
SCONER: Scoring Negative Candidates
Before Training Neural Re-Ranker For Question Answering

Man Luo 1 Mihir Parmar 1 Jayasurya Sevalur Mahendran 1 Sahit Jain 1 Chitta Baral 1

Abstract
A neural re-ranker aims to re-scores a set of can-
didates given by a search engine. It is crucial to
obtain good performance on many down-stream
tasks such as retrieval-based question answer-
ing (ReQA). In this work, we introduce a scor-
ing function for negative candidates to train a
neural re-ranker and compare models trained by
our approach with three baselines on a range of
ReQA tasks. We term our approach as SCONER—
scoring negative candidates before training neural
re-ranker, which includes 1) a scoring function
based on the concept of Semantic Textual Similar-
ity (STS) and data augmentation; and 2) a neural
re-ranker trained on data using generated negative-
ness scores as labels. Experimental results show
that SCONER outperforms three baselines by up
to 13% absolute improvement on the SearchQA
dataset and 5.5% on average across all datasets
in terms of P@1. SCONER demonstrates that us-
ing different negativeness scores to train a neural-
ranker is better than a single score, and we present
a simple yet efficient way to generate the scores.

1. Introduction
Due to the wide applications in real-world, Retrieval Based
Question Answering (ReQA has gained increasing interest
and attention in recent years, and many benchmarks have
been proposed for Retrieval Based Question Answering
(ReQA) (Cohen et al., 2018; Khot et al., 2020; Ahmad
et al., 2019; Guo et al., 2021). A promising approach for
solving ReQA involves two stages: (1) retrieve a small set
of candidates from a large corpus and (2) re-rank these
candidates. The re-ranking stage can significantly improve
the initial retrieval performance (Ozyurt et al., 2020), and
thus it is crucial for any retrieval system (Ma et al., 2021).

1School of Computing AI, Arizona State University, Tempe,
AZ. Correspondence to: Man Luo <mluo26@asu.edu>.

ICML workshop on Knowledge Retrieval and Language Mod-
els, Baltimore, Maryland, USA, 2022. Copyright 2022 by the
author(s).

Question: The manager who recruited David Beckham managed
Manchester United during what time frame?
Answer: Sir Alexander Chapman Ferguson, CBE (born 31 Decem-
ber 1941) is a Scottish former football manager and player who
managed Manchester United from 1986 to 2013.
S1: Instead, he had drafted in young players like Nicky Butt,
David Beckham, Paul Scholes and the Neville brothers, Gary and
Phil.
S2: The awards ceremony was held at Earls Court in London for
the last time.

Figure 1. An example from the HotpotQA dataset. While both
S1 and S2 are negative candidates to the question, our approach
assigns higher negativeness score to S1 than S2.

Large Pretrained Language Models (PrLMs) have been
widely used as neural re-rankers (Yilmaz et al., 2019;
Nogueira & Cho, 2019) 1. In most cases, the negative exam-
ples used to train the re-ranker are assigned with the same
label. However, we argue that some candidates may be
more negative than others and should be treated differently.
Figure 1 shows an example from HotpotQA dataset (Yang
et al., 2018) to illustrate this argument. In this example, nei-
ther S1 nor S2 contains the correct answer; yet S1 mentions
a key entity in the question (David Beckham), while S2
has no common entity with the question. From the human
perspective, S1 should have a higher score than S2.

It leads us to ask a question - “is having different levels
of negativeness beneficial for training neural re-rankers?”
Driven by this question, we propose an approach for scoring
negative candidates (§2). Our approach has two stages.
First, we train a model on STS benchmark (Conneau &
Kiela, 2018). This model generates a high score for a two-
sentence pair if they are semantically similar; otherwise,
a low score. Second, we use this STS model to generate
scores for the question and negative candidate pairs. In this
way, we obtain a set of question-candidate pairs with labels
in the continuous range of [0, 5] as opposed to previous
works where labels are binary. Furthermore, we want the
generated score for a negative candidate to be higher than
others if the first candidate has more relevant information

1More related work can be found in Appendix A

SCONER: Scoring Negative Candidates For Question Answering

to the answer. To achieve this goal, we explore three data
augmentation techniques (§2.2). Such scoring approach
allows: 1) a good candidate that is not annotated as an
answer to have a high score, 2) more negative samples to be
used to train a neural re-ranker, and 3) negative candidates
to be differentiated using “negativeness” scores. In this
paper, negativeness score means the score for a question and
a negative candidate; and a higher score means the negative
candidate contains more information to answer the question.

We compare three standard training strategies and our pro-
posed method on the MultiReQA (Guo et al., 2021) bench-
mark, which includes five training datasets across different
domains. Based on our experiments, we observe that 1)
our proposed approach outperforms three baselines by up
to 13% absolute improvement on the SearchQA dataset and
5.5% on average across all datasets in terms of P@1; 2)
use of a different negativeness score achieves better per-
formance than the same score even when fewer negative
candidates are used; and 3) our proposed method has a sig-
nificant advantage in a low resource setting. These lead to
the answer to the question that use of a negativeness score
is an efficient way to train a neural re-ranker.

2. Negative Candidate Scoring Approach
The key idea of the negative candidate scoring approach is
to utilize a Semantic Textual Similarity (STS) model and the
motivation is that STS score determines how close two sen-
tences are in terms of semantic meaning (Conneau & Kiela,
2018) (see Appendix B for details). In the following, we
describe the two stages of our scoring approach: (1) training
an STS model, and (2) using it to generate negativeness
scores for the question and negative candidate pairs.

2.1. Training an STS-model

We train an STS model on the STS benchmark, which is
a regression model consisting of a RoBERTa model (Liu
et al., 2019) and a Multi-Layer Perceptron (MLP) layer.
In particular, the input to the RoBERTa model is [CLS]
sentence1 [SEP] sentence2 [SEP]. Then we feed the
representation of the [CLS] token to the MLP layer which
predicts a score (see the figure of the model’s input and
output in Appendix C). Mean Squared Error (MSE) loss is
taken as the training objective to minimize the gap between
the predicted score with the ground truth STS score.

2.2. Negativeness Score Generation

We use the STS model to generate scores for the question
and negative candidate pairs. Due to the fact that sometimes,
the important information is only presented in the answer
but not in the question, even though a candidate is relevant
to a question, the STS model might not produce a high score.

To overcome this issue, we introduce three ways to augment
a question to consider the answer in the scoring process.
We expect that if two candidates have similar information
regarding a question, but one has more similar information
to the answer than the other, then the first one should obtain a
higher score. Next, we present each augmentation approach
(examples can be found in Table 5 in Appendix D).

Question + Answer (Q+A) The first approach is to simply
concatenate the answer to the original question.

Question + Keywords of Answer (Q+KA) The second
approach is to extract the keywords from the answer and
concatenate the keywords to the original question. We use
Rapid Automatic Keyword Extraction (RAKE) (Rose et al.,
2010) to extract the keywords. We believe that answer might
include irrelevant information and it can be removed By
extracting keywords. Neglecting irrelevant information can
help the STS model generate a reasonable negative score.

Keywords of Question and Answer (KQ+KA) This
method extracts the keywords not only for the answer but
also the question. We concatenate the keywords sequentially.
The intuition is the same as the second approach but also
applies to the question.

3. SCONER: A Neural re-ranker
Generated negative scores are used in training our model,
i.e., SCONER. The model has the identical model archi-
tecture as the STS model (§2.1) but with different inputs,
i.e., the inputs of the STS model are a pair of sentences
from the STS-benchmark, while the inputs of SCONER are
question-candidate pairs.

3.1. Training Pipeline

The pipeline to train SCONER consists of three steps (the
left part in Figure 2). Step1 (the green block): we use BM25
to retrieve the top-100 candidates for a question. From
these candidates, we further randomly sample 10 negative
candidates. Step2 (the blue block): we augment the question
by one of the approaches described in §2.2 and use it as
sentence1 and each negative candidate from step1 is used
as sentence2. We feed the sentence1 and sentence2
to the STS model and obtain a score for the question and
negative candidate pair. Step3 (the yellow block): we train
SCONER using the question and positive candidate pairs
which are given in the training set and the question and
negative candidate pairs which are given in step 1. We use
MSE loss to optimize our model. Since the upper bound of
a negative score is 5 given by the STS model, we assign 5 to
all positive candidates as a positive candidate should have a
higher score than any negative candidate.

SCONER: Scoring Negative Candidates For Question Answering

BM25
Keyword

Extraction

QuestionAnswer

candidates

STS Model Neural
Re-Ranker

MSE Loss

Question

Neural Re-Ranker

Score S'

candidates

S

(a) Training Pipeline (b) Inference Pipeline

BM25

Q', A'

Step1:
Retrieval

Step2:
Score generation for
negative candidates

Step3:
Training
Neural-
Ranker

Figure 2. (a) Training Pipeline: Step1–retrieve negative candidates for a question using BM25; Step2–use a frozen STS model to generate
negativeness scores for a question and candidate pair; and Step3–train a neural re-ranker using the generated scores given by the STS
model. (b) Inference Pipeline: retrieve the top-100 candidates using BM25 and re-rank them using neural re-ranker. Q’ and A’ means
augmented questions and answers, S’ means predicted scores of neural re-ranker.

3.2. Inference Pipeline

During the inference time, for any given question, we re-
trieve the top-100 candidates using BM25. We then concate-
nate the question with every candidate and ask SCONER to
predict a score for each candidate. Finally, we re-rank the
top-100 candidates based on the predicted scores and select
top-k candidates as the final answer.

4. Experiments and Results
4.1. Dataset and Baselines

We conduct experiments on MultiReQA benchmark (Guo
et al., 2021) which includes five training datasets:
SearchQA (SQA) (Dunn et al., 2017), TriviaQA (TQA)
(Joshi et al., 2017), HotpotQA (HQA) (Yang et al.,
2018), SQuAD(Rajpurkar et al., 2016), and NaturalQues-
tions(NQ)(Kwiatkowski et al., 2019). More details and the
statistics of each dataset are given in Appendix E.

We compare our proposed approach with three commonly
used neural model baselines: Binary Classification Model
(BCM), Regression Model (RM), and Triplet Model (TM).
More details about baselines can be found in Appendix F.
All baseline models and our proposed models have the same
size and are based on the RoBERTa base pretrained model.
Experimental setup can be found in Appendix G.

4.2. Results and Analysis

We use two standard metrics to evaluate each model defined
by MultiReQA, P@1 and MRR (see Appendix H). In the
following, we mainly describe P@1, however, it is easy to
see the same trend extended to MRR.

Comparison with Baselines Table 1 shows the SCONER
outperforms all baselines across all datasets. The largest
gain SCONER achieved is ∼13%, compared to BCM on
SearchQA, and the largest average gain is ∼5.5%, com-
pared to RM. While compare to the strongest baseline, i.e.,
TM (since TM outperforms other two baselines), SCONER
achives ∼2.5%, ∼4%, ∼3%, and ∼5% improvement in
terms of P@1 on NQ, SQuAD, HotpotQA, and SearchQA,
respectively, and outperforms TM on TriviaQA by a small
margin. This shows that using more negative candidates
and differentiating the negative candidates are important to
boost the models’ performance.

Comparison with Existing Methods The existing meth-
ods on MultiReQA directly retrieve answers from the entire
corpus without re-ranking. We present one term-matching
(e.g. BM25) and two neural-retrieval based methods from
Guo et al. (2021), which are fine-tuned BERT dual en-
coder and USE-QA (Yang et al., 2020) on each in-domain
dataset. Other baselines and our model re-rank candidates
after BM25 retrieval. From the results, we see that the re-
ranking phase improves the performance significantly. For
instance, re-ranking improve P@1 at least ∼20%, ∼13%,
∼42%,∼38%, and ∼20% on NQ, SQuAD, HotpotQA,
SearchQA and TriviaQA, respectively, compared to BM25.

Effect of Data Augmentation We also train neural re-
rankers with scores generated by the STS model without
augmentation (Q model) to see the effect of augmentation.
From Table 1, we can see that baselines outperform Q model
in most cases. For example, the performance of Q models is
worse than TM on NQ, SearchQA and TriviaQA. Moreover,
BCM and TM outperforms the Q model on average. On
the other hand, using augmentation methods, Q+A, Q+KA,

SCONER: Scoring Negative Candidates For Question Answering

Metric Model MultiReQA

NQ SQuAD HQA SQA TQA Avg.

Existing Approach (without re-ranking)

P@1

BM25 25.54 69.37 28.33 37.39 42.97 40.72
USE-QA 38.00 66.83 31.71 31.45 32.58 40.11
BERT 36.22 55.13 32.05 30.20 29.11 36.54

Baselines
BCM 46.07 83.71 76.60 65.48 62.05 66.78
RM 44.76 85.36 70.61 69.79 60.41 66.19
TM 50.33 85.65 70.00 73.03 65.43 68.89

SCONER (Ours)
Q 48.64 89.09 64.76 68.64 62.20 66.67
Q+A 49.97 89.14 79.80 70.27 64.73 70.78
Q+KA 50.87 89.48 71.71 78.26 65.16 71.10
KQ+KA 52.80 88.37 76.28 75.64 65.45 71.71

Existing Approach (without re-ranking)

MRR

BM25 37.66 75.95 49.99 55.62 55.19 54.88
USE-QA 52.27 75.86 43.77 50.70 42.39 53.00
BERT 52.02 64.74 46.21 47.08 41.34 50.28

Baselines
BCM 58.03 89.72 84.73 73.94 71.97 75.68
RM 57.02 90.58 80.45 78.81 70.67 75.51
TM 60.87 90.27 81.00 82.22 75.30 77.93

SCONER (Ours)
Q 58.46 92.51 70.73 76.64 68.94 73.46
Q+A 60.14 92.36 85.88 78.62 72.48 77.90
Q+KA 60.16 92.71 80.08 84.72 72.51 78.04
KQ+KA 61.50 91.92 82.87 83.02 72.54 78.37

Table 1. Bold number means the best performance in the column
of each block. SCONER outperform all baselines. In addition,
generating negativeness score using data augmentation is important
to yield good performance.

and KQ+KA are better than Q models and outperform all
baselines on average. While three proposed data augmenta-
tion all outperform baselines, KQ+KA is the best technique
not only because it achieves the best average score but also
because it performs more stable across all datasets. This
demonstrates that it is important to incorporate the answer
to the question in the negative score generation process.

Effect of Size of Negative Candidates Here, we compare
using 1/3/5/7/10 negative candidates per question to train
MultiReQA-SQuAD SCONER. Figure 3 shows the trend of
P@1 score with different numbers of negative candidates
for each method. We see that for three out of four methods,
5 or 7 already yields best performance, which suggests that
SCONER does not need to be trained with many negative
candidates. In addition, we have two observations: 1) com-
pared to 1 negative candidate per question, 5/7/10 always
yield better performance, and this suggests that using one
negative candidate is not enough to train SCONER; 2) com-
pared to the TM baseline, which uses 10 negative candidates
per question, all four models perform better than TM even
though using less negative candidates (e.g. 3 and 5), this
demonstrates that using different negativeness scores is an
effective way to train a neural re-ranker.

Effect of Size of Training Data We use 5/10/15/18 thou-
sands (K) questions to train our models and the baselines on
the SQuAD dataset. For TM and our models, each question
is paired with 10 negative candidates. Figure 4 illustrates

Figure 3. P@1 score regarding to the number of negative candi-
dates per question used in the training. Each model is initialized
with the STS model.

P@1 w.r.t different numbers of training questions. From
Figure 4, we see that (1) except for TM, the other two base-
lines and our SCONER get improvement as the training size
increases, (2) SCONER and TM perform well even with
small amount of training data (e.g. 5K), but BCM and RM
are much worse, and (3) SCONER always performs better
than BCM and RM, and the advantage of SCONER is more
significant in low resource settings.

Figure 4. P@1 score regarding different training sizes of questions
used in the training.

5. Ablation Study
We present most insightful studies in this section and other
ablation studies can be found in Appendix I.

5.1. What are the Effects of STS Model?

STS scores can be used to approximate the scores for ques-
tion and candidates because STS and question-candidate
ranking are related so that these two tasks require sim-
ilar knowledge or skill to solve. To further justify this
intuition, we use the STS model to initialize a re-ranker
rather than using the RoBERTa weights. We expect to
see that the STS model will be better than a RoBERTa

SCONER: Scoring Negative Candidates For Question Answering

Metric Model MultiReQA

NQ SQuAD HQA SQA TQA Avg.

Baselines

P@1

BCM 46.38 86.33 77.49 70.41 61.35 68.39

RM 47.15 86.57 74.71 70.15 61.34 67.98

TM 51.64 86.67 68.57 69.37 63.64 67.98
SCONER (Ours)

Q 50.44 90.06 71.54 71.26 65.22 69.70

Q+A 50.54 89.97 77.63 77.74 66.52 72.48
Q+KA 51.72 89.34 74.51 77.75 66.97 72.06

KQ+KA 53.44 89.43 77.25 75.92 66.07 72.42

Baselines

MRR

BCM 58.02 91.30 84.98 78.70 71.11 76.82

RM 58.46 91.35 83.16 78.47 71.07 76.50

TM 61.57 91.10 79.80 79.33 73.99 77.16
SCONER (Ours)

Q 59.71 92.96 77.83 78.49 72.13 76.22

Q+A 60.42 92.92 84.33 84.14 74.06 79.17
Q+KA 61.21 92.45 82.00 84.38 74.09 78.83

KQ+KA 62.31 92.62 83.77 82.74 73.25 78.94

Table 2. We repeat the experiments in Table 1 but initialize each
model using the STS model. We use green color to indicate in-
creasement compared to the corresponding result in Table 1, and
red for decrease. In most cases, the STS model is better than
RoBERTa.

model. We repeat the experiments in Table 1 but use the
STS model rather than RoBERTa model to initialize each
neural re-ranker and present the results in Table 2. We
use green/red color to represent improvements/decrements
compared to Table 1 (deeper color means more significant
improvements/decrements). From Table 2, we can see that
the STS model is better than the RoBERTa model in most
cases, which justifies our intuition and to some extent ex-
plains why the proposed score generation approach can
improve the model performance.

5.2. Can SCONER be Applied to Positive Candidates?

In our previous pipeline, SCONER only uses the generated
scores for negative candidates. Here, we also use the STS
model to generate scores for positive candidates and use
them to train re-ranker instead of using fixed score 5 as
other experiments mentioned previously. We test on the
SQuAD dataset.

Table 3 shows the performance of each SCONER trained
with generated scores or fix score 5, and the best baselines
model on SQuAD dataset which is RM. We see that except
for Q model, other three SCONERs are all better than the
best baseline model, this suggests that the score for the pos-
itive candidates can be used in the training time. However,
we also see that using score 5 is better than the generated
scores in all cases. We further find that for the best SCONER
model, Q+KA, 98% of the negative candidates have lower
scores than the corresponding positive candidates, but the
average generated score for the positive candidates is 3.64,
which is less than 5. This suggests that a larger gap between

scores of positive and negative candidates helps the model
to differentiate the positive and negative candidates better.
In addition, we also observe that the performance of the Q
model, which does not use any augmentation in the genera-
tion, is much worse than the score 5 while the other three
methods are similar. This suggests that the scores generated
by augmentation are more reliable.

Label
Model

Q Q+A Q+KA KQ+KA RM
fix 92.51 92.36 92.71 91.92 90.58
generated 73.42↓ 91.57↓ 91.78↓ 90.92↓ -

Table 3. Each model is initialized with RoBERTa model. Three
SCONER using generated scores beat best baseline. Using score 5
is better than generated scores. ↓ means decrease compared to fix
score.

6. Limitations
In this paper, we study the retrieval-based question answer-
ing task and propose a new training strategy for a cross-
attention re-ranker model. While we compare with three
standard baselines and two simple retrievers, recently, there
are many interesting neural retrievers have been proposed
such as DPR (Karpukhin et al., 2020), ACNE (Xiong et al.,
2020), SPARTA (Zhao et al., 2021), ColBERT-QA (Khattab
et al., 2021), and Poly-DPR (Luo et al., 2022). Compar-
ing SCONER with these latest neural retrievers will be an
interesting future work.

7. Conclusion
Most previous training approaches for ReQA use the same
labels for all negative candidates, we argue that different can-
didates should have different negativeness scores based on
their semantic relevance to the question. Motivated by this,
we ask the question - “can a neural re-ranker yield better
performance trained on different negativeness scores?”. To
answer this question, we present SCONER, a new pipeline
to train neural re-rankers by generating scores for negative
candidates which is based on the semantic meaning between
question-candidate pairs. Our experimental results show
that SCONER outperforms all standard training methods
across five datasets and demonstrate that using negativeness
scores to train a neural re-ranker is better than using the
same labels. Our proposed method makes negative candi-
dates differentiable which further allows us to use more
negative samples to train neural re-ranker.

References
Ahmad, A., Constant, N., Yang, Y., and Cer, D. M. Reqa:

An evaluation for end-to-end answer retrieval models.

SCONER: Scoring Negative Candidates For Question Answering

ArXiv, abs/1907.04780:137–146, 2019.

Bilotti, M. W., Ogilvie, P., Callan, J., and Nyberg, E. Struc-
tured retrieval for question answering. In Proceedings of
the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pp.
351–358, Amsterdam, 2007. ACM.

Cakaloglu, T., Szegedy, C., and Xu, X. Text embeddings for
retrieval from a large knowledge base. In International
Conference on Research Challenges in Information Sci-
ence, pp. 338–351, Limassol, 2020. Springer.

Chen, D., Fisch, A., Weston, J., and Bordes, A. Read-
ing Wikipedia to answer open-domain questions. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 1870–1879, Vancouver, Canada, July 2017.
Association for Computational Linguistics. doi: 10.
18653/v1/P17-1171. URL https://aclanthology.
org/P17-1171.

Chen, T. and Van Durme, B. Discriminative information re-
trieval for question answering sentence selection. In Pro-
ceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pp. 719–725, Valencia, Spain, April
2017. Association for Computational Linguistics. URL
https://aclanthology.org/E17-2114.

Cohen, D., Yang, L., and Croft, W. Wikipassageqa: A
benchmark collection for research on non-factoid answer
passage retrieval. The 41st International ACM SIGIR
Conference on Research & Development in Information
Retrieval, abs/1805.03797, 2018.

Conneau, A. and Kiela, D. Senteval: An evaluation
toolkit for universal sentence representations. ArXiv,
abs/1803.05449:1–6, 2018.

Dai, Z., Xiong, C., Callan, J., and Liu, Z. Convolu-
tional neural networks for soft-matching n-grams in ad-
hoc search. Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining,
10.1145/3159652.3159659:126–134, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Dunn, M., Sagun, L., Higgins, M., Güney, V. U., Cirik,
V., and Cho, K. Searchqa: A new q&a dataset aug-
mented with context from a search engine. ArXiv,
abs/1704.05179, 2017.

Fisch, A., Talmor, A., Jia, R., Seo, M., Choi, E., and Chen,
D. Mrqa 2019 shared task: Evaluating generalization in
reading comprehension. ArXiv, abs/1910.09753, 2019.

Guo, J., Fan, Y., Ai, Q., and Croft, W. A deep relevance
matching model for ad-hoc retrieval. Proceedings of the
25th ACM International on Conference on Information
and Knowledge Management, -:55–64, 2016.

Guo, M., Yang, Y., Cer, D. M., Shen, Q., and Constant, N.
Multireqa: A cross-domain evaluation for retrieval ques-
tion answering models. ArXiv, abs/2005.02507, 2020.

Guo, M., Yang, Y., Cer, D., Shen, Q., and Constant, N. Mul-
tiReQA: A cross-domain evaluation forRetrieval ques-
tion answering models. In Proceedings of the Second
Workshop on Domain Adaptation for NLP, pp. 94–104,
Kyiv, Ukraine, April 2021. Association for Computa-
tional Linguistics. URL https://aclanthology.org/
2021.adaptnlp-1.10.

Hui, K., Yates, A., Berberich, K., and de Melo, G.
PACRR: A position-aware neural IR model for rele-
vance matching. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pp. 1049–1058, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1110. URL https://aclanthology.
org/D17-1110.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L. Trivi-
aqa: A large scale distantly supervised challenge dataset
for reading comprehension. In The 55th annual meeting
of the Association for Computational Linguistics (ACL),
Vancouver, 2017. ACL.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L. Y.,
Edunov, S., Chen, D., and tau Yih, W. Dense passage
retrieval for open-domain question answering. ArXiv,
abs/2010.08191, 2020.

Khattab, O., Potts, C., and Zaharia, M. Relevance-guided
supervision for openqa with colbert. Transactions of the
Association for Computational Linguistics, 9:929–944,
2021.

Khot, T., Clark, P., Guerquin, M., Jansen, P., and Sabharwal,
A. Qasc: A dataset for question answering via sentence
composition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8082–8090, New
York, 2020. AAAI Press.

https://aclanthology.org/P17-1171
https://aclanthology.org/P17-1171
https://aclanthology.org/E17-2114
https://aclanthology.org/N19-1423
https://aclanthology.org/2021.adaptnlp-1.10
https://aclanthology.org/2021.adaptnlp-1.10
https://aclanthology.org/D17-1110
https://aclanthology.org/D17-1110

SCONER: Scoring Negative Candidates For Question Answering

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A. P., Alberti, C., Epstein, D., Polosukhin, I.,
Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M.,
Chang, M.-W., Dai, A. M., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: A benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:453–466, 2019.

Laskar, M. T. R., Huang, J. X., and Hoque, E. Contextual-
ized embeddings based transformer encoder for sentence
similarity modeling in answer selection task. In Proceed-
ings of the 12th Language Resources and Evaluation Con-
ference, pp. 5505–5514, Marseille, France, May 2020. Eu-
ropean Language Resources Association. ISBN 979-10-
95546-34-4. URL https://aclanthology.org/2020.
lrec-1.676.

Liu, T.-Y. Learning to rank for information retrieval. Foun-
dations and Trends in Information Retrieval, 3(3):225–
331, 2009.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692, 2019.

Luo, M., Mitra, A., Gokhale, T., and Baral, C. Improving
biomedical information retrieval with neural retrievers.
AAAI, 2022.

Ma, J., Korotkov, I., Yang, Y., Hall, K., and McDonald, R.
Zero-shot neural passage retrieval via domain-targeted
synthetic question generation. In Proceedings of the 16th
Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pp. 1075–
1088, Online, 2021. ACL.

MacAvaney, S., Yates, A., Cohan, A., and Goharian, N.
Cedr: Contextualized embeddings for document rank-
ing. Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 36, 2019.

Makino, T. and Iwakura, T. A boosted supervised semantic
indexing for reranking. In AIRS, Jeju Island, South Korea,
2017. Springer International Publishing.

McDonald, R., Brokos, G., and Androutsopoulos, I. Deep
relevance ranking using enhanced document-query in-
teractions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pp. 1849–1860, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1211. URL https://aclanthology.
org/D18-1211.

Min, S., Chen, D., Zettlemoyer, L., and Hajishirzi, H.
Knowledge guided text retrieval and reading for open do-
main question answering. ArXiv, abs/1911.03868, 2019.

Nogueira, R. and Cho, K. Passage re-ranking with bert.
ArXiv, abs/1901.04085, 2019.

Ozyurt, I. B., Bandrowski, A., and Grethe, J. S. Bio-
answerfinder: a system to find answers to questions from
biomedical texts. Database, 2020, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., Vancouver, 2019.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100, 000+ questions for machine comprehension of text.
In EMNLP, Austin, 2016. Association for Computational
Linguistics.

Rao, J., He, H., and Lin, J. Noise-contrastive estimation for
answer selection with deep neural networks. In Proceed-
ings of the 25th ACM International on Conference on In-
formation and Knowledge Management, pp. 1913–1916,
New York, 2016. Association for Computing Machinery.

Rao, J., Liu, L., Tay, Y., Yang, W., Shi, P., and Lin,
J. Bridging the gap between relevance matching and
semantic matching for short text similarity modeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 5370–5381, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1540. URL
https://aclanthology.org/D19-1540.

Robertson, S. and Zaragoza, H. The probabilistic relevance
framework: Bm25 and beyond. Found. Trends Inf. Retr.,
3:333–389, 2009.

Rose, S., Engel, D., Cramer, N., and Cowley, W. Automatic
keyword extraction from individual documents. Text min-
ing: applications and theory, 1:1–20, 2010.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polo-
sukhin, I. Attention is all you need. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in

https://aclanthology.org/2020.lrec-1.676
https://aclanthology.org/2020.lrec-1.676
https://aclanthology.org/D18-1211
https://aclanthology.org/D18-1211
https://aclanthology.org/D19-1540

SCONER: Scoring Negative Candidates For Question Answering

Neural Information Processing Systems, volume 30,
New York, 2017. Curran Associates, Inc. URL https:
//proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Xiong, C., Dai, Z., Callan, J., Liu, Z., and Power, R. End-to-
end neural ad-hoc ranking with kernel pooling. Proceed-
ings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, -,
2017.

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett,
P. N., Ahmed, J., and Overwijk, A. Approximate near-
est neighbor negative contrastive learning for dense text
retrieval. In International Conference on Learning Rep-
resentations, 2020.

Yang, Y., Yih, W.-t., and Meek, C. WikiQA: A challenge
dataset for open-domain question answering. In Pro-
ceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 2013–2018, Lis-
bon, Portugal, September 2015. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D15-1237. URL
https://aclanthology.org/D15-1237.

Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant,
N., Hernandez Abrego, G., Yuan, S., Tar, C., Sung, Y.-h.,
Strope, B., and Kurzweil, R. Multilingual universal sen-
tence encoder for semantic retrieval. In Proceedings of
the 58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pp. 87–94,
Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-demos.12. URL
https://aclanthology.org/2020.acl-demos.12.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering. In EMNLP, Brussels, Belgium, 2018. Associa-
tion for Computational Linguistics.

Yilmaz, Z. A., Wang, S., Yang, W., Zhang, H., and Lin,
J. Applying bert to document retrieval with birch. In
EMNLP/IJCNLP, Hong Kong, 2019. Association for
Computational Linguistics.

Zhang, Z., Vu, T., and Moschitti, A. Joint models for
answer verification in question answering systems. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 3252–3262, On-
line, August 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.acl-long.252. URL
https://aclanthology.org/2021.acl-long.252.

Zhao, T., Lu, X., and Lee, K. Sparta: Efficient open-domain
question answering via sparse transformer matching re-
trieval. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp.
565–575, 2021.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/D15-1237
https://aclanthology.org/2020.acl-demos.12
https://aclanthology.org/2021.acl-long.252

SCONER: Scoring Negative Candidates For Question Answering

A. Related Work
A.1. Retrieval Based Question Answering

ReQA is to identify sentences from large corpus that contain the answer to a question (Yang et al., 2015; Cakaloglu et al.,
2020; Ahmad et al., 2019; Guo et al., 2021). It has practical applications such as s Googles Talk to Books2. ReQA is
similar to Open Domain Question Answering (ODQA) but different in the following aspect, ReQA aims to build an efficient
retrieval system, and the answer is a sentence or a short passage (Ahmad et al., 2019); while ODQA requires a retrieval
system to find relevant documents at a large scale and a machine reading comprehension model to predict short answer span
from documents (Bilotti et al., 2007; Chen & Van Durme, 2017; Chen et al., 2017; Min et al., 2019; Karpukhin et al., 2020).
In this paper, we focus on the ReQA task and believe that building an efficient system for ReQA is also beneficial for the
ODQA task. For example, QASC (Khot et al., 2020) requires retrieving sentences from a large corpus and composing them
to answer a multiple-choice question, and a good ReQA system can be used to retrieve sentences in the first stage.

A.2. Neural Re-Ranker

Bag-of-words ranking models such as BM25 (Robertson & Zaragoza, 2009) have a long history in information retrieval.
Although being efficient, these methods depend on handcrafted features and can not be optimized for a specific task such
as ReQA. Therefore, a re-ranker is trained on a down-stream task to re-score the candidates after the first step retrieval.
Neural networks have been applied as re-rankers (Guo et al., 2016; Hui et al., 2017; Xiong et al., 2017; Dai et al., 2018;
McDonald et al., 2018), also called as answer selection models in some work (Rao et al., 2016; Yang et al., 2015; Rao et al.,
2019; Laskar et al., 2020). Boosting technique has been proposed to train a neural re-ranker where the training samples are
assigned with different weights(Makino & Iwakura, 2017). Recently, large language models like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) are widely used as re-rankers (Nogueira & Cho, 2019; Yilmaz et al., 2019; MacAvaney et al.,
2019). Such re-rankers take the concatenation of a query and a candidate as input and apply attention technique(Vaswani
et al., 2017) to allow rich interaction between the question and the candidate. Then a classification or regression module
(scoring layer) is added on top to compute a score. Binary classification entropy (BCE) is usually used to train a re-ranker,
but BCE has limitations such as a large number of negative candidates being unused to create balanced training samples.
Triplet loss addresses this issue by the idea of learning to rank (Liu, 2009). However, none of these methods addresses the
concern whether we can use different negativeness scores to train a neural re-ranker. Similar to previous work, we use large
PrLMs as re-rankers but different from theirs, we train a model using different scores for negative candidates. Re-ranking
using ensemble models have been explored recently (Zhang et al., 2021), but since their systems are more complex than
ours in terms of model size, we don’t compare with them.

B. Sentence Textual Similarity (STS)
Review STS STS determines how close two sentences are in terms of semantic meaning (Conneau & Kiela, 2018).
Specifically, given two sentences, a high STS score indicates that they present similar meanings; while a low score implies
that they have different meanings. The STS score is in the range of [0, 5].

Table 4 shows two pairs of sentences with score 0 and 5 from the STS-B dataset. Score 5 means two sentences are
semantically equivalent and score 0 means semantically irrelevant.

Sentence 1 Sentence 1 Score
A man is playing a guitar. A man plays the guitar. 5.0
A young man is playing the piano. A woman is peeling a prawn. 0.0

Table 4. Two examples from the STS-benchmark, the first pair of sentences have highest score since they are highly similar, while the
second pair have lowest score because they have totally different meaning.

Motivation of Using STS to Generate Scores STS lays the foundation of our scoring approach because there is a relation
between the STS task and the question-candidate ranking task. Considering a question and a candidate pair, if the candidate
has similar information regarding the question, then it is likely to be a relevant candidate (corresponding to a high STS
score); on the contrary, if it has less similar information, then it is likely to be irrelevant (corresponding to a lower STS score).

2https://books.google.com/talktobooks/

SCONER: Scoring Negative Candidates For Question Answering

Meanwhile, STS is better than other methods of finding similar information because it considers the semantic meaning of
two sentences such as synonyms of words.

C. Figure of STS-Model and Neural Re-ranker
Figure 5 shows the architecture of the models used in all experiments, except for binary classification model where the
output of MLP is two logits. Our model consists of two parts. A RoBERTa model takes the concatenation of two sentences
as input and output the contextual representation of [CLS] token. An MLP layer takes this representation as input and output
a score.

BERT

CLSi s1 s2 ... sn SEP c1 c2 ... cn SEP

CLSo s1
' s2' ... sn

' SEP c1
' c2

' ... cn
' SEP

MLP

S

Sentence1, Sentence2

Figure 5. The structure of the STS-model, where Si are tokens from Sentence1, and Ci are tokens from Sentence2.

D. Data Augmentation
While STS and our question-answer sentence are similar task in some sense, there is a difference between identifying
semantic similarity and answer ranking. The former focuses on detecting meaning equivalence and the latter emphasizes
keyword matching and semantic understanding. Thus, even though a candidate is relevant to a question, the STS model
might not produce a high score due to the semantic meaning gaps between the candidate and the question. To illustrate this,
consider a question “Beyonce has a fan base that is referred to as what?” and a good candidate “The name Bey Hive derives
from the word beehive, purposely misspelt to resemble her first name, and was penned by fans after petitions on the online
social networking service Twitter and online news reports during competitions” (the answer is Bey Hive), the STS model
generate a low score for this pair as shown in the first row (Q) of Table 5.

Approach Augmented Question Score
Q Beyoncé’s has a fan base that is referred to as what? 2.20
Q+A Beyoncé’s has a fan base that is referred to as what? The Bey Hive is the name given to Beyoncé’s fan base. 3.08
Q+KA Beyoncé’s has a fan base that is referred to as what? name given fan base bey hive beyoncé 2.86
KQ+KA Fan base referred Beyoncé’s name given fan base bey hive beyoncé 2.95

Table 5. Examples of augmented questions, where the original question is Beyoncé’s has a fan base that is referred to as what? and the
given answer is The Bey Hive is the name given to Beyoncé’s fan base. Each score is generated by the STS model given each augmented
question and sentence “The name Bey Hive derives from the word beehive, purposely misspelled to resemble her first name, and was
penned by fans after petitions on the online social networking service Twitter and online news reports during competitions.”

SCONER: Scoring Negative Candidates For Question Answering

Dataset
Train Test

Ques. Cand. Avg. ans. per ques. Ques. Cand. Avg. ans. per ques.
SearchQA 24793 3163801 6.00 16883 454836 6.66
TriviaQA 61688 1893674 6.00 7776 238339 6.0
HotpotQA 72519 508879 1.50 5860 52191 1.74
SQuAD 18768 95659 1.04 2063 10642 3.44
NQ 102577 71147 1.21 3892 22118 1.31

Table 6. Statistic of MultiReQA datasets

Dataset Domain Type
NQ Wikipedia single-hop
SQuAD Wikipedia single-hop
HQA Wikipedia multi-hop
TQA Trivia and quiz-league websites single-hop
SQA Jeopardy! TV show single-hop

Table 7. The domain and reasoning type of each dataset.

E. Data Processing and Statistics
The dataset includes two parts, question-answer pairs and a corpus. The question-answer pairs are from MRQA (Fisch
et al., 2019). MRQA is a collection of extractive QA task where the goal is to extract an answer span given a question and a
context. The corpus is given by MultiReQA. Particularly, to convert extractive QA task to ReQA task, where the context is
not given, Guo et al. (2020) divide the context into single sentences and combine all sentence to construct a corpus. The
goal is to retrieve the answer to a question from the corpus. We refer reader to see the details of processing of the corpus in
Guo et al. (2020). We remove all questions that do not have any answer in the corpus in both training and testing sets. Table
6 shows the number of questions, the number of candidates (the size of the corpus) and the average number of answers per
questions of each dataset. The average number of answers for SearchQA and TriviaQA are more than others. Notice that the
number of questions in the training time might be different than the MRQA dataset since we only use those samples where
the answer sentences are not empty.

Questions Domain and Reasoning Type Table 7 shows the domains and reasoning type of each dataset. We see that the
MultiReQA include datasets from different domains and different types of reasoning skill required to answer the question.

F. Baselines
Binary Classification Model (BCM) We use the RoBERTa model as the encoder, which takes input as [CLS] question
[SEP] candidate [SEP]. Then, we feed the vector representation of [CLS] to a linear layer with two logits as outputs:
one represents the probability of candidates being irrelevant and the other represents it being relevant. We apply binary cross
entropy loss to train this model. The training data is constructed by using the positive samples for each question with label 1,
and we randomly selected the same amount of negative samples from the top-100 candidates given by BM25 with label 0.

Regression Model (RM) This baseline is similar to the BCM baseline, but the linear layer only outputs one logit instead
of two, thus it is a regression model rather than a binary classification model. We use MSE loss to train this model. The
positive and negative samples are the same as BCM, but the positive samples have label 5. We also use 1 as the label for
positive samples but find that 5 yields better performance, thus we use label 5 to train all RM baselines. Appendix I.1 shows
the results comparison between labels as 1 and 5.

Triplet Model (TM) This baseline has the identical model architecture as the RM baseline, but we use the triplet loss to
train the model and in this way, more negative candidates can be used. Specifically, each training sample is a triplet, i.e.,
⟨q, c+, c−⟩, where q is a question, c+ is a positive candidate, and c− is a negative candidate. Let S(q, c) denote the score
given by the model for question q and candidate c. The model is trained such that S(q, c+) is higher than S(q, c−). We use
the same negative candidates to train TM and SCONER, but SCONER use generated score as labels.

SCONER: Scoring Negative Candidates For Question Answering

Label
Dataset

SQuAD HotpotQA NQ
1 64.84 43.50 70.00
5 85.36 44.76 70.61

Table 8. Comparison of two regression models with label 1 and 5 in terms of P@1.

G. Experiment Setup
We use Huggingface (Wolf et al., 2020) and Pytorch (Paszke et al., 2019) implementation for training each model. For each
dataset, we use up to 25 thousands questions to train a neural re-ranker. To train the STS model, we use one GTX1080
GPU with maximum length (MaxL) 128, batch size (bs) 32, learning rate (lr) 2e-5, and 6 training epochs (epochs). For
each neural re-ranker (including the baseline), we use four GTX1080 GPUs with MaxL 368, bs 16, lr 2e-5, 5 epochs, and
gradient accumulation steps 2.

H. Evaluation Metrics
We present two evaluation metrics as follows.

Precision@K P@K reveals the proportion of top-K retrieved candidates that are relevant. R@K reveals the proportion of
relevant documents are in the top-K retrieved candidates. In Eq 1, N is the number of questions, AK are the top-K retrieved
answer, A∗ is correct answers.

P@K =
1

N

N∑
i

|AK ∩A∗|
K

(1)

Mean Average Precision P@K does not take the position of relevant candidates into account, which means a system that
ranks the relevant answer higher than another system can not be identified as better. MAP address this issue, computed as
follows, where in Eq 2, Rel@i is 1 if the ith answer is correct, 0 otherwise.

AveP@K =
1

|A∗|

i=K∑
i=1

P@i×Rel@i, (2)

MAP@K =
1

N

q=N∑
q=1

AveP@K(q) (3)

MRR The MRR score is computed as follows,

MRR =
1

N

N∑
i

1

ranki
,

where ranki is the rank of the first relevant answer.

I. Ablation Study
I.1. Ablation Study for Regression Model Baseline

Here, we explore two labels for regression models, 0 and 5 on three datasets. We train each model by initializing it with
RoBERTa. Table 8 shows the results, and we found that label 5 is better than 0 in three cases.

SCONER: Scoring Negative Candidates For Question Answering

I.2. How Many Candidates are Needed for Re-ranking?

To answer this question, we use 50/100/150/200 candidates in the re-ranking time. We test on three datasets using the MRR
metric and consider the best model of each dataset given in Table 1 (P@1 in Table 10), and they are KQ+KA, Q+KA, and
Q+A models for NQ, SQuAD, and HQA, respectively.

From Table 9, we find that the performance gap of SQuAD and NQ are more noticeable than of HotpotQA. For SQuAD,
re-ranking 200 candidates yields ∼ 1% improvement compared to 50, and for NQ, re-ranking 100 candidates yields ∼ 1%
improvement compared to 50. But for HotpotQA, re-ranking 50 candidates surprisingly yields the best performance, ∼ 0.5%
better than 200. Further investigation reveals that the recall of BM25 on HotpotQA is already 99% for 50 candidates and
increasing the size of candidates rather introduces more distracting candidates in the re-ranking time; but for SQuAD and
NQ, the recall of BM25 increases. On the other hand, re-ranking more candidates causes longer inference time, i.e. the
inference time of re-ranking 50/100/150/200 candidates is 0.49/0.85/1.24/1.63 seconds. This suggests that if the recall of
less candidates is already high enough (e.g. 99%), then using less candidates in re-ranking is time efficient and gets best
performance.

#
Model MRR BM25 Recall

SQuAD NQ HQA SQuAD NQ HQA
50 91.77 60.50 86.30 94.85 73.65 99.29
100 91.77 61.66 86.21 96.55 77.19 99.29
150 92.54 61.55 86.03 97.56 79.09 99.68
200 92.71 61.50 85.88 98.04 80.20 99.80

Table 9. # means the number of re-ranking candidates and HQA means HotpotQA dataset. When the recall of small size of candidate is
high (e.g. 99%), using small size of candidates in re-ranking is better.

#
Model MRR BM25 Recall

SQuAD NQ HQA SQuAD NQ HQA
50 88.61 53.39 79.83 94.85 73.65 99.29
100 88.61 53.75 79.83 96.55 77.19 99.29
150 89.29 53.75 79.83 97.56 79.09 99.68
200 89.48 52.80 79.80 98.04 80.20 99.80

Table 10. Compare the re-ranking size. # means the number of re-ranking candidates and HQA means HotpotQA dataset. When the recall
of small size of candidate is high (e.g. 99%), using small size of candidates in re-ranking is better.

