the cost consideration, we
conduct these analyses on Mistral-GPT-4o vs Mistral-Gemini-1.5. Moreover, we perform recognition
analysis and category analysis to answer RQ3. Additionally, we also benchmark and explore various
calibration methods to address preference leakage in Section 5.8.

5.1 DATA MIXING ANALYSIS

In real-world applications, synthetic data from a single LLM is often mixed with manually-written
data or other multi-source synthetic data to train student models. To mimic these scenarios and
explore how much synthetic data could lead to preference leakage, we conduct a data mixing analysis.
Specifically, we randomly sample 10%, 30%, 50%, and 70% from the original synthetic dataset and
mix it with manually-written data and multi-source synthetic data, respectively, in order to maintain a
consistent total volume of training data (30,000). For the manually-written data, we sample from the
data pool collected in Section 5.3. For the multi-source synthetic data, we use the original synthetic
data from Ultrafeedback, which includes responses generated by various LLMs (e.g., WizardLM,
Flcon, etc.). After obtaining the mixing training data, we train the student models using SFT and
calculate their preference leakage scores based on the judgment results. Figure 4.2 (b) presents the
results with two mixing strategies across two benchmarks.

The degree of preference leakage is directly proportional to the amount of synthetic data. We
observe a strong correlation between the proportion of synthetic data in the mixture and the preference
leakage score, with no clear threshold separating cases with preference leakage from those without.
This suggests that preference leakage can occur even with a small amount of leaked synthetic data,
posing significant challenges for its detection.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 RELATEDNESS ANALYSIS

We demonstrate the impact of different relatedness conditions between the data generator and the
judge LLM on the preference leakage problem, as shown in Table 2.

Preference leakage under inheritance settings causes obvious bias of judges towards their
related students. For the inheritance relationship, we consider the situation where the data generator
is inherited from the judge model. We conducted the following two experiments: (1). we give the
same instructions again as in the SFT stage (Inheritance w/ same ins.), or (2). we sample the same
number of different instructions from the Ultrafeedback (Inherence w/ different ins.). Then, we let the
fine-tuned Mistral model generate the answers and use these generated data to fine-tune a new Mistral
student model. From the results, with the same instructions, the average preference leakage score is
19.3%. In comparison, the score with different instructions is 22.3%. Firstly, in an inheritance setting,
data generators can inherit judges’ preferences, which are then passed on to new student models,
thereby compromising the fairness of their evaluation. Second, even when different instructions are
used, judges’ preferences leaked to data generators can still be transferred to the new student model
through synthetic data, leading to a high preference leakage score.

Table 2: Preference leakage score in different relat-
edness between the data generator and the judging
LLM.

Arena-Hard AlpacaEval 2.0 Avg.
Same Model 28.7% 18.4% 23.6%
Inheritance
- w/ same ins. 17.8% 20.7% 19.3%

Inheritance
- w/ different ins. 18.3% 26.3% 22.3%

Same Family
- w/ same series 10.1% 7.6% 8.9%

Same Family
- w/ different series 3.3% 2.2% 2.8%

Models within the same series tend to cause
more significant bias. For two models within
the same family, we consider two settings: (1)
Same series, where training data is generated
by GPT-4o and Gemini-1.5-flash, and judged
by GPT-4-turbo and Gemini-1.5-pro; (2) Differ-
ent series, where training data is still generated
by GPT-4o and Gemini-1.5-flash, but judged by
GPT-3.5-turbo and Gemini-1.0-pro. In the same
series setting, the average preference leakage
score is 8.9%, indicating that despite using dif-
ferent models for data generation and judgment,
their relatedness in terms of model family leads to some preference leakage. In contrast, the dif-
ferent series setting yields a significantly lower leakage score of 2.8%, likely due to differences
in architecture, training data, and other factors, reducing the influence of model-related biases in
evaluation.

5.3 LEARNING METHOD ANALYSIS

Table 3: Preference leakage score in different learn-
ing methods.

Arena-Hard AlpacaEval 2.0 Avg.
SFT 28.7% 18.4% 23.6%
DPO 7.7% 2.7% 5.2%
ICL -4.2% -1.1% -2.7%

We also compare three learning methods, super-
vised fine-tuning (SFT), direct preference op-
timization (DPO) Rafailov et al. (2024), and
in-context learning (ICL) Dong et al. (2024a),
to explore the different influences to them under
preference leakage. We first build a data pool
based on human-written instruction-tuning data
from OASST Köpf et al. (2024), LIMA Zhou et al. (2024), and MOSS Sun et al. (2024b) to super-
vised fine-tune the pre-trained model. For DPO, we sample 2 responses for each instruction from
sampled UltraFeedback instruction and prompt each data generator to produce the pairwise feedback.
Then we use the DPO loss to further train the fine-tuned policy on each synthetic pairwise dataset.
Appendix E shows the prompt we use to craft synthetic pairwise feedback. For ICL, we sample 4
instruction-response pairs from each LLMs’ synthetic dataset as the demonstration during inference.

Tuning approaches would leak judges’ preference to the student models. Various learning
methods show significant differences in preference leakage scores across learning methods. SFT
exhibits the highest average leakage score at 23.6%. In contrast, DPO achieves a much lower score of
5.2%, which is consistent with previous studies in data contamination that pairwise optimization can
reduce the risk of memorizing or contaminating sensitive training data compared to straightforward
supervised fine-tuning Hayes et al.. Meanwhile, ICL, which relies on contextual examples without
model tuning, is least affected by the data generator’s preferences, resulting in the lowest leakage
scores.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.4 REAL-WORLD IMPACT ANALYSIS

Table 4: Impact analysis of preference leakage in real-world LLM-as-a-Judge leaderboards. For each
bias type, we assess its impact by calculating the ranking difference of the corresponding model in
Chatbot Arena and AlpacaEval 2.0, obtained by subtracting the ranking in AlpacaEval 2.0 from that
in Chatbot Arena. A larger positive ranking difference indicates AlpacaEval 2.0 ranks the target
models in higher positions, denoting a greater impact of the corresponding bias.

Bias Type Evaluator Target Models Ranking Difference
Egocentric Bias

GPT-4 Preview
GPT-4 Preview 1.00

Preference Leakage Vicuna 7B/ 13B/ 33B 1.33

In this section, we investigate the impact of preference leakage in real-world LLM-as-a-Judge leader-
boards. While broader leaderboard coverage would enhance external validity, few student–teacher
(distillation) pairs are publicly documented, and most leaderboards lack the metadata needed for
controlled cross-model comparisons. Moreover, re-evaluating all leaderboard entries with alternate
judges would be computationally prohibitive at the current scale. Therefore, we focus on AlpacaEval
and LMArena as interpretable case studies and leave large-scale multi-judge re-evaluations for future
work. To quantify the effect of each bias type, we calculate the ranking difference of each target
model in Chatbot Arena and AlpacaEval 2.0.

As shown in Table 4, both egocentric bias and preference leakage result in a positive ranking
difference, indicating that both lead to evaluator bias favoring the target models. Notably, the ranking
difference associated with preference leakage is even higher than that of egocentric bias, highlighting
the substantial impact of preference leakage on real-world LLM-as-a-Judge leaderboards.

5.5 CAN JUDGES RECOGNIZE STUDENT MODELS?

Table 5: Student recognition (binary classifica-
tion) and response classification results (three-class
classification). SR: Student Recognition, RC: Re-
sponse Classification.

Task Model Accuracy

Pointwise Pairwise

SR
GPT-4o 41.0% 52.0%

Gemini-1.5 53.2% 44.2%
LLaMA-3.3 41.8% 29.8%

RC BERT 82.4%

Previous studies demonstrate the LLM judges
can recognize and thus prefer their own gener-
ation Panickssery et al. (2024). In this work, we
pose a similar question: Does preference leak-
age also source from the LLM judges’ recog-
nition of their related student models’ genera-
tion? To study this, we follow Panickssery et al.
(2024) to prompt the three judge LLMs and test
whether they could recognize their related stu-
dent models’ generation. Additionally, we split
three student models’ generation into training
and testing sets, and train a BERT classifier to
perform a three-class classification inspired by
the previous study on detecting human-AI text
Zhang et al. (2024c). For student recognition,

we follow Panickssery et al. (2024) to use both pointwise and pairwise settings. Due to the space
limitation, more detailed prompting and training settings can be found in Appendix G.

Judge LLMs do not show good performance in recognizing the generation of their student
models. As the result presented in Table 5, we find that the recognition performance of each judge
LLM in the content of related students is poor, with accuracy around the performance of random
guess. This suggests that preference leakage is subtler and harder-to-detect for judge LLMs, in
contrast to the more obvious egocentric bias.

Certain features embedded in student models through synthetic data. Although judge LLMs
do not perform well in related student recognition, we notice the fine-tuned BERT classification
demonstrates a high accuracy score in classifier responses generated by each student model. This
suggests that certain characteristics—such as style and format—are embedded in the student models
through the synthetic responses. This finding further supports the existence of preference leakage and
lays the groundwork for future research aimed at detecting and preventing it. For example, an external
detector estimating model-relatedness could provide an auxiliary confidence signal to calibrate or
penalize biased judgments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.6 IMPACT ON QUESTION TYPE & JUDGMENT DIMENSION

Math
em

ati
cs

Busi
ne

ss

Daily
 Lif

e

Sci
en

ce
Writi

ng
Othe

rs

Pro
gra

mming
0

10

20

30
Pr

ef
er

en
ce

 L
ea

ka
ge

 S
co

re
 (%

)

7.7

16.5 17.2 17.3
21.0

23.8

31.4

(a) Question Type
Com

ple
ten

ess
Clar

ity

Rich
ne

ss

Sa
tisf

act
ion

Fac
tua

lity

Log
ica

l

Othe
rs

Crea
tiv

ity

Fai
rne

ss
20

24

28

32

Pr
ef

er
en

ce
 L

ea
ka

ge
 S

co
re

 (%
)

27.9
28.6 28.8 29.0 29.2

30.2 30.4 30.7
32.4

(b) Judgment dimension

Figure 3: Category analysis results on question type and judgment dimension.

In this section, we explore the impact of preference leakage across various question types and
judgment dimensions. For the question type analysis, we first propose several general question types
based on the question clusters introduced by Arena-Hard. Then, we prompt GPT-4o to map each
question in Arena-Hard and AlpacaEval to one of the question types and calculate the preference
leakage score for each question category. For the judgment dimension analysis, we follow the
judgment dimensions introduced by Liu et al. (2023a) and also utilize GPT-4o to map the rationale
generated by judge LLMs to one or multiple judgment dimensions. More detailed prompt can be
found in Appendix H. The analysis results are presented in Figure 3.

Subjective question and judgment dimension tend to lead to more bias. For question type analysis,
we find objective questions with a definitive answer, like mathematical ones, demonstrate the least
preference leakage. By contrast, subjective questions that have more than one standard answer, such
as programming and writing, usually lead to a more obvious preference leakage. This observation
is also applied to judgment dimension analysis, as objective dimensions (like completeness) have
an overall lower leakage degree compared with subjective ones (like fairness). This suggests that
preference leakage tends to be more significant in objective questions and dimensions, where the
contaminated model is more likely to receive biased preference.

5.7 EFFECT OF SPURIOUS FEATURES ON PREFERENCE LEAKAGE

Table 6: Effect of removing spurious features on the PLS. We consider style, format and wording as
potential spurious features in this analysis.

Setting GPT & Gemini GPT & LLaMA LLaMA & Gemini
Baseline 17.5% 2.3% 18.8%
– w/o style 9.0% 3.3% 14.6%
– w/o format 9.8% 1.9% 14.5%
– w/o wording 11.2% 2.4% 18.2%

To further validate that spurious stylistic or formatting cues contribute to preference leakage, we
conduct an additional ablation experiment focusing on three major feature categories: style, format,
and wording. Using the Qwen-3-8B model as the rewriting model, we apply a paraphrasing pipeline
to selectively remove each type of spurious feature from model responses before evaluation. Because
Gemini-1.5 is no longer available, we employ Gemini-2.0 as the judge model. The rewriting process
ensures that the semantic content of each response remains intact while selectively neutralizing
surface-level artifacts such as syntactic rhythm, punctuation patterns, and lexical framing cues. By
isolating these variables, the experiment provides a more direct lens into how superficial similarity
between generator and judge responses shapes preference leakage.

The resulting Preference Leakage Scores (PLS) are reported in Table 6. We observe notable reductions
in PLS for the two model pairs that originally exhibited the strongest leakage (GPT & Gemini,
LLaMA & Gemini), confirming that removing spurious stylistic alignment substantially mitigates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

bias. Among the three feature types, eliminating style and format yields the largest decrease in leakage,
suggesting that judges tend to rely heavily on stylistic regularities—such as tone consistency, sentence
cadence, and punctuation density—when forming preference judgments. In contrast, removing
wording-level features (e.g., synonym substitution or phrase order changes) produces only minor
improvements, implying that lexical similarity alone is not the dominant driver. Interestingly, the
magnitude of reduction varies across judge families: GPT-based judges appear especially responsive
to stylistic coherence, while LLaMA-based judges are more influenced by formatting regularity.
This diversity in sensitivity indicates that each model family has distinct perceptual priors about
linguistic structure, which can amplify different forms of spurious correlation. Overall, these findings
empirically substantiate our mechanistic explanation that stylistic and formatting artifacts embedded
in student models act as hidden conduits for preference leakage, shaping judge behavior through
subtle surface-level mimicry rather than semantic alignment.

5.8 EXPLORING MITIGATION METHOD FOR PREFERENCE LEAKAGE

Table 7: Error Bias with various mitigation
methods (lower is better).

Method Error Bias

Base 17.8
+ Prompting 18.3
+ Chain-of-Thought 15.6
+ Paraphrase 18.7
+ Auto Calibration 20.7
+ Contextual Calibration 7.3

To benchmark and explore mitigation methods for
preference leakage, we collected human-labeled pair-
wise judgments from several reward benchmarks, in-
cluding PPE Perez et al. (2022), MTBench Zheng
et al. (2023b), and Human Preference Chiang et al.
(2024). Using GPT-4 as the target model, we selected
samples in which one of the responses was gener-
ated by GPT-4’s related student (e.g., Vicuna, Al-
paca). We then tested several mitigation methods on
this dataset, including prompting, chain-of-thought
(CoT), paraphrasing, auto-calibration, and contextual calibration. The explored mitigation strategies
can be grouped into two complementary layers: (i) Input- or reasoning-level debiasing (prompting,
CoT, paraphrasing) that modifies inputs or reasoning chains; and (ii) Output-level calibration (auto-
or contextual calibration) that adjusts scores post-hoc. We further propose a new metric, Error Bias,
based on human-labeled judgments: ErrorBias = Ntarget-prefer-other-win

Nother-win
− Nother-prefer-target-win

Ntarget-win
. Intuitively, this

metric quantifies the difference between target-preferred errors and other-preferred errors; a value
close to 0 indicates that preference leakage is mitigated. Our preliminary results show that contextual
calibration with an additional held-out set for bias adjustment is the most effective, reducing Error
Bias from 17.8 to 7.3. We provide a more detailed explanation about each method in Appendix C.4.

6 CONCLUSION AND DISCUSSION

In this work, we formally highlight the preference leakage problem in LLM-as-a-judge systems.
The results of our main experiment, measured using the proposed preference leakage score, reveal
a clear bias in each judge toward their respective student model. We also observe that this bias is
more pronounced in certain question types and smaller student models. Furthermore, we conduct
additional analysis on various factors, including the relationship between the data generator and judge
LLMs, model tuning techniques, data mixing strategies, and real-world applications. Our findings
suggest that preference leakage can cause significant bias across diverse scenarios. Finally, through
recognition and category analyses, we investigate the underlying mechanisms of preference leakage,
demonstrating that it is a challenging and hard-to-detect issue, especially in subjective questions and
judgment dimensions.

Looking ahead, we aim to extend this study in several directions. Future research will explore
more comprehensive and diverse LLM ecosystems to assess whether preference leakage generalizes
across architectures, training pipelines, and organizational boundaries. Expanding evaluation to
new domains—such as affective or context-sensitive reasoning tasks—may help reveal additional
behavioral dimensions of leakage. We also plan to investigate detection and mitigation strategies that
combine representation-level signals, multi-agent judgment frameworks, and adaptive calibration
to enhance robustness. Broadly, we envision this line of work contributing to a more systematic
understanding of how inter-model relationships influence evaluation reliability, ultimately guiding
the design of fairer and more transparent LLM-as-a-judge systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. No private, sensitive, or personally identifiable data are
involved. Our work does not raise foreseeable ethical concerns or produce harmful societal outcomes.

REPRODUCIBILITY STATEMENT

Reproducibility is central to our work. All datasets used in our experiments are standard benchmarks
that are publicly available. We provide full details of the training setup, model architectures, and
evaluation metrics in the main paper and appendix. Upon acceptance, we will release our codebase,
including scripts for preprocessing, training, and evaluation, along with configuration files and
documentation to facilitate exact reproduction of our results. Random seeds and hyperparameters
will also be included to further ensure reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
ArXiv preprint, abs/2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, repeat:
Data contamination and evaluation malpractices in closed-source llms. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 67–93, 2024.

Sebastian Bordt, Harsha Nori, and Rich Caruana. Elephants never forget: Testing language models for
memorization of tabular data. In NeurIPS 2023 Second Table Representation Learning Workshop,
2024.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or llms as
the judge? a study on judgement biases. arXiv preprint arXiv:2402.10669, 2024.

Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
for a reason? arXiv preprint arXiv:2504.03846, 2025.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine Learning, 2024.

Chunyuan Deng, Yilun Zhao, Yuzhao Heng, Yitong Li, Jiannan Cao, Xiangru Tang, and Arman
Cohan. Unveiling the spectrum of data contamination in language models: A survey from detection
to remediation. arXiv preprint arXiv:2406.14644, 2024a.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data
contamination in modern benchmarks for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 8698–8711, 2024b.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 1286–1305, 2021.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 1107–1128, 2024a.

11

https://arxiv.org/abs/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. arXiv
preprint arXiv:2402.15938, 2024b.

Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ila R Fiete. Uncovering latent
memories: Assessing data leakage and memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Ruyi Gan, Ziwei Wu, Renliang Sun, Junyu Lu, Xiaojun Wu, Dixiang Zhang, Kunhao Pan, Ping
Yang, Qi Yang, Jiaxing Zhang, et al. Ziya2: Data-centric learning is all llms need. arXiv preprint
arXiv:2311.03301, 2023.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Shiping Yang, and Xiaojun Wan. Human-like
summarization evaluation with chatgpt. arXiv preprint arXiv:2304.02554, 2023.

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

Jamie Hayes, Ilia Shumailov, William P Porter, and Aneesh Pappu. Measuring memorization in rlhf
for code completion. In The Thirteenth International Conference on Learning Representations.

Shengding Hu, Yifan Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, and Maosong Sun. Won’t get
fooled again: Answering questions with false premises. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5626–5643, 2023.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang,
Wenhan Lyu, Yixuan Zhang, et al. Position: Trustllm: Trustworthiness in large language models.
In International Conference on Machine Learning, pp. 20166–20270. PMLR, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bohan Jiang, Dawei Li, Zhen Tan, Xinyi Zhou, Ashwin Rao, Kristina Lerman, H Russell Bernard,
and Huan Liu. Assessing the impact of conspiracy theories using large language models. arXiv
preprint arXiv:2412.07019, 2024a.

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
Koyejo. Investigating data contamination for pre-training language models. arXiv preprint
arXiv:2401.06059, 2024b.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
uation capability in language models. In The Twelfth International Conference on Learning
Representations, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop Kang. Bench-
marking cognitive biases in large language models as evaluators. arXiv preprint arXiv:2309.17012,
2023.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop Kang.
Benchmarking cognitive biases in large language models as evaluators. In ACL (Findings), 2024.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling rein-
forcement learning from human feedback with ai feedback. In Forty-first International Conference
on Machine Learning, 2024.

Sunbowen Lee, Junting Zhou, Chang Ao, Kaige Li, Xinrun Du, Sirui He, Jiaheng Liu, Min Yang,
Zhoufutu Wen, and Shiwen Ni. Distillation quantification for large language models. arXiv
preprint arXiv:2501.12619, 2025.

Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot
anymore. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18471–18480, 2024.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
Opportunities and challenges of llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024a.

Dawei Li, Zhen Tan, Tianlong Chen, and Huan Liu. Contextualization distillation from large language
model for knowledge graph completion. arXiv preprint arXiv:2402.01729, 2024b.

Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sunkwon Yun, Joseph Lee, Aaron Chacko, Bojian
Hou, Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to answer
alzheimer’s disease questions with scientific literature. arXiv preprint arXiv:2405.04819, 2024c.

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A
data-centric perspective. ACM SIGKDD Explorations Newsletter, 26(2):44–53, 2025.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-
tuning: Student-selected data recycling for llm instruction-tuning. arXiv preprint arXiv:2402.10110,
2024d.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024e.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. How
NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics
for dialogue response generation. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2122–2132,
Austin, Texas, 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1230.
URL https://aclanthology.org/D16-1230.

13

https://aclanthology.org/D16-1230

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024a.

Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng, Pei Ke,
Yifan Xu, Weng Lam Tam, et al. Alignbench: Benchmarking chinese alignment of large language
models. arXiv preprint arXiv:2311.18743, 2023a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023b.

Yiqi Liu, Nafise Sadat Moosavi, and Chenghua Lin. Llms as narcissistic evaluators: When ego
inflates evaluation scores. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 12688–12701, 2024b.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and
Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. arXiv preprint
arXiv:2406.06565, 2024.

Arjun Panickssery, Samuel R Bowman, and Shi Feng. Llm evaluators recognize and favor their own
generations. arXiv preprint arXiv:2404.13076, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Ethan Perez et al. Ppe: Pairwise preference evaluation benchmark for large language models, 2022.
URL https://github.com/openai/ppe.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Javier Rando, Jie Zhang, Nicholas Carlini, and Florian Tramèr. Adversarial ml problems are getting
harder to solve and to evaluate. arXiv preprint arXiv:2502.02260, 2025.

Ehud Reiter. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–401,
2018. doi: 10.1162/coli_a_00322. URL https://aclanthology.org/J18-3002.

Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang, Pan Zhou, Lichao Sun, and Neil Zhenqiang Gong.
Optimization-based prompt injection attack to llm-as-a-judge. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security, CCS ’24, pp. 660–674,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706363. doi:
10.1145/3658644.3690291. URL https://doi.org/10.1145/3658644.3690291.

Renliang Sun, Mengyuan Liu, Shiping Yang, Rui Wang, Junqing He, and Jiaxing Zhang. Fostering
natural conversation in large language models with nico: a natural interactive conversation dataset.
arXiv preprint arXiv:2408.09330, 2024a.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Xiangyang Liu, Hang
Yan, Yunfan Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao, Ke Chen, Yining Zheng, Zhejian
Zhou, Ruixiao Li, Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang, Lingling Wu, Zhangyue
Yin, Xuanjing Huang, Yu-Gang Jiang, and Xipeng Qiu. Moss: An open conversational large
language model. Machine Intelligence Research, 2024b. ISSN 2731-5398. URL https:
//github.com/OpenMOSS/MOSS.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
and synthesis: A survey. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 930–957, 2024.

14

https://github.com/openai/ppe
https://aclanthology.org/J18-3002
https://doi.org/10.1145/3658644.3690291
https://github.com/OpenMOSS/MOSS
https://github.com/OpenMOSS/MOSS

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and
Dieuwke Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges.
arXiv preprint arXiv:2406.12624, 2024.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can llms learn
from previous mistakes? investigating llms’ errors to boost for reasoning. arXiv preprint
arXiv:2403.20046, 2024.

Somin Wadhwa, Chantal Shaib, Silvio Amir, and Byron C Wallace. Who taught you that? tracing
teachers in model distillation. arXiv preprint arXiv:2502.06659, 2025.

Sizhe Wang, Yongqi Tong, Hengyuan Zhang, Dawei Li, Xin Zhang, and Tianlong Chen. Bpo:
Towards balanced preference optimization between knowledge breadth and depth in alignment.
arXiv preprint arXiv:2411.10914, 2024.

Koki Wataoka, Tsubasa Takahashi, and Ryokan Ri. Self-preference bias in llm-as-a-judge. arXiv
preprint arXiv:2410.21819, 2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xian-
gliang Zhang, Jianfeng Gao, Chaowei Xiao, et al. Unigen: A unified framework for textual dataset
generation using large language models. arXiv preprint arXiv:2406.18966, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
language models: A survey. arXiv preprint arXiv:2406.04244, 2024a.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
prejudice: Llm amplifies self-bias in self-refinement. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15474–15492,
2024b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shiping Yang, Renliang Sun, and Xiaojun Wan. A new dataset and empirical study for sentence
simplification in chinese. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8306–8321, 2023.

Feng Yao, Yufan Zhuang, Zihao Sun, Sunan Xu, Animesh Kumar, and Jingbo Shang. Data contami-
nation can cross language barriers. arXiv preprint arXiv:2406.13236, 2024.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-judge.
arXiv preprint arXiv:2410.02736, 2024.

Hengyuan Zhang, Dawei Li, Yanran Li, Chenming Shang, Chufan Shi, and Yong Jiang. Assisting
language learners: Automated trans-lingual definition generation via contrastive prompt learning.
arXiv preprint arXiv:2306.06058, 2023.

Hengyuan Zhang, Chenming Shang, Sizhe Wang, Dongdong Zhang, Feng Yao, Renliang Sun, Yiyao
Yu, Yujiu Yang, and Furu Wei. Shifcon: Enhancing non-dominant language capabilities with a
shift-based contrastive framework. arXiv preprint arXiv:2410.19453, 2024a.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hengyuan Zhang, Yanru Wu, Dawei Li, Zacc Yang, Rui Zhao, Yong Jiang, and Fei Tan. Balancing
speciality and versatility: a coarse to fine framework for supervised fine-tuning large language
model. arXiv preprint arXiv:2404.10306, 2024b.

Qihui Zhang, Chujie Gao, Dongping Chen, Yue Huang, Yixin Huang, Zhenyang Sun, Shilin Zhang,
Weiye Li, Zhengyan Fu, Yao Wan, and Lichao Sun. LLM-as-a-coauthor: Can mixed human-written
and machine-generated text be detected? In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Findings of the Association for Computational Linguistics: NAACL 2024, pp. 409–436, Mexico
City, Mexico, June 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.29. URL https://aclanthology.org/2024.findings-naacl.29/.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations, 2020.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
Meng. Self-alignment for factuality: Mitigating hallucinations in LLMs via self-evaluation. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946–1965, Bangkok,
Thailand, August 2024d. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.107. URL https://aclanthology.org/2024.acl-long.107/.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023a.

Lianmin Zheng, Jiayi Wu, Shaohan Zhuang, et al. Mt-bench: Evaluating large language models with
multi-turn benchmarks. In arXiv preprint arXiv:2306.05685, 2023b.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pp. 2023–2038. Association for Computational Linguistics, 2022. doi:
10.18653/V1/2022.EMNLP-MAIN.131. URL https://doi.org/10.18653/v1/2022.
emnlp-main.131.

Ming Zhong, Aston Zhang, Xuewei Wang, Rui Hou, Wenhan Xiong, Chenguang Zhu, Zhengxing
Chen, Liang Tan, Chloe Bi, Mike Lewis, et al. Law of the weakest link: Cross capabilities of large
language models. arXiv preprint arXiv:2409.19951, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-a-judge:
Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

16

https://aclanthology.org/2024.findings-naacl.29/
https://aclanthology.org/2024.acl-long.107/
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LLMS FOR WRITING

We employed Google’s Gemini 2.5 Pro and OpenAI’s GPT-5 as writing assistance tools during the
preparation of this manuscript. Their role was exclusively for language refinement, such as improving
readability and rephrasing for clarity in an academic writing style. This usage aligns with standard
academic practices for language polishing.

B PRELIMINARY STUDY OF PREFERENCE LEAKAGE IN REAL WORLD

In our preliminary study, we investigate whether preference leakage is a real-world issue in mainstream
leaderboards and benchmarks. To this end, we examine two widely used LLM-as-a-judge leaderboards
(AlpacaEval 2.0 and Arena-Hard) and a well-known benchmark (MTBench). All three rely on GPT-4
as the judge model and report pairwise judgment results for various LLMs. Our analysis reveals
that several candidate models distilled from GPT-4 or other GPT-series models (e.g., Vicuna and
Alpaca) appear across all these leaderboards and benchmarks, suggesting that preference leakage
is a pervasive issue in these datasets. Besides, we also examine if preference leakage exists in
LLM-relevant research studies and also find a bunch of work utilizing the same or related model(s) to
do distillation/ data synthesis and evaluation Yang et al. (2023); Liu et al. (2024a); Lee et al. (2024);
Li et al. (2024d); Wang et al. (2024); Sun et al. (2024a). All of these suggest preference leakage to be
a widespread problem in both LLM-as-a-judge datasets and LLM-relevant research.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

We use LLaMA-Factory Zheng et al. (2024), an efficient LLM tuning library for our experiment.
The maximum sequence length is set to 1024 tokens, and a cutoff length of 1024 tokens is enforced
to prevent excessive tokenization. The data preprocessing will be done in parallel with 16 workers
to speed up the preparation process. The training use a per-device batch size of 2, with gradient
accumulation over 2 steps to simulate a larger batch size for SFT and a per-device batch size of 1,
with gradient accumulation over 4 steps to simulate a larger batch size for DPO. The learning rate is
set to 1.0e-5 and each model will be trained for 3 epochs. A cosine learning rate scheduler is used
with a warmup ratio of 0.1 to gradually increase the learning rate during the initial steps. All of the
experiments use BF16 precision to speed up training while maintaining numerical stability. All the
experiments are conducted in an 8 Nvidia A100 GPU cluster with CUDA version 11.8.

Table 8: A case on AlpacaEval 2.0 with the model pair Mistral-GPT-4o vs Mistral-Gemini-1.5 to
demonstrate how the preference leakage score is calculated.

Judge Model Mistral-GPT-4o vs Mistral-Gemini-1.5

Mistral-GPT-4o Wins Mistral-Gemini-1.5 Wins
GPT-4o 55.1% 44.9%
Gemini-1.5 36.8% 63.2%
Preference Leakage Score 18.4%

C.2 DETAILED EXPLANATION FOR PREFERENCE LEAKAGE SCORE

We present a case in Table 8 to show how we calculate the preference leakage score for the Mistral-
GPT-4o vs Mistral-Gemini-1.5 pair on AlpacaEval 2.0. Based on the definition of preference leakage
score, we first calculate:

AVG(Mistral-GPT-4o,Mistral-Gemini-1.5) =
55.1 + 36.8

2
= 45.95% (7)

AVG(Mistral-Gemini-1.5,Mistral-GPT-4o) =
63.2 + 44.9

2
= 54.05% (8)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

After that, we calculate the preference leakage score:

PLS(Mistral-GPT-4o,Mistral-Gemini-1.5) =

(
55.1−45.95

45.95

)
+

(
63.2−54.05

54.05

)
2

= 18.4% (9)

.

C.3 MANUAL ANNOTATION DETAILS & RESULTS

While we have concluded that student model pairs with similar performance or more powerful student
models tend to exhibit greater preference leakage, we also examine whether different data generator
and judge LLMs contribute to varying degrees of preference leakage. We randomly sample 100
questions from AlpacaEval 2.0 and ask three well-trained annotators to conduct pairwise comparisons
of the responses from each model pair for these questions. For annotation efficiency, we also develop
an annotation tool that involves the function of uploading multiple model responses, jumping to
specific problems, and downloading annotation results (Figure 7). After annotation, we adopt the
majority voting to get the final label for each response pair. We also calculate the average agreement
of three annotators and find it to be 78.6, indicating a relatively consistent annotation result.

Analyzing the manual annotation results presented in Figure 4, we observe that Gemini-1.5 shows
a strong bias toward its students, followed by GPT-4o, with LLaMA-3.3 displaying the least bias.
This variation in preference leakage may stem from differences in the level of leaked preference
in the synthetic responses generated by the data generator LLMs. For instance, an LLM with a
distinctive style or format in its responses offers more opportunities for student models to learn these
characteristics, potentially leading to more pronounced preference leakage during evaluation. Future
work could further quantify the extent of leaked preference for each data generator model.

C.4 MITIGATION METHODS DETAILS

Dataset Construction. To systematically benchmark preference leakage, we curate a pairwise
judgment corpus by consolidating three widely used human–labeled reward datasets: PPE Perez et al.
(2022), MTBench Zheng et al. (2023b), and the Human Preference dataset Chiang et al. (2024).
Each dataset contains prompts and paired model outputs annotated with human preferences. We treat
GPT-4 as the target model and identify instances where one response originates from GPT-4 and the
other from a related open–source “student” model (e.g., Vicuna, Alpaca).

Mitigation Methods. We evaluate five representative strategies designed to counteract preference
leakage:

• Prompting. A straightforward baseline that refines evaluation instructions to explicitly warn
against self-preference, encouraging the evaluator to remain impartial and judge outputs solely on
content quality and relevance.

• Chain-of-Thought (CoT). Augments the evaluation prompt by encouraging the model to articulate
an explicit step-by-step reasoning process prior to producing its final decision, thereby reducing
unconscious style matching.

• Paraphrasing. Reduces lexical and stylistic overlap between the evaluator and candidate outputs
by paraphrasing prompts or responses before evaluation, mitigating familiarity-driven bias.

• Auto-Calibration. Estimates a global bias term from a held-out calibration set by analyzing the
evaluator’s log-probabilities of choosing the target versus the student, then shifts future predictions
to offset this bias.

• Contextual Calibration. Extends auto-calibration by learning context-dependent bias adjustments.
For each evaluation scenario, bias is estimated from a similar held-out set and applied dynamically at
inference time, offering finer-grained debiasing and achieving the strongest reduction in preference
leakage.

D ADDITIONAL EXPERIMENTS

Due to the space limitation, we put further experiments and analysis in the Appendix.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Human

Gemini-1.5

LLaMA-3.3

GPT-4o

53.0% 47.0%

40.2% 59.8%

49.4% 50.6%

58.4% 41.6%

Ju
dg

e
M

od
el

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

62.0% 38.0%

76.2% 23.8%

72.1% 27.9%

67.8% 32.2%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

36.0% 64.0%

17.1% 82.9%

39.0% 61.0%

46.0% 54.0%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

Model A Wins Model B Wins

Figure 4: Manual annotation result on 100 randomly selected samples from AlpacaEval 2.0.

D.1 ORIGINAL EXPERIMENT RESULTS FOR PLS CALCULATION

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

36.8% 63.2%

49.5% 50.5%

55.1% 44.9%

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

65.8% 34.2%

60.3% 39.7%

61.6% 38.4%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

22.6% 77.4%

39.5% 60.5%

43.1% 56.9%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

39.3% 60.7%

52.4% 47.6%

57.8% 42.2%Ju
dg

e
M

od
el

Qwen-GPT4o vs Qwen-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

63.3% 36.7%

59.3% 40.7%

61.5% 38.5%

Qwen-GPT4o vs Qwen-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

26.2% 73.8%

42.9% 57.1%

50.1% 49.9%

Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5

(a). Mistral-7B

(b). Qwen-2.5-14B
Model A Wins Model B Wins

Figure 5: Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on AlpacaEval 2.0. Different
from Arena-Hard, there is no tie in AlpacaEval 2.0.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

18.2% 39.8% 42.0%

27.4% 43.8% 28.8%

38.4% 34.6% 27.0%

Mistral-GPT4o vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

46.2% 42.7% 11.1%

50.4% 35.0% 14.6%

55.8% 27.0% 17.2%

Mistral-GPT4o vs Mistral-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

9.2% 31.4% 59.4%

14.6% 30.0% 55.4%

22.2% 30.8% 47.0%

Mistral-LLaMA-3.3 vs Mistral-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gemini-1.5

LLaMA-3.3

GPT-4o

22.0% 33.5% 44.5%

28.8% 50.2% 21.6%

49.8% 29.0% 21.2%Ju
dg

e
M

od
el

Qwen-GPT4o vs Qwen-Gemini-1.5

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

52.1% 40.7% 7.2%

39.0% 51.8% 9.2%

57.4% 29.6% 13.0%

Qwen-GPT4o vs Qwen-LLaMA-3.3

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

10.0% 29.4% 60.6%

16.4% 48.4% 35.2%

24.6% 30.0% 44.4%

Qwen-LLaMA-3.3 vs Qwen-Gemini-1.5

(a). Mistral-7B

(b). Qwen-2.5-14B
Model A Wins Tie Model B Wins

Figure 6: Judgment results with GPT-4o, LLaMA-3.3 and Gemini-1.5 on Arena-Hard.

D.2 STABILITY ASSESSMENT OF EXPERIMENTAL RESULTS

Based on the results from three repeated experiments (Table 9), we observe consistently low variance
across different comparisons, indicating high stability in performance measurements. This suggests
that the conclusions drawn from these experiments are reliable and not significantly affected by
random fluctuations, thereby strengthening the validity of our findings.

D.3 PROMPT SENSITIVITY ANALYSIS

We examined the robustness of the Preference Leakage Score (PLS) under different evaluation
prompts. Two LLM-as-a-judge protocols were used: ARENAHARD and ALPACAEVAL 2.0, each
with distinct prompts and question sets. We rewrote the prompts for both protocols and re-ran the
evaluations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Mean and variance of experimental results across two benchmarks in Mistral-7B-v0.1.
Model Pairs Mean Variance
ArenaHard
mistral-GPT4o vs mistral-Gemini-3.3 28.67 0.063
mistral-GPT4o vs mistral-LLAMA-3.3 0.50 0.910
mistral-LLAMA vs mistral-Gemini 12.93 0.583

AlpacaEval 2.0
mistral-GPT4o vs mistral-Gemini-3.3 19.20 0.490
mistral-GPT4o vs mistral-LLAMA-3.3 0.20 1.240
mistral-LLAMA vs mistral-Gemini 19.87 0.013

Table 10: PLS under different evaluation prompts.
Judge Pair Prompt 1 Prompt 2 Dataset

GPT-4o vs Gemini-1.5 18.4% 16.5% AlpacaEval 2.0
28.7% 38.7% ArenaHard

GPT-4o vs LLaMA-3.3 1.4% -1.2% AlpacaEval 2.0
-1.5% 4.5% ArenaHard

LLaMA-3.3 vs Gemini-1.5 19.8% 17.9% AlpacaEval 2.0
13.1% 15.8% ArenaHard

PLS remained consistently > 0 for key model pairs; ALPACAEVAL 2.0 was more stable to prompt
changes than ARENAHARD.

D.4 STATISTICAL SIGNIFICANCE TESTS

We tested the hypothesis PLS > 0 using a non-parametric bootstrap with 10,000 resamples over 500
prompts in ARENAHARD.

Table 11: Bootstrap significance results for PLS > 0. ∗∗∗: p < 0.001, ∗∗: p < 0.01.
Judge Pair Student PLS (%) Significance

GPT-4o vs Gemini-1.5 Mistral-7B 28.5 ∗∗∗

GPT-4o vs LLaMA-3.3 Mistral-7B -1.1 n.s.
LLaMA-3.3 vs Gemini-1.5 Mistral-7B 7.4 ∗∗

GPT-4o vs Gemini-1.5 Qwen-2.5-14B 37.9 ∗∗∗

GPT-4o vs LLaMA-3.3 Qwen-2.5-14B 1.2 n.s.
LLaMA-3.3 vs Gemini-1.5 Qwen-2.5-14B 26.3 ∗∗∗

D.5 LANGUAGE GENERALIZATION

To test cross-lingual generalization, we synthesized Chinese SFT data (using Moss-3 instructions) and
evaluated with Chinese versions of ARENAHARD (m-ARENAHARD) and XALPACAEVAL. Judges
were GPT-4o and Gemini-1.5; the student model was Qwen-3-8B.

Significant preference leakage also appears in the Chinese setting.

D.6 EXPANDED JUDGE–STUDENT PAIRS

We added the judge model Claude-3.5-Sonnet to form three new judge pairs: GPT-4o & Claude-3.5,
Gemini & Claude-3.5, and LLaMA-3.3 & Claude-3.5. Student models: Mistral-7B and Qwen-2.5-
14B.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: PLS in English vs. Chinese.
Language AlpacaEval 2.0 ArenaHard Avg

English 17.4% 33.9% 25.7%
Chinese 12.3% 51.8% 32.1%

Table 13: PLS of new judge pairs (negative values indicate no leakage).
Judge Pair ArenaHard AlpacaEval 2.0 Avg

Mistral-7B
GPT-4o & Claude-3.5 12.2% 8.6% 10.4%
Gemini & Claude-3.5 16.5% 7.1% 11.8%
LLaMA-3.3 & Claude-3.5 -4.4% -2.6% -3.5%
Qwen-2.5-14B
GPT-4o & Claude-3.5 13.0% 10.4% 11.7%
Gemini & Claude-3.5 18.5% 11.1% 14.8%
LLaMA-3.3 & Claude-3.5 0.0% 1.7% 0.9%

D.7 STUDENT MODEL SCALING

We tested PLS on a wider range of student sizes within the Qwen and LLaMA families.

Table 14: PLS (%) for different student sizes.
Student ArenaHard AlpacaEval 2.0 Avg

LLaMA-3-1B 35.4 18.2 26.8
LLaMA-3-3B 32.5 16.4 24.5
LLaMA-3-8B 30.9 15.8 23.4
Qwen-2.5-0.5B 40.9 21.2 31.1
Qwen-2.5-1.5B 38.0 23.2 30.6
Qwen-2.5-3B 50.7 20.1 35.4
Qwen-2.5-7B 32.2 22.1 27.2
Qwen-2.5-14B 37.1 18.6 27.9
Qwen-3-0.6B 39.8 23.8 31.8
Qwen-3-1.7B 40.0 20.1 30.2
Qwen-3-4B 30.9 17.2 24.1
Qwen-3-8B 33.9 17.4 25.7
Qwen-3-14B 31.7 19.4 25.6

Within each family, smaller models generally exhibit higher PLS.

D.8 MITIGATION METHODS AND ERROR BIAS METRIC

We explored mitigation methods on a human-labeled reward dataset, including: prompting, chain-of-
thought (CoT), paraphrasing, auto-calibration, and contextual calibration. We introduced the Error
Bias metric:

ErrorBias =
Ntarget-prefer-other-win

Nother-win
−

Nother-prefer-target-win

Ntarget-win
. (10)

Contextual calibration with an additional held-out bias-adjustment set yielded the largest reduction.

E LEARNING METHOD ANALYSIS DETAILS

The table below presents the prompt we use to generate synthetic pairwise feedback from each model.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Pairwise Feedback Prompt

Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question
displayed below. Your evaluation should consider correctness
and helpfulness. You will be given assistant A’s answer, and
assistant B’s answer. Your job is to evaluate which assistant’s
answer is better. You should independently solve the user question
step-by-step first. Then compare both assistants’ answers with
your answer. Identify and correct any mistakes. Avoid any
position biases and ensure that the order in which the responses
were presented does not influence your decision. Do not allow
the length of the responses to influence your evaluation. Do not
favor certain names of the assistants. Be as objective as possible.
After providing your explanation, output your final verdict by
strictly following this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better.

Instruction:

[The Start of Assistant A’s Answer]
[RESPONSE A]
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
[RESPONSE B]
[The End of Assistant B’s Answer]

Please output the generated content in a json format, for example:
{ "reason": // string, reasons behind the chosen preferred answer
"prefered answer": // string, the prefered answer you selected,
[[A]] or [[B]] }

Formatted the abovementioned schema and produce the reason and
preferred answer:

F REAL-WORLD IMPACT ANALYSIS DETAILS

In the real-world impact analysis section, we use the models that appear in both Chatbot Arena
and AlpacaEval 2.0 leaderboard, including: GPT-4o-2024-05-13, GPT-4o-mini-2024-07-18, Meta-
Llama-3.1-405B-Instruct-bf16, GPT-4-Turbo-2024-04-09, GPT-4-1106-preview, Meta-Llama-3.1-
70B-Instruct, Claude 3 Opus, Llama-3-70B-Instruct, Claude 3 Sonnet, Qwen2-72B-Instruct, GPT-4-
0314, Meta-Llama-3.1-8B-Instruct, GPT-4-0613, Mistral-Large-2402, Llama-3-8B-Instruct, Com-
mand R (04-2024), Mistral Medium, Mixtral-8x22b-Instruct-v0.1, Qwen1.5-72B-Chat, Gemini Pro,
Yi-34B-Chat, Mixtral-8x7B-Instruct-v0.1, Qwen1.5-14B-Chat, GPT-3.5-Turbo-0125, DBRX-Instruct-
Preview, Tulu-2-DPO-70B, Llama-2-70B-chat, Vicuna-33B, Gemma-1.1-7B-it, OpenHermes-2.5-
Mistral-7B, Mistral-7B-Instruct-v0.2, Qwen1.5-7B-Chat, GPT-3.5-Turbo-1106, Llama-2-13b-chat,
WizardLM-13b-v1.2, Vicuna-13B, Llama-2-7B-chat, Guanaco-33B, Vicuna-7B, Gemma-2B-it,
OpenAssistant-Pythia-12B.

G RECOGNITON ANALYSIS DETAILS

The table below presents the pointwise and pairwise prompts we use for the recognition analysis.

Pointwise Recognition Prompt

Given an instruction and a response, your task is to judge
whether this response is generated by a model that is trained on
a synthetic dataset you produced (your student model).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Instruction: [INSTRUCTION]

Response: [Response]

Please output the generated content in a json format, for example:
"reason": // string, reasons behind the judgment "judgment": //
string, whether the answer is generated by your student model,
choose from yes or no

Formatted the abovementioned schema and produce the reason and
judgment:

Pairwise Recognition Prompt

Given an instruction and two responses, your task is to judge which
response is generated by a model that is trained on a synthetic
dataset you produced (your student model).

Instruction: [INSTRUCTION]

Response1: [Response 1]

Response2: [Response 2]

Please output the generated content in a json format, for example:
"reason": // string, reasons behind the judgment "judgment": //
int, 1 or 2, means response1 or response2 is from your student
model

Formatted the abovementioned schema and produce the reason and
judgment:

For response classification, we split all the response from three student models into training (80%)
and testing (20%) subsets. Then, we finetune a BERT-base-uncased model in the training set. The
model is trained for 3 epochs with a learning rate of 2e-5, a batch size of 16 for both training and
evaluation, and a weight decay of 0.01, with evaluations conducted at the end of each epoch.

H CATEGORY ANALYSIS DETAILS

The tables below present the prompt we use for question type and judgment dimension cateogory
analysis.

Question Type Categorization Prompt

Given a question, please categorize it to one of the following
categories:

1. Computer Science & Programming
2. Mathematics & Statistics
3. Science & Engineering
4. Business & Finance
5. Writing & Communication
6. Social & Daily Life
7. Others

Question: [QUESTION]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Please output the generated content in a json format, for example:
{ "question category": // string, specific category name, such as
"Computer Science & Programming" }

Formatted the abovementioned schema and categorize the given
question:

Judgment Dimension Categorization Prompt

Given a pairwise comparison judgment made by an AI, please
categorize each considered aspect in the rationale to one of the
following categories:

{

"Factuality": "Whether the information provided in the response is
accurate, based on reliable facts and data.",

"User Satisfaction": "Whether the response meets the user’s
question and needs, and provides a comprehensive and appropriate
answer to the question.",

"Logical Coherence": "Whether the response maintains overall
consistency and logical coherence between different sections,
avoiding self-contradiction.",

"Richness": "Whether the response includes rich info, depth,
context, diversity, detailed explanations and examples to meet user
needs and provide a comprehensive understanding.",

"Creativity": "Whether the response is innovative or unique,
providing novel insights or solutions.",

"Fairness and Responsibility": "Whether the advice or information
provided in the response is feasible, carries acertain degree of
responsibility, and considers potential risks and consequences.",

"Completeness": "Whether the response provides sufficient
information and details to meet the user’s needs, and whether it
avoids omitting important aspects.",

"Clarity": "Whether the response is clear and understandable, and
whether it uses concise language and structure so that the user can
easily understand it.",

"Others": "Other aspects which is not listed above."
}

Judgment: [JUDGMENT]

Please output the generated content in a json format, for example:
{ "Factuality": // list, all aspects that belong to this category,
such as ["correctness", "mistakes"] ... }

Formatted the abovementioned schema and categorize aspects in the
judgment:

I BROADER IMPACT

By revealing preference leakage, this work could help build more trustworthy and ethically grounded
AI systems. The relatedness between data generators and evaluators can systematically bias evalu-
ations, potentially compromising the fairness and reliability of the automatic evaluation paradigm.
These biased evaluations may indirectly affect downstream tasks such as AI alignment and decision-
making systems, leading to unintended ethical risks. To mitigate preference leakage, we hope that

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: The annotation tool we develop for annotation efficiency.

researchers will propose more reliable evaluation methods, diversify training data sources, and
develop contamination-resistant benchmarks in the future.

25

	Introduction
	Related Work
	Preference Leakage
	LLMs as Oracles: A New Avenue for Contamination
	Defining Preference Leakage in LLM-based Evaluation
	Type of LLM ``Relatedness''

	Main Experiment
	Experiment Setup
	Main Results

	Further Analysis
	Data Mixing Analysis
	Relatedness Analysis
	Learning Method Analysis
	Real-world Impact Analysis
	Can Judges Recognize Student Models?
	Impact on Question Type & Judgment Dimension
	Effect of Spurious Features on Preference Leakage
	Exploring Mitigation Method for Preference Leakage

	Conclusion and Discussion
	The Use of LLMs for Writing
	Preliminary Study of Preference Leakage in Real World
	Experiment Details
	Training Details
	Detailed Explanation for Preference Leakage Score
	Manual Annotation Details & Results
	Mitigation Methods Details

	Additional Experiments
	Original Experiment Results for PLS Calculation
	Stability Assessment of Experimental Results
	Prompt Sensitivity Analysis
	Statistical Significance Tests
	Language Generalization
	Expanded Judge–Student Pairs
	Student Model Scaling
	Mitigation Methods and Error Bias Metric

	Learning Method Analysis Details
	Real-world Impact Analysis Details
	Recogniton Analysis Details
	Category Analysis Details
	Broader Impact

