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Abstract
Asmachine learning advances, machine learning as a service (MLaaS)

in the cloud brings convenience to human lives but also privacy

risks, as powerful neural networks used for generation, classifica-

tion or other tasks can also become privacy snoopers. This moti-

vates privacy preservation in the inference phase. Many approaches

for preserving privacy in the inference phase introduce multi-

objective functions, training models to remove specific private

information from users’ uploaded data. Although effective, these

adversarial learning-based approaches suffer not only from conver-

gence difficulties, but also from limited generalization beyond the

specific privacy for which they are trained. To address these issues,

we propose amethod for privacy preservation in the inference phase

by removing task-irrelevant information, which requires no knowl-

edge of the privacy attacks nor introduction of adversarial learning.

Specifically, we introduce a metric to distinguish task-irrelevant

information from task-relevant information, and achieve more effi-

cient metric estimation to remove task-irrelevant features. The ex-

periments demonstrate the potential of our method in several tasks.

Our code will be available at: https://github.com/iwhoyoung/PriFU.
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1 Introduction
In recent years, machine learning development has led to the emer-

gence ofMachine Learning as a Service (MLaaS), such as human-like

chat services, image generation services, and predictive analytic

services. These services bring convenience to users but also privacy

risks, as powerful neural networks can also be privacy snoopers.

For example, when users using a plant identification cloud ser-

vice upload photos, location information may be exposed due to

the information-rich image including environmental information.

Services for visual tasks usually involve uploading overly rich infor-

mation, resulting in privacy risks. Therefore, privacy preservation
in the inference phase (see Definition 3.1) comes into the spotlight,

preserving the private information of the input in the inference

phase (i.e., at test time).

To preserve users’ privacy of the uploaded data, some approaches

operate directly to manipulate the image, such as blurring [28]

and masking [3]. They obfuscate key information in input images.
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(a) The adversarial learning-based privacy-preserving framework

(b) Our proposed privacy-preserving framework

Figure 1: Comparing our framework for preserving privacy in
the inference phase with the previous framework. (a) There
are additional modules for obfuscating specific private in-
formation (red). Privacy-preserving module complexity is
proportional to privacy diversity. (b) Our proposed frame-
work gets rid of adversarial learning to becomemore efficient,
and may generalize beyond the specific target privacy.

Some other approaches [5, 19, 21, 39] try to change the specific

information for which users have privacy concerns. These methods

can be considered as pre-processing before uploading images as

MLaaS input. However, the pre-processed images may be out of

the original distribution, leading to performance degradation in the

original task. Thus this approach makes it difficult to achieve a good

privacy utility trade-off. Meanwhile, image-level pre-processing

has high costs in hardware and computational resources, which

can be solved by model partitioning.

Model partitioning splits the model for services into two parts.

One part is deployed on the user side for feature extraction, and

the extracted representations will be uploaded to use the service

instead of images. The second part offers the service by process-

ing the uploaded representations. Although the black-box nature

of neural networks makes such methods difficult to design, many

novel and effective model partition methods for preserving privacy

have been proposed. The methods [23, 26, 35, 40] fine-tune the

representation 𝑧, including dimensionality reduction using Princi-

pal Component Analysis [1], adding elaborate noise, and reducing

private information in the representation.

The above image pre-processing and representation fine-tuning

approaches are two-stage, enabling privacy preservation indepen-

dent from the MLaaS model. As mentioned above, this may result

in an out-of-distribution image or representation, and thus de-

grade performance. To solve this issue, adversarial learning-based

methods are intuitively introduced to achieve domain adaptation.

Typically, the idea of generative adversarial networks (GANs) [6]

is introduced, training the model for services when minimizing the

user privacy risk. As shown in Fig. 1(a), privacy-preserving modules

are added as the “adversaries” who try to steal private information.

During training, a feature extractor is trained to prevent specific pri-

vacy leakage while ensuring good services (i.e., task). After training,

the feature extractor extracts privacy-preserving representations

as updated data. Adversarial learning is effective for preserving

privacy, and various adversarial learning-based methods were de-

signed with different privacy-preserving modules [14–16, 36] or

model training methods [2, 22, 41, 42].

Still, there are two issues with such methods: they are difficult to

train, an inherent problem of adversarial learning and well known

in GANs, and adversarial learning-based methods can only preserve

the targeted privacy. Also, the privacy-preserving modules become

more complex as more adversaries must be defended against. To

overcome these issues, we propose a novel framework for privacy

preservation in the inference phase by removing task-irrelevant

information from the data, as shown in Fig. 1(b). Our framework

can defend against diverse adversaries without knowledge of the

adversaries. This work can be summarized as follows:

• We propose a framework to capture task-relevant informa-

tion with only task-specific training, which can preserve

privacy in the inference phase.

• We introduce gradient-based task relevance metrics, Aver-

age Relative Influence (AvgRI), to measure the influence of

channel-level features on a task.

• Based on AvgRI, a model-agnostic plugin layer, dubbed the

Privacy Filter Unit (PriFU), is proposed to weigh and filter

channel-level features for preserving privacy.

2 Related Work
Preserving privacy in the inference phase, as a subfield of privacy

preservation, is intended to protect the privacy of input data when

using MLaaS in the cloud. To block risk exposure and keep effective

services, there are two objectives: privacy and utility. The privacy

goal is to keep as little private information as possible in the up-

loaded data, while the utility goal is to retain as many task-relevant

features as possible in the uploaded data. Tremendous progress has

been made in different ways to achieve the privacy and utility goals

simultaneously.

Image Pre-processing. PrivacyNet generates privacy-preserving
images [21] by a generator and multiple discriminators. One dis-

criminator prompts the generator to improve the fidelity of the

generated images, while the others for the privacy goal help the

generator transform specific attributes. In [38], a bidirectional at-

tribute classifier is proposed to transform specific attributes more

finely.

Representation Fine-tuning. Samragh et al. [26] process pre-

trained representations by SVD and then remove the corresponding

feature vectors in the order of smallest to largest singular values

until the privacy goal is satisfied. Mireshghallah et al. [20] inject

noise randomly sampled from the learned Laplace distribution to

the representations in the inference phase.

Adversarial learning. As can be seen in Fig. 1 (a), adversarial

learning-based methods introduce modules that act as the specific

adversaries (privacy-preserving modules), prompting the feature

extractor to learn to extract privacy-preserving representations

during training. The methods [25, 43] employ a classifier as the

adversary to infer specific privacy attributes. The classifier learns
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Figure 2: Our proposed framework for preserving privacy in the inference phase. The arrows in the hypersphere represent
different feature dimensions in the representation space. The color shade of the arrow indicates the task-relevance of features.

attribute inference by minimizing the gap between prediction re-

sults and privacy labels. Among the methods, Controllable Invari-

ance (CI) [43] trains the feature extractor to prevent attribute leaks

by using the negative loss function of the adversary, while Maxi-

mum Entropy Adversarial Representation Learning (MaxEnt-ARL)

[25] maximizes the information entropy of the private information.

RAN [16] takes a generative network as the adversary (i.e., privacy-

preserving modules in Fig. 1 (a)) rather than classifiers to train the

feature extractor to prevent input image reconstruction. CPGAN

[36] also takes a generative network as the adversary, but employs

multiple alternative training strategies, such as Linear Ridge Re-

gression [36], to pick the best one. PAN [15] takes a classification

network and a generative network as the privacy-preserving mod-

ules. CFB [24] proposes a new variational approach to learn private

representations. NoPeek-Infer [37] prevents reconstruction attacks

by minimizing distance correlation between sensitive data. DISCO

[30] learns a dynamic and data-driven pruning filter to selectively

obfuscate sensitive information in the feature space.

Compared with these approaches, our framework aims to drop

the task-irrelevant features, thus achieving privacy preservation

in the inference phase, namely preserving privacy without pre-

defining privacy. The simple training for tasks contributes to model

convergence as no privacy-preserving modules are required.

3 Methodology
In this work, we focus on removing task-irrelevant information

from the input data towards achieving privacy preservation in the
inference phase (Definition 3.1). Our proposed framework can ex-

tend beyond the specific privacy preservation, which generalizes

the concept of privacy preservation in the inference phase.

Definition 3.1. (Privacy Preservation in the Inference Phase) We

consider an arbitrary data {𝑥𝑢 , 𝑦𝑝𝑟𝑖𝑢 }, where 𝑥𝑢 is the input data of

user 𝑢, and 𝑦
𝑝𝑟𝑖
𝑢 represents the ground truth of the private infor-

mation. For any function 𝑔 : 𝑧𝑢 → 𝑦
𝑝𝑟𝑖
𝑢 , Privacy preservation in the

Inference Phase trains a model 𝑓 : 𝑥𝑢 → 𝑧𝑢 to prevent the function

𝑔 : 𝑧𝑢 → 𝑦
𝑝𝑟𝑖
𝑢 from inferring the private information 𝑦

𝑝𝑟𝑖
𝑢 .

3.1 Threat Model and Target Model
Threat Model: We consider a threat model with full knowledge

of the feature extractor and task module (𝐹𝐸𝜃 and 𝑇𝜙 ), the training

dataset (𝐷𝑡𝑟𝑎𝑖𝑛) and privacy-preserving data (i.e., representation 𝑧

shown in Fig. 1), since the user modules are usually downloaded

Algorithm 1 General Attack Algorithm

1: Input: Annotated training datasets 𝐷𝑡𝑟𝑎𝑖𝑛 , trained feature ex-

tractor 𝐹𝐸𝜃 , uploaded representation 𝑧𝑢 .

2: Output: Predicted private information 𝑦𝑝𝑟𝑖 .

3: Query 𝐹𝐸𝜃 with 𝐷𝑡𝑟𝑎𝑖𝑛 and collect {(𝐹𝐸𝜃 (𝑥𝑖 ), 𝑦𝑖 ) | (𝑥𝑖 , 𝑦𝑖 ) ∈
𝐷𝑡𝑟𝑎𝑖𝑛}.

4: Based on {(𝐹𝐸𝜃 (𝑥𝑖 ), 𝑦𝑖 ) | (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷𝑡𝑟𝑎𝑖𝑛}, train the attack

model 𝑔𝜙 : 𝐹𝐸𝜃 (𝑥𝑖 ) → 𝑦𝑖 .

5: Predict 𝑦
𝑝𝑟𝑖
𝑢 = 𝑔𝜙 (𝑧𝑢 ).

from the cloud server and the training dataset is usually public in

the community. Hence, in the inference phase, the threat model

tries to infer private information from the privacy-preserving data,

as shown in Algorithm 1. The threat model trains an attack model

𝑔𝜙 to approximate the intended private data 𝑦
𝑝𝑟𝑖
𝑢 . In previous work,

reconstruction attacks and sensitive attribute inference attacks [31]

are widely used to evaluate the capacity of privacy-preserving

methods. The reconstruction attack trains a generative model to

reconstruct the input data with the labeled training dataset, while

the sensitive attribute inference attack trains a classifier to classify

the sensitive attribute with the labeled training dataset.

Although the attack pipeline is usually as shown in Algorithm 1,

the exact attack model 𝑔𝜙 implemented is unknown as well as the

intended private information of the uploaded data. Thus the target

model for preserving privacy is desired to preserve diverse private

information. This inspires the intuition that the target model should

only retain the task-relevant information, rather than obfuscating

the specific private information against the exact attack. Further,

the target model is given here.

Target Model: For any user data 𝑥𝑢 and any attack model 𝑔𝜙 , the

feature extractor (𝐹𝐸𝜃 ) removes private information from the user

data 𝑥𝑢 , and outputs the privacy-preserving representation 𝑧. The

attack model 𝑔𝜙 can not get the private information by processing

the representation 𝑧, while the task module𝑇𝜙 can offer the service.

3.2 Proposed Framework to Capture
Task-Relevant Information

As mentioned above, we try to remove task-irrelevant information

in the representation. Then, a framework is proposed as shown in

Fig. 2. The framework proceeds to:

(1) quantify the information and divide it into units;
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(a) Channel removal (b) Removing 60% channels

Figure 3: Task performance vs. privacy performance of the
ResNet18s trained on CelebA dataset after removing some
channels. (a): Comparing random channel removal with
channel filtering based on the AvgRI (Ours) when setting dif-
ferent channel removal rates. (b): Comparing random chan-
nel removal (R1-R5) with channel filtering based on the Av-
gRI when some channels are removed.

(2) measure the task-relevance of each unit of information;

(3) remove the units of information with task-relevance below a

preset threshold.

As shown in Fig. 2, the uploaded information is represented by

N-dim features in the N-dim representation space. We measure

the task-relevance of each dimension in some way, and transform

the N-dim representation space into the (N-K)-dim representation

space by removing the K dimensions which have task-relevance

below a preset threshold. Therefore, when an input data is projected

into the (N-K)-dim representation space as the uploaded data, the

uploaded data contains almost no private information. This enables

privacy preservation in the inference phase.

To propose an effective framework, we first explore how to quan-

tify the input data information. A straightforward solution is to

divide the information into units based on the channel partitioning,

as neural networks use a multi-channel architecture to capture

different features in parallel. To assess this solution, we train dif-

ferent models for classification, and randomly remove some of the

channels of the layer that are closest to the classifier. Also, another

classifier is trained to classify the privacy as an evaluation of the

privacy-preserving performance. As shown in Fig. 3(a), some of

the results suggest that the retained information contains more

task-relevant features and fewer task-irrelevant features. Therefore,

we next find a metric that can measure the task-relevance of each

feature channel, and filter the channels by comparing the metric

rather than removing them randomly.

3.3 Gradient-Based Task-Relevance Metrics
Many white-box attack methods [7, 13, 18] in the adversarial at-

tack field drastically perturb model results by changing the pixels

which have large gradient w.r.t the loss, since the magnitude of the

gradient can indicate the influence of the pixel on the model result.

However, the influence is typically noisy due to the noisy gradients

[4, 10, 33], and some weakly supervised object localization methods

[32, 34] mitigate this issue. Hence, inspired by such white-box at-

tacks and weakly supervised object localization, we first introduce

a quantitative metric, Relative Influence (RI), to assess the influence
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Figure 4: Visualizations of normalized RIs of pixels on loss.
Both our proposed privacy-preserving framework (Fig. 1 (b))
and ResNet18 are trained on CelebA [17].

Figure 5: An illustration of the proposed Privacy Filter Unit
in the block of the 𝑙𝑡ℎ layer.𝑊 (𝑙 )

𝑐 is a learnable parameter.

of the input on the output. We get the RI by calculating the absolute

gradient of the input w.r.t the output. Given an input 𝑥 and a scalar

function𝑀 , the corresponding RI can be calculated by

𝑅𝐼𝑀 (𝑥) =
���� 𝜕𝑀 (𝑥)

𝜕𝑥

���� . (1)

Fig. 4 shows several examples where input 𝑥 is a pixel and the scalar

function𝑀 is ResNet18 [8] with cross-entropy loss.

To reduce the noise disturbance in Eq. (1) due to noisy gradients

[4, 10, 33], Average Relative Influence (AvgRI) is introduced. Given

𝑁 inputs {𝑥𝑛}𝑁𝑛=1 sampled from a data distribution 𝑝𝑑𝑎𝑡𝑎 and a

scalar function𝑀 , the AvgRI of the data 𝑥 on the output is:

𝐴𝑣𝑔𝑅𝐼𝑀 (𝑥) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 [
���� 𝜕𝑀 (𝑥)

𝜕𝑥

����] ≈ 1

𝑁

𝑁∑︁
𝑛=1

���� 𝜕𝑀 (𝑥𝑛)
𝜕𝑥𝑛

����. (2)

We approximate the AvgRI of the channel-level features on loss by

calculating the average of the RI of 𝑁 sampled data to measure the

task-relevance of the channel-level features.

3.4 Gradient-Based Task-Relevance Estimation
After measuring the task relevance of channel-level features in dif-

ferent layers, we rank the task relevance and remove channels with

low task relevance so that our framework seems to be achieved.

However, structural changes caused by channel removal block this

solution, since the calculation of AvgRI is based on the specific

function𝑀 as shown in Eq. (2). If channel removal leads to model
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Figure 6: The charts of𝑊 (𝑙 )
𝑐 and 𝐴𝑣𝑔𝑅𝐼𝑀

(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) in different channels 𝑐. We rank the channels by 𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) and show the
corresponding𝑊 (𝑙 )

𝑐 . The results are from ResNet18 with and without the decay component.

retraining and AvgRI recalculation, the increasing time cost is intol-

erable due to the calculation of the AvgRI over all the training data.

To solve this issue, we propose a plugin layer, PriFU, to estimate

the task relevance of features (𝑋
(𝑙 )
𝑐 in Eq. (3)) since we can get the

gradients in back-propagation, and then PriFU filters the features

by comparing the estimated task relevance. PriFU is shown in Fig. 5

and can be written as

𝑌
(𝑙 )
𝑐 = 𝑅𝐼𝑊

(𝑙 )
𝑐 · 𝑋 (𝑙 )

𝑐 , (3)

where 𝑋
(𝑙 )
𝑐 represents the feature in channel 𝑐 of the 𝑙𝑡ℎ block and

𝑌
(𝑙 )
𝑐 is the counterpart after filtering by PriFU. The 𝑅𝐼𝑊

(𝑙 )
𝑐 is used

to filter the features by thresholding the𝑊
(𝑙 )
𝑐 of the channel-level

feature 𝑋
(𝑙 )
𝑐 . Ideally, the𝑊

(𝑙 )
𝑐 is proportional to the AvgRI. We will

remove the feature 𝑋
(𝑙 )
𝑐 if the𝑊

(𝑙 )
𝑐 of the channel-level feature

𝑋
(𝑙 )
𝑐 is below the threshold, which can be written as

𝑅𝐼𝑊
(𝑙 )
𝑐 =

{
𝑊

(𝑙 )
𝑐 𝑊

(𝑙 )
𝑐 > 𝛼 ·𝑀𝑎𝑥 (𝑊 (𝑙 )

𝑐 )
0 𝑊

(𝑙 )
𝑐 ≤ 𝛼 ·𝑀𝑎𝑥 (𝑊 (𝑙 )

𝑐 )
, (4)

where𝛼 is the hyper-parameter to change the utility, and𝑀𝑎𝑥 (𝑊 (𝑙 )
𝑐 )

represents the highest value among the task relevance estimates

𝑊
(𝑙 )
𝑐 of features in all channels, which can help to adaptively deal

with numerical differences in different layers. To better replace the

role of AvgRI, we introduce a decay component as follows:

𝑊
(𝑙 )
𝑐 =𝑊

(𝑙 )
𝑐 (5)

in forward propagation and

∇𝑊 (𝑙 )
𝑐 =

𝜕ℓ

𝜕𝑊
(𝑙 )
𝑐

+ 𝛽 ·𝑊 (𝑙 )
𝑐 (6)

in backward propagation, where 𝛽 is the hyper-parameter to tune

the decay rate, and
𝜕ℓ

𝜕𝑊
(𝑙 )
𝑐

is the gradient of𝑊
(𝑙 )
𝑐 w.r.t. the loss.

The modified gradient ∇𝑊 (𝑙 )
𝑐 is used to calculate the updated𝑊

(𝑙 )
𝑐

instead of the original gradient.

We now clarify theoretically that the decay component helps

𝑊
(𝑙 )
𝑐 to replace the role of 𝐴𝑣𝑔𝑅𝐼𝑀

(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ). Based on Eq. (2), the

AvgRI of 𝑋
(𝑙 )
𝑐 can be written as

𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) = 𝐸 [
����� 𝜕ℓ

𝜕𝑋
(𝑙 )
𝑐

�����] = 𝐸 [
�����𝑅𝐼𝑊 (𝑙 )

𝑐 · 𝜕ℓ

𝜕𝑌
(𝑙 )
𝑐

�����], (7)

where𝑀
(𝑙 )
𝑐 is the rest after the Batch Normalization (BN) layer in

the 𝑙𝑡ℎ block of the model with loss function, and ℓ is the loss. If

𝑅𝐼𝑊
(𝑙 )
𝑐 is greater than 0, 𝐴𝑣𝑔𝑅𝐼𝑀

(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) can be written as

𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) = 𝑅𝐼𝑊
(𝑙 )
𝑐 · 𝐸 [

����� 𝜕ℓ

𝜕𝑌
(𝑙 )
𝑐

�����] 𝑠 .𝑡 . 𝑅𝐼𝑊 (𝑙 )
𝑐 > 0. (8)

Assuming that all the 𝑅𝐼𝑊
(𝑙 )
𝑐 are greater than 0, the ratio of the

AvgRI of two channel-level feature maps output by the BN layer in

the 𝑙𝑡ℎ block on the loss is

𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐1 (𝑋 (𝑙 )

𝑐1
)

𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐2 (𝑋 (𝑙 )

𝑐2
)
=
𝑅𝐼𝑊

(𝑙 )
𝑐1

𝑅𝐼𝑊
(𝑙 )
𝑐2

·
𝐸 [

���� 𝜕ℓ

𝜕𝑌
(𝑙 )
𝑐1

����]
𝐸 [

���� 𝜕ℓ

𝜕𝑌
(𝑙 )
𝑐2

����] , (9)

where 𝑐1 and 𝑐2 represent two different channels. Assuming the

difference between𝑅𝐼𝑊
(𝑙 )
𝑐 of different channels is much larger than

the difference between the 𝐸 [
���� 𝜕ℓ

𝜕𝑌
(𝑙 )
𝑐

����], the following relationship

holds:

𝑅𝐼𝑊
(𝑙 )
𝑐 ∝ 𝐴𝑣𝑔𝑅𝐼𝑀

(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ), (10)

and we can filter out the channel-level features when 𝑅𝐼𝑊
(𝑙 )
𝑐 is

less than the threshold. To satisfy the assumptions of Eq. (10), we

introduce the decay component to increase the difference between

𝑅𝐼𝑊
(𝑙 )
𝑐 of different channels. This improves the task-relevance

estimation, which is supported by Fig. 6. Also, Fig. 6 demonstrates

that 𝐴𝑣𝑔𝑅𝐼𝑀
(𝑙 )
𝑐 (𝑋 (𝑙 )

𝑐 ) and𝑊 (𝑙 )
𝑐 are overall positively correlated.

Given an example based on Stochastic Gradient Descent (SGD),

the updated𝑊
(𝑙 )
𝑐 after one iteration is 0 if𝑊

(𝑙 )
𝑐 ≤ 𝛼 ·𝑀𝑎𝑥 (𝑊 (𝑙 )

𝑐 )
(Eq. (4)), or otherwise

𝑊
(𝑙 )
𝑐 − 𝑙𝑟 · ∇𝑊 (𝑙 )

𝑐 = (1 − 𝑙𝑟 · 𝛽)𝑊 (𝑙 )
𝑐 − 𝑙𝑟 · 𝜕ℓ

𝜕𝑊
(𝑙 )
𝑐

, (11)
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Table 1: Details of the datasets. Privacy 1 is the target privacy
attribute; Privacy 2 is one of the unprotected attributes if the
methods only preserve the specific privacy.

Dataset CelebA LFW Cifar10

Type facial facial nature

Size 218×178 250×250 32×32
Training 62,770 9,635 50,000

Testing 7,227 3,510 10,000

Task smiling smiling living

Privacy 1 (Pri. 1) gender pale skin 10-class

Privacy 2 (Pri. 2) young young –

A
v
g
R
I

(a) Cifar10 (Acc: 82.59%) (b) CelebA (Acc: 91.53%)

Figure 7: AvgRI of different channels of the 6-channel inputs
on the loss. R, G and B represent the three channels of RGB
images. Constant, Uniform and Gaussian represent the intro-
duced noise channels of the same size as the input. Constant:
all pixel values are 1. Uniform: The pixel values are sampled
from a uniform distribution of 0 to 1. Gaussian: The pixel
values are sampled from a Gaussian distribution with mean
0.5 and variance 1.

where 𝑙𝑟 is the learning rate and ∇𝑊 (𝑙 )
𝑐 is calculated by Eq. (6). As

shown in Eq. (11), the decay component with a suitable hyperpa-

rameter 𝛽 can avoid large initial values of𝑊
(𝑙 )
𝑐 leading to small

differences among the values of𝑊
(𝑙 )
𝑐 of different channels in the

𝑙𝑡ℎ block. The decay component does not lead to any value of𝑊 (𝑙 )

less than 0 while ensuring that 𝑙𝑟 · 𝛽 < 1.

4 Experiments
In this section, we show the effectiveness of AvgRI, and introduce

experiments on the hyperparameters 𝛼 and 𝛽 . We also demonstrate

the model-agnostic nature of PriFU by inserting it into neural net-

works of different depths and structures. An ablation study is also

introduced. Finally, we compare our method with others.

4.1 Experimental Setup
Datasets. We use three public datasets to evaluate privacy preser-

vation performance in the inference phase. Table 1 shows these

datasets in detail. The datasets have been widely used in previous

work [15, 16, 24, 25, 30, 37, 43]. CelebA [17] is a dataset of celebrity

images labeled with 40 binary facial attributes, while LFW [12]

consists of face images labeled with 40 binary facial attributes. For

the selection of facial attributes in the experiments, we follow the

widely used setups shown in Table 1. Although human-related

(a) Hyperparameter 𝛼 (b) Hyperparameter 𝛽

Figure 8: The results of our framework with different hyper-
parameters 𝛼 and 𝛽 trained on CelebA Dataset.

privacy issues are of concern, the privacy preservation of natural

images should not be ignored. Therefore, we conducted experiments

on Cifar10 [11], a single-label dataset which consists of 10-class na-

ture images. Following the evaluation presented in [25], we divided

the classes into two supersets, living (‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’,

‘horse’) and non-living (‘airplane’, ‘automobile’, ‘ship’, ‘truck’) ob-

jects, as the label for the task. The classification of the 10 basic

classes is then used as the privacy-preserving task. This dataset is

introduced to show the ability to deal with supersets and subsets.

Evaluation Setup. We intend to evaluate the information con-

tained in the representations. A classifier is used to capture input

data attribute information by classifying the attributes, while a

decoder is used to reconstruct the entire images. Accuracy is intro-

duced to measure the amount of the specific attribute information

in the representation, while Peak Signal to Noise Ratio (PSNR) and

Structural Similarity (SSIM) are introduced to measure the amount

of input data information remaining in the representation.

Implementation Details. In our framework, we insert the PriFUs

following the normalization layers of each block and the default

model is ResNet18. The data augmentation pipeline consists of ran-

dom horizontal flipping and normalization. By default, we trained

our model with a learning rate of 0.1 and optimized by SGD. The

learning-based weights𝑊
(𝑙 )
𝑐 are initiated with 0.1. The hyperpa-

rameter 𝛽 is 0.001, while the hyperparameter 𝛼 is tuned for trading

off privacy preservation and tasks.

4.2 Evaluation Experiments
Experiments on Effectiveness of AvgRI.We introduce this ex-

periment to support that AvgRI can reflect the influence of multi-

dimensional inputs on the output. ResNet18 is trained with 6-

channel inputs (RGB and three noise channels) and the calculated

AvgRIs of the different input channels on the loss are shown in Fig.

7. The AvgRIs of the RGB channels are much higher than those of

the noise channels, which align well with the noise effects. The

models work normally. The accuracy of the 10-class task on Cifar10

is 82.59% (84.39% before adding noise), while the accuracy of the

2-class task (smiling/no-smiling) on CelebA is 91.53% (92.22% before

adding noise).

The Role of Hyperparameters. We alternately fix one hyperpa-

rameter and show the effect of another in Fig. 8. Hyperparameter
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Table 2: The ablation study of PriFU against reconstruction
attack by a generative model on CelebA. Baseline represents
the trained ResNet18.

Decay Filter Setup Task↑ PSNR↓ SSIM↓
Baseline 92.22 15.61 0.6168

Setup 1 92.18 15.44 0.6082

Setup 2 88.53 12.17 0.5205

Ours 89.62 11.33 0.5078

Table 3: Performance of our framework against reconstruc-
tion by a generative model on CelebA.

Backbone
Task↑ PSNR↓ SSIM↓

Baseline Ours Baseline Ours Baseline Ours

ResNet18 92.22 89.62 15.61 11.33 0.6168 0.5078

ResNet152 91.93 88.79 15.49 11.44 0.6152 0.5090

VGG16 92.18 87.45 18.03 11.38 0.6889 0.5100

DenseNet121 92.06 88.67 16.88 11.32 0.6467 0.5080

𝛼 can be used to alter the privacy-utility tradeoff, while hyperpa-

rameter 𝛽 is used to change the fixed point in the solution space.

Ablation Study. Ablation of the proposed PriFU is shown in Ta-

ble 2 and Fig. 9(a). The filter component is the key of PriFU and the

decay component further improves PriFU, which empirically veri-

fies the theory of Section 3. Concretely, classification results for the

young attribute (Pri. 2) and the image reconstruction results show

a significant improvement with the help of the decay component.

(a) Ablation study of PriFU (b) Generality of PriFU

Figure 9: Privacy-preserving performance of our proposed
PriFU against attribute inference attack with different back-
bones on CelebA. Bubble size indicates task performance.
Privacy (1/2) are described in Table 1.

Generality of PriFU. We show the privacy-preserving perfor-

mance of our framework with different backbones in Table 3 and

Fig. 9(b); PriFU works well when employing backbone networks [8,

9, 29] of different depths and structures. Our framework with a deep

backbone network (e.g., ResNet152), demonstrates that PriFU does

not cause vanishing gradients, due to the role of the normalization

layer in stabilizing the gradient [27]. Baseline is the model trained

only for the task.

4.3 Comparative Experiments
Among the previous privacy-preserving tasks [15, 16, 24, 25, 30,

37, 43], the attribute inference attack and reconstruction attack are

(a) CelebA (b) LFW

Figure 10: Privacy-preserving performance of methods
against attribute inference attack on CelebA and LFW. Bub-
ble size indicates task performance.

Table 4: Privacy-preserving performance of different meth-
ods against reconstruction attack on CelebA and LFW. Base-
line represents the ResNet18 trained only for the task.

Method
CelebA LFW

Task↑ PSNR↓ SSIM↓ Task↑ PSNR↓ SSIM↓
Baseline 92.22 15.61 0.6168 90.05 14.32 0.5973

CI 89.41 15.02 0.5923 84.65 14.56 0.6077

MaxEnt-ARL 89.92 15.48 0.6025 86.49 14.23 0.5807

RAN 89.73 13.37 0.5535 84.11 12.05 0.5342

PAN 89.51 12.88 0.5393 85.58 12.32 0.5253

DISCO 90.91 11.59 0.4675 88.63 12.12 0.5319

CFB 91.35 12.08 0.5260 91.05 12.88 0.5482

NoPeek-Infer 88.36 14.70 0.5531 86.89 14.06 0.5950

Ours 89.62 11.33 0.5078 89.85 12.40 0.5354

Table 5: Privacy-preserving performance of methods on Ci-
far10. Baseline is the ResNet18 trained only for the task.

Method Task↑ Attr. infer. Reconstruction

Privacy 1↓ PSNR↓ SSIM↓
Baseline 94.13 51.39 14.81 0.3816

CI 92.05 27.40 14.11 0.3099

MaxEnt-ARL 88.87 24.18 14.02 0.3043

RAN 88.41 34.36 12.97 0.2552

PAN 91.45 25.18 12.89 0.2690

DISCO 91.35 24.87 12.27 0.2315

CFB 88.61 31.12 12.25 0.2313

NoPeek-Infer 86.60 33.53 13.84 0.3281

Ours 90.21 21.83 12.41 0.2385

commonly used to evaluate the effectiveness of privacy-preserving

methods. We also introduce them to demonstrate the superiority of

our framework on the unknown privacy-preserving tasks, simply

by training for the task. Also, our privacy-preserving framework

yields comparable results on the privacy-preserving tasks targeted

by the methods for active defense.

Privacy Preservation for Unknown Privacy. Fig. 10 shows that
these existing privacy-preserving methods for active defense are

difficult to generalize to unknown adversaries. For our proposed

privacy-preserving framework, although all the adversaries are

unknown, our framework shows comparable results against the
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Figure 11: Examples of reconstructed images on three datasets. GT means ground truth.

adversaries targeted by the active defense methods and otherwise

achieves SOTA results. This is our main advantage.

Comparing with Targeted Privacy Preservation. Attribute in-
ference attack and reconstruction attack are two benchmark tasks

for privacy preservation in the inference phase. We extend the ex-

periments to three datasets to show the adaptability of our privacy-

preserving framework to diverse data. CI [43] andMaxEnt-ARL [25]

are specific privacy-preserving methods for attribute inference at-

tack and are effective. However, Fig. 10 and Tables 4 and 5 illus-

trate neither of them is good against reconstruction attack. Also

RAN [16] is effective only against reconstruction attack. The ad-

versarial learning-based methods may only handle the targeted

adversaries well.

5 Discussion of Limitations
The proposed Privacy Filter Units are introduced in different lay-

ers, filtering the features in different feature space and helping

disentangling features. However, the feature entanglement can not

be overcome completely. Therefore, we extend the evaluation to

highly correlated attributes; the results are shown in Table 6. The

results for the first case suggest that there is no feature entangle-

ment between the action and color features of a same region, such

as the features of smiling and wearing lipstick. This is probably

because color is determined by multi-channels of input, and the

information is divided into units through channel partitioning in

this work. As for smiling and high-cheekbone which are coupled

in one channel, the adversarial learning-based privacy-preserving

methods do yield slightly better results for the specific attribute,

but their enhanced privacy presentation comes with sacrificing

downstream task performance (Table 6, last two rows). This implies

that these methods are also troubled by coupled features.

Table 6: Classification of methods with different privacy-
utility tradeoffs for highly correlated attributes on CelebA.

Attribute ResNet18 CI MaxEnt-ARL Ours

Task (Smiling↑) 91.65 88.74 90.21 89.62

Pri. (Wearing-lipstick↓) 81.62 59.47 67.59 62.18

Task (Smiling↑) 91.65 89.47 90.56 89.62

Pri. (High-cheekbone↓) 84.93 80.75 81.45 83.15

Task (Smiling↑) 91.65 75.87 73.88 85.86

Pri. (High-cheekbone↓) 84.93 65.56 71.41 81.90

6 Conclusions
This paper shows a paradigm to capture task-relevant information:

(1) quantifying the information as units; (2) measuring the task rel-

evance of the information units; and (3) removing the information

units with low task-relevance. Consequently, a framework is pre-

sented to capture task-relevant information with only task-specific

training, which can be used to preserve the privacy of the uploaded

data. To achieve this framework, we introduce a gradient-based

task-relevance estimation to improve the effectiveness. Our pro-

posed method converges easily due to the absence of adversarial

learning. The removal of task-irrelevant information from user-

uploaded data allows our method to generalize beyond a specific

privacy attack in the inference phase.



PriFU: Capturing Task-Relevant Information Without Adversarial Learning MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This work was supported in part by the National Natural Science

Foundation of China under Grant 62172067 and Grant 62376046,

the Natural Science Foundation of Chongqing for Distinguished

Young Scholars under Grant CSTB2022NSCQ-JQX0001, in part

by the Natural Science Foundation of Chongqing under Grant

CSTB2023NSCQ-MSX0341, the Science and Technology Research

Program of Chongqing Municipal Education Commission (Grant

No. KJQN202200635), and in part by the Chongqing Graduate Stu-

dent Research Innovation Project CYS23429.

References
[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.
[2] Martin Bertran, Natalia Martinez, Afroditi Papadaki, Qiang Qiu, Miguel Ro-

drigues, Galen Reeves, and Guillermo Sapiro. 2019. Adversarially learned repre-

sentations for information obfuscation and inference. In International Conference
on Machine Learning. PMLR, 614–623.

[3] Margherita Bonetto, Pavel Korshunov, Giovanni Ramponi, and Touradj Ebrahimi.

2015. Privacy in mini-drone based video surveillance. In 2015 11th IEEE interna-
tional conference and workshops on automatic face and gesture recognition (FG),
Vol. 4. IEEE, 1–6.

[4] Aaron Defazio. 2020. Momentum via primal averaging: theoretical insights

and learning rate schedules for non-convex optimization. arXiv preprint
arXiv:2010.00406 (2020).

[5] Maoguo Gong, Jialu Liu, Hao Li, Yu Xie, and Zedong Tang. 2020. Disentangled

representation learning for multiple attributes preserving face deidentification.

IEEE transactions on neural networks and learning systems (2020).
[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM 63, 11 (2020), 139–144.

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[10] Samy Jelassi and Yuanzhi Li. 2022. Towards understanding how momentum

improves generalization in deep learning. In International Conference on Machine
Learning. PMLR, 9965–10040.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. Technical Report. University of Toronto. https://www.cs.

toronto.edu/~kriz/cifar.html

[12] Neeraj Kumar, Alexander C Berg, Peter N Belhumeur, and Shree K Nayar. 2009.

Attribute and simile classifiers for face verification. In 2009 IEEE 12th international
conference on computer vision. IEEE, 365–372.

[13] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples

in the physical world. In Artificial intelligence safety and security. Chapman and

Hall/CRC, 99–112.

[14] Tsung-Hsien Lin, Ying-Shuo Lee, Fu-Chieh Chang, J. Morris Chang, and Pei-Yuan

Wu. 2023. Protecting Sensitive Attributes by Adversarial Training Through

Class-Overlapping Techniques. IEEE Trans. Information Forensics and Security 18

(2023), 1283–1294. https://doi.org/10.1109/TIFS.2023.3236180

[15] Sicong Liu, Junzhao Du, Anshumali Shrivastava, and Lin Zhong. 2019. Privacy

adversarial network: representation learning for mobile data privacy. Proc. ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 4 (2019), 1–18.

[16] Sicong Liu, Anshumali Shrivastava, Junzhao Du, and Lin Zhong. 2019. Better

accuracy with quantified privacy: representations learned via reconstructive

adversarial network. arXiv preprint arXiv:1901.08730 (2019).
[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning

face attributes in the wild. In Proceedings of the IEEE international conference on
computer vision. 3730–3738.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial

Attacks. In International Conference on Learning Representations.
[19] Maxim Maximov, Ismail Elezi, and Laura Leal-Taixé. 2020. Ciagan: Conditional

identity anonymization generative adversarial networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 5447–5456.

[20] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani,

Ali Jalali, Dean Tullsen, and Hadi Esmaeilzadeh. 2020. Shredder: Learning noise

distributions to protect inference privacy. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[21] Vahid Mirjalili, Sebastian Raschka, and Arun Ross. 2020. PrivacyNet: semi-

adversarial networks for multi-attribute face privacy. IEEE Transactions on Image
Processing 29 (2020), 9400–9412.

[22] Aythami Morales, Julian Fierrez, Ruben Vera-Rodriguez, and Ruben Tolosana.

2020. Sensitivenets: Learning agnostic representations with application to face

images. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 6
(2020), 2158–2164.

[23] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis

Katevas, Hamid R Rabiee, Nicholas D Lane, and Hamed Haddadi. 2020. A hybrid

deep learning architecture for privacy-preserving mobile analytics. IEEE Internet
of Things Journal 7, 5 (2020), 4505–4518.

[24] Borja Rodríguez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. 2021. A Varia-

tional Approach to Privacy and Fairness. In 2021 IEEE Information Theory Work-
shop (ITW). 1–6. https://doi.org/10.1109/ITW48936.2021.9611429

[25] Proteek Chandan Roy and Vishnu Naresh Boddeti. 2019. Mitigating informa-

tion leakage in image representations: A maximum entropy approach. In Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2586–2594.

[26] Mohammad Samragh, Hossein Hosseini, Aleksei Triastcyn, Kambiz Azarian,

Joseph Soriaga, and Farinaz Koushanfar. 2021. Unsupervised information obfus-

cation for split inference of neural networks. arXiv preprint arXiv:2104.11413
(2021).

[27] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018.

How does batch normalization help optimization? Advances in neural information
processing systems 31 (2018).

[28] Omair Sarwar, Andrea Cavallaro, and Bernhard Rinner. 2018. Temporally smooth

privacy-protected airborne videos. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 6728–6733.

[29] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[30] Abhishek Singh, Ayush Chopra, Ethan Garza, Emily Zhang, Praneeth

Vepakomma, Vivek Sharma, and Ramesh Raskar. 2021. DISCO: Dynamic and

Invariant Sensitive Channel Obfuscation for Deep Neural Networks. In Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 12125–12135.

[31] Congzheng Song and Vitaly Shmatikov. 2020. Overlearning Reveals Sensitive

Attributes. In 8th International Conference on Learning Representations, ICLR 2020.
[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[33] Siyuan Sun and Hongyang Gao. 2024. Meta-AdaM: An Meta-Learned Adap-

tive Optimizer with Momentum for Few-Shot Learning. Advances in Neural
Information Processing Systems 36 (2024).

[34] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution

for deep networks. In Inl. Conf. on machine learning. PMLR, 3319–3328.

[35] Philipp Terhörst, Kevin Riehl, Naser Damer, Peter Rot, Blaz Bortolato, Florian

Kirchbuchner, Vitomir Struc, and Arjan Kuijper. 2020. PE-MIU: A training-free

privacy-enhancing face recognition approach based on minimum information

units. IEEE Access 8 (2020), 93635–93647.
[36] Bo-Wei Tseng and Pei-Yuan Wu. 2020. Compressive privacy generative adversar-

ial network. IEEE Trans. Information Forensics and Security 15 (2020), 2499–2513.

[37] Praneeth Vepakomma, Abhishek Singh, Emily Zhang, Otkrist Gupta, and Ramesh

Raskar. 2021. NoPeek-Infer: Preventing face reconstruction attacks in distributed

inference after on-premise training. In 2021 16th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2021). 1–8. https://doi.org/10.1109/

FG52635.2021.9667085

[38] Hui-Po Wang, Tribhuvanesh Orekondy, and Mario Fritz. 2021. Infoscrub: To-

wards attribute privacy by targeted obfuscation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3281–3289.

[39] YingguiWang, Jian Liu, Man Luo, Le Yang, and LiWang. 2022. Privacy-Preserving

Face Recognition in the Frequency Domain. Proceedings of the AAAI Conference
on Artificial Intelligence 36, 3 (Jun. 2022), 2558–2566. https://doi.org/10.1609/aaai.

v36i3.20157

[40] Zhibo Wang, He Wang, Shuaifan Jin, Wenwen Zhang, Jiahui Hu, Yan Wang, Peng

Sun, Wei Yuan, Kaixin Liu, and Kui Ren. 2023. Privacy-Preserving Adversarial

Facial Features. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 8212–8221.

[41] Zhenyu Wu, Haotao Wang, Zhaowen Wang, Hailin Jin, and Zhangyang Wang.

2020. Privacy-preserving deep action recognition: An adversarial learning frame-

work and a new dataset. IEEE Trans. Pattern Analysis and Machine Intell. (2020).
[42] Taihong Xiao, Yi-Hsuan Tsai, Kihyuk Sohn, Manmohan Chandraker, and Ming-

Hsuan Yang. 2020. Adversarial learning of privacy-preserving and task-oriented

representations. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 12434–12441.

[43] Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, and Graham Neubig. 2017.

Controllable invariance through adversarial feature learning. Advances in neural
information processing systems 30 (2017).

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/TIFS.2023.3236180
https://doi.org/10.1109/ITW48936.2021.9611429
https://doi.org/10.1109/FG52635.2021.9667085
https://doi.org/10.1109/FG52635.2021.9667085
https://doi.org/10.1609/aaai.v36i3.20157
https://doi.org/10.1609/aaai.v36i3.20157

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Threat Model and Target Model
	3.2 Proposed Framework to Capture Task-Relevant Information
	3.3 Gradient-Based Task-Relevance Metrics
	3.4 Gradient-Based Task-Relevance Estimation

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation Experiments
	4.3 Comparative Experiments

	5 Discussion of Limitations
	6 Conclusions
	Acknowledgments
	References

