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Abstract

Large Language Models (LLMs) have shown001
remarkable capabilities in language understand-002
ing and generation. Nonetheless, it was also003
witnessed that LLMs tend to produce inaccu-004
rate responses to specific queries. This defi-005
ciency can be traced to the tokenization step006
LLMs must undergo, which is an inevitable007
limitation inherent to all LLMs. In fact, incor-008
rect tokenization is the critical point that hin-009
ders LLMs in understanding the input precisely,010
thus leading to unsatisfactory output. This de-011
fect is more obvious in Chinese scenarios. To012
demonstrate this flaw of LLMs, we construct an013
adversarial dataset, named as ADT (Adversar-014
ial Dataset for Tokenizer), which draws upon015
the vocabularies of various open-source LLMs016
to challenge LLMs’ tokenization. ADT con-017
sists of two subsets: the manually constructed018
ADT-Human and the automatically generated019
ADT-Auto. Our empirical results reveal that020
our ADT is highly effective on challenging the021
tokenization of leading LLMs, including GPT-022
4o, Llama-3, Deepseek-R1 and so on, thus de-023
grading these LLMs’ capabilities. Moreover,024
our method of automatic data generation has025
been proven efficient and robust, which can026
be applied to any open-source LLMs. In this027
paper, we substantially investigate LLMs’ vul-028
nerability in terms of challenging their token029
segmentation, which will shed light on the sub-030
sequent research of improving LLMs’ capa-031
bilities through optimizing their tokenization032
process and algorithms. Our dataset has been033
made publicly accessible on github.034

1 Introduction035

In the last two years, Large Language Models036

(LLMs) have demonstrated remarkable capabili-037

ties in many tasks of artificial intelligence (AI),038

including natural language generation (Hoffmann039

et al., 2022; Nijkamp et al., 2023; Zeng et al.,040

2023), knowledge utilization (Chowdhery et al.,041

2023; Izacard et al., 2023), and complex reason-042

客户端起杯子和老板干杯。
请问谁在和老板干杯？
En: The customer raised a glass and 
toasted the boss. Who toasted the boss?

客户端。
En: The client.

客户/端起/杯子/和/老板/干杯/。
En: The Customer/raised/a glass/and/toasted/the boss.

Human tokenization

客户端/起/杯子/和/老板/干杯/。
En: The client/up/a glass/and/toasted/the boss.

LLM tokenization

Right Answer 客户
En: Customer

Wrong Answer 客户端
En: Client

As fans of Kenshi Yonezu, 
they singlemon in the 
auditorium. What song are 
they singing?

Singlemon.

They/sing/lemon/in/the/auditorium/.

Human tokenization

They/single/mon/in/the/auditorium/.
LLM tokenization

Right Answer
lemon

Wrong Answer
Singlemon

(a) LLM provides incorrect response (b) LLM has wrong tokenization result

Case 1 (In Chinese)

Case 2 (In English)

Figure 1: Two instances of LLM generating incorrect
response due to incorrect tokenization. Case 1 is a Chi-
nese input instance, of which the English translation is
noted below according to its correct tokenization. In
Case 2, a space is omitted between ‘sing’ and ‘lemon’,
causing the LLM’s incorrect tokenization, which is de-
tailed in Section 3.2.

ing (Wei et al., 2022; Zhou et al., 2023; Kojima 043

et al., 2022). Given these capabilities, LLMs have 044

been effectively employed by various application 045

domains, such as healthcare (Tang et al., 2023; Li 046

et al., 2023; Jeblick et al., 2022), education (Sus- 047

njak, 2022; Malinka et al., 2023), law (Yu et al., 048

2022; Nay, 2022) and so on. 049

Nonetheless, LLMs’ disadvantages have also 050

been witnessed, including hallucination (OpenAI, 051

2023; Bang et al., 2023; Lin et al., 2022), knowl- 052

edge recency (Dai et al., 2022; Kernbach, 2022), 053

and so on. Particularly, we observed that for some 054

specific queries, LLMs often produce unsatisfac- 055

tory responses with words that are nonsensical, 056

as illustrated by the two instances in Figure 1. 057

Through checking the LLM’s tokenization results 058

for input sentences, we found that it is misaligned 059

with human’s correct comprehension for the sen- 060

tences. Notably, our empirical studies found that 061

this flaw not only exists in some specific LLMs, but 062

also is a universal issue across many mainstream 063

LLMs. We have evaluated several prominent open- 064

source and closed-source LLMs, including Chat- 065

glm3 (Zeng et al., 2023), Qwen2.5-max (Team, 066

2024), Deepseek-R1 (DeepSeek-AI, 2025), and 067
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GPT-4o (OpenAI, 2024). Our experiment results068

reveal that regardless of LLMs’ scales or their069

claimed capabilities, they inevitably generate in-070

correct or entirely nonsensical responses for some071

specific inputs when their tokenization results for072

the input sentences are obviously wrong. Conse-073

quently, we believe that LLMs’ tokenization errors074

prevent them from accurately understanding the075

input text, leading to their incorrect responses.076

As we know, LLMs’ tokenization flaws stem077

from the algorithms of their tokenizers, most of078

which are based on subword-level vocabularies.079

The popular tokenization algorithms include Byte-080

Pair Encoding (BPE) (Sennrich et al., 2016), Word-081

Piece (Schuster and Nakajima, 2012), and Unigram082

(Kudo, 2018). However, no vocabulary can per-083

fectly cover all possible ways of various expres-084

sions in the inputs. The algorithms may potentially085

generate unsatisfactory results which are not fully086

aligned with the true intention of users’ input. Un-087

fortunately, in cases of tokenization errors, all sub-088

sequent optimization operations for LLMs cannot089

completely solve this underlying problems caused090

by their tokenization algorithms.091

In the domain of natural language processing092

(NLP), the existing studies related to tokenization093

primarily focus on refining or optimizing various094

tokenization algorithms. Meanwhile, the discus-095

sions on LLMs’ vulnerability including attack or096

challenge techniques, have been more concerned097

with the security of LLMs. For LLMs, in terms of098

the challenges posed by tokenization deficiencies,099

Sander and Max (Land and Bartolo, 2024) have100

discussed this issue from the perspective of under-101

trained tokens in LLMs. It is worth noting that,102

to the best of our knowledge, there has been no103

research specifically focusing on the unsatisfactory104

token segmentation of LLMs, particularly in Chi-105

nese scenarios, which is indeed a critical concern106

causing LLMs’ vulnerability.107

In this paper, we focus on the critical flaw in108

LLMs’ tokenization process, and try to reveal the109

relationship between LLMs’ unsatisfactory tok-110

enization and their inaccurate responses for some111

specific queries. To this end, for the first time,112

we construct a dataset, namely ADT (Adversarial113

Dataset for Tokenizer), to challenge the tokeniza-114

tion of various LLMs. ADT dataset consists of two115

subsets: the manually constructed ADT-Human116

and the automatically generated ADT-Auto. At117

first, we export the vocabularies from multiple118

mainstream LLMs, based on which ADT-Human119

is constructed. Our experiment results demonstrate 120

that ADT-Human can effectively challenge LLMs’ 121

tokenization, leading to their completely incorrect 122

responses. Furthermore, we also develop a frame- 123

work for automatically generating adversarial data 124

to construct dataset more efficiently. Initially, we 125

export LLM’s vocabulary and identify the trap 126

words that can influence the model’s performance. 127

By inputting these trap words into GPT-4 (OpenAI, 128

2023) with prompt, we leverage its capability to 129

get available instances, which are then inspected 130

manually to ensure quality. With minimal human 131

effort, we successfully construct ADT-Auto with 132

231 instances, validating the effectiveness of our 133

framework and highlighting the inevitable flaws in 134

LLMs’ tokenization once again. 135

In summary, the contributions of this paper are 136

as follows: 137

1. We investigate LLMs’ vulnerability for some 138

special inputs in terms of challenging their token 139

segmentation, which provides a new perspective 140

of studying LLMs’ disadvantages. 141

2. We propose an effective framework to construct 142

a new dataset ADT, which can be used to chal- 143

lenge various LLMs’ tokenization, exposing 144

their vulnerability for specific queries. 145

3. Our experiment results obviously reveal the re- 146

lationship between LLMs’ unsatisfactory tok- 147

enization and inaccurate responses, which can 148

shed light on subsequent work of improving 149

LLMs through optimizing tokenization. 150

2 Related Work 151

Algorithms for tokenization. Tokenization is a 152

basic but crucial step in NLP. Currently, the main- 153

stream tokenization approachs are based on sub- 154

words, including Byte Pair Encoding (BPE), Word- 155

Piece and Unigram. BPE (Sennrich et al., 2016) 156

forms the vocabulary starting from character-level 157

tokens, merging token pairs and intercalating them 158

into vocabulary. The merging rule is to select 159

adjacent pairs with the highest word frequency. 160

LLMs including GPT-3 (Brown et al., 2020), 161

RoBERTa (Liu et al., 2019), and Llama2 (Touvron 162

et al., 2023) are based on BPE. WordPiece (Schus- 163

ter and Nakajima, 2012) is similar to BPE, but it dif- 164

fers in the strategy of merging pairs with reference 165

to mutual information rather than frequency. LLMs 166

built upon WordPiece include BERT (Devlin et al., 167

2019), DistilBERT (Sanh et al., 2019), and Elec- 168

tra (Clark et al., 2020). Different from these two al- 169
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gorithms, Unigram (Kudo, 2018) starts with a large170

vocabulary and gradually trims it down to a smaller171

one. It measures the importance of subwords by cal-172

culating loss associated with the removal of each173

subword, ultimately retaining those exhibit high174

importance. LLMs utilizing Unigram include Al-175

BERT (Lan et al., 2020) and mBART (Liu et al.,176

2020). In recent years, it has been investigated177

how the input segmentation of pre-trained language178

models (PLMs) affects the interpretations of deriva-179

tionally complex English words (Hofmann et al.,180

2021). Some scholars have proposed FLOTA (Hof-181

mann et al., 2022), a simple yet effective method182

to improve PLMs’ tokenization of English words.183

However, there has been no work concerning the184

shared risks of LLMs in terms of inaccurate tok-185

enization result. We focus on this issue, discussing186

the underlying risks of LLMs’ tokenization.187

Attack techniques in LLMs. With the growing188

prominence of LLMs, the security and vulnerability189

of these models have attracted significant attention,190

and even advanced LLMs like GPT-4 are no excep-191

tion. A surge of research in this field is underway,192

with researchers launching attacks on LLMs from193

various aspects (Esmradi et al., 2023; Chowdhury194

et al., 2024) including but not limited to, Prompt195

Injection (Choi et al., 2022), Model Theft (Krishna196

et al., 2020), Data Reconstruction (Carlini et al.,197

2021), Data Poisoning(Wallace et al., 2021; Xu198

et al., 2023), and Member Inference Attack (Liu199

et al., 2023). For instance, Prompt Injection Attack200

refers to a scenario where an attacker crafts mali-201

cious prompts to deceive language models into gen-202

erating outputs inconsistent with their training data203

and anticipated functionality. Threat actors aim204

at information gathering, fraud, intrusion, content205

manipulation, and availability attacks (Choi et al.,206

2022). Carlini, Nicholas, et al (Carlini et al., 2021)207

executed the Data Reconstruction attack on GPT-2,208

extracting personal identity information, code, and209

UUIDs. Data Poisoning pertains to the deliberate210

introduction of corrupted or malicious data into the211

training dataset to manipulate the model’s behav-212

ior. Diverging from existing works, our research213

innovatively suggests attacking the capabilities of214

LLMs from the perspective of tokenization.215

3 Methodology of Dataset Construction216

In this section, we describe the process of construct-217

ing ADT (Adversarial Dataset for Tokenizer) in218

detail, which is used to challenge LLMs’ tokeniza-219

Language Model Vocabulary Size Vocabulary Size
of Specific Language

Chinese

Chatglm3-6B 64,789 30,922
Baichuan2-13B-Chat 125,696 70,394
Yi-34B-Chat 64,000 21,353
Qwen-7B-Chat 151,851 24,953
Qwen1.5-72B-Chat 151,646 24,953

English
Llama-3-8B-Instruct 128,257 72,420
Llama-3-70B-Instruct 128,257 72,420
Mixtral-8x7B-Instruct-v0.1 32,000 25,056

Table 1: Vocabulary sizes of different LLMs.

tion and thus reveal LLMs’ vulnerability. ADT 220

contains two subsets, manually constructed ADT- 221

Human and automatically generated ADT-Auto. 222

3.1 Vocabulary Export 223

In fact, an instance in our dataset comprises one 224

sentence containing the token (word) that could 225

challenge LLMs’ tokenization and one question 226

related to the sentence. To inspect whether LLMs 227

can accurately recognize these challenging tokens 228

within various contexts based on their memories, 229

the tokens should come from vocabularies of LLMs. 230

Therefore, the first step of dataset construction is to 231

export vocabularies of LLMs. Given that Chinese 232

is more complex and challenging than English in 233

terms of tokenization, as detailed in Section 3.2, 234

we pay more attention to the issue in Chinese data. 235

Specifically, we select five widely-used open- 236

source LLMs which are trained on extensive Chi- 237

nese corpus, to export their Chinese vocabular- 238

ies, including Chatglm3-6B (Zeng et al., 2023), 239

Baichuan2-13B-Chat (Yang et al., 2023), Yi-34B- 240

Chat (Young et al., 2024), Qwen-7B-Chat (Bai 241

et al., 2023), and Qwen1.5-72B-Chat (Bai et al., 242

2023). Besides, we export the English vocabular- 243

ies from three English-based LLMs, i.e., Llama-3- 244

8B-Instruct (Touvron et al., 2023), Llama-3-70B- 245

Instruct (Touvron et al., 2023), and Mixtral-8x7B- 246

Instruct-v0.1 (Jiang et al., 2024). Notably, the Chi- 247

nese vocabulary of Qwen-7B-Chat and Qwen1.5- 248

72B-Chat is the same, so is the English vocabulary 249

of Llama-3-8B-Instruct and Llama-3-70B-Instruct. 250

In the process of exporting vocabularies, a se- 251

quence of straightforward operations is considered. 252

Initially, the tokenizer is decoded to obtain vocabu- 253

lary, followed by the removal of leading and trailing 254

spaces from each token. Notably, if SentencePiece 255

is used for tokenization in training phase, some 256

certain tokens may begin with a special token ‘_’ 257

because SentencePiece treats the input text just as 258

a sequence of Unicode characters, and whitespace 259

is also handled as a normal symbol. To handle the 260
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Chatglm3-6B

For Chinese

Tokenizer model Vocabulary
Export Adversarial Dataset for 

Tokenizer(ADT)

Chinese: 11 instances per LLM

Examples
1. 多吃葡萄牙会疼。请问这句话说明
什么事的危害？
2. 大多数学专业的同学也具有一定的
计算机能力。请问句子中提到了哪个
专业的同学？

English: 7 instances per LLM

Manually Construct

Baichuan2-13B-Chat

Yi-34B-Chat

Qwen-7B-Chat

Qwen1.5-72B-Chat

A

Llama-3-8B-Instruct

Llama-3-70B-Instruct

Mixtral-8x7B-Instruct
- v0.1

Examples
1. He movestable to another place. 
What is he doing?
2. I wanted to go to the beach, 
buttonsof work piled up. How much 
work did I have?

token

For English

B C

Insert
[BC] [ABC]

[BC] [ABCD]

[driven] [drivenothing]

Methods
Examples

[stable] [movestable]
A: move   B: s   C: table
Model Tokenization: [move, stable] ([A,BC])
Human Tokenization: [moves, table] ([AB,C])

token

B C D

Insert
[BC] [BCD]

A: drive   B: n   C: othing
Model Tokenization: [driven, othing] ([BC,D])
Human Tokenization: [drive, nothing] ([B,CD])

A

token

B C D

Insert Insert
A: six   B: th   C: is   D: land
Model Tokenization: [six, this, land] ([A,BC,D])
Human Tokenization: [sixth, island] ([AB,CD])

[this] [sixthisland]

Figure 2: Our framework of constructing ADT-Human manually.

Approach Origin token After insertion Model tokenization Human tokenization
(Challenging span)

Before Schema BC ABC [A, BC] [AB, C]
Example stable movestable [move, stable] [moves, table]

After Schema AB ABC [AB, C] [A, BC]
Example driven drivenothing [driven, othing] [drive, nothing]

Before & After Schema BC ABCD [A, BC, D] [AB, CD]
Example this sixthisland [six, this, land] [sixth, island]

Table 2: Three approaches of generating challenging spans.

whitespace as a basic token explicitly, Sentence-261

Piece first escapes the whitespace with a meta sym-262

bol ‘_’ (U+2581) (Kudo and Richardson, 2018).263

Consequently, when exporting vocabularies for264

models trained with SentencePiece, we replace ‘_’265

with a blank character. We summarize the exported266

vocabulary sizes of different LLMs in Table 1.267

3.2 ADT-Human Construction268

Based on exported vocabularies, we manually con-269

struct dataset ADT-Human, to challenge and evalu-270

ate the tokenization of different LLMs. The process271

of manual construction is depicted in Figure 2.272

Our purpose is to confirm the existence of chal-273

lenges in tokenization, so for each LLM, a certain274

amount of data is constructed, which does not need275

to be large. Specifically, we select eleven tokens276

from each Chinese vocabulary, and seven tokens277

for each English vocabulary. The main criterion278

for selecting tokens is that they should be easy to279

make sentences with. According to the experimen-280

tal results presented in Section 4.2, these data can281

effectively challenge the performance of LLMs,282

proving this issue deserves more attention. As for283

efficiently generating data in bulk, we design the284

framework for automatic generation in Section 3.3.285

Then, for each selected token, we adopt one 286

of the three approaches listed in Table 2, to con- 287

vert it into a challenging span through inserting 288

a special character span before or (and) after it. 289

These challenging spans would disrupt the conven- 290

tional tokenization process, thus confusing LLMs. 291

The schemas and examples of three approaches are 292

also shown in the second and third parts of Fig- 293

ure 2. The considerations in the three conversion 294

approaches are introduced as follows. 295

1. Before: A character span s is inserted before 296

origin token, causing the concatenation of s and 297

the token’s prefix is just another token existing in 298

vocabulary, as ‘move’+‘s’→‘moves’ in Table 2. 299

2. After: A character span s is inserted after origin 300

token, causing the concatenation of the token’s 301

suffix and s is just another token existing in vo- 302

cabulary, as ‘n’+‘othing’→‘nothing’ in Table 2. 303

3. Before & After: Character spans s1 and s2 are 304

inserted before and after origin token, respec- 305

tively, causing the concatenation of s1 and the 306

token’s prefix is just another token existing in vo- 307

cabulary, meanwhile so is the concatenation of 308

the token’s suffix and s2, as ‘six’+‘th’→‘sixth’ 309

and ‘is’+‘land’→‘island’ in Table 2. 310
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Word-pair
Matching

Instance Generalization
(Suppose Trap Word is BC)

Filtering based 
on Trap Word

Manual 
Filtering

vocabulary Word1: AB
Word2: CD

Request：
• “BC”/ “ABC”/ “BCD” is a word
（donated as Trap Word）

• “ABCD” is not a word

Base Words: AB & CD
Trap Word: BC

Generation by GPT-4：
• Sentence contains ”ABCD”
• Sentence express the meaning of “AB” and “CD”
• Question induces the isolation of “BC”

Sentence
Question

Instance tokenize sentence

tokenize response

Request：
• “Trap Word” in List1
• “Trap Word” in List2

• Linguistic coherence
• Logically sound
• Instance-based

Manual Assessment

Criteria：

A B C D

Word1 Word2

A B C D

Trap Word

sentence question

Instance

List1

List2 Instance

Figure 3: Our framework of generating ADT-Auto automatically.

Next, for each challenging span sc, we manu-311

ally compose a corresponding instance as the data312

in ADT-Human. One instance consists of a sen-313

tence in which sc presents, and a corresponding314

question of which the answer comes from sc. In315

Appendix A, we list all instances (along with their316

correct tokenizations) of ADT-Human. As we can317

see, it is challenging for LLMs to understand the318

instances due to the presence of challenging spans.319

It’s worth noting that the tokenization difficulty320

of English is less than that of Chinese, since spaces321

are regularly used as delimiters to separate each322

word from others in English. Moreover, affixa-323

tion is common in English word structure, enabling324

tokenizers to divide a single word into several sec-325

tions, which can help avoid incorrect tokenization326

to some extent. Thus, during the manual construc-327

tion of English instances, we deliberately exclude328

the spaces between some tokens to provoke chal-329

lenges to tokenization process. This decision stems330

from the recognition that powerful models should331

possess robust abilities across various scenarios332

which can occur in real-world applications, includ-333

ing handling cases where spaces might be omitted334

in English text input (Hofmann et al., 2022).335

3.3 ADT-Auto Generation336

Given the inefficiency of constructing dataset man-337

ually, we further develop an automatic generation338

framework for dataset to challenge LLMs’ tok-339

enization. As discussed in Section 3.2, the chal-340

lenges of tokenization in English are less severe341

than in Chinese. Consequently, we primarily con-342

centrate on the automatic generation of Chinese343

data. Figure 3 illustrates the process of automati-344

cally constructing our dataset ADT-Auto.345

3.3.1 Word-pair Matching346

The automatic generation of dataset is also based347

on exported vocabularies. From the vocabularies,348

we first seek some qualified word pairs. Given two 349

words Word 1 and Word 2, they are considered to 350

be match when meeting the following criteria: The 351

suffix (or whole) of Word 1 can be concatenated 352

with the prefix (or whole) of Word 2, as a token 353

existing in the vocabulary, denoted as Trap Word. 354

Meanwhile, the concatenation of Word 1 and Word 355

2 should not be a token existing in the vocabulary. 356

Accordingly, there are also three situations re- 357

lated to Word 1, Word 2 and Trap Word, corre- 358

sponding to three scenarios in Table 2. 359

1. If Word 1 is included by Trap Word, this situa- 360

tion corresponds to the schema inserting a span 361

after Trap Word. 362

2. If Word 2 is included by Trap Word, this situa- 363

tion corresponds to the schema inserting a span 364

before Trap Word. 365

3. If neither Word 1 nor Word 2 is included by 366

Trap Word, this situation corresponds to the 367

schema inserting a span both before and after 368

Trap Word. 369

Above clarifications indicate that the concatena- 370

tion of Word 1 and Word 2 (as ‘ABCD’ in Figure 371

3) corresponds to the challenging span in the con- 372

struction process of ADT-Human. Our goal is to 373

compose a sentence that not only convey the se- 374

mantic essence of Word 1 and Word 2, but also in- 375

duce LLM to isolate Trap Word when tokenization. 376

Notably, we ignore the situation that the concatena- 377

tion of Word 1 and Word 2 is just Trap Word, as it 378

would not pose challenges to LLMs’ tokenization. 379

To augment the matching efficacy of Trap Word 380

upon matching, we also consider the criterion that 381

the remaining parts of Word 1 and Word 2 excluded 382

by Trap Word should also exist in the vocabulary 383

as a token. Furthermore, the first or last character 384

of Trap Word cannot be a Chinese stop character. 385
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3.3.2 Instance Generalization386

With each Word 1, Word 2 and their corresponding387

Trap Word, we harness GPT-4 to generate an in-388

stance of ADT-Auto, which consists of a sentence389

and a question. Specifically, we prompt GPT-4 to390

generate a sentence that is used to challenge the391

tokenization of LLMs. To this end, the generated392

sentence is required to include the concatenation393

of Word 1 and Word 2 (inevitably including Trap394

Word). In addition, GPT-4 is also required to de-395

vise a question related to the generated sentence,396

which is used to evaluate LLMs’ tokenization per-397

formance through their answers. The instance must398

meet criteria as below: The sentence should convey399

the meanings of both Word 1 and Word 2, while400

the question’s answer should come from Word 1,401

Word 2, Trap Word or their combination. Thus,402

the influence of LLMs’ incorrect tokenization can403

be identified by checking answers to the question.404

The prompt for GPT-4 to generate instances in-405

cludes some demonstration examples in addition to406

task instruction, which is illustrated in Appendix D.407

3.3.3 Filtering Based on Trap Word408

The goal of our dataset is to expose the flaw of409

LLMs’ tokenization. Therefore, we will only retain410

the instances that can induce tokenization problem411

of LLMs, so we check each instance generated at412

the previous step. For these instances, the pres-413

ence of Trap Word implies a challenging case that414

is likely to induce tokenization problems. Given415

an instance, we retain it if its corresponding Trap416

Word is both in the LLM’s tokenization list for the417

instance’s sentence (as List 1 in Figure 3) and in its418

tokenization list for the answer (as List 2 in Figure419

3). Such filtering criterion indicates that the LLM420

commits tokenization errors on understanding the421

sentence and response for the instance.422

3.3.4 Manual Filtering423

To ensure the retained instances can induce tok-424

enization problems and meanwhile have reason-425

able expressions, we further adopt manual assess-426

ment for instances. Specifically, we select the high-427

qualify instances with considering sentence expres-428

sions and LLM’s responses. Notably, we might429

still retain some instances to which the used LLM430

has correct response, since the other LLMs are still431

likely to commit inaccurate tokenization for these432

instances, resulting in unsatisfactory responses.433

Due to space limitation, we take Qwen-7B as434

an example to illustrate the process of generat-435

ing instances. There are 24,953 Chinese tokens in 436

Qwen-7B’s vocabulary, and after word-pair match- 437

ing, 1,764,692 word-pairs are obtained. From the 438

matching word-pairs, 8,000 pairs are selected ran- 439

domly and used for instance generation by GPT- 440

4. Due to the inherent stochastic characteristic of 441

LLMs on response generation, we conduct three 442

iterations of filtering operations introduced in Sub- 443

section 3.3.3 to get more qualified instances, and 444

thus retain 894 instances. Next, through the manual 445

filtering introduced in Subsection 3.3.4, we retain 446

231 instances for ADT-Auto in the end, which is 447

available on github. 448

4 Experiments 449

4.1 Experiment Setup 450

Considering the open-source LLMs used in our ex- 451

periments, we select the LLMs previously used 452

in the construction of ADT-Human, including 453

Chatglm3-6B, Baichuan2-13B-Chat, Yi-34B-Chat, 454

Qwen-7B-Chat, and Qwen1.5-72B-Chat for Chi- 455

nese data, as well as Llama-3-8B-Instruct, Llama- 456

3-70B-Instruct, and Mixtral-8x7B-Instruct-v0.1 for 457

English data. We test these LLMs using both lo- 458

cally deployed versions and API versions, with the 459

exception of Chatglm3-6B, which does not have 460

API version. For the closed-source LLMs, we test 461

GPT-4o, GPT-4, GPT-3.5-Turbo, Qwen2.5-max, 462

step-1-8k1, moonshot-v1-8k2, ERNIE-3.5-8K3 for 463

Chinese data, and GPT-4o, GPT-4 and GPT-3.5- 464

Turbo for English data. Additionally, we test the 465

API version of Deepseek-R1, which has recently 466

gained significant attention, for Chinese data. 467

In our experiments, we directly use the dataset 468

ADT constructed with the method introduced in 469

Section 3, which includes the manually constructed 470

ADT-Human (containing Chinese and English in- 471

stances) and the automatically generated ADT- 472

Auto (only containing Chinese instances). 473

In addition, we conduct our experiments on the 474

platform with four A800 GPUs. 475

4.2 ADT-Human’s Challenges to LLMs 476

Firstly, we investigate the challenges posed by 477

ADT-Human to LLMs. Specifically, we evaluate 478

LLMs’ performance through counting the number 479

of incorrect answers generated by LLMs for the 480

1https://platform.stepfun.com/docs/llm/text
2https://platform.moonshot.cn/docs
3https://cloud.baidu.com/doc/WENXINWORKSHOP/s/

jlil56u11
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Model Source LLM of vocabulary Overall error rate
Chatglm3 Baichuan2 Yi Qwen

Open-source (Local)

Chatglm3-6B 100.00 100.00 100.00 90.91 97.73
Baichuan2-13B-Chat 90.91 100.00 81.82 100.00 93.18
Yi-34B-Chat 72.73 63.64 100.00 100.00 84.09
Qwen-7B-Chat 100.00 72.73 90.91 100.00 90.91
Qwen1.5-72B-Chat 90.91 45.45 81.82 100.00 79.55

Open-source (API)

Baichuan2-13B-Chat 100.00 100.00 90.91 100.00 97.73
Yi-34B-Chat 81.82 54.55 100.00 90.91 81.82
Qwen-7B-Chat 100.00 81.82 81.82 100.00 90.91
Qwen1.5-72B-Chat 90.91 54.55 81.82 100.00 81.82
DeepSeek-R1 36.36 27.27 45.45 54.55 40.91

Closed-source

GPT-4o 72.73 27.27 54.55 90.91 61.36
GPT-4 81.82 45.45 45.45 27.28 50.00
GPT-3.5-Turbo 72.73 27.27 72.73 72.73 61.36
Qwen2.5-max 90.91 72.73 90.91 100.00 88.64
step-1-8k 63.64 18.18 72.73 63.64 54.55
moonshot-v1-8k 81.82 27.27 100.00 81.82 72.73
ERNIE-3.5-8K 72.73 54.55 54.55 72.73 63.64

Table 3: Error rates (%) of answers on ADT-Human (Chinese).

Model Source LLM of vocabulary Overall error rate
Llama-3 Mixtral

Open-source (Local)
Llama-3-8B-Instruct 100.00 85.71 92.86
Llama-3-70B-Instruct 57.14 71.43 64.29
Mixtral-8x7B-Instruct-v0.1 85.71 100.00 92.86

Open-source (API)
Llama-3-8B-Instruct 100.00 71.43 85.71
Llama-3-70B-Instruct 57.14 28.57 42.86
Mixtral-8x7B-Instruct-v0.1 71.43 100.00 85.71

Closed-source
GPT-4o 57.14 71.43 64.29
GPT-4 57.14 57.14 57.14
GPT-3.5-Turbo 71.43 57.14 64.29

Table 4: Error rates (%) of answers on ADT-Human (English).

questions in instances. Recalling the process of481

manually composing challenging spans introduced482

in Section 3.2, the span ‘BC’ in Table 2 is in fact483

the Trap Word mentioned in Section 3.3. Hence,484

for a given LLM, its answer including a Trap Word485

is identified as inaccurate response for the question486

undoubtedly. We identify the correctness of LLMs’487

responses through human assessment.488

The percentage of incorrect responses provided489

by the LLMs for Chinese data and English data are490

presented in Table 3 and Table 4, respectively. The491

results show that ADT-Human poses a significant492

challenge to both open-source and closed-source493

LLMs on their tokenization, resulting in very high494

rates of inaccurate responses. It is also worth men-495

tioning that the recent state-of-the-art (SOTA) GPT-496

4o cannot outperform GPT-4 , implying that the ad-497

vancements of these LLMs have not yet addressed498

this primary but challenging problem. 499

To further investigate the impact of tokenization 500

on the performance of LLMs, a fine-grained anal- 501

ysis of the relationship between tokenization and 502

response is conducted. In Appendix B, we quantita- 503

tively examine the relationship between the correct- 504

ness of tokenization and the correctness of LLM’s 505

response. Given the inaccessibility of tokenization 506

lists for closed-source LLMs, we perform a statisti- 507

cal analysis on open-source LLMs. Since LLMs’ 508

API versions do not directly provide tokenization 509

lists, the tokenization results obtained from the cor- 510

responding locally deployed versions are used. Ap- 511

pendix B.1 and Appendix B.2 respectively illustrate 512

the quantitative relationships between tokenization 513

and response for the LLMs tested on Chinese and 514

English data of ADT-Human. 515

This study further intuitively illustrates the rela- 516
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Right Wrong
response response

Right tokenization 3 3
Wrong tokenization 1 37

Figure 4: Four relationships between tokenization and
response, take Qwen-7B-Chat as an example.

Model Fraction Error rate (%)

Open-source (Local)

Chatglm3-6B 156/231 67.53
Baichuan2-13B-Chat 147/231 63.64
Yi-34B-Chat 90/231 38.96
Qwen-7B-Chat 185/231 80.09
Qwen1.5-72B-Chat 93/231 40.26

Open-source (API)

Baichuan2-13B-Chat 167/231 72.29
Yi-34B-Chat 80/231 34.63
Qwen-7B-Chat 160/231 69.26
Qwen1.5-72B-Chat 97/231 41.99
DeepSeek-R1 57/231 24.68

Closed-source

GPT-4o 75/231 32.47
GPT-4 89/231 38.53
GPT-3.5-Turbo 99/231 42.86
Qwen2.5-max 75/231 32.47
step-1-8k 60/231 25.97
moonshot-v1-8k 60/231 25.97
ERNIE-3.5-8K 51/231 22.08

Table 5: Error rates of answers on ADT-Auto.

tionships in the form of pie charts in Appendix C. In517

Appendix C.1 and Appendix C.2, the proportions518

of four relationships between tokenization and re-519

sponse for each LLM on Chinese and English data520

of ADT-Human are displayed respectively. Fig-521

ure 4 illustrates the quantitative relationships and522

pie chart using Qwen-7B-Chat as an example. For523

more details, please refer to Appendix B and Ap-524

pendix C. We mainly focus on the proportion of525

TN (tokenization incorrect and response incorrect).526

As shown in pie charts, the proportion of TN cases527

is very high in ADT-Human, with an average of528

80.91% for Chinese data and 79.78% for English529

data. This indicates that tokenization errors sig-530

nificantly affect the accuracy of LLM responses531

and also demonstrates that ADT-Human effectively532

challenges the performance of LLMs.533

4.3 ADT-Auto’s Challenges to LLMs534

Similar to the investigation of ADT-Human’s chal-535

lenges to LLMs’ tokenization, we also evaluate the536

LLMs’ performance on ADT-Auto.537

ADT-Auto’s instances come from Qwen-7B’s538

vocabulary, and the rates of LLMs’ inaccurate re-539

sponses for these instances’ questions are listed in540

Table 5. Based on the results, we have the follow-541

ing observations and analysis:542

1. Compared with closed-source LLMs, open-543

source LLMs suffer from ADT-Auto’s chal-544

lenges more apparently. It implies that these 545

closed-source LLMs, as the profit-making flag- 546

ships of their creator companies, naturally have 547

stronger capabilities than open-source LLMs 548

that are created for public usage. 549

2. Compared with ADT-Human, ADT-Auto is less 550

challenging to LLMs, since the sentences gen- 551

erated by GPT-4 have more formal, regular or 552

simple syntaxes and expressions than the manu- 553

ally composed sentences in ADT-Human. Thus, 554

these sentences in ADT-Auto are relatively easy 555

for LLMs’ understanding. 556

3. Qwen1.5-72B-Chat has lower error rates than 557

Qwen-7B-Chat, although they have the same vo- 558

cabulary. We specially check some instances to 559

which Qwen1.5-72B-Chat gives correct answers 560

but Qwen-7B-Chat gives wrong answers, and 561

find the two models have the same incorrect to- 562

kenization lists for these instances. It suggests 563

that their different performance is not caused by 564

tokenization. The results also imply that in the 565

case of incorrect tokenization, the bigger LLMs 566

are more robust and likely to generate correct 567

responses than the smaller LLMs thanks to their 568

stronger capabilities brought by the larger scale. 569

Similar to Section 4.2, Appendix B.3 presents 570

the quantitative relationships between tokenization 571

and response for each open-source LLM tested 572

on ADT-Auto. The corresponding pie charts are 573

shown in Appendix C.3. As indicated by the pie 574

charts, the proportion of TN cases is also very high 575

on ADT-Auto, with an average of 46.11%. This 576

further demonstrates that tokenization errors sig- 577

nificantly impact the accuracy of LLMs’ responses 578

and highlights the effectiveness of ADT-Auto in 579

challenging the performance of LLMs. 580

5 Conclusion 581

In this paper, we dedicate to deeply investigating 582

the relationship between LLMs’ vulnerability on 583

tokenization and their unsatisfactory responses for 584

some tasks. To this end, we construct an adver- 585

sarial dataset ADT (Adversarial Dataset for Tok- 586

enizer) consisting of a manually constructed subset 587

ADT-Human and an automatically generated subset 588

ADT-Auto. Our experiments demonstrate that our 589

dataset does challenge the studied open-source and 590

closed-source LLMs’ token segmentation, resulting 591

in their incorrect answers. We hope our work and 592

dataset could shed light on the subsequent research 593

on improving LLMs’ performance. 594
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Limitations595

The key contribution of this study lies in drawing at-596

tention to the impact of tokenization on LLM’s per-597

formance and providing two frameworks for data598

generation. As for how to propose improvement599

strategies based on this phenomenon, we are cur-600

rently in the process of exploration. Additionally,601

this study focuses primarily on Chinese. Whether602

other languages are similarly affected by tokeniza-603

tion remains to be further investigated.604

Ethics Statement605

We hereby declare that all authors of this article are606

aware of and adhere to the provided ACL Code of607

Ethics and honor the code of conduct.608

Use of Human Annotations Human annotations609

are only used in methodological research at the610

beginning of the work, to assist in analyzing the611

feasibility of the proposed solution. Annotators612

consented to the use of data for research purposes.613

We ensure that the privacy of all annotators is pro-614

tected throughout the annotation process, and all of615

them are adequately paid according to local stan-616

dards.617

Risks Synthetic data generated by LLMs may618

involve potential ethical risks regarding fairness619

and bias (Bommasani et al., 2021; Blodgett et al.,620

2020), which results in further consideration when621

they are employed in downstream tasks. We asked622

our members for proofreading to refine the offen-623

sive and harmful data generated by GPT-4. Despite624

these considerations, there may still be some un-625

satisfactory data that goes unnoticed in our final626

dataset.627
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A.2 Baichuan2934 A.3 Yi 935

13



A.4 Qwen936 A.5 Llama-3 937

1. In the postal history course, today’s homework
is to list|envelope|classes in history. What
should I do?

2. As a Marathon lover, in the past he only
ran|domestically, but now he also goes
abroad. What behavior of him is discussed
in the sentence?

3. As fans of Kenshi Yonezu, they sing|lemon in
the auditorium. What song are they singing in
the sentence?

4. I wanted to go to the beach, but|tons|of work
piled up. How much work did I have?

5. We are measuring how fat|her|cat is to make
sure her cat is healthy. What metric are we
measuring?

6. This automotive shop mainly sells
car|bonnets. What does the shop sell?

7. The researcher was disappointed to
miss|ionization in the sample, which
was crucial for the experiment’s success.
What made the researcher disappointed?

938

A.6 Mixtral 939

1. The analyst emphasized the importance of
tracking live|return to gauge real-time per-
formance. What importance was emphasized
by the analyst?

2. Many countries import|sports from another
country. What do those countries import?

3. He moves|table to another place. What is he
doing?

4. Those pants and leather shoes fitted|speakers
very well. Who do those pants and leather
shoes fit well?

5. The soccer team won|derby against its rival.
Did the soccer team win or lose?

6. They swap|pears with each other. What are
they exchanging?

7. The leg|ends|up being the most injured part,
requiring immediate medical attention. In the
sentence, which part is injured the most?

940

14



B The relationship between tokenization941

and response942

B.1 ADT-Human (Chinese)943

944
Right Wrong

response response
Right tokenization 2 1

Wrong tokenization 1 40

(a) Baichuan2-13B-Chat (Local)

945

Right Wrong
response response

Right tokenization 1 2
Wrong tokenization 0 41

(b) Baichuan2-13B-Chat (API)

946

Right Wrong
response response

Right tokenization 3 0
Wrong tokenization 5 36

(c) Yi-34B-Chat (Local)

947

Right Wrong
response response

Right tokenization 3 0
Wrong tokenization 7 34

(d) Yi-34B-Chat (API)

948

Right Wrong
response response

Right tokenization 3 3
Wrong tokenization 1 37

(e) Qwen-7B-Chat (Local)

949

Right Wrong
response response

Right tokenization 3 3
Wrong tokenization 1 37

(f) Qwen-7B-Chat (API)

950

Right Wrong
response response

Right tokenization 6 0
Wrong tokenization 3 35

(g) Qwen1.5-72B-Chat (Local)

951

Right Wrong
response response

Right tokenization 6 0
Wrong tokenization 2 36

(h) Qwen1.5-72B-Chat (API)

952

Right Wrong
response response

Right tokenization 1 1
Wrong tokenization 0 42

(i) Chatglm3-6B (Local)

953

Right Wrong
response response

Right tokenization 3 0
Wrong tokenization 23 18

(j) Deepseek-R1 (API)

954

B.2 ADT-Human (English) 955

956
Right Wrong

response response
Right tokenization 1 0

Wrong tokenization 0 13

(a) Llama-3-8B-Instruct (Local)

957

Right Wrong
response response

Right tokenization 0 1
Wrong tokenization 0 13

(b) Llama-3-8B-Instruct (API)

958

Right Wrong
response response

Right tokenization 0 0
Wrong tokenization 3 11

(c) Llama-3-70B-Instruct (Local)

959

Right Wrong
response response

Right tokenization 0 0
Wrong tokenization 8 6

(d) Llama-3-70B-Instruct (API)

960

Right Wrong
response response

Right tokenization 0 0
Wrong tokenization 2 12

(e) Mixtral-8x7B-Instruct-v0.1 (Local)

961
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Right Wrong
response response

Right tokenization 0 0
Wrong tokenization 2 12

(f) Mixtral-8x7B-Instruct-v0.1 (API)

962

B.3 ADT-Auto963

964
Right Wrong

response response
Right tokenization 28 32

Wrong tokenization 56 115

(a) Baichuan2-13B-Chat (Local)

965

Right Wrong
response response

Right tokenization 23 37
Wrong tokenization 41 130

(b) Baichuan2-13B-Chat (API)

966

Right Wrong
response response

Right tokenization 45 14
Wrong tokenization 96 76

(c) Yi-34B-Chat (Local)

967

Right Wrong
response response

Right tokenization 48 11
Wrong tokenization 103 69

(d) Yi-34B-Chat (API)

968

Right Wrong
response response

Right tokenization 4 22
Wrong tokenization 42 163

(e) Qwen-7B-Chat (Local)

969

Right Wrong
response response

Right tokenization 10 16
Wrong tokenization 61 144

(f) Qwen-7B-Chat (API)

970

Right Wrong
response response

Right tokenization 21 5
Wrong tokenization 117 88

(g) Qwen1.5-72B-Chat (Local)

971

Right Wrong
response response

Right tokenization 20 6
Wrong tokenization 114 91

(h) Qwen1.5-72B-Chat (API)

972

Right Wrong
response response

Right tokenization 32 21
Wrong tokenization 43 135

(i) Chatglm3-6B (Local)

973

Right Wrong
response response

Right tokenization 59 3
Wrong tokenization 115 54

(j) Deepseek-R1 (API)

974

C Proportion of four situations between 975

tokenization and response 976

Define the four relationships between tokenization 977

and response: 978

• TP: Correct tokenization and correct re- 979

sponse. 980

• FP: Incorrect tokenization but correct re- 981

sponse. 982

• FN: Correct tokenization but incorrect re- 983

sponse. 984

• TN: Incorrect tokenization and incorrect re- 985

sponse. 986

C.1 ADT-Human (Chinese) 987

(a) Baichuan2-13B-Chat (Lo-
cal)

(b) Baichuan2-13B-Chat
(API)

(c) Yi-34B-Chat (Local) (d) Yi-34B-Chat (API)

16



(e) Qwen-7B-Chat (Local) (f) Qwen-7B-Chat (API)

(g) Qwen1.5-72B-Chat (Lo-
cal) (h) Qwen1.5-72B-Chat (API)

(i) Chatglm3-6B (Local) (j) Deepseek-R1 (API)

C.2 ADT-Human (English)988

(a) Llama-3-8B-Instruct (Lo-
cal)

(b) Llama-3-8B-Instruct
(API)

(c) Llama-3-70B-Instruct (Lo-
cal)

(d) Llama-3-70B-Instruct
(API)

(e) Mixtral-8x7B-Instruct-
v0.1 (Local)

(f) Mixtral-8x7B-Instruct-
v0.1 (API)

C.3 ADT-Auto 989

(a) Baichuan2-13B-Chat (Lo-
cal)

(b) Baichuan2-13B-Chat
(API)

(c) Yi-34B-Chat (Local) (d) Yi-34B-Chat (API)

(e) Qwen-7B-Chat (Local) (f) Qwen-7B-Chat (API)

(g) Qwen1.5-72B-Chat (Lo-
cal) (h) Qwen1.5-72B-Chat (API)

17



(i) Chatglm3-6B (Local) (j) Deepseek-R1 (API)

D Details of prompt990
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