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Abstract
Continuous fingerspelling recognition from videos is

paramount for real-time sign language (SL) interpretation, en-
hancing accessibility. Despite deep learning progress, chal-
lenges persist, especially in signer-independent (SI) scenarios,
due to signing variability. To address these, we propose a novel
bimodal approach that integrates appearance and skeletal infor-
mation, focusing solely on the signing hand. Our system relies
on two basic modules: (a) a 3D-CNN model capturing spatial
features, while adapting to motion variations and (b) a modu-
lated spatio-temporal graph convolutional network (ST-GCN)
based on 3D joint-rotation parameterization for skeletal feature
modeling. Both modalities are combined with a BiGRU en-
coder and CTC decoding. To further enhance representation
capacity, we introduce an alignment mechanism relying on two
auxiliary losses. Through ensemble fusion and language model
integration, our method achieves superior performance across
three SI fingerspelling datasets.
Index Terms: fingerspelling recognition, 3D-CNN, ST-GCN,
language model, alignment module

1. Introduction
Continuous fingerspelling recognition constitutes an essential
component of SL processing, being indispensable to the effec-
tive communication within the deaf and hard of hearing commu-
nity. Continuous fingerspelling involves the sequential articula-
tion of alphabet letter signs mainly through intricate hand ges-
tures, conveying lexical units that do not have dedicated signs,
like names, technical terms, or foreign words. Despite the re-
cent deep learning advancements in the fields of computer vi-
sion and human language technologies, as well as the acquisi-
tion of large continuous fingerspelling datasets [1–4], the prob-
lem of continuous fingerspelling recognition remains challeng-
ing. This primarily arises from the intricacy and resemblance of
handshapes, the fast-paced hand motion, the natural inter-signer
articulation variability, and the absence of letter level segmen-
tation, all hindering performance of fingerspelling recognition
systems. This paper focuses on addressing these issues, devel-
oping a robust system capable of accurately recognizing finger-
spelling sequences from RGB video.

Fingerspelling recognition has gained considerable atten-
tion in recent years, with various approaches being proposed
to solve this complex task. Early efforts focused primarily on
handcrafted feature extraction techniques, followed by machine
learning algorithms such as SVMs and HMMs, as proposed
in [5]. In contrast, [6] proposed using HOG and Zernike mo-
ment features in conjunction with a deep belief network clas-
sifier. In addition, in [7] a scheme based on a hand-tracking
device and an SVM classifier is presented. Further, the system

in [8] uses LBP histogram features derived from both color and
depth data in combination with an SVM classifier. With the ad-
vent of deep learning, convolutional neural networks (CNNs)
have emerged as a powerful tool for feature learning, enhanc-
ing fingerspelling recognition performance. Most recent works
commence with hand region segmentation [9–11], employing
2D-CNNs for hand appearance feature extraction, while others
employ 2D-CNNs and spatial attention techniques to capture
signing information from fingerspelling sequences [2, 12, 13].
Moreover, advances in computer vision techniques, such as
pose estimation, have enhanced the accuracy and robustness of
fingerspelling recognition systems. In addition, some studies
have explored multimodal approaches that integrate skeletal and
visual information to improve recognition performance, such as
our previous works in [9, 10].

Here, we propose a system based on the signing hand solely,
relying on two main modalities: (i) a 3D-CNN model to cap-
ture the spatio-temporal dynamics of hand articulation and (ii)
an ST-GCN to learn the spatial and motion correlation of the
hand skeletal joints (see also Fig. 1). Both models are trained
separately and their outputs are combined during inference via
an ensemble module, which is also coupled with a language
model to further improve system performance. In particu-
lar, we present a deep learning-based fingerspelling recognition
scheme that commences with the detection of the signing hand
and its region segmentation, using the hand skeleton joints de-
rived from the MediaPipe pose estimation framework [14]. Our
first contribution is the use of 3D-CNN as a spatio-temporal
visual feature learning module in fingerspelling SL recogni-
tion. Specifically, our system integrates an appearance modal-
ity that is based on the ResNet2+1D network [15], which de-
couples the spatial and temporal convolutions of the 3D-CNNs,
being suitable for learning both intra- and inter-frame hand mo-
tion features. To achieve the full potential of the fingerspelling
recognition system, we exploit advances in vision-based estima-
tion of human body keypoints and explore their integration into
skeleton-based GCNs, which constitutes the second contribu-
tion of this paper. Specifically, the modulated ST-GCN module,
introduced in our previous work in [16], is applied. Note that
graph construction relies on 3D joint-rotation parameterization
of the hand skeleton inferred via the PIXIE hand pose regres-
sion model [17], which captures the dynamic aspects of hand in
both spatial and temporal domains.

For sequence learning, most schemes in the literature rely
on RNNs, typically BiLSTMs [18], followed by CTC align-
ment [1,2,11], while others use attentional encoder-decoders [9,
10,19]. Here, a 3D-CNN model and a ST-GCN module serve as
the spatio-temporal feature learner of each video frame, while
a BiGRU encoder [20] learns their temporal relations (see also
Fig. 1). Like most sequence-to-sequence prediction problems,
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Figure 1: Architecture of the introduced fingerspelling recognition system that generates letters from a series of signing hand images
through a bimodal framework that relies on 3D-CNN based appearance and ST-GCN based skeletal features. A BiGRU-based sequence
learning model coupled with CTC decoding is employed. Two auxiliary loss functions are also incorporated during training and a
language model (LM) is integrated during inference.

there is no one-to-one alignment between the input and out-
put sequences, as a portion of frames can be associated with
a fingerspelled letter. To this end, we integrate an alignment
module, combining the CTC loss with a knowledge distillation
loss [21, 22] and a visual module loss function, which aligns
the probability distributions generated by the sequence learning
model and the visual module, enhancing the representation ca-
pacity of our model. This comprises the third innovation of this
paper.

To summarize, the main contributions of this approach lie in
the design of a novel bimodal continuous fingerspelling recog-
nition system that integrates 3D-CNN based appearance and
modulated ST-GCN based skeletal feature modeling. In addi-
tion, we integrate a visual alignment loss function and a knowl-
edge distillation loss during training, enhancing the represen-
tation capacity of both the visual and sequential modules. To
date, none of the above have been investigated in conjunction
with continuous fingerspelling recognition in the literature.

We evaluate our introduced approach on the ChicagoFS-
Wild and the ChicagoFSWild+ datasets, as well as a Greek fin-
gerspelling corpus, and we provide in-depth ablations that high-
light our innovations. Comparing our method to state-of-the-
art fingerspelling recognition systems, our system outperforms
the state-of-the-art on both American SL sets by a significant
amount (7.01% and 7.37% absolute reduction in error rate in
the first and second corpus, respectively). We also report the
first-ever results on the Greek fingerspelling corpus.

2. Methodology
Continuous fingerspelling recognition involves the task of pre-
dicting a sequence of letters l = (l1, l2, ..., lN ) from a sequence
of T image frames x = (x1,x2, ...,xT ). To address this, we
propose the framework illustrated in Fig. 1. As it may be ob-
served, our fingerspelling recognition system comprises: (i) a
preprocessing phase, which focuses on signing hand detection
and segmentation; (ii) an appearance modality relying on a 3D-
CNN based visual module followed by a BiGRU encoder; and
(iii) a skeletal based modality relying on an ST-GCN module a
BiGRU encoder. An alignment module, relying on two auxil-

iary loss functions, is also integrated. Further details follow.

2.1. Preprocessing

Since the hand typically serves as the primary articulation in fin-
gerspelling signing, our model relies on input from the signing
hand region only. Thus, an essential stage of our system lies in
effective detection and tracking of the manual articulation. For
that purpose, we adopt the MediaPipe human pose detector [14],
exploiting the 21 hand keypoints to delineate and segment the
hand region. Afterwards, the x and y landmarks of the hands,
whose values fall within the range of [0.0, 1.0], are normalized
to the image plane, using the image width and height.

Given that the non-signing hand typically exhibits limited
motion, we leverage the hand trajectory to distinguish it from
the signing hand. In particular, we examine the stability of the
wrist joints across successive frames, designating the hand as
non-signing if its wrist joint remains “stable” for more than 10
consecutive frames, with the Euclidean distance between joint
coordinates of hand position transitions (adjacent frames) be-
ing less than 8. Subsequently, we determine the maximum and
minimum values of the corresponding x and y landmarks of the
signing hand to facilitate hand region cropping. Note that in
case of MediaPipe failure, any missing keypoints are filled with
the previously detected ones.

2.2. Appearance Features

To capture visual feature representations from the previously
generated hand image sequences, we utilize a 3D-CNN archi-
tecture. As depicted in Fig. 1, we adopt the ResNet2+1D net-
work [15] that decomposes the 3D-CNNs into spatial convolu-
tions for frame-wise feature regression and temporal convolu-
tions to capture short-term dynamics of hand posture and mo-
tion across adjacent frames. Our model consists of five (2+1)D
convolutional blocks, integrating both spatial and temporal con-
volutions, followed by a global average pooling layer that oper-
ates across both spatial and temporal dimensions.

In particular, to process the sequence of hand images with a
length of T , we first rescale them to the appropriate input layer
size of the network, i.e., 112×112 pixels. Subsequently, we



separate the initial sequence into T ′ subsequences via a sliding
window of 8 consecutive frames with a stride of s = 4, ensuring
proper pre-padding at the video’s end, where T ′ = ⌈T/s⌉. No-
tably, there is a 4-frame overlap (half-clip overlap) between sub-
sequences. Each hand image subsequence is then fed into the
ResNet2+1D network, yielding spatio-temporal features. The
model is pre-trained on the Kinetics dataset [23]. To further
improve model performance, we pretrain our model on the Chi-
nese SL dataset [24]. Feature maps are derived from the last
pooling layer, resulting in 512-dimensional features.

2.3. Skeletal Features

To improve the efficacy of our system, we integrate spatio-
temporal representations derived from signing hand skeletal
data. For this purpose, we employ an ST-GCN architecture [16],
comprising a modulated GCN that is followed by a temporal
convolution, enriched with an attention mechanism. As de-
picted in Fig. 1, the model commences with graph construction
based on the PIXIE 3D joint-rotation parameterization of the
signing hand pose. Specifically, the PIXIE model [17], utilizing
a moderator to estimate the 3D hand and shape parameteriza-
tion, yields 15 joints with 6 degrees of freedom for the signing
hand. The resulting graph G = (V, E) is propagated into the
GCN unit, where V denotes the set of nodes corresponding to
J hand skeletal joints, and E represents intra-skeleton structure
edges. Thus, each node i is associated with a D-dimensional
feature vector qi ∈ RD corresponding to the 3D joint-rotation
parameterization inferred from the PIXIE model.

As already mentioned, we deploy a modulated graph convo-
lution layer [25], which relies on weight modulation and affinity
modulation. In the case of weight modulation, a unique learn-
able weight modulation matrix L ∈ RD′×J is incorporated into
the graph convolution function for each node i, with the forward
propagation rule of the GCN layer being formulated as follows:

Qout = σ((L⊙ (WQin))Â),

where ⊙ denotes element-wise multiplication, Qin ∈ RD×J

represents the input feature vector, Qout ∈ RD′×J denotes
the updated feature vector, σ() indicates the activation function,
W ∈ RD′×D represents the learnable weight matrix, and Â is
the symmetrically normalized affinity matrix. Note that the ad-
jacency matrix A ∈ {0, 1}J×J represents the edges, where a
value of 1 indicates a direct link between a pair of joints, while
0 indicates no direct connection. Through the affinity modula-
tion technique, a learnable mask B ∈ RJ×J is added to matrix
A, resulting in A′ = A+B.

The GCN unit is coupled with self-attention modules, in-
cluding spatial, temporal, and channel attention. Moreover, a
temporal convolution, which operates on the temporal neighbor-
hood of nodes, is incorporated to learn the relational patterns be-
tween successive frames. To mitigate overfitting, a DropGraph
module [26] is applied. Our system incorporates ten such ST-
GCN units, coupled with a global average pooling layer for both
spatial and temporal domains.

2.4. Sequence Learning

To capture long-term dependencies, both appearance and skele-
tal features are individually propagated into a 4-layer Bi-
GRU [20] model, where each layer has a hidden state dimen-
sionality of 512. Subsequently, a dense fully-connected layer
coupled with a softmax activation function are applied to gen-
erate the predicted probability scores for each letter label. The

CTC loss function LSM
CTC is then employed, aligning the prob-

ability distribution of the sequence learning model with the se-
quence letter labels. In addition, for each modality two auxil-
iary losses are incorporated. In particular, the appearance fea-
tures extracted from the ResNet2+1D network, as well as the
skeletal features inferred from the ST-GCN model are individ-
ually fed into a fully-connected layer paired with softmax, gen-
erating posteriors. Moreover, a CTC loss function (LV M

CTC ) is
employed for aligning visual features with the target letter se-
quence. Subsequently, the posteriors of the sequence learn-
ing model DSM are aligned with those derived from the vi-
sual models DV M through the KL-divergence loss function,
formulated as: LV = KL(softmax(DV M ), softmax(DSM )).
The KL-divergence loss function facilitates alignment between
short-term visual predictions and long-term context predictions.
Notably, during training, the three loss functions are linearly
combined as: LT = LSM

CTC + LV M
CTC + 0.5LV .

2.5. Ensemble Module

The two modalities are trained separately, while during infer-
ence they are fused using an ensemble module. Specifically, the
posteriors returned from the final fully-connected layers of each
modality are fused appropriately. For fusion, distinct weights
are assigned to each modality based on their individual perfor-
mance during validation, and, subsequently, they are summed
up to generate the final probability scores. In addition, we in-
corporate a language model, which provides a probability es-
timate for each potential succeeding letter given the preceding
ones. Note that for language model training, we employ a one-
layer LSTM network with 512 hidden units. In particular, the
posteriors of each modality and the language model probability
are weighted and summed as: pfused = 1.0papp + 0.9pskel +
0.6pLM .

3. Experimental Framework
The performance of the introduced model is evaluated on three
publicly available datasets: (a) the Chicago fingerspelling in the
wild dataset (ChicagoFSWild) [1] and (b) the Chicago finger-
spelling in the wild dataset+ (ChicagoFSWild+) [2] in Ameri-
can SL, as well as (c) a Greek SL (FGSL) corpus [4]. Specifi-
cally, for the first two datasets, we employ their official SI splits
with no signer overlap between the different sets. Particularly,
in the instance of the ChicagoFSWild dataset 5,455 videos are
employed for training (87 subjects), 981 for validation (37 sign-
ers), and 868 videos for test (36 informants). On the other hand,
the ChicagoFSWild+ dataset contains 50,402 training videos
(216 signers), 3,115 validation videos (22 signers), and 1,715
test sequences (22 signers). In addition, for our experiments on
the FGSL corpus, we deploy the official SI split, where a 7-fold
cross-validation is used, with each fold containing training data
(80% of the fold) and validation data (20% of the fold) from 18
signers, whereas testing is performed on the remaining 3 sign-
ers. The process repeats over all 7 folds to cover all signers.

Regarding system training, both modalities are trained for
50 epochs with a mini-batch size fixed to 2. Training is con-
ducted using the Adam optimizer [27] with an initial learning
rate of 0.0001, decreased by a factor of 0.5 in each iteration.
Training data augmentation is applied through random cropping
and horizontal flipping. Regarding the language model, training
is conducted via the Adam optimizer with initial learning rate
of 0.001, decayed by a factor of 0.1, while the model is trained
employing for each dataset the training and the validation an-



Table 1: Ablation study concerning the auxiliary loss functions, the language model (LM), and the different modalities. The evaluation
is conducted in terms of letter accuracy (LAcc, %) on all three datasets.

Backbone Models LSM
CTC LV M

CTC LV LM ChicagoFSWild ChicagoFSWild+ FGSL

3D-CNN & BiGRU (Appearance)

✓ 47.27 66.58 82.90
✓ ✓ 60.32 71.05 92.05
✓ ✓ ✓ 61.60 71.30 92.30
✓ ✓ ✓ ✓ 62.57 72.05 92.49

ST-GCN & BiGRU (Skeleton)

✓ 48.15 66.28 81.23
✓ ✓ 54.37 69.12 89.70
✓ ✓ ✓ 56.88 69.54 89.98
✓ ✓ ✓ ✓ 58.02 70.01 90.13

Appearance & Skeleton

✓ 51.13 70.50 86.77
✓ ✓ 63.24 72.23 91.94
✓ ✓ ✓ 64.08 72.64 92.89
✓ ✓ ✓ ✓ 64.85 73.57 93.14

notations. The system is implemented in PyTorch [28], and the
experiments are carried out on an Nvidia RTX 3090 GPU.

4. Experimental Results
Here, we present the experimental results pertaining to the eval-
uation of the proposed methodology, conducted quantitatively
on the datasets outlined in Section 3 in terms of letter accuracy
(LAcc, %). Initially, we conduct a comparative analysis be-
tween the proposed and its various adaptations, highlighting the
advantages of integrating both appearance and skeletal streams,
as well as the enhancements achieved through the incorpora-
tion of the auxiliary losses and the language model. Compar-
ing the fourth row entries of Table 1 (appearance stream alone)
to the corresponding entries of the eighth row (skeletal stream
only) shows that the 3D-CNN based appearance module pro-
vides superior performance over the skeletal ST-GCN. Never-
theless, both modules perform well, and their fusion improves
performance further (last row), i.e. 2.28% absolute reduction
on ChicagoFSWild, 1.52% absolute reduction on ChicagoFS-
Wild+, and 0.65% on FGSL (over appearance only). In ad-
dition, the integration of both auxiliary losses into our model
benefits system performance. It is also worth noting that in-
corporating the language model leads to further gains in LAcc.
To emphasize this, in Fig. 2 we illustrate the sequence predic-
tion results obtained by the introduced fingerspelling recogni-
tion model, as well as several variations of it, when applied to
a sample video of the FGSL corpus. Note that our model turns
out superior to the considered alternative relying exclusively on
a 2D-CNN (ResNet-18) image feature learner as evaluated on
the ChicagoFSWild corpus, yielding LAcc of 55.78%. Further,
we assess the performance of the modulated ST-GCN using
the 3D skeletal feature representations derived from the Media-
Pipe regression model for graph construction on the ChicagoFS-
Wild corpus, resulting in lower recognition accuracy (53.46%
vs. 58.02%). Finally, we evaluate model performance on the
same corpus when substituting the BiGRU with a BiLSTM en-

REF: E L A F I
HYP (w LSM

CTC only): A T E F I
HYP (w/o LV M

CTC ): E P A K I
HYP: (w/o LV ): E P E F I
HYP: (w/o LM): E L E F I
HYP: E L A F I

Figure 2: Predictions generated by the proposed, as well as
several variations of it against the reference (ground truth), ap-
plied to frame sequences of the FGSL corpus [4]. Wrong letter
predictions are colored in red and correct predictions in green.

coder, resulting in lower LAcc (62.34% vs. 62.57%).
Next, Table 2 reports the evaluation comparison of the in-

troduced against state-of-the-art models on the ChicagoFSWild
fingerspelling dataset. It can be observed that the proposed out-
performs the state-of-the-art scheme that relies on optical flow
based spatial attention. Further, our approach exhibits signif-
icant gains over the state-of-the-art model on the ChicagoFS-
Wild+ fingerspelling dataset (Table 3), which is based on visual
attention to informative frame regions. Finally, the performance
on the FGSL dataset is significantly better than on the other
datasets, due to the studio-like recording setup of the former
vs. the in-the-wild nature of the latter. Our whole system (51M
parameters) takes on average 85ms per frame during inference.

5. Conclusions
In this work, we presented a novel deep learning approach
addressing continuous fingerspelling recognition. Integrating
a ResNet2+1D model for spatio-temporal appearance feature
learning and a modulated ST-GCN relying on 3D joint-rotation
parameterization features for robust skeletal feature modeling,
our system achieves both prevalent spatial modeling potential
and motion-aware modeling adaptability. Sequence learning re-
lies on a BiGRU encoder, aligned with the target letter sequence
via the CTC loss function. We also integrated two auxiliary loss
functions, enhancing our system representation capacity. Dur-
ing inference, modality fusion and language model integration
leads to superior performance. Our model outperformed the
current state-of-the-art on two American sets, whereas we re-
ported the first-ever results on a Greek corpus.

Table 2: Letter accuracy (LAcc, %) comparison of state-of-the-
art on the ChicagoFSWild dataset.

Model Feature streams LAcc (%) ↑

R-CNN-Att [2] Full Frame 45.10
CNN-Att [10] Hand/Mouth & 2D/3D Skel. 47.93
FG-Transformer [12] Full Frame 48.36
Siam-LSTM [29] Full Frame 48.00
Iterative-LM [30] Full Frame 49.60
Flow-ResNet-BiLSTM [31] Full Frame 57.84
Ours Hand 64.85

Table 3: Letter accuracy (LAcc, %) comparison of state-of-the-
art on the ChicagoFSWild+ dataset.

Model Feature streams LAcc (%) ↑

R-CNN-Att [2] Full Frame 46.70
RNN-Att [13] Full Frame 66.20
Ours Hand 73.57
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