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ABSTRACT

The application of convolution in graphs is at the core of Graph Neural Network
(GNN) algorithms that led to the emergence of Graph Representation Learning
(GRL). Various algorithms have been proposed over the last few years to solve
the classical GRL task of node classification in a transductive setting. It is widely
assumed that standard GNNs perform better on graphs with high homophily, i.e.,
nodes belonging to the same class are highly connected to each other. This as-
sumption has led to the designing of specialised algorithms in the last few years for
datasets that do not contain the property of homophily, i.e., heterophilic datasets.
In this work, we both challenge and leverage this assumption. We argue that it is
not necessary to follow the common trend of designing new algorithms but instead
focus on understanding and enriching the data. We present a new technique from
the perspective of data engineering that enables better performance on heterophilic
datasets by both heterophilic GNN algorithms and non-heterophilic GNN algo-
rithms. Our proposed technique, Spectral Highways, enables better connectivity
and information flow between nodes in a heterophilic graph. We also draw an
analogy between the performance of Spectral Highways and a recently proposed
network property, i.e., Adjusted homophily. We conduct experiments on 11 base-
lines and 8 heterophilic datasets and achieve significant improvements in results.

1 INTRODUCTION

Graphs can manifest the most rich form of data and are pervasively used in many real-world ap-
plications such as social networks (Tang et al., 2009; Chen et al., 2010; Qiu et al., 2018), citation
networks (Gollapalli & Caragea, 2014), e-commerce (Baumann et al., 2018; Wang et al., 2019) and
recommendation systems (Wu et al., 2022; Gao et al., 2023). The domain of Graph Representation
Learning (GRL) has gained much traction in the last few years to model the rich information that
graphs manifest and has established itself as a de-facto standard approach to solve several tasks such
as graph classification, link prediction and node classification. A myriad of Graph Neural Network
(GNN) algorithms have been proposed that mostly fall under the general notion of message passing,
i.e., aggregation and updation (Kipf & Welling, 2017; Hamilton et al., 2017; Gilmer et al., 2017;
Veličković et al., 2018; Xu et al., 2019; Abu-El-Haija et al., 2019; Pei et al., 2020; Yang et al.,
2022). Message passing enables representation learning via iterative updation of a node’s represen-
tation by aggregating the features of its neighbours. The selection of neighbours and the aggregation
operation has led to the designing of a wide variety of algorithms over the last couple of years.

In general, real-world networks fall into either of the two categories, i.e. homophilic or heterophilic,
decided by a network property called homophily. Homophily is the tendency to connect similar
nodes via edge linkage, where class labels of the connected nodes generally govern the notion of
similarity. For example, in citation networks, researchers often tend to cite research articles from
the same domain (Ciotti et al., 2016). In contrast, low homophily, i.e., heterophily, is observed in
heterophilic datasets, where edge formations do not favour similar class labels or actually favour
dissimilar class labels. e.g. In social media platforms, people tend to form connections irrespective
of gender, whereas, in dating networks, most people prefer to form connections with the opposite
gender (Zhu et al., 2021).

A large number of GNN algorithms tend to perform better on homophilic graphs (Xu et al., 2018;
Gasteiger et al., 2019; Wu et al., 2019; Deng et al., 2020; Bojchevski et al., 2020; Huang et al.,
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2021; Brody et al., 2022) and are assumed to be not suitable for graphs with heterophily (Zhu et al.,
2021; Wang et al., 2022; He et al., 2022). This assumption has led to the designing of specialised
algorithms for heterophilic datasets. In the recent years, various algorithms have been proposed
specifically for heterophilic datasets (Jin et al., 2021; Chen et al., 2020; Chien et al., 2021; Zhu et al.,
2020; Lim et al., 2021; Bodnar et al., 2022; Li et al., 2022; Zheng et al., 2022). As highlighted by
Platonov et al. (2023), these recently proposed heterophilic GNNs are evaluated on six heterophilic
datasets used by Pei et al. (2020) wherein two datasets have a major drawback of train-test data
leakage due to the presence of duplicate nodes. Recently Lim et al. (2021) released several new
large-scale and diverse heterophilic datasets.

To this end, we propose Spectral Highways, a novel technique that enriches a given heterophilic
graph dataset with additional nodes and connections forming highways over the original graph.
These highways enable better information exchange between different spectral regions of the het-
erophilic graph, boosting the performance of both heterophilic and non-heterophilic GNNs for node
classification. We relate the performance of Spectral Highways with Adjusted homophily across
the heterophilic datasets. We also discuss the applicability of Spectral Highways for homophilic
datasets in Section 5.

2 RELATED WORK

2.1 GRAPH DATASETS

Homophilic datasets Preliminary research works in GRL mainly evaluated their algorithms on
datasets that possess high homophily. The most widely used datasets for benchmarking are three
citation networks, namely Citeseer, Cora and Pubmed (Giles et al., 1998; Sen et al., 2008; McCal-
lum et al., 2000; Namata et al., 2012; Yang et al., 2016), and two co-purchasing networks, namely
amazon-photo and amazon-computers (Shchur et al., 2018). Other homophilic datasets used for
node classification are citation co-author networks: coauthor-cs and co-author-physics from (Shchur
et al., 2018). To evaluate GNNs on large-scale datasets, Hu et al. (2020) created Open Graph Bench-
mark and introduced highly homophilic datasets for node classification: ogbn-products, ogbn-arxiv,
ogbn-proteins, ogbn-mag and ogbn-papers100M.

Heterophilic datasets Pei et al. (2020) introduced six graph datasets possessing high heterophily
that prompted the designing of specific methods for heterophilic graphs. These six graphs, namely
Squirrel, Chameleon, Actor, Texas, Wisconsin, and Cornell, have become the standard benchmarks
for evaluating heterophilic GNNs. Platonov et al. (2023) corrected the node duplication in Squirrel
and Chameleon datasets and introduced Squirrel filtered and Chamaleon filtered datasets along with
five new medium-size datasets: roman-empire, amazon-ratings, minesweeper, tolokers, and ques-
tions. Lim et al. (2021) released seven new large-scale heterophilic datasets, namely Penn94, pokec,
arXiv-year, snap-patents, genius, twitch-gamers, and wiki.

2.2 GRL ALGORITHMS

Non-heterophilic GNNs GNNs have shown their effectiveness on a wide variety of graph learning
tasks on real-world datasets. The majority of GNN algorithms are based on the convolution prin-
ciple which is defined as neighbourhood aggregation and updation. GCN (Kipf & Welling, 2017)
aggregates the features of a node’s neighbours by learning a weight matrix and uses them to update
the node’s feature vector. GraphSAGE (Hamilton et al., 2017) samples nodes from the 1-hop and
2-hop neighbourhood for aggregation. GAT (Veličković et al., 2018) uses an attention mechanism
to give varied importance to various neighbours. Xu et al. (2018) introduced Jumping Knowledge
networks to capture varied neighbourhood ranges for different nodes where subgraphs have diverse
local structures. Wu et al. (2019) proposed a Simple Graph Convolution by successively dropping
non-linearities and collapsing weight matrices between consecutive network layers, resulting in a
linear classifier following a low pass filter. Gasteiger et al. (2019) explored the relationship between
personalised PageRank and GCN to fast approximate the propagation of neural predictions. Brody
et al. (2022) designed GATv2 to introduce dynamic attention by reversing the order of attention and
non-linearity operations in GAT.
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Heterophilic GNNs Pei et al. (2020) directed focus towards heterophilic datasets by introducing
Geom-GCN that does bi-level aggregation over the structural neighbourhood obtained by mapping
the original graph into a latent continuous space. Zhu et al. (2020) discussed the limitations of
GNNs for learning under heterophily and proposed H2GCN. Zhu et al. (2021) proposed CPGNN
to learn a class compatibility matrix to model graph homophily. Chien et al. (2021) proposed the
use of Generalised PageRank (GPR) for GNN where GPR weights automatically learn to adjust
weights in accordance with node label pattern. Lim et al. (2021) proposed LINKX, a simple tech-
nique of embedding adjacency matrix and node features separately through MLPs and combining
them by concatenation. Fu et al. (2022) introduced p-Laplacian based GNN as an approximation
of a polynomial graph filter over the spectral domain of p-Laplacians. Wang et al. (2022) sug-
gested an adaptive propagation mechanism and aggregation process as per the homophily between
node pairs based on attribute and topological information. Li et al. (2022) suggested two models,
GloGNN and GLoGNN++, that capture node correlations by learning a coefficient matrix to guide
the neighbourhood aggregation further. Maurya et al. (2022) designed FSGNN highlighting the use
of softmax as a regulariser and soft-selector of neighbourhood features. Bodnar et al. (2022) pro-
posed neural sheaf diffusion models to achieve linear discrimination of classes in the infinite time
limit. GBK GNN Du et al. (2022) suggested the use of bi-kernel feature transformation to cap-
ture homophily and heterophily followed by a selection gate over kernels for given node pairs. He
et al. (2022) suggested block-guided classified aggregation to learn separate aggregation rules for
neighbours of varied classes. Cavallo et al. (2023) proposed incorporating a learnable importance
coefficient per layer to balance the contributions of the neighbourhood and the ego node. Zheng
et al. (2023) proposed neural architecture search to build heterophilic GNN models automatically.

3 PROPOSED TECHNIQUE

3.1 MOTIVATION

In this section, we discuss the motivation behind our proposed technique, Spectral Highways. The
three primary factors that have driven the research for specialised GNNs for heterophilic graphs are
(i) the assumption that most GNNs perform better on homophilic graphs, (ii) in heterophilic net-
works, vertices with high structural and semantic similarities are generally farther away from each
other, and (iii) uniform neighbourhood aggregation and updation is oblivious to the information be-
tween similar and dissimilar neighbours. As discussed in Section 2.2, many specialised methods
have attended to the above factors. Spectral Highways leverages and challenges the above assump-
tion by injecting homophily into heterophilic graphs as shown empirically in Section 4 and Section
5. Spectral Highways enables information flow between different regions of the heterophilic graph
and thus brings semantic and structural similar vertices close to each other. Spectral Highways is a
technique designed from the data engineering perspective to enrich the existing graph data and thus
allows available heterophilic and non-heterophilic GNNs to operate upon it.

3.2 SPECTRAL HIGHWAYS

Spectral Highways (as shown in Fig.1) is a network of highways that run over the top of regions
formed by Spectral Clustering over a graph. Spectral Clustering uses connectivity information
between data points to form clusters using eigenvalues and eigenvectors of the data matrix. Let
G = (V,E) be a undirected graph with vertex set V = {v1, v2, . . . , vn} and edge set E. Let
W = (wij)i,j=1,...,n be the weighted adjacency matrix of the graph G where wij represents the
edge weight between nodes vi and vj . If the graph is unweighted, then wij = 1 for an edge present
between nodes vi and vj ; otherwise wij = 0. Let di =

∑n
j=1 wij be the degree of a node vi ∈ V

and we define degree matrix D as a diagonal matrix with degrees d1, . . . , dn on its diagonal. Then,
we can define the unnormalised graph Laplacian matrix as L = D −W .

We perform Spectral Clustering according to the procedure laid down by Shi & Malik (2000). Let
K be the number of clusters we want to construct in G. Then, we compute the first K generalised
eigenvectors u1, . . . , un of the generalised eigenproblem Lu = λDu. We then stack u1, . . . , un

as column vectors to construct U ∈ Rn×K . We do not use the popular k-means algorithm (Lloyd,
1982) as it is an iterative scheme sensitive to initialisation, which can lead to poor clusterings. We
then directly extract clusters from eigenvectors by cluster qr method (Damle et al., 2019).
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Figure 1: Overview of the use of Spectral Highways. For a given heterophilic graph, we use Spectral
Highways to construct an enriched graph. We run available heterophilic or non-heterophilic GNN
algorithm on the enriched graph for a downstream node classification task. In this representative
enriched graph, the values of K, mincon and pcon are 4, 2 and 0.5 respectively.

Let C = {c1, . . . , cK} be the set of clusters obtained by Spectral Clustering where each such cluster
represents a subgraph or a region formed corresponding to the graph topology. We construct high-
ways over the obtained spectral clusters to allow information exchange between different regions of
the graph. We instantiate a new node called Spectral node for ci ∈ C ∀ i ∈ {1, . . . ,K}. We then
connect these Spectral nodes among each other to form a network layer. To construct highways, we
need to connect the network of spectral nodes to the underlying graph.

For each Spectral node si, we connect it to the corresponding spectral cluster cK via a suitable
connectivity principle. Instead of making random connections, we define the connectivity principle
based on node importance. We propose the use of two popular algorithms to rank the node im-
portance: PageRank and DivRank. PageRank determines a node’s importance by considering the
incoming edges it receives from other important nodes in the graph. It outputs a probability distri-
bution over the network to represent the likelihood of a random surfer arriving at a particular node.
We assume a uniform initial probability distribution at time step t=0 such that the PageRank score
of a node vi is R(i; 0) = 1/n. Iteratively, at any time step t, PageRank score is

R(i; t+ 1) =
1− d

n
+ d

∑
j∈M(i)

R(j; t)

L(j)
(1)

where M(i) represents the incoming neighbours of node vi, L(j) is the number of outgoing links
of node vj and d is the damping factor. The value of d is generally taken as 0.85 and corresponds to
the probability that a random surfer continues to follow the outgoing links at node vi.

PageRank relates to the prestige of the nodes in a network, but diversity is another important property
that we can account for ranking important nodes. DivRank ranks nodes in a network by setting up
an interplay between prestige and diversity. DivRank ensures a wide coverage for ranking node
importance, whereas PageRank can lead to rank top nodes in a 1-hop neighbourhood. Similar to
PageRank, DivRank outputs a probability distribution over the network, indicating the node ranking.

We then connect a Spectral node si to a certain number of nodes in the spectral cluster ci based on
a percentage connectivity parameter pcon consistent across all clusters. We choose percentage as
the connectivity measure rather than a fixed integer because spectral clusters are of variable sizes. It
ensures that we have a uniform extent of coverage across clusters. For small datasets, we can observe
a few clusters that are small in size such that they end up having zero connections as per pcon. To
account for this scenario, we introduce a mincon parameter that ensures a minimum number of
connections to be formed. Still, if the cluster size is too small to accommodate the mincon, we do
not connect to that cluster and drop the corresponding spectral node.

We have discussed the ranking algorithms and the connectivity coverage above for our connectivity
principle. These offer us two new hyperparameter choices, namely mode and ctype. We choose
mode as a hyperparameter to decide whether to run ranking on a cluster level or graph level, i.e.,
local or global. ctype decides the type of nodes to choose for making connections. We explore
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four different ways to select from ranked nodes: low, mid, high and lmh. Opting low enables
connections to the nodes at the bottom of the ranked node spectrum. Similarly, mid and high
lead to connection formation to the nodes in the middle and at the top of the ranked node spectrum,
respectively. lmh enforces an equally distributed number of link formations with each of the low,
mid and high ranked nodes. Intuitively, it may appear to make connections only to the highly
important nodes, but empirically, results show no absolute winner for the best choice of ctype.
Similarly, for mode, it may sound better to focus on the local level than the global one, as the
Spectral nodes are already connected in a separate network layer to account for global information
exchange. However, exhaustive experimentation indicates not to favour any particular mode type.

The above steps ensure the structural formation of Spectral Highways where nodes (not all) via a
highway of Spectral nodes interact with other nodes (not all) in the farther regions in the graph
as well as in the same spectral cluster, leading to an enhanced information flow. To initialise the
embeddings of a Spectral node, we would not want to compute the average of the representations
of nodes forming a connection with it, as this will lead to oversmoothing. Hence, we initialise
the embedding of a spectral node with a random sequence of zeroes and ones keeping the same
embedding dimension as those of its neighbouring nodes.

To assign a class label to each Spectral node, we take the majority voting of class labels of nodes
belonging to the cluster and assign it as the class label of the Spectral node. This step leads to in-
jecting homophily into the heterophilic graph. Furthermore, the previous step of initialising Spectral
node embedding ensures that we inject homophily in a controlled fashion. To summarise, Spectral
Highways offer the following hyperparameters to tune:

• Number of spectral clusters, K: {5, 10, 20, 30, 40, 50, 60, 65, 70}
• Choice of ranking algorithm, rtype: {PageRank,DivRank}
• Percentage connectivity, pcon: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
• Minimum number of connections, mincon: {2, 3}
• Mode of ranking, mode: {local,global}
• Connectivity type, ctype: {low,mid,high,lmh}

Mathematically, we describe Spectral Highways (SH) for a given input graph G(V,E) as a data
engineering technique outlined by the following process:

SH(G(V,E)) ⇒ G′(V ′, E′) ↔ G′(V + S,E + E′′ + E′′′) (2)

where S = {s1, . . . , sK} is the set of Spectral nodes, |E′′| =
(
K
2

)
is cardinality of the set of connec-

tions formed amongst the Spectral nodes in the network layer and E′′′ = {Ne(s1), . . . , Ne(sK)}.

Ne(si) represents the edge neighbourhood of si in the underlying graph G and is given by

Ne(si) =f(mincon, pcon,mode, ctype, rtype, Ci, G)

|Ne(si)| =max(mincon, [pcon ∗ |Ci|]+)
(3)

where [x]+ represents greatest integer less than or equal to x. Also, the embedding and the class
label of Spectral node si is as follows:

si = [rand{0, 1}]d ; y(si) = M [y(c1i ), y(c
2
i ), . . . , y(c

p
i )] (4)

where d is the dimension of node features, y is the class label, and M is mathematical mode operator.

4 EXPERIMENTS

Experimental setup We conduct extensive experimentation for node classification on a variety
of heterophilic datasets and both heterophilic and non-heterophilic GNNs. As Spectral Highways
augments the existing heterophilic graph, its merit is determined by the performance of downstream
GNNs. We take a heterophilic graph and use Spectral Highways to generate an enriched graph and
then run an available GNN model on this enriched graph to predict the class of a node. For a fair
comparison, we only keep all the Spectral nodes in the train set and do not use them for validation
or in the test set. Although it is not required, we still use the same hyperparameters of a GNN model
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for Spectral Highways and the original given graph. Better results can be achieved using different
GNN hyperparameters for Spectral Highways as the underlying graph is modified. For each dataset,
we consider 5 different train/val/test splits and run 3 rounds of experiments for each of the splits.
Following (Fu et al., 2022), we take 60/20/20 as the train/val/test split ratio. All the experiments are
run for 100 epochs. We choose the commonly used accuracy as a metric and report its mean and
standard deviation over the 15 runs. We run all experiments on an NVIDIA DGX A100 40GB GPU.

Table 1: Performance comparison of Spectral Highways w.r.t. various models on eight heterophilic
datasets. We report the accuracy values for GNN models and Spectral Highways with rtype:
{PageRank,DivRank}. ChameleonF and SquirrelF represents the filtered versions of Chameleon
and Squirrel datasets. Twitch denotes Twitch-Gamers dataset and Arxiv denotes arXiv-year dataset.
We highlight the global best result across GNNs for each dataset. Furthermore, we highlight sig-
nificant improvements (fourth bin) over baselines for each dataset.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF Twitch Arxiv

MLP 84.34 ± 5.86 77.00 ± 12.98 94.81 ± 5.16 43.51 ± 2.72 54.13 ± 5.05 34.46 ± 10.48 60.67 ± 0.90 39.48 ± 2.26
SH Page 88.48 ± 6.08 80.08 ± 11.03 96.73 ± 1.67 41.63 ± 3.56 56.28 ± 3.12 44.34 ± 9.02 60.10 ± 1.13 40.31 ± 3.15
SH Div 88.48 ± 6.08 80.08 ± 11.03 96.73 ± 1.67 41.63 ± 3.56 56.28 ± 3.12 44.34 ± 9.02 59.83 ± 1.99 40.31 ± 3.15

GCN 53.23 ± 14.81 60.75 ± 20.44 67.72 ± 5.93 33.43 ± 3.60 57.81 ± 3.23 44.37 ± 3.58 58.60 ± 2.10 49.46 ± 1.96
SH Page 59.29 ± 16.30 64.17 ± 8.71 71.48 ± 3.62 34.14 ± 2.37 58.33 ± 3.62 44.65 ± 3.65 60.55 ± 0.33 43.38 ± 1.69
SH Div 55.56 ± 11.56 64.42 ± 3.66 70.80 ± 4.60 34.08 ± 2.50 58.30 ± 2.36 44.66 ± 3.03 60.33 ± 0.54 43.24 ± 2.28

SAGE 86.67 ± 4.10 71.83 ± 7.97 89.01 ± 5.98 40.46 ± 2.26 56.94 ± 3.80 40.25 ± 8.54 60.26 ± 0.63 50.17 ± 0.60
SH Page 81.92 ± 7.50 80.92 ± 7.93 94.32 ± 2.47 39.08 ± 1.75 59.17 ± 3.07 42.20 ± 2.81 60.63 ± 0.37 43.78 ± 1.40
SH Div 81.31 ± 5.97 80.50 ± 11.40 94.14 ± 3.26 39.04 ± 1.80 59.65 ± 2.60 41.86 ± 3.79 60.39 ± 0.60 43.89 ± 1.83

GAT 45.96 ± 14.44 56.92 ± 20.98 64.94 ± 5.77 34.51 ± 1.80 58.51 ± 2.74 42.65 ± 7.26 52.04 ± 6.84 21.81 ± 4.07
SH Page 57.17 ± 11.52 64.50 ± 10.93 71.91 ± 4.37 33.70 ± 2.29 59.83 ± 3.78 43.58 ± 3.81 54.87 ± 4.88 45.79 ± 2.33
SH Div 56.36 ± 12.20 64.50 ± 11.06 72.59 ± 5.27 33.69 ± 2.40 59.72 ± 4.62 44.42 ± 4.58 53.91 ± 4.75 45.44 ± 2.52

JKNet 58.08 ± 15.95 59.08 ± 19.26 70.37 ± 5.17 37.91 ± 2.86 59.03 ± 1.61 47.53 ± 3.13 60.50 ± 0.89 47.50 ± 2.46
SH Page 61.11 ± 10.68 67.75 ± 6.93 73.70 ± 4.03 39.76 ± 1.54 59.03 ± 3.53 48.57 ± 3.46 60.42 ± 0.63 47.31 ± 2.33
SH Div 61.72 ± 9.57 65.33 ± 9.93 74.63 ± 3.93 39.79 ± 1.60 59.34 ± 3.76 48.60 ± 3.89 60.48 ± 0.53 47.26 ± 2.32

SGC 56.06 ± 9.60 66.83 ± 6.76 64.57 ± 6.38 32.83 ± 3.67 59.62 ± 3.45 48.17 ± 2.36 56.93 ± 0.78 49.21 ± 1.36
SH Page 55.96 ± 7.09 66.58 ± 7.70 70.06 ± 5.43 34.53 ± 3.32 58.30 ± 3.85 49.31 ± 1.75 58.79 ± 0.77 44.01 ± 1.81
SH Div 58.28 ± 5.28 70.33 ± 9.17 70.12 ± 4.00 34.71 ± 3.66 58.65 ± 3.40 49.47 ± 2.63 58.68 ± 0.88 43.32 ± 1.53

APPNP 86.06 ± 6.12 81.83 ± 5.09 96.60 ± 1.47 43.56 ± 3.70 59.93 ± 2.64 38.53 ± 4.18 60.66 ± 0.57 37.46 ± 6.24
SH Page 88.99 ± 3.99 85.42 ± 5.25 97.10 ± 1.81 42.22 ± 2.91 62.60 ± 2.31 41.27 ± 8.29 60.51 ± 0.66 44.56 ± 1.30
SH Div 88.99 ± 3.99 85.42 ± 5.25 97.10 ± 1.81 42.22 ± 2.91 62.12 ± 1.79 41.59 ± 9.43 60.51 ± 0.66 44.79 ± 1.10

GPRGNN 82.02 ± 9.93 75.75 ± 12.29 92.96 ± 3.18 41.80 ± 2.09 60.52 ± 2.94 45.91 ± 3.90 59.83 ± 1.15 21.58 ± 6.76
SH Page 84.44 ± 5.33 85.83 ± 4.60 91.85 ± 3.47 39.40 ± 3.56 61.60 ± 2.38 49.03 ± 5.29 59.45 ± 0.81 45.88 ± 1.13
SH Div 84.65 ± 4.79 86.33 ± 4.32 92.10 ± 3.32 39.47 ± 3.63 61.84 ± 2.58 49.63 ± 3.27 59.45 ± 0.81 46.15 ± 0.87

LINKX 67.88 ± 14.22 62.42 ± 14.60 81.17 ± 9.27 33.88 ± 3.55 57.74 ± 2.98 43.14 ± 8.33 62.62 ± 1.62 52.94 ± 2.43
SH Page 77.37 ± 12.43 76.67 ± 9.27 91.54 ± 4.82 36.20 ± 4.76 59.41 ± 4.95 48.43 ± 6.27 65.40 ± 1.54 45.68 ± 2.47
SH Div 77.98 ± 8.57 77.00 ± 11.65 91.11 ± 5.54 36.17 ± 3.76 59.10 ± 4.20 46.60 ± 6.16 65.14 ± 2.13 44.71 ± 4.43

GATv2 39.49 ± 22.88 48.67 ± 28.00 65.06 ± 8.24 33.27 ± 1.87 57.60 ± 2.98 42.56 ± 6.15 50.60 ± 7.12 24.86 ± 7.94
SH Page 53.03 ± 14.59 66.58 ± 13.53 69.69 ± 4.41 32.13 ± 2.39 60.21 ± 2.60 44.58 ± 3.50 57.61 ± 2.32 46.09 ± 2.36
SH Div 56.06 ± 15.25 64.50 ± 18.30 70.12 ± 5.94 32.28 ± 3.05 60.03 ± 3.13 45.38 ± 2.31 57.05 ± 3.28 46.06 ± 2.29

pGNN 73.03 ± 10.41 68.83 ± 8.58 80.06 ± 6.87 33.79 ± 2.18 58.19 ± 3.84 48.90 ± 3.58 60.86 ± 1.08 41.11 ± 0.75
SH Page 79.19 ± 5.29 74.67 ± 9.26 86.91 ± 4.71 34.93 ± 2.09 58.96 ± 2.19 47.84 ± 5.79 60.89 ± 1.14 42.25 ± 1.40
SH Div 78.48 ± 4.83 76.67 ± 9.30 87.16 ± 2.34 34.94 ± 1.81 58.61 ± 3.44 47.76 ± 4.45 60.71 ± 1.29 42.32 ± 1.54

Baseline GNNs We employ various neural architectures as baseline models and compare their
respective performances with the use of Spectral Highways. We choose MLP (Goodfellow et al.,
2016) as our first baseline as it is a simple neural architecture that considers only node features
and does not consider the graph topology. We use GCN (Kipf & Welling, 2017) that fuelled the
research in GRL by introducing convolution in graphs. We take GraphSAGE (Hamilton et al.,
2017), which is another classic GNN architecture. We then choose GAT (Veličković et al., 2018),
which uses an attention mechanism for neighbourhood aggregation. We also use JKNet (Xu et al.,
2018) that flexibly leverage different neighbourhood ranges for better structure-aware learning. We
choose one simple method SGC (Wu et al., 2019) that learns a linear classifier following a low pass
filter by successively dropping non-linearities and collapsing weight matrices between consecutive
layers. We take APPNP (Gasteiger et al., 2019) as our next baseline as it explores the relationship
between personalised PageRank and GCN to fast approximate the propagation of neural predic-
tions. We then choose GPRGNN (Chien et al., 2021) that uses generalised PageRank for GNN. We
use LINKX (Lim et al., 2021) that learns to embed adjacency matrix and node features separately
through MLPs. We use GATv2 (Brody et al., 2022), which introduces dynamic attention by revers-
ing the order of attention and non-linearity operations in GAT. At last, we take pGNN (Fu et al.,
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2022) that introduces p-Laplacian based GNN as an approximation of a polynomial graph filter over
the spectral domain of p-Laplacians. So, we choose a wide variety of GNNs for exhaustive base-
line comparisons: Only node features (MLP), Simple method (SGC), Homophilic GNNs (GCN,
GraphSAGE, GAT, APPNP, JKNet, GATv2) and Heterophilic GNNs (GPRGNN, LINKX, pGNN).

Benchmark datasets For benchmarking and evaluating the performance of our proposed tech-
nique, we choose eight datasets with varied statistics, as shown in Table 5. We choose Cornell,
Texas, Wisconsin, and Chameleon filtered heterophilic datasets for their small size, Squirrel fil-
tered and Actor datasets for their medium size, and Twitch-Gamers and arXiv-Year datasets for
their large size. We could not take other datasets like pokec, genius, wiki, etc., as their experiments
ran out of memory. Cornell, Texas and Wisconsin are datasets of WebKB 1 page data gathered
from computer science departments of various universities. Squirrel and Chameleon datasets are
introduced for node prediction by Pei et al. (2020) and have been extensively used for evaluating
heterophilic GNNs. Recently, Platonov et al. (2023) identified the issue of node duplication in these
datasets and released their corrected versions, namely Squirrel filtered and Chamaleon filtered. Lim
et al. (2021) introduced Twitch-Gamers and arXiv-Year datasets with the task of predicting the pres-
ence of mature content in user accounts of online social networks, and year of publication or patent
grant in citation network, respectively.

Results Table 1 shows the performance of several models with and without the incorporation of
Spectral Highways on various heterophilic datasets. We present the results of Spectral Highways
(SH) for both variants of the ranking algorithm, PageRank and DivRank. We have 11 baseline
GNNs and 8 heterophilic datasets, resulting in 88 benchmark combinations. We segregate the results
into four bins to evaluate the performance of our technique. The first bin corresponds to the results
where SH Page/SH Div perform poor than the baseline model. In the second bin, we consider results
where we lag behind the baseline results by 1 unit. The third bin corresponds to the results where
we perform better than baseline but not more than 1 unit. At last, we consider the cases where we
outperform the baselines significantly. From the results table, we can see that the bin distribution is
10, 8, 10, 60 respectively. We can see that Spectral Highways significantly outperform the baselines
on 60 benchmark combinations giving an average of 14% increase in accuracy. We can observe
that both variants of Spectral Highways give similar results. Also, we achieve the best performance
across all models on six out of eight datasets.

5 ANALYSIS AND DISCUSSION

As discussed in Section 4, Spectral Highways gives superior performance on several heterophilic
datasets and downstream GNN models. We design Spectral Highways to bring close structurally
and semantically similar nodes that are generally present in faraway regions in a heterophilic graph.
To evaluate the assumption that most GNNs perform better on graphs with high homophily, we
explored several homophily measures that are available in the literature. Let G = (V,E) is a graph
with n nodes, and each node u ∈ V has a class label yu ∈ {0, 1, . . . , C − 1}, where C is the total
number of classes and Ck represents the set of nodes in class k. Node homophily (Pei et al., 2020),
which computes the ratio of neighbours that have the same class for an ego node and then computes
the mean of these ratios across all nodes, is defined as

Hnode =
1

|V |
∑
v∈V

|{u ∈ N(v) : yv = yu}|
|N(v)|

(5)

where N(v) denotes the neighbourhood of node v Edge homophily (Zhu et al., 2020) is another
standard measure for homophily, which is the fraction of edges connecting two nodes with the same
class:

Hedge =
|{(v, u) ∈ E : yv = yu}|

|E|
(6)

Lim et al. (2021) showed that these two simple and intuitive homophily measures are sensitive to
the number of classes and their balance, and proposed an Improved homophily measure defined as

Himp =
1

C − 1

C−1∑
k=0

[hk − |Ck|
n

]+ (7)

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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where [a]+ = max(a, 0), and hk is the class-wise homophily metric defined as

hk =

∑
u∈Ck

|{u ∈ N(v) : yv = yu|∑
u∈Ck

|N(v)|
(8)

Platonov et al. (2022) showed that Improved homophily can also lead to unreliable results and thus
proposed a new measure, Adjusted homophily, by correcting the number of intra-class edges by
their expected value and is thus insensitive to the number of classes and their balance. Adjusted
homophily is based on Edge homophily and is computed as

Hadj =
Hedge −

∑C
k=1 D

2
k/(2|E|)2

1−
∑C

k=1 D
2
k/(2|E|)2

(9)

where Dk =
∑

v:yv=k d(v) and d(v) represents the degree of a node v.

Table 2: Analysis of homophily scores for different homophily measures across eight heterophilic
datasets. It shows the injection of homophily into heterophilic datasets using Spectral Highways.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF Twitch-Gamers arXiv-Year

Adjusted Homophily

Original graph -0.2029 -0.226 -0.1323 0.0061 0.0347 0.0115 0.0899 0.0051
Spectral Highways -0.0771 -0.045 -0.0041 0.0075 0.0441 0.0175 0.0903 0.0179

Node Homophily

Original graph 0.1182 0.0872 0.1706 0.2219 0.2481 0.1961 0.5563 0.2893
Spectral Highways 0.2211 0.2301 0.2831 0.2282 0.2587 0.2152 0.5588 0.2852

Edge Homophily

Original graph 0.1321 0.1118 0.2061 0.2194 0.2403 0.2095 0.5452 0.2181
Spectral Highways 0.2633 0.3029 0.3434 0.2275 0.2459 0.2146 0.5453 0.2253

Improved Homophily

Original graph 0.0499 0 0.0495 0.0074 0.0465 0.0409 0.0899 0.0671
Spectral Highways 0.0429 0.0161 0.0525 0.0154 0.0461 0.0406 0.0902 0.0644

Table 3: Analysis of homophily scores for different homophily measures across five homophilic
datasets. It shows the decrease in homophily for homophilic datasets using Spectral Highways.

Cora Citeseer Photo Computers Pubmed

Adjusted Homophily

Original graph 0.7712 0.6706 0.7851 0.6823 0.6861
Spectral Highways 0.6116 0.4701 0.7573 0.6622 0.5516

Node Homophily

Original graph 0.8251 0.7062 0.8365 0.7853 0.7924
Spectral Highways 0.7582 0.6261 0.8062 0.7723 0.7213

Edge Homophily

Original graph 0.8099 0.7355 0.8272 0.7772 0.8023
Spectral Highways 0.6854 0.5776 0.8062 0.7651 0.7209

Improved Homophily

Original graph 0.7657 0.6267 0.7722 0.7001 0.6641
Spectral Highways 0.6271 0.4471 0.7508 0.6837 0.5379

We compute all the above-discussed homophily scores on the given heterophilic datasets before and
after using Spectral Highways. From Table 2, we can observe that Spectral Highways consistently
increases the Adjusted homophily scores across all the datasets. We observe similar trends for Node
homophily and Edge homophily measures. As shown in Platonov et al. (2022), Improved homophily
leads to unreliable results with no clear pattern in the scores. Analysing the results from Table 1 and
the homophily scores, we can observe that Spectral Highways achieve better results in datasets
where it leads to high increase in homophily scores.

To further verify our hypothesis empirically, we conduct another set of experiments on five com-
monly used homophilic datasets, namely Cora, Citeseer, Photo, Computers, and Pubmed. We show
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the statistics of these five datasets in Table 6. We performed a similar experimental setup for ho-
mophilic datasets as used for heterophilic datasets. The node prediction results are shown in Table
4 and the homophily scores are reported in Table 3. We observe that using Spectral Highways for
homophilic graphs leads to a decrease in the homophily level as measured by all four available
homophily measures. The effect of homophily reduction clearly reflects the drop in performance
across almost every homophilic dataset and the chosen GNN. We see a slight improvement in MLP
performance as it does not consider the graph topology. These observations are further in sync with
the trend observed for the Twitch-Gamers dataset, where it observes the least increase in homophily
score as it already possesses comparatively high initial homophily.

The exhaustive experimentation provides ample empirical evidence that homophily is a desired net-
work property, enabling most GNNs to perform better. We show empirically that Spectral High-
ways injects homophily in the heterophilic datasets, leading to better prediction performance for the
downstream GNNs. Thus, we both challenge and leverage the common assumption that most GNNs
perform better on high homophily datasets by injecting homophily into heterophilic datasets.

Table 4: Performance comparison of Spectral Highways w.r.t. various models on five homophilic
datasets. We report accuracy for GNN models and Spectral Highways. Performance drop is ob-
served for all GNNs as expected due to decrease in homophily. We observe few outliers on Pubmed.

Cora Citeseer Photo Computers Pubmed

MLP 76.64 ± 1.37 77.03 ± 1.23 90.44 ± 2.69 86.47 ± 1.58 88.69 ± 0.57
SH Page 77.14 ± 1.49 77.11 ± 1.16 91.44 ± 1.34 86.82 ± 1.35 88.68 ± 0.42
SH Div 77.14 ± 1.49 77.11 ± 1.16 91.44 ± 1.34 86.82 ± 1.36 88.68 ± 0.42

GCN 88.50 ± 0.92 81.76 ± 1.27 91.57 ± 6.00 86.76 ± 3.20 89.56 ± 1.04
SH Page 85.17 ± 0.92 80.41 ± 1.40 79.59 ± 16.90 83.47 ± 4.72 88.57 ± 0.33
SH Div 85.08 ± 1.04 80.37 ± 1.67 79.80 ± 15.75 83.16 ± 3.81 88.56 ± 0.40

GraphSAGE 88.93 ± 1.22 81.44 ± 1.49 92.41 ± 1.91 87.10 ± 1.60 90.83 ± 0.47
SH Page 85.04 ± 1.63 78.05 ± 1.51 91.80 ± 2.04 86.52 ± 1.28 90.33 ± 0.47
SH Div 84.91 ± 1.69 78.05 ± 1.53 91.79 ± 2.09 86.52 ± 1.22 90.35 ± 0.44

GAT 89.42 ± 0.73 82.12 ± 1.46 93.85 ± 0.59 89.29 ± 0.85 90.31 ± 0.30
SH Page 85.77 ± 0.73 80.98 ± 1.28 92.51 ± 0.53 87.58 ± 0.67 88.78 ± 0.26
SH Div 85.88 ± 1.08 80.94 ± 1.37 92.57 ± 0.54 87.66 ± 0.81 88.79 ± 0.36

JKNet 88.94 ± 1.10 81.92 ± 1.49 93.57 ± 0.84 89.34 ± 1.05 91.30 ± 0.33
SH Page 85.44 ± 0.97 80.75 ± 1.27 91.62 ± 1.46 88.19 ± 0.90 89.46 ± 0.41
SH Div 85.58 ± 1.00 80.85 ± 1.24 91.49 ± 1.66 88.19 ± 0.94 89.47 ± 0.38

SGC 89.29 ± 1.29 81.52 ± 1.39 93.61 ± 0.75 88.95 ± 0.50 86.98 ± 0.55
SH Page 85.69 ± 2.23 79.87 ± 1.06 92.53 ± 0.65 87.39 ± 0.34 87.85 ± 0.27
SH Div 85.95 ± 1.62 79.91 ± 1.33 92.50 ± 0.65 87.42 ± 0.48 87.86 ± 0.25

APPNP 88.83 ± 0.65 81.73 ± 1.73 94.48 ± 0.85 88.73 ± 0.77 89.25 ± 0.48
SH Page 84.86 ± 1.49 80.38 ± 1.26 94.14 ± 0.93 88.93 ± 0.98 89.51 ± 0.41
SH Div 84.96 ± 1.49 80.32 ± 1.39 94.09 ± 0.77 88.99 ± 0.94 89.52 ± 0.42

GPRGNN 89.76 ± 1.00 82.48 ± 1.73 93.26 ± 1.34 88.94 ± 1.18 91.56 ± 0.36
SH Page 86.61 ± 1.53 80.71 ± 1.31 92.06 ± 1.00 87.55 ± 1.07 89.82 ± 0.34
SH Div 86.58 ± 1.67 80.71 ± 1.22 92.00 ± 0.95 87.67 ± 1.03 89.80 ± 0.35

LINKX 81.22 ± 2.78 74.18 ± 1.27 94.65 ± 1.07 89.50 ± 1.03 88.09 ± 0.96
SH Page 76.22 ± 2.52 71.75 ± 1.85 93.83 ± 1.59 88.05 ± 1.00 87.81 ± 0.74
SH Div 75.85 ± 4.28 71.60 ± 2.41 93.65 ± 1.32 87.99 ± 0.96 87.83 ± 0.57

GATv2 88.95 ± 1.05 82.06 ± 0.94 93.90 ± 0.80 90.19 ± 0.59 90.34 ± 0.33
SH Page 85.96 ± 1.23 80.91 ± 1.33 92.56 ± 0.55 88.38 ± 0.81 88.87 ± 0.38
SH Div 85.94 ± 1.28 80.79 ± 1.54 92.64 ± 0.50 88.41 ± 0.87 88.84 ± 0.30

pGNN 89.94 ± 1.43 81.28 ± 1.10 94.09 ± 0.91 89.30 ± 0.71 91.75 ± 0.29
SH Page 83.46 ± 1.42 78.48 ± 1.13 90.93 ± 1.32 85.09 ± 1.95 90.14 ± 0.82
SH Div 83.49 ± 1.12 78.48 ± 1.13 90.79 ± 1.25 84.92 ± 1.79 90.08 ± 0.78

6 CONCLUSION

In this paper, we introduce a perspective of data enrichment that enables better performance of het-
erophilic and non-heterophilic GNN algorithms on heterophilic graphs by injecting homophily. We
propose Spectral Highways that enables better information flow between structurally and semanti-
cally similar nodes that may be present in faraway regions in the graph. We prove the effectiveness
of our technique through several experiments and analyses. Our work highlights the importance of
data enrichment rather than the need to design specialised models. In the future, we intend to utilise
other network properties to learn richer representation for graphs.
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A APPENDIX

Table 5: Statistics of chosen heterophilic datasets.
Type Dataset # Nodes # Edges # Features # Classes

WebKB Webpage
Cornell 183 295 1703 5

Texas 183 309 1703 5
Wisconsin 251 499 1703 5

Actor Co-occurrence Actor 7,600 33,544 931 5

Wikipedia Webpage Chameleon filtered 890 8,904 2,325 5
Squirrel filtered 2223 47,138 2,089 5

Online Social Network Twitch-Gamers 168,114 6,797,557 7 2

Citation Network arXiv-Year 169,343 1,166,243 128 5

Table 6: Statistics of chosen homophilic datasets.
Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,278 1,433 7
Citeseer 3,327 4,552 3,703 6
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
Pubmed 19,717 44,324 500 3
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We use the official code repositories of the authors for implementing GPRGNN 2, pGNN 3 and
LINKX 4. For the rest of the baseline GNNs, we use the respective implementations in PyTorch
Geometric provided by pGNN. We utilise scikit-learn (Pedregosa et al., 2011) implementation of
Spectral Clustering.

2https://github.com/jianhao2016/GPRGNN
3https://github.com/guoji-fu/pGNNs
4https://github.com/CUAI/Non-Homophily-Large-Scale

14


	Introduction
	Related Work
	Graph Datasets
	GRL Algorithms

	Proposed Technique
	Motivation
	Spectral Highways

	Experiments
	Analysis and Discussion
	Conclusion
	Appendix

