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ABSTRACT

Whether deterministic or stochastic, models can be viewed as functions designed
to approximate a specific quantity of interest. We introduce Minimal Empiri-
cal Variance Aggregation (MEVA), a data-driven framework that integrates pre-
dictions from various models, enhancing overall accuracy by leveraging the in-
dividual strengths of each. This non-intrusive, model-agnostic approach treats
the contributing models as black boxes and accommodates outputs from diverse
methodologies, including machine learning algorithms and traditional numerical
solvers. We advocate for a point-wise linear aggregation process and consider
two methods for optimizing this aggregate: Minimal Error Aggregation (MEA),
which minimizes the prediction error, and Minimal Variance Aggregation (MVA),
which focuses on reducing variance. We prove a theorem showing that MVA
can be more robustly estimated from data than MEA, making MEVA superior to
Minimal Empirical Error Aggregation (MEEA). Unlike MEEA, which interpo-
lates target values directly, MEVA formulates aggregation as an error estimation
problem, which can be performed using any backbone learning paradigm. We
demonstrate the versatility and effectiveness of our framework across various ap-
plications, including data science and partial differential equations, illustrating its
ability to significantly enhance both robustness and accuracy.

1 INTRODUCTION

Many challenges in scientific computing and Machine Learning (ML) involve approximating func-
tions using models. These models can vary significantly, ranging from numerical solvers that in-
tegrate differential equations to various ML methods and other approximation techniques. Their
performance can differ widely across different benchmarks, as seen in the Imagenet leaderboards
(Russakovsky et al., 2015). In some cases, no single model outperforms others across all scenarios;
each has its own strengths and weaknesses. For instance, the Intergovernmental Panel on Climate
Change (IPCC) report on model evaluation (Flato et al., 2014) highlights numerous evaluation met-
rics, showing that different models excel in different areas. When multiple models are available to
predict the same quantity of interest, a key challenge arises: how can their predictions be combined
most effectively? Ensembling ML models is a well-established practice with many successful appli-
cations, such as bagging, boosting, and Mixture of Experts (MoE) (Zhang & Ma, 2012). Gradient
boosting, in particular, is widely regarded for its effectiveness, combining simplicity and accuracy
in data analysis (Bentéjac et al., 2021). Most ensembling methods focus on training strategies that
build and combine multiple models (Zhang & Ma, 2012). However, methods for aggregating pre-
dictions from existing models are less developed and broadly used, and practitioners often rely on
simplistic techniques like averaging (Ebert, 2001). This highlights the need for a simple and general
framework to aggregate predictions and better exploit diverse models’ unique strengths.
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Related work Ensemble learning methods combine multiple learnable models to improve accu-
racy. While these works are influential training paradigms, our approach assumes the models are
not trainable, and focuses solely on their aggregation, yielding a different task. We emphasize that
our work is not comparable to popular ensembles such as Gradient Boosting (Schapire, 2003) as it
combines black box models.
Extensive research has been made on model averaging, especially in cases where the models are as-
sumed to be linear (Zhang & Liu, 2023; Hansen, 2007; Liang et al., 2024). Combination strategies
with constant factors include Viana et al. (2009); Pawlikowski & Chorowska (2020). Other studies
have explored the pointwise linear aggregation of surrogate models, with various heuristics using
weighted averages. Zerpa et al. (2005) uses the variance predicted by Gaussian processes, Lee &
Choi (2014); Liang et al. (2023); Ye et al. (2020) try to predict the cross-validation error at each point
and use it to combine models while Liu et al. (2016) trains an aggregation to minimize the Mean
Squared Error of the aggregate. Crucially, these methods are heuristics, which do not justify why the
aggregation should be a convex combination, or why it should be weighted using cross-validation.
Secondly, they do not formulate the aggregation as a learning problem and instead use specific ap-
proaches, such as K-nearest neighbours or interpolation through weighted averages. This limits the
scope of the aggregation, in particular, these studies only aggregate one-dimensional regression, and
prevent the methods from benefiting from advances in other areas of Machine Learning.
A growing trend in scientific computing involves applying statistical inference and machine learning
(ML) methods (Raissi et al., 2019; Batlle et al., 2024; Chen et al., 2021; Bourdais et al., 2024). These
problems are often framed as operator learning tasks, which can be seen as infinite-dimensional re-
gression problems. In this work, we adopt a statistical/ML framework to unify and aggregate diverse
methods, even those not inherently inference or ML-based. This approach is particularly well-suited
to structured problems with inherent design constraints, where heterogeneous models naturally arise.
Such contexts often involve a combination of non-trainable numerical solvers, legacy simulation
codes, and specialized ML models with distinct trade-offs, which are challenging to integrate or
retrain using standard ensemble techniques. Our work focuses on addressing these challenges by
reconciling and leveraging the strengths of pre-trained or specialized models in constraint-heavy,
structured problems.

Contributions We introduce Minimal Empirical Variance Aggregation (MEVA), a versatile
method for aggregating predictions from diverse models, treating them as black-box input-output
functions (deterministic or stochastic). By focusing on variance minimization, MEVA provides a
robust, non-intrusive framework, enhancing reliability in data-scarce or noisy environments where
traditional methods often fall short. While the approach is broadly applicable, its primary strength
lies in addressing challenges in scientific computing and other structured domains. Key contribu-
tions include:

• Justification and formulation: Contrary to previous heuristics, we present a probabilistic
model for aggregation, grounded in clear assumptions that justify using convex combina-
tions and approximations of cross-validation error (Sections 2, 3). Future works may build
upon this model and adapt it to constraints specific to the application at hand. We also for-
mulate MEVA as a learning problem (sec. 3), making an extension to other settings such
as graphs or computer vision simple using popular learning techniques of these fields.

• Ruling out MEEA We assess Minimal Empirical Error Aggregation (MEEA), which min-
imizes aggregate empirical error directly, and identify its limitations via a pathological
example (Section 2.2). MEVA, introduced in Section 3, addresses these challenges and
consistently outperforms MEEA in experiments. We rigorously prove that MEVA con-
verges faster than MEEA, making it more robust in scarce data regime.

• Extension to operator learning Our approach extends model aggregation beyond machine
learning to include scientific computing, enabling the integration of diverse methods for es-
timating shared target quantities. We demonstrate this by expanding from one-dimensional
problems to operator learning using established techniques (Section 4.2). To our knowl-
edge, this is the first work to aggregate outputs across machine learning and classical PDE-
solving methods.

The remainder of the paper is structured as follows: Section 2 discusses pointwise aggregation and
MEEA’s limitations. Section 3 introduces the probabilistic foundation of MEVA, a theorem proving
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its superiority, and its computation. Section 4 validates MEVA with two experiments: a sanity check
in data science and examples from Scientific Machine Learning (SciML) involving PDE solving.

2 THE MINIMAL ERROR AGGREGATION

2.1 BEST LINEAR AGGREGATE WHEN MODEL CORRELATIONS ARE KNOWN

An effective way to derive an aggregation method is to define it as optimal with respect to a specific
loss function. If the target function Y (x) and the models Mi(x) are viewed as random variables on
the same probability space, a commonly used loss function is the Mean Square Error (MSE). In this
context, an aggregated model MA(x) can be defined as any measurable function of the models that
minimizes the expected squared error:

MA(x) := argmin
f measurable

E
[
(Y (x)− f(M1(x), ..,Mn(x))

2
]
= E [Y (x) |M1(x), ..,Mn(x) ] , (1)

where the second equality follows from the L2 characterization of conditional expectation. While
computing the conditional expectation can be intractable (Ackerman et al., 2017), this com-
putation reduces to solving a linear system in the Gaussian case. Specifically, if the vector
(Y (x),M1(x), . . . ,Mn(x)) is Gaussian with mean 0 (see remark below), then the conditional ex-
pectation in the equation above is a linear combination of the models’ outputs. Rullière et al. (2017)
uses this assumption to aggregate Gaussian processes. Bajgiran & Owhadi (2021) demonstrates that
any consistent and rational aggregation of models must be a weighted average that is point-wise lin-
ear. Finally, many ensembling methods (random forest (Breiman, 2001), MoE (Yuksel et al., 2012))
also use a linear combination of models. Motivated by this, we restrict our aggregation approach to
a pointwise linear combination of the models:

MA(x) = α∗(x)TM(x) (2)
With this simplification, aggregation can be achieved by determining the Minimal Error Aggregation
(MEA) α∗(x) such that:

α∗(x) = argmin
α∈Rn

E
[
(Y (x)− αTM(x))2

]
= E

[
M(x)M(x)T

]−1 E [M(x)Y (x)] (3)

By definition, the MEA is the best possible point-wise linear aggregation. This equation reveals that
the MEA requires knowledge of both the correlation matrix of the models, E

[
M(x)M(x)T

]
, as well

as the correlation between the models and the target E [Y (x)M(x)]. We demonstrate in appendix
B.2 that the aggregated model can achieve exceptional performance when these correlations are
perfectly known.

Remark In the general case with non-zero mean, the aggregation of a Gaussian vector would be
affine. Since we do not assume anything on the models, affine coefficients can be recovered by
adding an extra constant model, i.e., by a linear aggregation of M̃(x) = (M(x), 1). In section 2.2,
we will see that this can lead to catastrophic failure for empirical error minimization. Appendix F
shows that empirical variance minimization provides a more robust approach for estimating bias.

2.2 DATA-DRIVEN AGGREGATION

We will now consider the situation where the quantities E [Y (x)M(x)] and E
[
M(x)M(x)T

]
re-

quired for the best linear aggregate equation 3 may be ill-defined (e.g., because the underlying
models are not stochastic) or difficult to estimate. In this situation, a natural alternative approach is
to estimate the aggregation coefficients α∗ appearing in equation 2 directly from data by a minimizer
α̂ of a (possibly regularized) empirical version of the loss (3), as seen in Liu et al. (2016):

α̂E = argmin
a∈H

N∑
i=1

∣∣Y i − a(Xi)TM(Xi)
∣∣2 + λ∥a∥2H , (4)

where the (Xi, Y i := Y (Xi)) are N data points; H is a set of functions used for the approximation;
λ ≥ 0 and ∥a∥2H is a regularizing norm. We call this aggregation Minimal Empirical Error Aggre-
gation (MEEA). While this transition from expected loss to empirical loss may seem well-founded,
it can introduce a significant loss of information, which yields to the aggregation completely failing,
as showcased in the following sections.
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Pathological example: A dubious trend In this example, we introduce a basic aggregation with
linear coefficients, where the MEEA fails. This, along with appendix C and G, gives intuition as to
why MEEA is not the appropriate strategy. Figure 1 represents the results of this experiment. We
pick Y , a good model MG and bad models MB s.t.:{

Y (x) = 2x+ cos(3πx)
MG(x) = Y (x) + ϵ(x) where ϵ(x) ∼ N (0, 0.2)
MB(x) = 1

(5)

We also choose a linear aggregation, which means that we will find aG, aB , bG, bB s.t. α̂(x) =
(aGx + bG, aBx + bB) ∈ R2. Finally, we pick some trick data X = (0.8 − 2/3 ∗ 4, 0.8 − 2/3 ∗
3, .., 0.8,−0.8,−0.8+2/3 ∗ 1, ..,−0.8+2/3 ∗ 4) so that the Y (Xi) = Y i form a line. We may see
that MG has a lower error than MB on each Xi by evaluating the models at these data points. Thus,
we expect an aggregation method to use the good model primarily in the aggregation. However, the
opposite behaviour is observed. Minimizing the loss (4) with λ = 0, we obtain that the coefficient
on the good model is 0, so MG is completely ignored, which is counterintuitive. The aggregate uses
the bad model, MB , to directly estimate Y by linear regression. This shows that the MEEA simply
employs models as features to interpolate the data points instead of weighting each model according
to its estimated accuracy.

Figure 1: Pathological example (sec. 2.2)

3 AGGREGATION THROUGH ERROR ESTIMATION: THE MINIMAL VARIANCE
AGGREGATE (MVA)

3.1 MODELLING THE ERROR

By placing no assumption on our model, MEEA is vulnerable to pathological examples, and in
our experiments does not generalize well. In particular, there is nothing representing the fact that
models are approximations of the target. To encode this, we add the assumption that the models,
represented in the vector M , are unbiased estimators of Y . Thus, the errors of each model are
interpreted as follows:

M(x) =

Y (x)
...

Y (x)

+ Z(x) where
{

E[Z(x)] = 0
Cov[Z(x)] = A(x)

(6)

Under this assumption, any linear combination with weights αi(x) s.t.
∑n

i=1 αi(x) = 1 is unbiased.
Thus, we define the Minimal Variance Aggregate (MVA) as the Best Linear Unbiased Estimate
(BLUE) of Y (x):

MA(x) = αV (x)
TM(x) :=

1
TA(x)−1M(x)

1TA(x)−11
(7)

where 1 := (1, .., 1)T is the all ones vector. Note that αV (x) =
argmin

1T a=1 E
[
(Y (x)− aTM(x))2

]
, regardless of whether E [Z(x)] = 0. In previous heuristics

(Lee & Choi, 2014; Liang et al., 2023; Liu et al., 2016; Viana et al., 2009),
∑n

i=1 αi(x) = 1 is
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assumed, while we justify it as the set of unbiased linear aggregations. This leads to a natural
generalization for biased models in appendix F, while in practice bias correction did not improve
results. The following section proves that despite MVA being inferior to MEA in MSE, MVA can
be more robustly estimated, making MEVA better performing than MEEA.

3.2 A THEOREM ON THE SUPERIORITY OF MEVA OVER MEEA

To investigate the theoretical properties of MEVA and MEEA, we fix x and focus on estimating α∗

and αV . Details and proofs are given in appendix A. Let Y be a random real-valued variable and the
random vector of models M ∈ Rn. Suppose we have i.i.d observations (M1, Y 1), . . . , (MN , Y N ),
collected in the matrices M ∈ RN×n and Y ∈ RN . Define M = Y 1 + ϵZ, where Z is the scaled
error, with ϵ chosen so that E

[
ZZT

]
:= A has Frobenius norm 1 ; and b := E [Y Z]. We find that

the MEA α∗ defined in equation (3) and the MVA αV (equation (7)) satisfy:

α∗ = λαV + (1− λ)αR where

{
λ = s(E[Y 2]−u)

s(E[Y 2]−u)+(ϵ+t)2

αR = 1
ϵ+tA

−1b
(8)

with s = 1
TA−1

1, t = bTA−1
1 and u = bTA−1b assumed to be non zero quantities. Note

that λ ∈ [0, 1], making α∗ a convex combination of αV and αR. For the empirical variants of
these aggregations, we use Â = 1

ϵ2N (MT − 1YT )(M − Y1T ). Using the central limit theorem
on Â − A := 1√

N
δA, we find that the scaled error δA converges to a Gaussian Matrix of finite

covariance. Similarly, E
[
Y 2
]

and b are estimated with estimators converging at 1√
N

rates, with
δV and δb their scaled error. Write α̂E := (MMT )−1MTY for the empirical MEA, α̂V =

(Â−1
1)/(1T Â−1

1) the empirical MVA, and L(α) = E
[
(Y − αTM)2

]
the Mean Squared Error.

We prove the following theorem:
Theorem 1. Assume s, u, t ̸= 0, then there exist two sequences of random variables, KE

N and KV
N ,

each of which converges in distribution to a distinct finite random variable, such that

L(α̂V ) =
1

λ
L(α∗) +

1

N
KV

N and L(α̂E) = L(α∗) +
1√
N

KE
N (9)

MEVA incurs a constant error relative to MEEA, given by 1
λ . However, MEVA is less sensitive to

perturbations, causing its error to converge more rapidly to its limiting value than MEEA. Thus, in
the model aggregation setting where λ is close to 11, the smaller difference in limiting loss values is
outweighed by MEVA’s faster convergence making it outperform MEEA
While this theorem applies to a fixed x and N observations, we are interested in the case where
these N data points are used to extrapolate across all x. In such cases, model aggregation inherently
operates in the scarce data regime where Â − A is large. This amplifies the behavior described in
the theorem, further emphasizing the practical advantages of MEVA.

3.3 COMPUTING THE AGGREGATION: THE MINIMAL EMPIRICAL VARIANCE AGGREGATE
(MEVA)

To compute our empirical aggregation α̂V (x), we must compute the covariance matrix of the error
for all x ∈ X from the data. This poses several challenges when A(x) is unknown. First, we must
approximate a symmetric matrix everywhere on the domain, needing n(n+ 1)/2 coefficients to ag-
gregate n models. Moreover, we must ensure this matrix is always positive-definite. To simplify the
approximation and to easily enforce the positive-definite condition, we suppose that for all x, A(x)
can be diagonalized using a fixed eigenbasis P . Then, its positive eigenvalues are approximated by
eλi(x), where the λi are functions to be regressed from the data. Thus, we approximate A(x) with
Â(x) = PTDiag(eλ1(x), .., eλn(x))P . This formulation has the advantage of symmetrizing the co-
variance and precision matrix estimation, as the log-eigenvalues of both matrices are opposite. This
is desirable because while we are interested in the precision matrix, the covariance matrix is easier
to estimate. As a further simplifying assumption, we will take P = In, which is equivalent to as-
suming that models have independent errors. Appendix D presents the general case P ̸= In, which

1See appendix A for more details
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in our experiments did not improve performance. Using this assumption on Â(x) in equation 7, we
get:{

Â(x) = Diag(eλ1(x), .., eλn(x)) where λi are regressors
α̂V (x) = Softmax(−λ(x)) where Softmax(−λ(x))i =

e−λi(x)∑n
k=1 e−λk(x)

(10)

Notice that using our model of the error (6), we have re-discovered the popular softmax, used in
particular in Mixture-of-Experts (MoE). All that remains for our aggregation to be complete is to
train the regressors λi. To do so, we will rely on covariance matrix estimation. Let Z1, ., ZN be
i.i.d. samples of the random variable Z ∈ Rn such that E [Z] = 0. An unbiased estimate of Cov[Z]
is

ˆCovZ =
1

N

N∑
i=1

Zi(Zi)T = argmin
Σ∈Rn×n

N∑
i=1

∥Σ− Zi(Zi)T ∥2F (11)

where ∥·∥F is the Frobenius norm. If we further assume that ˆCovZ must be diagonal (as we do with
Â(x)), then its coefficients are such that ( ˆCovZ)kk = argminc∈R

∑N
i=1∥c− (Zi

k)
2∥22. We will now

regularize this argmin formulation to approximate the model errors covariance matrix for all values
of x. Writing ei for the vector with entries defined as the sample errors (ei)k = Mk(X

i)− Y (Xi),
we identify the functions λi as

λ = argmin
l∈H

N∑
i=1

n∑
k=1

(
elk(X

i) − (ei)2k

)2
+ a∥l∥2H (12)

Here, we denote the entries of the vector-valued function l by lk, and H represents the space of
vector-valued functions selected to approximate the log-eigenvalues. This space could be a RKHS
associated with a particular kernel, a neural network with a specific architecture, or any other normed
function space. The notation ∥·∥H refers to the regularization norm intrinsic to that space, such as
the RKHS norm or the L2-norm of the weights and biases in a neural network.

4 EXPERIMENTS

4.1 SANITY CHECK: AGGREGATION ON THE BOSTON HOUSING DATASET

The Boston housing dataset (Harrison & Rubinfeld, 1978) is a popular benchmarking dataset for
regression. It contains N = 506 samples of 14 variables. We use this dataset as a sanity check
that our approach can improve upon the predictions of the aggregated models, while our focus is
on the PDE examples below. We split this dataset into train, validation, and test sets, and average
results over many splits. To evaluate our method, we train several standard ML methods on the train
set (e.g. linear regression, gradient boosting, etc.). We then train our aggregation on the validation
set before testing on the test set. To get a fair comparison, we also trained the ML methods on
the train and validation sets combined so that they see the same amount of data as the aggregate.
We first implement our aggregation as described in section 3.3, using a kernel method with kernel
κ. This is equivalent to minimizing equation 12 over λi ∈ Hκ where Hκ is the RKHS defined by
the kernel κ. After experimenting with many kernels, the best we found uses the Matérn kernel
κMatérn(u, v, ρ) =

(
1 +

√
3∥u−v∥

ρ

)
exp

(
−

√
3∥u−v∥

ρ

)
, and is defined as

κ(x, y) = κMatérn(M(x),M(y), ρ) (13)

with adequate choice2 of ρ. This formulation uses the prediction M(x) to output the aggregation
coefficients α(x).
The results of this experiment are shown in figure 2. In this situation, the mean performs well. The
aggregate, denoted MEVA with kernel, performs better than all individual models being aggregated,
their average and any ML model when fed the same data. This is a success for the MEVA, which
is difficult to obtain with MEEA. The aggregation improves upon the performance of the best ag-
gregated model, Gradient Boosting, by rtrain = 1 − MSE(Aggregate)

MSE(Gradient Boosting) = 7%, and the best model
overall by rall = 2%.

2See details in the paper’s repository
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Figure 2: Comparisons of the performance of the different models on the Boston housing dataset.
Red bars are the performance of models trained using the training set and used in the aggregation.
Blue bars show models trained on the training and validation set (train+val) to get a fair comparison
with the aggregations. The aggregation does not use the models trained on train+val.

We conduct a second experiment to demonstrate the effectiveness of our proposed method compared
to Minimal Error Aggregation, defined in equation 4. In this experiment, we use a small, fully
connected Deep Neural Network (DNN)3 and train it using two different loss functions: the MEA
described in section 2, and a Minimal Variance Aggregate (MVA) using an end-to-end loss especially
useful for neural networks, described in appendix E. The results, presented in figure 2, highlight the
impact of the chosen loss function. Since the only difference between the two approaches is the
loss function, the results clearly illustrate the advantages of variance minimization. Specifically, the
minimal error aggregation (denoted MEEA with DNN in the figure) performs significantly worse
compared to our minimal variance aggregation (denoted MEVA with DNN in the figure). It also
performs worse than the two best models aggregated.

4.2 AGGREGATION OF PDE SOLVERS

This section introduces the approach for combining Partial Differential Equation (PDE) solvers
through model aggregation. By incorporating classical PDE solvers into the aggregation frame-
work, we lower the accuracy threshold necessary for the aggregated solution to outperform individ-
ual models. Notably, this threshold is significantly below the typical 1% relative error benchmark
targeted by most ML-based PDE solvers. We first formulate the aggregation problem in the operator
learning context, followed by two experimental case studies demonstrating the effectiveness of this
approach.

4.2.1 OPERATOR LEARNING IN THE AGGREGATION CONTEXT

Consider the Laplace equation with zero Dirichlet boundary conditions on the domain Ω = [0, 1]2

as an illustrative example of a PDE:{
−∆u†(ω) = f(ω) for ω ∈ Ω

u†(ω) = 0 for ω ∈ ∂Ω
(14)

where f ∈ F ⊂ L2(Ω) and u† ∈ Y ⊂ H2(Ω) ∩ H1
0 (Ω) is the solution. The solution opera-

tor maps the source term f to the solution u†. In this context, the solution operator is defined as
S : f ∈ F 7→ u† ∈ Y . This operator is often approximated using a PDE solver, which can be
based on methods like finite element analysis (Bathe, 2008) or spectral methods (Fornberg & Sloan,
1994). Alternatively, the operator can be learned directly from pairs of input/output solutions, a
supervised learning task known as operator learning (Kovachki et al., 2024). Since PDE solvers and
machine learning methods approximate operators, we can naturally frame our aggregation task as an

3See details in the paper’s repository
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aggregation of multiple operators (or PDE solvers), denoted M1, . . . ,Mn. The aggregated operator
MA is then expressed using α, an operator that maps F to L2(Ω,Rn), so that:

MA(f) =

n∑
i=1

αi(f)Mi(f) ∈ F (15)

Remark: In the operator context, one may consider many aggregations that are pointwise lin-
ear with respect to the models, for instance, the aggregation of Fourier coefficients, M̃A(f) =
T −1 (

∑n
i=1 α̃i(f)T (Mi(f))), where T represents the Fourier transform.

4.2.2 THE OPERATOR AGGREGATION LOSS

To get the loss for our problem, we will first state the general loss in the operator learning setting and
then modify it for increased performance. Since the aggregation loss (12) is defined for real-valued
objectives with an abstract input x ∈ X , we must specify X in the context of operator learning. We
use X = {(ω, f) ∈ Ω × F}, which means x = (ω, f) is a choice of point in space and source
term. We define Y (x) := S(f)(ω) = u†(ω) ∈ R. Given a grid (ω1, ...ωN1) ∈ Ω and a set of input
functions (f1, .., fN2), we get the N1 ×N2 datapoints Xi,j := (ωi, f j) for our aggregation. These
pairs of datapoints (Xi,j , Y i,j = S(f j)(ωi)) can then be used in equation 12.
When solving PDEs, the focus is often on the order of magnitude of the error, i.e., its logarithm.
Therefore, we may adapt the loss function (12) to account for this. Specifically, observe that if the
regularization parameter a is small, then functions λ obtained from regressors that can interpolate
arbitrary data (e.g., GPs with universal kernels) may result in a near-zero loss and eλk(X

i,j) →
(Y (Xi,j) −Mk(X

i,j))2 := ei,jk as a → 0. Thus, we can linearize the exponential around log[ei,jk ]
to see that:

(eλk(X
i,j) − ei,jk )2 ≈

(
lk(X

i,j)− log[ei,jk ]
)2

(ei,jk )4 (16)

This linearization shows that samples where the models perform well are down-weighted, and the
aggregation would focus on instances where they perform poorly. Instead, we use the following more
sensitive loss (17) where the down-weighting is removed, which, in practice, gives good results on
these problems:

λs = argmin
l∈H

N1∑
i=1

N2∑
j=1

n∑
k=1

(
lk(X

i,j)− log
[
(Y (Xi,j)−Mk(X

i,j))2
])2

+ a∥l∥2H (17)

We also recall the process for obtaining α and the aggregate MA from λs is given in equations 10
and 15. In both examples, we use the Fourier Neural Operator (FNO) (Li et al., 2021) to learn the
operator l. We also explored a kernel-based approach for operator learning, as detailed in Batlle
et al. (2024). Although operator learning using a Matérn kernel yielded good results, FNO offered
better performance with minimal hyperparameter tuning for the examples discussed in this section.

4.3 THE LAPLACE EQUATION

Our first example is the Laplace equation (14). We use six simple solvers as models: a finite dif-
ference method, two finite differences with an inhomogeneous grid (one denser for x < 0.4, the
other for x > 0.4), a spectral method, and a GP solver. Our data is generated by sampling4 random
parameters fmax, µ0, µ1, R for functions of the form

u(x, y) = − sin(πx) · sin(πy) · sin

(
fmax · exp

(
−
[
x− µ0

y − µ1

]T
·R ·

[
x− µ0

y − µ1

]))
(18)

Six hundred pairs of functions (fi := ∆ui, ui) are sampled, of which 500 are used for training
and 100 for testing. Figure 6 shows an example of such a pair. These functions and the models
are evaluated on a grid of 100 × 100. The aggregation is performed by FNO, which takes input f
and the models’ outputs and outputs the aggregation coefficients’ logits λ. When training a FNO
with parameters θ ∈ Θ ⊂ RNΘ and loss (17), we find the minimizer of (17) with H = {f 7→
FNO(θ)(f,M1(f), ..,Mn(f)) for θ ∈ Θ} with ∥FNO(θ)∥H = ∥θ∥2.

4See details in the paper’s repository
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(a) Laplace equation (b) Burger’s equation

Figure 3: log MSE of the different methods for: (3a) the Laplace equation; (3b) Burger’s equation.
Samples are sorted by the error of the aggregate

Apart from the GP solver, all other methods perform similarly, with the finite difference method
being the best overall. The GP solver, implemented with a fixed length scale, has two regimes.
When the function ui is not evolving too fast (i.e. when fmax is not too large), the kernel is well
specified, and the GP solver obtains the best performance. On other occasions where fmax is larger,
the method fails and has a substantial error. Thus, the aggregation challenge here is to use the GP
when performing well but ignore it when it fails. The result of this experiment is shown in figure
3a. Because of the significant error in the failure case, we observe that the mean is a poor aggrega-
tion that performs worse than all models aggregated. Our aggregate is consistently among the best
performers on each sample and the best-performing model for many samples. On average, our ag-
gregate performs one order of magnitude better than the models aggregated, as shown in table 1. An
example of model outputs, errors, α, and final aggregation is shown in figure 7. As a comparison, we
also train FNO using a direct MSE loss of the aggregation, akin to (4). We observe that this method
fails as the aggregation converges to a constant, i.e., α(f, ω) ≈ (1, 0, 0, 0, 0, 0) ∀ f, ω, picking the
best-performing model. We believe that this convergence to a fixed value, without combining the
different models to get a better one as observed in our method, is due to the absence of the log term
that we added in the sharp loss (17). As we observed in section 4.2.2, without this log it is difficult
for a loss to differentiate between 10−3 and 10−9 error. Furthermore, while learning the log-error
instead of the error is a simple modification from (12) to (17), it is difficult to see where this log
would be added in a loss like (4).

4.4 BURGER’S EQUATION

We now turn to a non-linear PDE, Burger’s equation with periodic boundary condition and finite
time interval:∂tu(t, x) + ∂x(

1
2u

2(t, x)) = ν∂xxu(t, x) for x, t ∈ [0, 1]2

u(0, x) = f(x) for x ∈ [0, 1]
u(t, 0) = u(t, 1) for t ∈ [0, 1]

(19)

We choose ν = 2.10−3 and pick initial conditions fi as samples from the Gaussian process
N (0,Kexp sin2) where Kexp sin2(x, y) = exp

(
− 2 sin2(π|x−y|)

l2

)
and l = 1.5. With this set of param-

eters, the initial conditions are infinitely differentiable periodic functions that often, but not always,
form a shock within the time frame studied (t ∈ [0, 1]). We use seven different solvers with the
same fixed discretization grid. While the first five methods implement the viscid version of Burger’s
equation directly, for instance, using an explicit scheme or a finite volume method, the penultimate
uses a flux limiter. The last one solves the inviscid Burger’s equation. With this variety of solvers,
we have methods that are accurate in smooth cases when there is no large shock, an intermediate
method that may be more robust to shocks, and a method that will never diverge even in the presence
of shocks, but will be less accurate in general because it solves a slightly different equation. A good

9
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aggregation must be able to recognize artefacts and divergences that may arise around shocks but
use the more precise, although more brittle, solvers in cases where they are accurate. To perform the
aggregation, similarly to the previous section, we use FNO, to which we feed the models’ prediction
as a stack of 2-dimensional arrays (one for time and one for space). Specifically, we minimize loss
(17) with λ(f) = FNO(θ)(M1(f), ..,Mn(f)) for some θ.
The results are displayed in figure 3b. Our method successfully leverages the predictions of the
different models to give a robust and accurate prediction. The behaviors of our aggregation can be
separated into a few cases. On the left of the graph, we find easy initial conditions that all models
can approximate correctly. We may notice the Riemann method, which solves the inviscid Burger’s
equation, has lower accuracy. Thus, on this easy half of the graph, the aggregation mainly relies on
the TVD solver, the most precise, to achieve excellent accuracy. In the right half, we find the more
complex cases where the aggregation has an accuracy closer to the more robust Riemann solver. In
this half, there are cases where the TVD method fails and diverges and is avoided by our aggrega-
tion. The process can identify each solver’s strengths and weaknesses and obtain a better average
error, as shown in table 2. An example of model outputs, errors, α, and final aggregation is shown
in figure 8.

Method Geometric Mean
of MSE (log10)

Aggregate -6.282
FDM -5.523

Spectral -4.988
GP -4.739

FDM (Asymmetric Right) -4.685
FDM (Asymmetric Left) -4.699

Table 1: Result of Laplace equation experi-
ment (sec. 4.3)

Method Geometric Mean
of MSE (log10)

Aggregate -3.106
Riemann -2.734

TVD -2.568
FVM -1.228

Spectral -0.625
Implicit -0.488
Explicit -0.455

Lax-Wendroff -0.455

Table 2: Result of Burger’s equation experi-
ment (sec. 4.4)

5 DISCUSSION

We introduced a general data-driven framework for aggregating models with minimal assumptions.
As demonstrated in the pathological example Section 2.2 and the theorem 3.2, directly training
the aggregate model is unstable and may result in an aggregator that fails to improve upon the
performance of individual models. To address this, we introduced a simple assumption of unbiased
models in (6) and reformulated the aggregation task as a variance minimization problem (Section
3). In one data science problem (Section 4.1) and two PDE-solving examples (Sections 4.3 and 4.4),
our loss function consistently outperformed the minimal error aggregate and led to an aggregation
that surpassed the performance of the individual models. These latter two examples also illustrate
the flexibility of our method, which can aggregate not only machine learning models but also other
types of models, such as PDE solvers, in a data-driven manner. Notably, we used FNO to get an
aggregate performance much higher than it could get when trying to solve the PDE directly.

Our method relies on the availability of unseen data to estimate the error of different models. There-
fore, as seen in the Boston Housing example (section 4.1), splitting the data further to create an
unseen validation set in scenarios where data is limited may significantly reduce the amount of
training data available for the models, potentially impairing overall performance. Additionally, in
challenging aggregation tasks, there is no guarantee that the aggregate will consistently outperform
the individual models or simpler methods, such as averaging, despite the higher computational cost.

MEVA’s flexibility makes it well-suited for integrating diverse methods, particularly in structured
contexts like scientific computing, where non-intrusive solutions are often necessary. By requiring
minimal assumptions about the models or data, MEVA can effectively aggregate legacy solvers
that are difficult to modify, physics-based models built on differing assumptions, or models with
incompatible software frameworks.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

TB and HO acknowledge support from the Air Force Office of Scientific Research under MURI
awards number FA9550-20-1-0358 (Machine Learning and Physics-Based Modeling and Simula-
tion), FOA-AFRL-AFOSR-2023-0004 (Mathematics of Digital Twins) and by the Department of
Energy under award number DE-SC0023163 (SEA-CROGS: Scalable, Efficient and Accelerated
Causal Reasoning Operators, Graphs and Spikes for Earth and Embedded Systems). Additionally
HO acknowledge support from the DoD Vannevar Bush Faculty Fellowship Program.

REFERENCES

Nathanael L Ackerman, Cameron E Freer, and Daniel M Roy. On computability and disintegration.
Mathematical Structures in Computer Science, 27(8):1287–1314, 2017.

Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued functions:
A review. Foundations and Trends® in Machine Learning, 4(3):195–266, 2012.

Hamed Hamze Bajgiran and Houman Owhadi. Aggregation of Pareto optimal models, December
2021. URL http://arxiv.org/abs/2112.04161. arXiv:2112.04161 [econ, math, stat].

Klaus-Jürgen Bathe. Finite Element Method, pp. 1–12. John Wiley & Sons, Ltd, 2008.
ISBN 9780470050118. doi: https://doi.org/10.1002/9780470050118.ecse159. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse159.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competi-
tive for operator learning. Journal of Computational Physics, 496:112549, 2024.
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jeconom.2022.04.007. URL https://linkinghub.elsevier.com/retrieve/pii/
S0304407622000975.

A THEOREM ON THE STABILITY OF THE MEVA

We consider the setting without a dependence on x to prove a theorem on the robustness of MEVA
compared to MEEA. Let Y be a random real-valued variable and the random vector of models
M ∈ Rn. Suppose we have i.i.d observations (M1, Y 1), . . . , (MN , Y N ), collected in the matrices
M ∈ RN×n and Y ∈ RN . We wish to study the Mean Squared Error (MSE) of an aggregation
method of the form MA = αTM . Define

L(α) = E
[
(Y − αTM)2

]
(20)

Let C = E
[
MMT

]
, γ = E [YM ], we have that the loss is minimized at α∗ = C−1γ the MEA. Let

M = Y 1 + ϵZ, where Z is the scaled error, with ϵ chosen so that E
[
ZZT

]
:= A has Frobenius

norm 1 ; and b := E [Y Z]. We have that

γ = E[Y 2]1+ ϵb (21)

C = ϵ2A+ (E[Y 2]1 + ϵb)1T + ϵ1bT (22)

A.1 CHARACTERIZATION OF α∗

To facilitate our computations, we introduce D = ϵ2A+ (E[Y 2]1 + ϵb)1T . We define

s = 1
TA−1

1, (23)

t = bTA−1
1. (24)

u = bTA−1b. (25)

v = 1
TA−1

(
E[Y 2]1+ ϵb

)
= E[Y 2]s+ ϵt (26)

Using the Sherman & Morrison (1950) formula, we find that

D−1 =
1

ϵ2

(
A−1 − 1

ϵ2 + v
A−1(E[Y 2]1 + ϵb)1TA−1

)
(27)

C−1 = D−1 − ϵ

1 + w
D−1

1bTD−1, where w = ϵbtD−1
1 (28)

Let α, β, δ, ζ such that

D−1
1 = αA−1

1+ βA−1b (29)

D−1b = δA−1
1+ ζA−1b (30)

Thus, w = ϵbtD−11 = ϵ(αt+ βu) and bTD−1b = δt+ ζu. The coefficients are:

α = 1
ϵ2 · ϵ2+ϵt

ϵ2+v , β = − 1
ϵ ·

s
ϵ2+v ,

δ = −E[Y 2]t
ϵ2(ϵ2+v) , ζ = ϵ2+E[Y 2]s

(ϵ2+v)ϵ2 .

(31)

The computation of C−1γ is broken into two parts:

C−1γ = C−1
(
E[Y 2]1+ ϵb

)
= E[Y 2]C−1

1+ ϵC−1b (32)

The intermediate terms are:

C−1
1 =

1

1 + w
D−1

1, (33)

C−1b = D−1b− ϵ(bTD−1b)

1 + w
D−1

1. (34)
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Substitute D−1
1 and D−1b:

C−1
1 =

α

1 + w
A−1

1+
β

1 + w
A−1b (35)

C−1b =

(
δ − ϵ(δt+ ζu)

1 + w
α

)
A−1

1+

(
ζ − ϵ(δt+ ζu)

1 + w
β

)
A−1b. (36)

Write C−1γ = xA−1
1+ yA−1b, then

x = E[Y 2]
α

1 + w
+ ϵδ − ϵ2(δt+ ζu)

1 + w
α (37)

y = E[Y 2]
β

1 + w
+ ϵζ − ϵ2(δt+ ζu)

1 + w
β. (38)

Using Sympy (Meurer et al., 2017) to simplify these expressions, we find that:

x =
E[Y 2]− u

s(E[Y 2]− u) + (ϵ+ t)2
(39)

y =
t+ ϵ

s(E[Y 2]− u) + (ϵ+ t)2
(40)

Defining αV = A−1
1

1TA−11
and αR = A−1b

ϵ+1TA−1b
, we have that

α∗ = λαV + (1− λ)αR where λ =
s(E

[
Y 2
]
− u)

s(E [Y 2]− u) + (ϵ+ t)2
(41)

One may find that

E
[
Y 2
]
− u = E [Y ]

2 −

E [Y (M − Y 1))]
T E

[
(M − Y 1))(M − Y 1))T

]−1 E [Y (M − Y 1))] ≥ 0

using the Schur complement of the covariance matrix of the vector (Y,MT − Y 1T )T ∈ Rn+1.
Thus, λ ∈ [0, 1], and α∗ is a convex combination of the MVA, αV , and αR. Note that

1
TC−1γ = x ∗ s+ y ∗ t = 1− ϵy (42)

and

γTC−1γ = E
[
Y 2
]
(y ∗ t+ x ∗ s) + ϵ ∗ (y ∗ u+ x ∗ t) (43)

=

(
E[Y 2]

)2
s+ 2E[Y 2]ϵt− E[Y 2]su+ E[Y 2]t2 + ϵ2u

s(E[Y 2]− u) + (ϵ+ t)2
(44)

= E
[
Y 2
]
− ϵ2

E
[
Y 2
]
− u

s(E[Y 2]− u) + (ϵ+ t)2
(45)

Thus, we have that

L(α∗) =
λϵ2

s
= λL(αV ) (46)

and

L(αV ) = ϵ2αV
TAαV =

ϵ2

s
(47)

A.2 PERTUBATION OF αV

We want to study the finite sample properties of the empirical estimates, thus we define

Â =
1

ϵ2N
(MT − 1YT )(M−Y1T ) := A+

1√
N

δA (48)

b̂ =
1

ϵN
(MT − 1YT )Y := b+

1√
N

δb (49)

Ê [Y 2] =
1

N
∥Y∥22 := E

[
Y 2
]
+

1√
N

δV (50)
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The central limit theorem asserts that δA, δb and δV converge in distribution to a Gaussian random
variable, with finite covariance matrices. If we study the perturbation of αV when estimating it using
Â, we have that L(αV ) = ϵ2 1Â

−1AÂ−1
1

(1Â−11)2
. At the first order in 1√

N
,

Â−1
1 = A−1

1− 1√
N

A−1δAA−1
1 (51)

1
T Â−1

1
2 = 1

TA−1
1
2 − 2

1√
N
1
TA−1

11
TA−1δAA−1

1 (52)

1
T Â−1AÂ−1

1 = 1
TA−1

1− 2
1√
N
1
TA−1δAA−1

1 (53)

(54)

Using the first order expansion of a fraction,

M + ηN

O + ηQ
=

M

O
+ η

(
N

O
− MQ

O2

)
+O(η2) (55)

We find that first-order terms cancel out, meaning that

L(α̂V ) = L(αV ) +O(
ϵ2

N
) (56)

O( ϵ
2

N ) = ϵ2

N f(δA), where f is a continuous function of δA such that f(δA)/∥δA∥2 = O(1) as
δA → 0. Since δA converges in distribution to a Gaussian Z with finite covariance, using the con-
tinuous mapping theorem Billingsley (1999), we have that f(δA) converges to f(Z) in distribution,
a finite random variable.

A.3 PERTURBATION OF α∗

A.3.1 PERTURBATIONS OF t, u, AND s

If (A+ 1√
N
δA)(x+ δx) = y + 1√

N
δy, then at the first order δx = 1√

N
A−1(δy − δAx):

δs = −1TA−1(δA)A−1
1,

δt = 1
TA−1δb− 1

TA−1(δA)A−1b,

δu = 2bTA−1δb− bTA−1(δA)A−1b.

A.3.2 PERTURBATION OF THE DENOMINATOR

The denominator of C−1γ is:

D = s(E[Y 2]− u) + (ϵ+ t)2.

The perturbation is:
√
N(D̂ −D) = δD = δs(E[Y 2]− u) + sδv − sδu+ 2(ϵ+ t)δt.

A.3.3 PERTURBATION OF THE NUMERATOR

The numerator of Ĉ−1γ̂ is:

N̂ = ( ˆE[Y 2]− û)Â−1
1+ (ϵ+ t̂)Â−1b̂.

A.3.4 FIRST TERM: ( ˆE[Y 2]− û)Â−1
1

Using ˆE[Y 2] = E[Y 2] + δv, û = u+ δu, and the perturbation formula for Â−1
1:

( ˆE[Y 2]− û)Â−1
1 = (E[Y 2]−u)A−1

1− 1√
N

(E[Y 2]−u)A−1(δA)A−1
1+

1√
N

(δv−δu)A−1
1.
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A.3.5 SECOND TERM: (ϵ+ t̂)Â−1b̂

Using t̂ = t+ δt, b̂ = b+ δb, and the perturbation formula for Â−1b̂:

(ϵ+ t̂)Â−1b̂ = (ϵ+ t)A−1b+
1√
N

[
δtA−1b+ (ϵ+ t)A−1δb− (ϵ+ t)A−1(δA)A−1b.

]
A.3.6 FINAL EXPRESSION FOR N̂

Combining the two terms:

N̂ = (E[Y 2]− u)A−1
1+ (ϵ+ t)A−1b+

1√
N

[
−(E[Y 2]− u)A−1(δA)A−1

1+ (δv − δu)A−1
1

(57)

+δtA−1b+ (ϵ+ t)A−1δb− (ϵ+ t)A−1(δA)A−1b.
]

(58)

A.3.7 FULL PERTURBATION OF C−1γ

The final perturbed C−1γ is:

Ĉ−1γ̂ =
N̂
D̂

.

Where:
D̂ = D +

1√
N

δD, N̂ = N +
1√
N

δN ,

and:
N = (E[Y 2]− u)A−1

1+ (ϵ+ t)A−1b.

Now, we see that N̂ TAN̂ = N TAN + 2N TAδN at the first order. We have that
√
NAδN = −(E[Y 2]− u)δAA−1

1+ (δv − δu)1+ δtb (59)

+ (ϵ+ t)δb− (ϵ+ t)δAA−1b (60)
√
NNAδN = (E[Y 2]− u)

[
−(E[Y 2]− u)1TA−1δAA−1

1+ (δv − δu)s+ tδt (61)

+(ϵ+ t)(1TA−1δb− 1
TA−1δAA−1b

]
(62)

+ (ϵ+ t)
[
−(E[Y 2]− u)bTA−1δAA−1

1+ (δv − δu)t (63)

+uδt+ (ϵ+ t)(bTA−1δb− bTA−1δAA−1b
]

(64)

Then, we have that
√
NbtδN = −(E[Y 2]− u)bTA−1δAA−1

1+ (δv − δu)t (65)

+ uδt+ (ϵ+ t)(bTA−1δb− bTA−1δAA−1b) (66)

We have:

ŷbT α̂ =
1

D̂
(ϵ+ t̂)bT α̂ =

1

D̂

[
(ϵ+ t)bTα+

1√
N

δtbtα+
1√
N

(ϵ+ t)bT
δN
D̂

]
(67)

and ŷ2 =
(ϵ+t)2+2 ϵ√

N
δt

D̂2
. Thus,

L(α̂E) =
ϵ2

D̂2
(E
[
Y 2
] [

(ϵ+ t)2 + 2ϵδt
]

(68)

− 2
[
(ϵ+ t)bTαD̂ + δtbtαD̂ + (ϵ+ t)bT δN

]
(69)

+N TAN + 2N TAδN ) (70)

We define

Lo = E
[
Y 2
]
(ϵ+ t)2 − 2(ϵ+ t)bTαD +N TAN (71)

L1 = 2ϵδtE
[
Y 2
]
− 2

[
δtbTαD + (ϵ+ t)bT δN

]
+ 2N TAδN (72)
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We have that

L(α̂E) = ϵ2
[
Lo

D2
+

1√
N

(
L1

D2
− 2L0δD

D3

)]
+O(

ϵ2

N
) (73)

Sympy computations show that

L(α̂E) = L(α∗) +
ϵ22E[Y 2]t√

ND2

(
−1TA−1δb+ bTA−1δAA−1

1
)
+O(

ϵ2

N
) (74)

Here again, δA and δb jointly converge to Gaussian random variables, so using the continuous
mapping theorem, ξN = −1TA−1δb+ bTA−1δAA−1

1 converges to a Gaussian ξ with mean 0 and
finite covariance (because it is a linear combination of δA and δb, which are jointly Gaussian in the
limit).

A.4 COMPARISON BETWEEN MEVA AND MEEA

Building upon the previous sections, we derived the following results for the loss functions of the
two methods:

L(α̂V ) =
1

λ
L(α∗) +O(

ϵ2

N
) (75)

L(α̂E) = L(α∗) +
ϵ22E[Y 2]t√

ND2
ξN +O(

ϵ2

N
) (76)

where λ =
s(E

[
Y 2
]
− u)

s(E [Y 2]− u) + (ϵ+ t)2
L(α∗) =

λϵ2

s
(77)

We can reformulate these results as:

L(α̂V ) = L(α∗)

(
1 +

(ϵ+ t)2

s(E [Y 2]− u)
+O(

1

N
)

)
(78)

L(α̂E) = L(α∗)

(
1 +

2E[Y 2]t

D(E [Y 2]− u)

ξN√
N

+O(
1

N
)

)
(79)

(80)

In the context of model aggregation, we expect errors to be small, leading to ϵ being close to 0.
While the MVA does not assume that b = E

[
Y M−Y 1

ϵ

]
= 0, a small b makes λ closer to 1. This

corresponds to the errors being uncorrolated with the target. This setting of fixed t ̸= 0 is the
one studied in the theorem. We may see that even for λ = 0.5, and small N , say N = 100, the
difference between L(αV ) and L(α∗) is a factor 2, while the difference between 1

N and 1√
N

is a
factor 10, making the latter effect much dominant.

However, t = 0 makes the N− 1
2 term disappear, resulting in MEEA and MEVA having the same

convergence rate. In this scenario: L(α̂V )−L(α∗) = O(ϵ4 + ϵ2

N ). Thus, when t = 0, both methods
perform well, with the performance gap being of the order ϵ4.
We now consider the more general case of a possibly small error correlation with the target, which
leads to t = κϵ. In this case,

L(α̂V ) = L(α∗)

(
1 + ϵ2

(1 + κ)2

s(E [Y 2]− u)
+O(

1

N
)

)
(81)

L(α̂E) = L(α∗)

(
1 +

ϵ√
N

2E[Y 2]κξN
D(E [Y 2]− u)

+O(
1

N
)

)
(82)

(83)

This comparison reduces to evaluating the relative magnitudes of ϵ√
N

and ϵ2. While it is not possible
to compare them a priori, our theorem is aimed at explaining the behavior of the aggregation when
extrapolating to all x, the regime of very scarce data. For models that are accurate, it is expected that
the model error ϵ is much less than the Monte-Carlo rate of the validation samples, 1√

N
, especially

for N not very large. In this case, MEVA remains superior to MEEA, particularly for highly accurate
models.
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B AGGREGATING PDE SOLVERS IN THE GAUSSIAN SETTING

This section describes the aggregation performance one may get with GP-based PDE solvers intro-
duced in Chen et al. (2021). Subsection B.1 summarizes the method and subsection B.2 describes the
performance of the aggregation of low-fidelity models obtained by constraining the GPs to satisfy
the PDE at a small number of collocation points.

B.1 SOLVING PDES WITH GPS AND THEIR AGGREGATION

We now recall the GP-based PDE solver introduced in Chen et al. (2021) and describe the proposed
method for aggregating such solvers. Consider the Laplace equation as a prototypical example:{

−∆u†(x) = f(x) for x ∈ [−1, 1]2

u†(x) = g(x) for x ∈ ∂([−1, 1]2)
(84)

Place a Gaussian prior on the solution, i.e., assume u† = ξ ∼ N (0, κ) where K is a Radial Basis
Function (RBF) kernel.

Given N interior collocation points Xi ∈ [−1, 1]2 and Nb boundary collocation points Xb
j ∈

∂([−1, 1]2), we approximate the solution u with the Gaussian process estimator

û = E
[
ξ
∣∣−∆ξ(X) = f(X), ξ(Xb) = g(Xb)

]
(85)

To express û, we extend the action of κ to distributions (linear functionals) as described in Owhadi
& Scovel (2019): for two distributions d1, d2, we write

K(d1, d2) :=

∫
d1(x)κ(x, y)d2(y) dx dy (86)

Note that K(δx, δy) = κ(x, y), while K(δx ◦∆, δy) = ∆1κ(x, y) where ∆ is the laplacian, and ∆1

is the laplacian applied to the first variable.

Using this extended kernel, the Gaussian prior ξ ∼ N (0, κ) can be interpreted in terms of dis-
tributions, allowing us to define ξ(x) = δx(ξ) and ∆ξ(x) = δx ◦ ∆(ξ). In particular, this
Gaussian prior implies that E [d1(ξ)d2(ξ)] = K(d1, d2). Defining the stack of distributions
ϕ = (δX1

◦∆, .., δXN
◦∆, δXb

1
, ..δXb

Nb

), we can define the kernel matrix

K(ϕ, ϕ)ij = K(ϕi, ϕj) (87)

and similarly, K(x, ϕ)i = K(δx, ϕj). Using this, we have

E
[
ξ
∣∣−∆ξ(X), ξ(Xb)

]
= K(x, ϕ)K(ϕ, ϕ)−1

(
−∆ξ(X)
ξ(Xb)

)
(88)

In scenarios with multiple GP approximations of u†, leveraging the GP prior allows computation of
correlations. Let

û(k) := E
[
ξ
∣∣∣−∆ξ(X(k)), ξ(Xb,k)

]
(89)

be the distinct approximations of the solution of the PDE obtained from different interior and bound-
ary collocation points X(k) and Xb,k. Write ϕk := (δXk

1
◦∆, .., δXk

N
◦∆, δXb,k

1
, ..δXb,k

Nb

). Since these

approximants û(k), interpreted as models, are also Gaussian processes, we can explicitly compute
their correlations:

E
[
û(k)(x)û(l)(x)

]
= K(x, ϕk)K(ϕk, ϕk)

−1 E

[(
−∆ξ(Xk)
ξ(Xb,k)

)(
−∆ξ(X l)
ξ(Xb,l)

)T
]
K(ϕl, ϕl)

−1K(ϕl, x)

= K(x, ϕk)K(ϕk, ϕk)
−1K(ϕk, ϕl)K(ϕl, ϕl)

−1K(ϕl, x)

Similarly, E
[
ξ(x)û(k)(x)

]
= K(x, ϕk)K(ϕk, ϕk)

−1K(ϕk, x). We then use these correlations in
equation 3 to compute the aggregation analyzed in the following subsection.
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B.2 PERFORMANCE OF THE AGGREGATION

Using the GP-based PDE-solver introduced in Chen et al. (2021) and described above, we generate
100 distinct low-fidelity models of the solution of the PDE equation 84, an example of which is
given in figure 4b. As this method is GP-based, the correlations outlined in equation (3) are known,
and this approach reduces to nested kriging (Rullière et al., 2017). In this context, equation 3 is not
only the best (in mean squared error) linear aggregate. It is also the best non-linear aggregate of all
models. Figure 4 shows the results of this experiment. While the individual models are far from
approximating the solution due to the limited number of collocation points, the aggregation shown
in Figure 4d closely matches the true solution and significantly surpasses any single model used in
the aggregation. We also observe that mere averaging across all models does not yield the same
accuracy level. This highlights that significant gains in aggregation performance can be achieved by
optimally incorporating covariance information both within and across models relative to the target.

(a) (b) (c) (d)

Figure 4: (a) Real solution of the PDE (b) One of the models aggregated (c) Uniform average of all
models (d) Proposed aggregate equation 3

C ANOTHER PATHOLOGICAL EXAMPLE: UNKNOWN REGION

In this second example illustrated in Figure 5 we select
Y (x) = 3 cos(2πx)
MG(x) = Y (x) + ϵ(x) where ϵ(x) ∼ N (0, 0.3)
MB(x) = 3
MN (x) = −3

(90)

Write M = (MG,MB ,MN )T for the vector defined by the three models. It is common for
aggregation methods, such as MoE, to constrain α̂ to be a convex combination, which we im-
plement here by seeking an aggregate of the form MA(x) = Softmax(ν̂(x))TM(x) where
Softmax(ν̂(x))k := exp(ν̂k(x))∑3

j=1 exp(ν̂j(x))
. To identify the functions ν̂k we sample N = 100 points

Xi uniformly in [−1,−0.5] ∪ [0.5, 1] leaving the region [−0.5, 0.5] with no data. We use a kernel
method with an RBF kernel and loss 4, in which ∥·∥H is the RKHS norm of κ. Using the representer
theorem (Schölkopf et al., 2001), we reduce this loss to a finite-dimensional non-linear optimization
problem and solve it using Gauss-Newton iterations (Wang, 2012). In this example, the good model
is consistently better than the bad models over the entire dataset. Nevertheless, our aggregate fits
the dataset perfectly by combining MB and MN instead of using MG. In doing so, it fails to learn
the quality of the models. Instead, it only interpolates the data, leading to poor performance outside
the dataset despite having a model with good performance everywhere. This pathological behavior
arises because the aggregate fails to account for model errors in its approximation of Y , even though
it is a convex combination.

D NON-INDEPENDENT MODEL ERRORS

D.1 NEW FORMULAS FOR THE AGGREGATION

In section 3.3, we assume the models have independent errors. In general, this may not be true.
Thus, we present here an extension to non-independent errors. Recall our approximation of the
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Figure 5: Pathological example (sec. 2.2)

covariance matrix A(x):

Â(x) = PT


eλ1(x) 0 . . .

0
. . . 0

... 0 eλn(x)

P where
{
PPT = In
λi are regressors

(91)

We may adapt the loss (12) to account for P ̸= In, to get:

λ = argmin
l∈H

N∑
i=1

∥PTDiag(elk(X
i))P − ei(ei)T ∥2F + a∥l∥2H (92)

= argmin
l∈H

N∑
i=1

n∑
k=1

(
elk(X

i) − (Pei)2k

)2
+ a∥l∥2H (93)

With this formulation, we get a more general aggregation. In particular, despite summing to 1, the
coefficients α(x) are not necessarily positive, giving added flexibility in case models have nega-
tive conditional correlations. The full Minimal Empirical Variance Aggregate (MEVA) with non-
independent errors is given as:

λ = argmin
l∈H

N∑
i=1

n∑
k=1

(
elk(X

i) − (Pei)2k

)2
+ a∥l∥2H (94)

α(x)T =
1
TPTD(x)P

1TPTD(x)P1
where D(x) = Diag [exp(−λk(x)), k = 1, ..., n] (95)

MA(x) =

n∑
i=1

αi(x)Mi(x) (96)

D.2 CHOOSING THE MATRIX P

We have explored two options for the matrix P :

• P = I , the identity matrix, is the simplest choice.
• P as the orthonormal basis that diagonalizes the empirical covariance matrix C :=

1
N

∑N
i=1 eie

T
i .

In the experiments presented below, we only show results for P = I . This choice is straightforward
and delivers accuracy comparable to or better than using the eigenvectors of C.

We also observed that using the empirical covariance matrix can render the method unstable if the
models are highly correlated. Indeed, consider, for instance, two models whose errors are signifi-
cantly correlated, leading to the following empirical covariance matrix:

C :=

(
1.1 0.9
0.9 1

)
(97)

21



Published as a conference paper at ICLR 2025

In this case, the second eigenvector of C, P2 ≈ 1√
2
(0.97,−1.02), results in 1TP2 ≈ −0.04, which

effectively subtracts the two models. This eigenvector is associated with a small eigenvalue (0.15),
indicating that the difference between the two models has a low variance on average. Since equation
(7) depends on the inverse of the estimated covariance matrix, a small estimated variance eigenvalue
eλ2(x) leads to α(x) having large coefficients with opposing signs. In this scenario, we observed
that the aggregation method can become sensitive to small errors and thereby suffer from poor
generalization.

E AN ALTERNATIVE, DIRECT MINIMAL EMPIRICAL VARIANCE
AGGREGATION LOSS

Here, we propose an alternate end-to-end loss for the minimal empirical variance aggregation
(MEVA). In section 3.1, we observed that our approach can be interpreted as minimizing the
aggregate’s variance, using an unbiased combination α s.t. 1

Tα = 1. Under the model (6),
Cov[M(x)] = A(x), so our MVA is such that

α(x) = argmin
ν∈Rn

∑n
i=1 νi=1

νTA(x)ν (98)

Instead of estimating A(x) and inverting this estimation to obtain the minimal variance aggregate
as in (7), we propose using an empirical version of the above loss. Specifically, let the empirical
covariance matrices Ai be:

Ai :=

{
PTDiag((Pei)2k, k = 1.., n)P for general P

Diag((Y i −Mk(X
i))2, k = 1.., n) if P = In

(99)

Write H1 for a normed subspace of the space of unbiased aggregators {u : x 7→ u(x) ∈
Rn s.t.

∑n
i=1 ui(x) = 1, ∀x}. Then, the proposed alternative approach identifies an aggregator

α̃ by minimizing the sample variance of the aggregate:

α̃ = argmin
u∈H1

N∑
i=1

u(Xi)TAiu(X
i) + a∥u∥2H1

(100)

We employ this strategy in the Boston dataset example (section 4.1). Here, H1 is a set of vector-
valued functions parameterized by a neural network, where the output is constrained to have positive
entries summing to one via a softmax layer. The term ∥u∥2H1

is an L2-norm regularizer applied to
the network’s weights and biases. This method is both straightforward and practical.

F ADDING A BIAS CORRECTION

Assuming the models M(x) to be unbiased is necessary to obtain a linear aggregate, as adding
a bias correction will result in an affine aggregation of the form MA(x) = αT (x)M(x) + β(x).
This assumption may, however, be violated in practice, and in this case, bias will be interpreted as
variance. In a context with limited data and little knowledge of the models and target, it would be
difficult to know if an error can be attributed to bias or variance. In the case where it is clear models
are biased and interpreting it as variance hurts accuracy, we may modify our method by accounting
for the bias

M(x) = Y (x)1+ Z̃ where
{

E[Z̃(x)] = µ(x)

Cov[Z̃(x)] = A(x)
(101)

In such a model, we must, in addition to λ, train µ. Using the definition of Z̃, we know the loss
for µ is of the form

∑N
i=1(µ(X

i)− ei)TA−1(Xi)(µ(Xi)− ei). Taking P = I , this bias-corrected

22



Published as a conference paper at ICLR 2025

aggregation would be:

λ̃, µ̃ = argmin
l,m∈H1×H2

N∑
i=1

n∑
k=1

[(
elk(X

i) − (eik −mk(X
i))2
)2

+ e−lk(X
i)
(
mk(X

i)− eik
)2]
(102)

+ a∥l∥2H1
+ b∥m∥2H2

(103)

α̃(x) = Softmax(−λ̃(x)) (104)

M̃A(x) =

n∑
i=1

α̃i(x)(Mi(x)− µ̃i(x)) (105)

where H1,H2 are two spaces of functions used to approximate the log-eigenvalues of A(x) and the
bias of the models.
In the Boston housing dataset example in section 4.1, we tried to implement this bias-corrected
aggregation, and it did not yield better results than the simpler method MEVA. While we do not
prescribe its use in general, we did not consider this model in the rest of the paper.

G AGGREGATION USING VECTOR-VALUED GAUSSIAN PROCESSES AND
MATRIX-VALUED KERNELS

We will now model aggregation as vector-valued Gaussian process regression to elucidate the
pathologies observed in the two abovementioned examples. We start with a brief reminder on this
vector/matrix-valued generalization of GPs/kernels (Alvarez et al., 2012), before computing the
MEA in the GP context.

G.1 VECTOR-VALUED GAUSSIAN PROCESS AND MATRIX-VALUED KERNEL

This section is a reminder on vector/matrix-valued GPs/kernels Alvarez et al. (2012). We define a
matrix-valued kernel as a function K : X × X → Rn×n such that,

• ∀x, x′ ∈ X ,K(x, x′) = K(x′, x)T

• ∀x1, .., xN ∈ X , ∀y1, .., yN ∈ Rn,∑
1≤i,j≤N

yTi K(xi, xj)yj ≥ 0 (106)

This generalizes the positivity and symmetry conditions for defining a kernel. Each matrix-valued
kernel uniquely defines a zero-mean vector-valued Gaussian process ξ such that :

• ∀x ∈ X , ξ(x) ∼ N (0,K(x, x))

• ∀x, x′ ∈ X , Cov [ξ(x), ξ(x′)] = K(x, x′)

One interesting example of such a vector-valued Gaussian process is the case of n independent
Gaussian processes, corresponding to K being diagonal. One can then understand general vector-
valued GP as adding correlation to the coordinates, each being its own GP.

G.2 MEA WITH MATRIX-VALUED KERNELS

We choose a matrix-valued kernel K : X × X → Rn×n, and write HK for its associated Re-
producing Kernel Hilbert Space (RKHS). We get the MEEA by solving equation 4 (see Appendix
H):

MA(x) = α̂E(x)
TM(x) = k̃(x,X)(k̃(X,X) + λI)−1Y (107)

where k̃(x, y) = M(x)TK(x, y)M(y). This is also the GP regressor MA =

E [ξ |ξ(X) = Y +N (0, λI) ] with prior ξ ∼ N (0, k̃). This observation is crucial as it shows that
the model values are used as a feature for the regression, as expected. However, it demonstrates that
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(a) f (b) u

Figure 6: A pair (f, u) s.t. −∆u = f and u(∂Ω) = 0, sampled using (18)

the Mean Empirical Error Aggregate (MEEA) only tries to regress Y without considering the un-
derlying models’ accuracy. This observation is counterintuitive as we expect model aggregation to
leverage the individual models to approximate the target function better rather than merely regress-
ing directly to the target. This behavior is particularly evident in pathological examples, illustrating
the limitations of the direct regression approach.

H MINIMIZING THE LOSS IN SECTION G

We aim to minimize the following optimization problem:

α̂ = argmin
α∈HK

1

N

N∑
i=1

[
Y i(xi)− α(xi)

TM i(xi)
]2

+ γ∥α∥2HK
(108)

Applying the representer theorem, we deduce that the solution α̂ can be represented as α̂ =
(K(·, x1), . . . ,K(·, xN ))V , where V ∈ RnN . Additionally, we define the matrix M ∈ RN×nN as
follows:

M =

M1

...
MN

 , (109)

where each Mi = (M(xi)
TK(xi, x1), . . . ,M(xi)

TK(xi, xN )). The optimal vector V is then
given by:

V = argmin
v∈RnN

∥Y −Mv∥2 + λvTKv (110)

where K is a block matrix such that Kij = K(xi, xj) for 1 ≤ i, j ≤ N . Define the matrix
D ∈ RN×nN as:

D =


M(x1)

T 0 . . . 0
0 M(x2)

T . . . . . .
... . . .

. . .
...

0 . . . . . . M(xN )T

 (111)

Observe that M = DK. Using the matrix identity:

(P−1 +BTR−1B)−1BTR−1 = PBT (BPBT +R)−1 (112)
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Figure 7: Example of aggregation for the Laplace equation (section 4.3). Line 1: Outputs of the
different models for a given input f . Line 2: Prediction errors for each model. Line 3: Values of α.
Line 4: Aggregate and its error

where P−1 = λK, B = M, and R = I , we derive:

V =
1

λ
K−1MT

(
1

λ
MK−1MT + I

)−1

Y (113)

= DT (DKDT + I)−1Y (114)

It follows that (DKDT )ij = MT (xi)K(xi, xj)M(xj) = k̃(xi, xj). Thus, the final model predic-
tion at a new point x is given by:

MA(x) = M(x)TK(x,X)V (115)

where K(x,X) = (K(x, x1), . . . ,K(x, xN )) so that α̂(x) = K(x,X)V . By identifying that
M(x)TK(x,X)DT = k̃(x,X), we can conclude:

MA(x) = k̃(x,X)(k̃(X,X) + λI)−1Y (116)
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Figure 8: Example of aggregation for Burger’s equation (section 4.4). Line 1: Outputs of the dif-
ferent models for a given input f . Line 2: Prediction errors for each model. Line 3: Corresponding
values of α. Line 4: Aggregate and its error. Note that the explicit, implicit, and Lax-Wendroff
methods all diverged, while the spectral method exhibited spurious oscillations. In contrast, the ag-
gregated result avoids these issues.
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