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ABSTRACT

Despite the rich works on machine learning (ML) for combinatorial optimization
(CO), a unified, principled framework remains lacking. This study utilizes the
Travelling Salesman Problem (TSP) as a major case study, with adaptations demon-
strated for other CO problems, dissecting established mainstream learning-based
solvers to outline a comprehensive design space. It advances a unified modular
streamline incorporating existing technologies in both learning and search for trans-
parent ablation, aiming to reassess the role of learning and to discern which parts of
existing techniques are genuinely beneficial and which are not. This further leads
to the investigation of desirable principles of learning designs and the exploration
of concepts guiding method designs. We demonstrate the desirability of princi-
ples such as joint probability estimation, symmetry solution representation, and
online optimization for learning-based designs. Leveraging the findings, we pro-
pose enhancements to existing methods to compensate for their missing attributes,
thereby advancing performance and enriching the technique library. From a higher
viewpoint, we also uncover a performance advantage in non-autoregressive and
supervised paradigms compared to their counterparts. The strategic decoupling and
organic recompositions yield a factory of new TSP solvers, where we investigate
synergies across various method combinations and pinpoint the optimal design
choices to create more powerful ML4TSP solvers, thereby facilitating and offering
a reference for future research and engineering endeavors.

1 INTRODUCTION

Combinatorial Optimization (CO) has been a central challenge with its inherent complexity (e.g., NP-
hardness). Recently, machine learning (ML) has been actively introduced to address CO problems, i.e.,
ML4CO (Bengio et al., 2021; Cappart et al., 2021), which brings practical advantages in both solving
quality and speed especially when the instances are confined within a certain distribution (Bengio
et al., 2021). Among CO problems, the Travelling Salesman Problem (TSP) has been representative
as one of the most intensely studied problems in both ML4CO and Operations Research (OR)
communities with one of the richest libraries of learning and search techniques (Hottung et al., 2021b;
Fu et al., 2021; Min et al., 2023; Qiu et al., 2022; Hudson et al., 2021; Sun & Yang, 2023; Li et al.,
2023; Kool et al., 2018; Kwon et al., 2020; Kim et al., 2022). For solving CO problems, deep neural
networks enjoy high parallel computing ability for speedup through one-shot inference. Meanwhile,
ML could automatically uncover heuristics through data (Kool et al., 2018; Luo et al., 2023) for
improvement against existing handcrafted rules, especially for some new problems or new instance
distributions that call for experts to develop tailored solving schemes.

Recent advancements in learning-based solvers have significantly enhanced their solving performance
and capacity to tackle larger-scale problems. These improvements have been propelled by a variety
of learning paradigms, encompassing supervised predictive modeling (Hottung et al., 2021b; Fu et al.,
2021; Hudson et al., 2021), reinforcement learning (Qiu et al., 2022; Kool et al., 2018; Kwon et al.,
2020; Kim et al., 2022), generative modeling (Sun & Yang, 2023; Li et al., 2023), unsupervised
learning (Min et al., 2023), meta learning (Qiu et al., 2022), etc. In modern approaches, learning and
search elements are often interleaved with each other, and common designs among existing learning-
based solvers may manifest in varying implementations, making their effects and contributions less
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Figure 1: Overview of our proposed ML4TSP framework. Blue and orange stand for training and
testing processes, respectively. Dashed lines indicate the optional processes in pipelines.

transparent, let alone their intricate interplay. Meanwhile, the lack of crisp analysis of the whole
ML4TSP system (a representative example for ML4CO) hinders the determination of the role of
learning and the establishment of desirable principles for learning designs.

In this paper, we adopt a higher-level perspective to consider the whole system and advocate the
necessity of inspecting and aligning various existing methods. We endeavor to decompose established
mainstream learning-based solvers to outline a comprehensive design space and unify a modular
streamline incorporating aligned learning and search technologies while minimizing disparities among
methods, facilitating transparent ablation and systematic analysis. Fig. 1 presents the overview of our
framework. Given instances and their (optional) labels e.g. reference solutions, the training stage
involves different learning functionalities and training objectives to exploit the effective heuristics
from data. Given instances, the solving stage follows a construction-refinement pipeline whereby a
complete (feasible) solution is generated first then it is improved through the improvement-based
search. The construction is based on the intermediate predictions produced by the trained model, and
learning-based search is optionally applied to improve prediction quality by updating the parameters
of the model or the intermediate predictions. Note the prediction results for auto-regressive methods
using sequence models (Kool et al., 2018; Kwon et al., 2020) involve the interplay of neural models
and construction methods to update the node heatmap prediction for different steps.

Based on this framework, we analyze the correlation between learning and solving objectives along
with the efficacy of current ML4TSP endeavors within the outlined framework. This further leads
to the summarization of the inherent desirable design principles among diverse learning methods
and discerns key attributes that contribute to performance improvement. Specifically, minimized
ablation studies are performed demonstrating the desirability of design principles such as joint
probability estimation, symmetry solution representation, online optimization, and search friendliness.
Additionally, we offer insights into how model predictions intervene with strong search methods
like MCTS and highlight preferences in learning paradigms (e.g., supervised vs. unsupervised,
autoregressive vs. nonautoregressive) regarding solving performance and scalability.

Leveraging our findings, we propose enhancements to existing methods to compensate for their miss-
ing attributes, thereby advancing performance and enriching the technique library. Examples of novel
methods include node-level normalization for one-shot solution predictions (Joshi et al., 2019), sym-
metry introduction into the diffusion-based solvers (Sun & Yang, 2023; Li et al., 2023) and the rein-
forcement solving objective of Qiu et al. (2022), the devised MCTS variants by decoupling the depen-
dencies between solution initialization and local search within MCTS (Fu et al., 2021) and connecting
its local search component with established constructive search methods, etc. Furthermore, we recom-
pose within the established technique library and propose a factory of solvers, among which the opti-
mal ones achieve performance gains over previous SOTA. Beyond TSP, we also demonstrate adaptions
of the framework to other CO problems and verify that the desirability of design principles discovered
in ML4TSP evaluations still holds for other CO problems. Our implementation is carefully organized,
featuring solver classes for various learning functionalities, facilitating easy development for further
research and engineering practices. We aim for this work to streamline the development and evaluation
process, offering a consistent implementation for verifying the effects of proposed methods efficiently.

2 PRELIMINARIES AND RELATED WORK

Graph Combinatorial Optimization and Travelling Salesman Problem (TSP). Following Karalias
& Loukas (2020); Wang et al. (2022), we define G as the universe of CO instances by graphs
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G(V,E) ∈ G, where V and E denote the node set and edge set respectively. Let x ∈ {0, 1}N
denote the optimization variable and Ω denotes the feasible set. A CO problem on G aims to find a
feasible x ∈ Ω that minimize the given objective function f(·;G) : Ω → R≥0. TSP is defined on
an undirected complete graph G = (V,E), where V represents n cities and each edge Ei,j has a
non-negative weight Di,j representing the distance between cities i and j. The problem is to find
a Hamiltonian cycle of minimum weight in G. Here the dimension of the optimization variable
N = n2, and we denote the solution as a matrix X ∈ {0, 1}n×n where Xi,j indicates whether Ei,j

is included in x. The objective function is: f(X;G) = D⊙X =
∑

i,j Di,j ·Xi,j .

Related Works. Learning-based designs have advanced CO (Bengio et al., 2021; Cappart et al.,
2021; Peng et al., 2021). TSP has long been studied by the machine learning community since early
works like (Vinyals et al., 2015; Khalil et al., 2017; Nowak et al., 2017) and is one of the most
extensively studied CO problems. Other CO problems like MIS (Brusca et al., 2023; Goshvadi et al.,
2024; Wang & Li, 2023), CVRP (Ma et al., 2024; Hou et al., 2023; Kim et al., 2023) are also widely
studied, which can sometimes share similar methodology designs. To our knowledge, this is the first
endeavor to rethink the existing system and methodologies in ML4TSP while concurrently pioneering
the development of new effective techniques. This stands in contrast to Berto et al. (2023) which
primarily focused on providing a unified implementation and evaluation of RL-based models without
delving into deeper analyses of learning paradigms and proposing new methods. Joshi et al. (2020)
tries to analyze from the generalization perspective, yet the investigated methods are confined to naive
pipelines (Kool et al., 2018; Joshi et al., 2019) which is a very partial subset of the current ML4TSP
system, and no general design principles or new methods are provided as well. Our framework tries
to integrate every mainstream effort of constructive ML4TSP solvers. The comprehensive nature
of our framework facilitates a higher-level integration and analysis of the ML4TSP system, thereby
facilitating the development of a broader spectrum of research avenues within the community.

3 MODULAR FRAMEWORK FOR ML4TSP SOLVERS

3.1 DESIGN SPACE FOR TRAINING STAGE ALGORITHMS

The learning models generally receive input features from the instance graph, where the typical
features optionally include node features indicating the 2D coordinates of the nodes, and edge
features indicating the weight of the edges. The network backbones include GNN variants like Graph
Convolutional Networks (GCN) (Kipf & Welling, 2016; Joshi et al., 2019), Graph Attention Networks
(GAT) (Veličković et al., 2017; Kool et al., 2018), and Scattering Attention GNN (SAG) (Min et al.,
2023). The algorithmic variances are reflected in the learning functionalities and training objectives
presented below, where the correlations between these components are presented in Fig. 1.

3.1.1 LEARNING FUNCTIONALITIES

Different learning functionalities are proposed to more efficiently utilize data for solving TSP, which
involves what the neural models learn from pre-existing data.

Edge Prediction. Joshi et al. (2019); Fu et al. (2021); Qiu et al. (2022); Min et al. (2023) frame TSP
solving as an edge prediction task, where each edge is classified as binary to determine whether it is
in the solution. The prediction confidence of the edges (after softmax function) serves as a heatmap
H denoting the probabilities of edges occurring in the tour, i.e., Hi,j = p(Ei,j ∈ S∗) where S∗

denotes the optimal solution represented in the matrix form.

Edge Regret Prediction. The global regret is defined as the cost of fixing a certain edge in the
solution relative to the cost of a globally optimal solution (Hudson et al., 2022): Ri,j =

f(S∗
i,j ;G)

f(S∗;G) − 1

where Ri,j denotes the regret of selecting Ei,j in the solution, S∗
i,j denotes the optimal solution

with Ei,j fixed, and S∗ is the global optimal solution. This target contains more knowledge about
how every edge benefits the optimization, especially for edges not included in the optimal solution,
making it more conducive to searching. However, it necessitates significantly more computational
resources to acquire the supervision.

Solution Generation. Deviating from the prediction of a single solution, generative modeling
methods (Sun & Yang, 2023; Li et al., 2023; Hottung et al., 2021a) endeavor to characterize a
distribution of high-quality solutions for a given instance, i.e., estimating p(S|G). Solutions can be
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established by sampling from the distribution. This consideration of distributions makes predictions
more diverse, thereby enhancing the search.

Sequential Node Prediction. Instead of global prediction in one shot, sequence models (Kool et al.,
2018; Kwon et al., 2020; Kim et al., 2022) decompose it into n-step node predictions, where each
step offers the prediction map of the next node selection based on the current state. The sequence
models generally follow an attention based encoder-decoder model where the encoder produces
embeddings of all input nodes and the decoder produces the per-step node heatmap predictions
h
(i)
j = p(πi = j|π<i) where h

(i)
j is the j-th element of step i’s prediction map and π is the

permutation representation of the solution.

3.1.2 TRAINING OBJECTIVES

Training objectives are proposed to achieve the learning functionalities in Sec. 3.1.1. This subsection
discusses supervised and unsupervised methods sequentially. Supervised methods effectively leverage
the readily available solved data, while unsupervised methods bypass the need to acquire supervision.

Supervised Solution Proximity. This objective encourages the model’s prediction, e.g. heatmap
Ĥ ∈ [0, 1]n×n, to approximate the reference solutions obtained by an alternative solver. Based on
the binary classification for edges, the (weighted) binary cross-entropy loss is widely adopted:

L = −
∑
i,j

w1 · Si,j · log(Ĥi,j) + w0 · (1− Si,j) · log(1− Ĥi,j) (1)

where w0, w1 are class weights since the classification task is unbalanced towards the negative class.

Supervised Edge Regret Proximity. This objective encourages the model to predict reliable edge
regrets R̂ ∈ Rn×n to approximate the reference regrets R, by minimizing L = ||R̂−R||2.

Solution Distribution Proximity. Prominent models for the generative objective encompass diffusion
models (Sun & Yang, 2023; Li et al., 2023) and variational autoencoders (VAE) (Hottung et al.,
2021a), to maximize the conditional likelihood estimation E[log pθ(S|G)], where θ is the model
parameters. The models are typically optimized through the evidence lower bound (ELBO), where q
is the posterior and Z is the latent variable.

L = −Eq(Z|S,G)

[
log

pθ(S,Z|G)

q(Z|S, G)

]
≥ E [− log pθ(S|G)] (2)

Unsupervised methods typically optimize using the solving objective. However, the non-differentiable
mapping from continuous, unconstrained space to discrete, highly constrained space suffers gradient
truncation. Thus, unsupervised loss based on constraint penalty and reinforcement solving loss are
employed, and meta-learning can be further adapted to enhance generalization.

Unsupervised Solving Objective. Min et al. (2023) proposes penalties over the Hamiltonian cycle
and no self-loop constraints to regularize the predicted assignment matrix T̂ and heatmap Ĥ. T̂ is
obtained by enforcing column-wise softmax to the network output, where T̂·,j ∈ [0, 1]n×1 indicates
the next-node probabilities at i step, and Ĥ is calculated through Ĥ = T̂·,nT̂

⊤
·,1 +

∑n
t=1 T̂·,tT̂

⊤
·,t+1:

L =
∑
i,j

Ĥi,jDi,j + λ1

∑
i

(
∑
j

T̂i,j − 1)2 + λ2

∑
i

Ĥi,i. (3)

The second and third term denotes the Hamilton cycle and no self-loop constraint, respectively.

Reinforcement Solving Objective. With the predicted probability distribution pθ(S|G), we can
sample solution tours. This objective optimizes the expectation of the tour length by gradient
estimated by REINFORCE (Williams, 1992) with baseline b(G):

L = Epθ(S|G) [f(S;G)] and ∇L = Epθ(S|G) [(f(S;G)− b(G))∇ log pθ(S|G)] (4)

where the baseline function independently estimates the expected cost to reduce the variance of the
gradients. The sampling construction method presented in Sec. 3.2.2 enables sampling solutions from
the predicted edge heatmap and per-step node heatmaps to achieve pθ(S|G).

Meta-Learning Objective. This objective (Finn et al., 2017; Qiu et al., 2022) aims to train models to
acquire meta-knowledge from diverse problem instances, improving generalization when faced with
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previously unseen instances. In CO, model parameters and model predictions can be further updated
during testing through a learning-based search in Sec. 3.2.1. The objective tries to better predict a
model initialization or prediction that can achieve the best solving results after the learning-based
search in the solving phase. Suppose the edge heatmap Ĥ is optimized to Ĥ′, then the meta-learning
objective is L = Eps(S|G,Ĥ′) [f(S;G)] where s(·) denotes the sampling decoding function.

3.2 DESIGN SPACE FOR SOLVING STAGE ALGORITHMS

The solving stage does not involve any pre-existing data but tries to optimize the solutions or the
predictions over unseen instances received on the fly, as shown in Fig. 1.

3.2.1 LEARNING-BASED SEARCH

Motivated by the divergence between the training stage, which optimizes average performance across
historical instances, and the solving stage, which optimizes performance for each new instance,
Hottung et al. (2021b); Qiu et al. (2022); Li et al. (2023) design learning-based search in the solving
stage to perform tailored optimization for testing instances, which improves prediction by updating
the model parameters or the intermediate predictions.

Active Search. With objectives that do not require labels, active search (Hottung et al., 2021b; Qiu
et al., 2022) further fine-tunes (partial) network parameters or intermediate model predictions, e.g.
heatmaps, over each testing instance with solving objective updates of Eq. 4 using gradient decent.

Gradient Search. Based on diffusion modeling (Sun & Yang, 2023), T2T (Li et al., 2023) introduces
objective guidance into the denoising process of diffusion, adjusting the denoising to an objective-
minimizing direction and rewriting the original learned denoising function pθ(St−1|St, G) to

pθ(St−1|St, G, y∗) = Zpθ(St−1|St, G) exp([−∇St l̃(St;G)]⊤St−1) (5)

where y∗ is the optimal objective score given the instance G, l̃ denotes the objective estimation
function. This technique allows for further refinement of the predicted heatmaps by iteratively adding
noise to the current solution and then denoising it to an expected better one.

3.2.2 CONSTRUCTION METHODS

Construction methods typically leverage the predictions and the graphs to decode a complete solution.

Greedy Decoding. As a naive construction method, it sequentially inserts edges/nodes with the
highest confidence in the heatmap to the partial solution for a feasible solution.

Sampling Decoding. It involves sampling edges or nodes based on their confidence scores in the
heatmaps. Denoting π as the permutation representation of S, based on the edge heatmap Ĥ, the t-step

node heatmap prediction can also be estimated from the edge heatmap ĥ(t) =
exp(Ĥπt−1,πt )∑n
j=i exp(Ĥπt−1,πt )

.

Beam Search. At each step, beam search (Joshi et al., 2019) explores the heatmap by expanding the b
most probable edge connections among the nodes neighbors and saving the best b partial solutions for
the next step. The final prediction is the tour with the highest probability among the b complete tours.

Random Initialization. For strong improvement-based search methods like MCTS, random initial-
ization of tours can also produce plausible results.

3.2.3 IMPROVEMENT-BASED SEARCH

On top of the constructed complete solutions, improvement-based search further iteratively refines
solutions by exploring within a limited neighborhood of the current solution.

Two-Opt and Relocate. Two-Opt swaps two nodes in the tour, dividing it into three segments, then
reassembles the tour by reversing the middle segment. The relocate operator moves a single node
within the tour. The operators can be performed on the original solution to find lower-cost ones. These
two operators can be combined by alternating between using either operator until no better solution
can be found, which we call local search (LS) following Hudson et al. (2021) in the rest of the paper.

Monte Carlo Tree Search. The MCTS solver (Fu et al., 2021) iteratively proposes initial solutions
and improves them to enhance solution quality. In each iteration, this process includes three compo-
nents: 1) state initialization constructs a solution based on a given heatmap; 2) Two-Opt improvement
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explores a small neighborhood by Two-Opt until no improvements can be found; 3) MCTS based on
K-Opt iteratively samples K-Opt operators based on the heatmap to improve the solution and update
the heatmap for subsequent iterations. Typically, thousands of iterations of these steps are involved in
an MCTS solver. However, we observed that increasing the number of outer iterations results in dimin-
ishing marginal improvements in heatmap updating. Thus, we reduce the number of outer iterations
to one round, separating the construction phase and the improvement-based search phase. We adopt
the latter as a design choice for improvement-based search, which can be integrated with construction
methods such as greedy, sampling, beam search, and random initialization to generate MCTS variants.

Prediction Guidance. Improvement-based search can be guided by edge regret prediction (Hudson
et al., 2021), where the edge scores for penalizing is calculated as R̂i,j

1+ni,j
, where ni,j is the number

of penalties assigned to Ei,j . The edges of maximum utility are penalized and the search is applied
only to the penalized edge to maximize the chance of finding lower-cost solutions.

4 EMPIRICAL EVALUATION

This section tries to answer the following questions and proposes new techniques: Q1. How does
learning benefit testing stage problem solving? Q2. What are the desirable design principles for
ML4TSP methods? Q3. Which combination can enhance solving performance? The major empirical
evaluation is conducted on TSP, yet Appendix B also shows examples of adapting the ML4TSP
framework to other problems like Capacitated Vehicle Routing Problem (CVRP) and Maximum
Independent Set (MIS) and verify whether conclusions drawn from TSP still hold for other problems.

4.1 EXPERIMENTAL SETUP

Datasets. A TSP instance includes N 2-D coordinates and a reference solution. Instances are
generated via uniformly sampling N nodes from the unit square [0, 1]2. Main experiments are
performed on TSP on scales including 50, 100, and 500. We also include TSP-1000 and the real-
world TSPLIB1 dataset for generalization evaluation. The reference solutions for all problem scales
are labeled by LKH-3 (Helsgaun, 2017). The test set for TSP-50/100 is taken from Kool et al. (2018)
with 1,280 instances, and the test set for TSP-500/1000 is from Fu et al. (2021) with 128 instances.

Metrics. 1) Drop: the relative performance drop w.r.t. length compared to the optimal solutions
(obtained by the exact solver Concorde (Applegate et al., 2006) in this paper); 2) Time: the average
computational time per instance; 3) Length: the average total distance of the solved tours w.r.t. the
corresponding instances i.e. the objective. Note the main paper omits this metric and indicates
solution quality primarily by drop for clearness. Full results are presented in Appendix Table 9.

Method Indicator. We explore various combinations within the design space depicted in Fig. 1,
making it impractical to label each variant individually. Thus, we directly list the design choices
of the evaluated methods in the tables as indicators. Note the ablation may lead to convergence
towards a subset of methods with common designs. In such cases, shared design choices are
omitted from the table and explained in the caption for clarity. To correspond to prior methods,
please refer to Table 9. To simplify method indication in experiments, we adopt the following
abbreviations for certain design choices in our ML4TSP framework: 1) Learning Functionalities:
Edge Prediction → Edge Pred, Edge Regret Prediction → Regret Pred, Solution Generation →
Generation, Sequential Node Prediction → Sequential; 2) Training Objectives: Supervised Solution
Proximity → SL, Supervised Edge Regret Proximity → SL Regret, Unsupervised Solving Objective
→ UL, Reinforcement Solving Objective → RL, Solution Distribution Proximity → Generative.

4.2 LEARNING GENERALLY IMPROVES SOLVING WITH COMPATIBLE SEARCH ALGORITHMS

This subsection endeavors to answer Q1. Apart from the training objectives that optimize the solving
performance, the reference proximity objectives are not directly related to the solving target. Since the
solving performance relies on the synergy of neural predictions and search strategies, the correlation
between the estimation accuracy in training and the final solving performance remains unclear. To
verify this, Fig. 2 provides the scatter plots for the correlation between solving performance and the
learning loss across reference proximity objectives on TSP-100 test sets.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1: Joint probability estimation ablation based on methods with Edge Pred as the learning
functionality. 8× Greedy: sample 8 heatmaps in parallel then enforce greedy.

Objective Joint
Prob.

Solving Stage TSP-50 TSP-100 TSP-500

Construction Impr. Search Drop↓ Time Drop↓ Time Drop↓ Time

SL % Greedy – 1.530% 7.6ms 7.078% 10.6ms 12.237% 0.1s
SL + Node Norm " Greedy – 0.674% 7.4ms 2.721% 10.1ms 8.496% 0.1s

Generative " Greedy – 0.076% 0.229s 0.186% 0.4s 6.734% 1.6s

SL % Greedy 2-Opt 0.115% 7.6ms 0.649% 12.0ms 2.089% 0.1s
SL + Node Norm " Greedy 2-Opt 0.082% 7.4ms 0.292% 11.7ms 1.325% 0.1s

Generative " Greedy 2-Opt 0.046% 0.2s 0.077% 0.4s 0.811% 1.6s

SL % Beam (n=1280) – 0.023% 1.1s 0.673% 2.3s 23.629% 11.6s
SL + Node Norm " Beam (n=1280) – 0.016% 1.1s 0.545% 2.2s 21.678% 13.7s

Generative " 8× Greedy – 0.007% 0.7s 0.011% 2.5s 1.476% 10.3s

SL % Beam (n=1280) 2-Opt 0.015% 1.1s 0.149% 2.3s 2.431% 12.9s
SL + Node Norm " Beam (n=1280) 2-Opt 0.012% 1.1s 0.156% 2.3s 2.189% 14.0s

Generative " 8× Greedy 2-Opt 0.006% 0.7s 0.009% 2.5s 0.303% 10.4s

Supervised Solution Proximity Solution Distribution Proximity Supervised Edge Regret Proximity

Figure 2: Performance correlation of three reference proxim-
ity objectives. GLS: guided local search.

Overall, there exists a positive corre-
lation between learning quality and
problem-solving performance. How-
ever, the introduction of a more robust
search mechanism tends to mitigate
the advantages of neural predictions.
Moreover, once the learning loss
surpasses a certain threshold (e.g.,
less than 0.003 for the distribution ob-
jective), the efficacy of translating improvements in neural predictions into enhancements in problem-
solving quality may diminish. This suggests a potential bottleneck in the capacity of the learning phase
to enhance the testing phase. Regarding the prediction of edge regret, we find that the accuracy of
regret estimation minimally impacts improvement-based search methods without heatmap guidance,
such as Two-Opt. More results of the effects of learning to MCTS are presented in Appendix D.8.

4.3 DESIRABLE DESIGN PRINCIPLES THAT BENEFITS ML4TSP SOLVING

This subsection delves into crucial design principles in learning algorithms to answer Q2. We
generalize overarching design principles with wide applicability across various learning designs,
serving as foundational guidance that inspires methodological proposals. Building upon these
principles, we introduce novel designs seamlessly integrated into existing pipelines to boost solving
performance and validate the effectiveness of adhering to these principles throughout the process.

4.3.1 JOINT PROBABILITY ESTIMATION HELPS CAPTURE VARIABLE CORRELATIONS

This subsection validates the importance of joint probability estimation over solution variables in loss
design. In the learning functionality of edge prediction, the SL training objective (Joshi et al., 2019;
Fu et al., 2021) generally enforces supervision over each edge’s binary classification results. This is
based on the assumption of mutual statistical independence of the individual solution parameters, such
that the solution can be represented by a product of Bernoulli distributions for the individual solution
variables Sanokowski et al. (2023). However, since the CO solutions are highly constrained with
strong correlations among the solution variables, such an assumption can lead to a performance drop.

With GNN raw predictions F ∈ Rn×n×2, which correspond to n× n edges, prior methods utilize the
softmax operation over the last dimension to ensure that the probabilities of positive and negative
edges sum up to 1. The cross-entropy loss in Eq. 1 involves n×n edges’ binary classification, lacking
a general capture of joint probability over the solution variables. To this end, we propose node-wise
probability normalization, which normalizes the positive edge probabilities associated with each

node sum up to 2 and the negative probabilities sum to n− 2: F′
i,j =

exp(Fi,j)∑n
k=i exp(Fi,k)

·
[

n− 2 0
0 2

]
.

Then it clips the probability to (0,1]. The predicted heatmap is obtained by Ĥ = F′[:, :, 1].

Under the edge prediction functionality, we also include methods of solution distribution proximity
objective into comparison, which considers a solution as the whole entity, allowing it to naturally
adhere to the joint probability distribution. Table 1 shows the ablation. Methods with joint probability
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Table 2: Symmetry ablation based on meth-
ods with Generative as training objective.

Symmetry Solving Stage TSP-500

Construction Impr. Search Drop↓ Time

% Greedy – 9.639% 1.2s
" Greedy – 6.734% 1.6s

% Greedy 2-Opt 1.524% 1.2s
" Greedy 2-Opt 0.811% 1.6s

% 8× Greedy – 4.613% 6.9s
" 8× Greedy – 1.476% 10.3s

% 8× Greedy 2-Opt 0.686% 6.9s
" 8× Greedy 2-Opt 0.303% 10.4s

Table 3: Symmetry ablation based on methods with RL
as the training objective. AS: active search.

Functionality Symmetry Solving TSP-50 TSP-100

Drop↓ Time Drop↓ Time

Edge Pred % Sampling 5.238% 11.4ms 9.364% 94.5ms
+ Rand. Start " Sampling 2.157% 72.7ms 4.885% 0.1s

Edge Pred % AS+Sampling 3.086% 3.2s 4.234% 6.7s
+ Rand. Start " AS+Sampling 0.823% 4.9s 2.089% 9.3s

Sequential % Greedy 1.040% 0.1ms 2.520% 0.2ms
+ MultiStart " Greedy 0.179% 1.7ms 1.641% 1.6ms

+ Sym. Baseline " Greedy 0.877% 0.6ms 2.209% 0.6ms

Sequential % Sampling 1.212% 0.1ms 2.846% 0.2ms
+ MultiStart " Sampling 0.156% 1.3ms 1.618% 1.6ms

+ Sym. Baseline " Sampling 1.041% 0.6ms 2.593% 0.6ms

Table 4: Ablation on online optimization property, which can be achieved by learning-based search.
Functionality Objective Solving Stage TSP-50 TSP-100 TSP-500

Learning Search Construction Impr. Search Drop↓ Time Drop↓ Time Drop↓ Time

Generation

Generative % Greedy – 0.076% 0.2s 0.186% 0.4s 6.734% 1.6s
Generative Gradient Search Greedy – 0.015% 0.7s 0.023% 0.8s 2.666% 3.7s

Generative % Greedy 2-Opt 0.046% 0.2s 0.077% 0.4s 0.811% 1.6s
Generative Gradient Search Greedy 2-Opt 0.012% 0.7s 0.023% 0.8s 0.442% 3.8s

Edge Pred

Meta + RL % Sampling – 4.310% 35.9ms 4.885% 0.1s 13.046% 1.3s
Meta + RL Active Search Sampling – 3.006% 2.9s 3.940% 8.5s 6.924% 274.8s

Meta + RL % Sampling 2-Opt 1.821% 0.1s 2.880% 0.2s 6.228% 6.4s
Meta + RL Active Search Sampling 2-Opt 1.549% 4.4s 2.176% 8.9s 4.322% 277.0s

estimation generally achieve lower drops, while relying solely on the proposed node-wise probability
normalization can bring about significant performance improvement without any additional com-
putational overhead. The generative objective can achieve much lower drops, albeit with the added
computational cost of multistep inference in the diffusion model.

4.3.2 SYMMETRY SOLUTION REPRESENTATION INTRODUCES EQUIVALENCE AWARENESS

A tour solution holds symmetry or permutation invariance (Kwon et al., 2020). For instance, let tour
π = {v1, v2, v3, v4} be the optimal solution of some given 4-node TSP instance. Then tours with
different starting points, e.g. π′ = {v2, v3, v4, v1}, and tours in a counterclockwise direction, e.g.
π′′ = {v4, v3, v2, v1}, all represent the same optimal solution. Since CO aims to produce optimal
solutions, the neural model is expected to be aware of the equivalences among such sequences and
should be optimized to consistently yield the same solution regardless of the variances in forms. This
subsection endeavors to introduce the symmetry solution representation attribute to methods lacking
symmetry consideration within the framework, thereby enhancing problem-solving performance.

For Generation learning functionality with Generative training objective, Sun & Yang (2023); Li
et al. (2023) aim to generate directed graph representations (heatmaps) of solutions with directed
graph supervision enforced in the optimization of Eq. 2. We replace the directed graph representation
for learning with the undirected one, which naturally accommodates the symmetry, and discover
a notable performance gain in Table 2. This does not explicitly increase computation during the
learning process, but it introduces a slight overhead during solution decoding.

For the RL objective, methods decode solutions sequentially during optimization. For instance,
Qiu et al. (2022) sequentially sample multiple solutions based on the predicted edge heatmap, all
starting from the same point, to estimate the route length expectations and the REINFORCE gradients,
and sequence models (Kool et al., 2018) predict node sequence using per-step node heatmaps for
optimization. To achieve symmetry, we propose to enforce a random starting point decoding policy
in REINFORCE updates (in training and active search) for methods with Edge Pred functionality,
and refer to Kwon et al. (2020) to optimize over diverse rollouts with multiple starting points as well
as use symmetry baselines (Kim et al., 2022) for Sequential functionality. These techniques raise
the model’s awareness of symmetry. Table 3 presents solving results on TSP-50 and 100, showing a
notable performance gain by introducing symmetry, yet with additional computational overhead.

4.3.3 ONLINE OPTIMIZATION COMPLEMENTS GENERALIZATION CAPABILITY

In order to bridge the gap between training for average performance and solving for performance in
new instances, instance-specific optimization can be helpful. We verify the effectiveness of techniques
that optimize in the testing phase in Sec. 3.2.1: the active search for methods with Edge Pred as the
functionality and the gradient search for methods with Generation as the functionality. Table 4 ablates
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Table 6: Heuristic search ablation based on Edge Pred functionality and SL training objective.
Solving Stage TSP-50 TSP-100 TSP-500

Construction Impr. Search Drop↓ Time Drop↓ Time Drop↓ Time

Greedy – 1.530% 7.6ms 7.078% 10.6ms 12.237% 0.1s
Beam (n=1280) – 0.023% 1.1s 0.673% 2.3s 23.629% 11.6s

MCTS Solver (10t) 0.006% 56.7ms 0.006% 0.217s 0.433% 10.1s

Greedy Two-Opt 0.115% 7.6ms 0.649% 12.0ms 2.089% 0.1s
Greedy Guided LS (t=1s) 0.614% 1.1s 3.319% 1.2s 7.682% 45.5s
Greedy MCTS 0.018% 8.4ms 0.154% 16.8ms 0.838% 1.3s

Beam (n=1280) Two-Opt 0.015% 1.1s 0.149% 2.3s 2.431% 12.9s
Beam (n=50) MCTS 0.005% 0.1s 0.009% 0.5s 0.235% 56.3s

Sampling (n=50) MCTS 0.002% 0.1s 0.001% 0.5s 0.396% 58.1s
Random (n=10) MCTS 0.004% 17.5ms 0.011% 81.4ms 0.519% 11.2s
Random (n=50) MCTS 0.002% 62.5ms 0.001% 0.4s 0.301% 55.2s

learning-based search across different baselines, indicating a promising gain with learning-based
search, however at the cost of additional computation.

4.3.4 SEARCH FRIENDLINESS CONTRIBUTES TO LEARNING-SEARCH SYNERGY

Table 5: Ablation on search friendliness property.
Functionality Objective Search

Frnd. Solving Stage TSP-50 TSP-100

Drop↓ Time Drop↓ Time

Edge Pred SL % Guided LS (t=1s) 0.614% 1.1s 3.319% 1.2s
Regret Pred SL Regret " Guided LS (t=1s) 0.098% 1.1s 1.049% 1.4s

Edge Pred SL % Random + MCTS 0.002% 62.5ms 0.001% 0.4s
Regret Pred SL Regret " Random + MCTS 0.000% 0.2s 0.179% 1.8s

Sequential RL % Sampling 5.238% 11.4ms 9.364% 94.5ms
Sequential Meta + RL " Sampling 2.157% 72.7ms 4.885% 0.1s

Sequential RL % AS+Sampling 3.086% 3.2s 4.234% 6.7s
Sequential Meta + RL " AS+Sampling 0.823% 4.9s 2.089% 9.3s

Techniques that consider how to
better integrate learning with search
can benefit problem-solving. This
subsection verifies the effectiveness of
search friendliness designs including
enhancing the informativeness of
prediction information (e.g. predicting
edge regrets), promoting diversity in
the predicted solutions (e.g. modeling
solution distribution), and incorporating the search process into optimization (e.g. through meta
learning to learn optimal initialization for solving stage). Table 5 verifies the solving performance of
providing more informative prediction and adopting meta learning, which may also introduce slight
overhead. We notice that for MCTS, the performance gain of predicting edge regrets is minor, which
may stem from the compatibility between the techniques. For the effectiveness of prediction diversity,
Table 2 demonstrates a significant improvement in solving performance achieved by employing
multiple sampling, which is contributed by increased diversity.

4.4 STREAMLINING THE ML4TSP DESIGN SPACE DISCOVERS MORE POWERFUL SOLVERS

This section investigates Q2&3 by exploring potential recomposition among separable components
in our framework, with the full results presented in Appendix Table 9.

Evaluation of Heuristic Search. We categorize search strategies outside learning as a construction-
improvement paradigm, where constructive search and improvement-based search are orthogonal
and can be combined. Table 9 shows that the most proper heuristic search strategy varies depending
on the specific learning functionalities and objectives. Interestingly, even the more intricate MCTS
method does not necessarily yield the best performance. In cases where the output heatmap closely
approximates feasible solutions and exhibits high discreteness (e.g. the solution distribution proximity
objective), the effectiveness of utilizing the heatmap to guide the improvement search often falls short
when compared to methods with smoother and more continuous heatmaps (e.g. supervised solution
proximity and meta reinforcement objectives for edge prediction). Due to space limitation, Table 6
adopts the fundamental solution proximity objective for edge prediction as an example to illustrate the
effectiveness and recomposing performance of heuristic search methods implemented in our frame-
work. The decoupled improvement MCTS can be combined with other construction methods to form
variants like Greedy MCTS, Sampling MCTS, Beam MCTS, and Random MCTS, which utilize differ-
ent constructive search for MCTS initialization, showing improvement in both solving performance
and efficiency compared to the original MCTS solver (Fu et al., 2021). We use different time slices
for varying problem scales, with the time for a single time slice denoted as t. We control the search
process of MCTS by adjusting the number of time slices. More details are given in Appendix E.3.

Recomposing to the Optimal. We recompose the learning and search techniques in our framework
to produce a factory of solvers. Table 7 presents the best three method combinations for every
learning functionality. The recomposed solvers achieve SOTA performance that reaches 0.000%
for TSP-50, 0.001% for TSP-100, and 0.142% for TSP-500. We find that top-performing methods
remain closely tied to robust search such as MCTS, while generative models, specifically diffusion
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Table 7: Optimal recomposition of learning and search techniques. ∗: reference for drop estimation.
Training Stage Solving Stage TSP-50 TSP-100 TSP-500

Learning Functionality Training Objective Learning Search Construction Impr. Search Drop↓ Time Drop↓ Time Drop↓ Time

– – – PyConcorde (Applegate et al., 2006) 0.000±0.000∗% 73.6ms 0.000±0.000∗% 0.4s 0.000±0.000∗% 18.7s
– – – LKH3 (trials=500) (Helsgaun, 2017) 0.000±0.000% 0.2s 0.002±0.019% 0.2s 0.322±0.174% 0.7s
– – – LKH3 (trials=5k) (Helsgaun, 2017) – – 0.000±0.006% 1.6s 0.072±0.078% 4.2s
– – – LKH3 (trials=50k) (Helsgaun, 2017) – – – – 0.014±0.029% 26.3s

Edge Pred SL + Node Norm – Greedy MCTS 0.021±0.114% 7.4ms 0.080±0.261% 16.3ms 0.578±0.420% 1.3s
Edge Pred SL – Random (n=50) MCTS 0.002±0.025% 62.5ms 0.001±0.012% 0.4s 0.301±0.153% 55.2s
Edge Pred. SL + Node Norm – Random (n=50) MCTS 0.004±0.026% 50.4ms 0.002±0.018% 0.4s 0.142±0.106% 55.3s
Regret Pred SL Regret – Greedy Guided LS (t=10s) 0.004±0.035% 10.1s 0.483±0.901% 10.4s – –
Regret Pred SL Regret – MCTS Solver (10t) 0.001±0.022% 63.4ms 1.116±0.781% 0.2s – –
Regret Pred SL Regret – Random (n=50) MCTS 0.000±0.000% 0.2s 0.179±0.241% 1.8s – –
Generation Generative + Sym. – Greedy Two-Opt 0.046±0.140% 0.2s 0.077±0.160% 0.4s 0.794±0.553% 1.6s
Generation Generative + Sym. Gradient Search Greedy Two-Opt 0.012±0.053% 0.7s 0.023±0.068% 0.8s 0.442±0.253% 3.8s
Generation Generative + Sym. Gradient Search 8× Greedy Two-Opt 0.002±0.024% 1.3s 0.003±0.022% 5.0s 0.188±0.138% 28.6s
Sequential RL Sampling + Multistart – 0.156±0.265% 1.3ms 1.618±0.893% 1.6ms – –
Sequential RL + Sym. Baseline – Greedy + Multistart Two-Opt 0.122±0.244% 0.1s 0.796±0.548% 0.5s – –
Sequential RL + Sym. Baseline – Sampling + Multistart Two-Opt 0.110±0.242% 0.2s 0.729±0.533% 1.5s – –

Table 8: Generalization Results with models trained on TSP-500. ∗: reference for drop estimation.
Training Stage Solving Stage TSP-1000 TSPLIB 200-1000

Learning Functionality Training Objective Learning Search Construction Impr. Search Drop↓ Time Drop↓ Time

– – – PyConcorde (Applegate et al., 2006) 0.000% 84.4s 0.000% 10.6s

Edge Pred. SL – Greedy MCTS 1.171% 6.0s 1.416% 1.8s
Edge Pred. SL + Node Norm – Greedy MCTS 0.798% 6.1s 1.252% 1.8s
Edge Pred. SL + Node Norm – Sampling (n=10) MCTS 0.687% 83.5s 0.517% 17.9s
Edge Pred. SL + Node Norm – Random (n=10) MCTS 0.603% 54.6s 0.678% 17.3s

Solution Generation Generative – Greedy Two-Opt 1.811% 2.3s 2.431% 1.6s
Solution Generation Generative + Sym. – Greedy Two-Opt 1.735% 1.9s 1.880% 1.7s
Solution Generation Generative + Sym. Gradient Search Greedy Two-Opt 1.293% 6.1s 1.337% 4.4s
Solution Generation Generative + Sym. – 8×Greedy Two-Opt 1.153% 22.4s 1.013% 5.8s

models, excel in constructive solvers without heavy reliance on heavy search, achieving 0.002%,
0.003%, 0.188% for TSP-50, 100 and 500. This highlights the potential for future development
of more powerful solvers grounded in generative objectives and diffusion backbones. Considering
the trade-off between solution quality and solving time, the best solutions are often achieved at the
cost of higher computational expense. For comprehensiveness, Table 7 has also selected, for each
learning functionality, recompositions at different speed levels, including the fastest approach with
stable solution quality for demonstration. This is to accommodate scenarios that prioritize speed or
approximation quality over strict optimality, where RL methods stand out with the fastest speed.

Evaluation for Generalization. We reconduct ablations over top-performing models to verify the
generalization performance of the framework and whether the claims still hold for generalization to
larger scale TSP, i.e., TSP-1000, and TSPLIB instances with 200-1000 nodes. The verified models
are trained on TSP-500. Comparing methods in Table 8, we observe that the advantages of design
principles such as joint probability estimation, symmetry solution representation, online optimization,
and search friendliness persist across generalization. Additionally, the newly recomposed search
method, Random MCTS, continues to demonstrate a performance advantage in generalization.

Regarding problem size, as observed in Table 9, the general trend is that the larger the scale, the
worse the model’s relative solving performance. This is due to the increased difficulty of larger-scale
problems. Additionally, we find that learning strategies that play supportive roles (e.g., guiding
MCTS) are less scale-sensitive, while end-to-end methods (e.g., generative and RL) are more affected.
This may be because strong search methods mitigate the risk of reduced prediction quality by learning.
However, we can also see that methods like generative models still perform well as the scale increases
due to their strong model expressiveness. On the other hand, when considering model complexity
and training time, we find that methods with shorter training times, like unsupervised learning, are
relatively less affected by scale. This may be because the bottleneck is the model capacity or the
amount of learnable information using UL rather than task difficulty.

5 CONCLUSION

We design a principled modular framework that integrates existing ML4TSP practices, allowing for
inspecting the current system. Based on this unification, we analyze the relationship between learning
and solving objectives and show that learning generally improves solving with compatible search
algorithms. We also analyze the effectiveness of current ML4TSP efforts, identifying desirable design
principles for ML solvers like joint probability estimation, symmetry solution representation, and
online optimization. Additionally, we offer insights into how model predictions intervene with strong
search methods like MCTS and highlight preferences in learning paradigms for ML4TSP. Leveraging
our findings, we propose enhancements to existing methods to compensate for their missing attributes
and recompose within the established technique library to establish a factory of learning-based solvers,
among which the optimal compositions achieve clear performance gains. Our implementation is
carefully organized, facilitating easy development for further research and engineering practices.
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Table 9: Full Results of Learning and Searching Technique Recomposition for ML4TSP Solvers.

Method Training Stage Solving Stage TSP-50 TSP-100 TSP-500

Training Objective Learning Search Construction Impr. Search Length↓ Drop↓ Time Length↓ Drop↓ Time Length↓ Drop↓ Time

Traditional Solver

Concorde (Applegate et al., 2006) – – – – 5.688∗ 0.000% 73.6ms 7.756∗ 0.000% 0.404s 16.546∗ 0.000% 18.672s
Greedy – – – – 7.014 23.301% 0.31ms 9.680 24.798% 1.15ms 20.808 25.766% 35.84ms

Insertion – – – – 6.126 7.708% 0.15ms 8.508 9.699% 0.28ms 18.608 12.461% 5.75ms
GAX Nagata & Kobayashi (2013) – – – – 5.688 0.000% 0.10s 7.756 0.000% 0.18s 16.546 0.001% 1.86s

LKH3 (trials=500) (Helsgaun, 2017) – – – – 5.688 0.000% 0.177s 7.756 0.002% 0.216s 16.599 0.322% 0.703s
LKH3 (trials=5k) (Helsgaun, 2017) – – – – – – – 7.756 0.000% 1.561s 16.558 0.072% 4.172s

LKH3 (trials=50k) (Helsgaun, 2017) – – – – – – – – – – 16.548 0.014% 26.344s

Edge Prediction

GCN (Joshi et al., 2019) SL – Greedy – 5.776 1.530% 7.6ms 8.307 7.078% 10.6ms 18.571 12.237% 0.111s
ML4TSP SL – Greedy Two-Opt 5.694 0.115% 7.6ms 7.806 0.649% 12.0ms 16.891 2.089% 0.128s
ML4TSP SL – Greedy Guided LS (t=1) 5.723 0.614% 1.084s 8.014 3.319% 1.236s 17.818 7.682% 45.469s
ML4TSP SL – Greedy MCTS 5.689 0.018% 8.4ms 7.768 0.154% 16.8ms 16.684 0.838% 1.320s

GCN (Joshi et al., 2019) SL – Beam (n=1280) – 5.689 0.023% 1.099s 7.808 0.673% 2.320s 20.456 23.629% 11.602s
ML4TSP SL – Beam (n=1280) Two-Opt 5.688 0.015% 1.099s 7.767 0.149% 2.332s 16.948 2.431% 12.859s
ML4TSP SL – Beam (n=10) MCTS 5.688 0.008% 38.8ms 7.758 0.027% 0.102s 16.609 0.380% 11.409s
ML4TSP SL – Beam (n=20) MCTS 5.688 0.006% 54.9ms 7.757 0.014% 0.176s 16.598 0.315% 22.712s
ML4TSP SL – Beam (n=50) MCTS 5.688 0.005% 0.111s 7.757 0.009% 0.475s 16.585 0.235% 56.286s
ML4TSP SL – Sampling (n=10) MCTS 5.688 0.005% 37.5ms 7.756 0.008% 0.124s 16.645 0.597% 11.789s
ML4TSP SL – Sampling (n=20) MCTS 5.688 0.004% 61.5ms 7.756 0.004% 0.280s 16.630 0.509% 23.338s
ML4TSP SL – Sampling (n=50) MCTS 5.688 0.002% 0.114s 7.756 0.001% 0.549s 16.611 0.396% 58.122s
ML4TSP SL – Random (n=10) MCTS 5.688 0.004% 17.5ms 7.757 0.011% 81.4ms 16.632 0.519% 11.159s
ML4TSP SL – Random (n=20) MCTS 5.688 0.003% 28.7ms 7.756 0.003% 0.155s 16.616 0.422% 22.131s
ML4TSP SL – Random (n=50) MCTS 5.688 0.002% 62.5ms 7.756 0.001% 0.374s 16.596 0.301% 55.195s

Att-GCN (Fu et al., 2021) SL – MCTS Solver (1t) 5.688 0.009% 11.7ms 7.759 0.035% 29.9ms 16.704 0.958% 1.078s
Att-GCN (Fu et al., 2021) SL – MCTS Solver (5t) 5.688 0.007% 31.7ms 7.757 0.009% 0.118s 16.634 0.530% 5.082s
Att-GCN (Fu et al., 2021) SL – MCTS Solver (10t) 5.688 0.006% 56.7ms 7.756 0.006% 0.217s 16.617 0.433% 10.081s

ML4TSP SL + Node Norm – Greedy – 5.727 0.674% 7.4ms 7.968 2.721% 10.1ms 17.952 8.496% 0.111s
ML4TSP SL + Node Norm – Greedy Two-Opt 5.692 0.082% 7.4ms 7.779 0.292% 11.7ms 16.765 1.325% 0.128s
ML4TSP SL + Node Norm – Greedy MCTS 5.689 0.021% 7.4ms 7.762 0.080% 16.3ms 16.641 0.578% 1.297s
ML4TSP SL + Node Norm – Beam (n=1280) – 5.688 0.016% 1.132s 7.798 0.545% 2.241s 20.133 21.678% 13.720s
ML4TSP SL + Node Norm – Beam (n=1280) Two-Opt 5.688 0.012% 1.142s 7.768 0.156% 2.254s 16.908 2.189% 14.009s
ML4TSP SL + Node Norm – Beam (n=10) MCTS 5.688 0.012% 28.1ms 7.758 0.027% 98.6ms 16.585 0.238% 11.417s
ML4TSP SL + Node Norm – Beam (n=20) MCTS 5.688 0.011% 56.7ms 7.757 0.019% 0.179s 16.580 0.208% 22.652s
ML4TSP SL + Node Norm – Beam (n=50) MCTS 5.688 0.008% 94.5ms 7.757 0.013% 0.421s 16.571 0.152% 56.094s
ML4TSP SL + Node Norm – Sampling (n=10) MCTS 5.688 0.009% 28.1ms 7.757 0.011% 0.108s 16.590 0.265% 11.882s
ML4TSP SL + Node Norm – Sampling (n=20) MCTS 5.688 0.008% 49.6ms 7.756 0.005% 0.207s 16.581 0.214% 23.580s
ML4TSP SL + Node Norm – Sampling (n=50) MCTS 5.688 0.006% 0.115s 7.756 0.003% 0.529s 16.569 0.142% 59.119s
ML4TSP SL + Node Norm – Random (n=10) MCTS 5.688 0.007% 16.5ms 7.756 0.009% 81.5ms 16.586 0.245% 11.184s
ML4TSP SL + Node Norm – Random (n=20) MCTS 5.688 0.004% 27.7ms 7.756 0.004% 0.156s 16.579 0.200% 22.308s
ML4TSP SL + Node Norm – Random (n=50) MCTS 5.688 0.004% 50.4ms 7.756 0.002% 0.389s 16.569 0.142% 55.294s
ML4TSP SL + Node Norm – MCTS Solver (10t) 5.688 0.010% 56.7ms 7.760 0.013% 0.210s 16.600 0.329% 10.188s
ML4TSP UL – Greedy – 6.405 12.600% 11.4ms 8.870 14.360% 17.0ms – – –
ML4TSP UL – Greedy Two-Opt 5.846 2.785% 12.3ms 8.003 3.182% 35.0ms – – –
ML4TSP UL – Greedy MCTS 5.863 3.096% 28.9ms 8.069 4.039% 89.0ms – – –

UTSP (Min et al., 2023) UL – MCTS Solver (10t) 5.818 2.300% 62.9ms 8.069 4.463% 0.223s – – –
ML4TSP RL – Sampling – 5.985 5.238% 11.4ms 8.481 9.364% 94.5ms 19.296 16.612% 1.039s
ML4TSP RL Active Search Sampling – 5.863 3.086% 3.234s 8.084 4.234% 6.703s 17.865 7.959% 258.281s

DIMES (Qiu et al., 2022) Meta + RL – Greedy – 6.360 11.847% 15.6ms 8.790 13.339% 18.0ms 19.605 18.489% 0.375s
DIMES (Qiu et al., 2022) Meta + RL – Sampling – 5.933 4.310% 35.9ms 8.135 4.885% 0.124s 18.706 13.056% 1.305s
DIMES (Qiu et al., 2022) Meta + RL – MCTS Solver (10t) 5.697 0.172% 60.6ms 7.807 0.661% 0.216s 17.425 5.318% 10.296s
DIMES (Qiu et al., 2022) Meta + RL Active Search Greedy – 5.897 3.681% 4.230s 8.111 4.583% 8.575s 17.763 7.341% 264.781s
DIMES (Qiu et al., 2022) Meta + RL Active Search Sampling – 5.859 3.006% 2.884s 8.061 3.940% 8.508s 17.694 6.924% 274.797s

ML4TSP Meta + RL – Greedy Two-Opt 5.823 2.387% 18.0ms 8.007 3.232% 57.0ms 17.165 3.742% 0.453s
ML4TSP Meta + RL – Greedy LS 6.016 5.756% 65.6ms 8.339 7.520% 0.457s 17.938 8.414% 48.688s
ML4TSP Meta + RL – Greedy Guided LS (t=1s) 5.986 5.231% 1.112s 8.335 7.463% 1.382s 17.938 8.408% 51.406s
ML4TSP Meta + RL – Greedy MCTS 5.765 1.337% 18.8ms 7.909 1.973% 42.4ms 17.354 4.884% 1.385s
ML4TSP Meta + RL – Random (n=50) MCTS 5.688 0.018% 0.241s 7.765 0.123% 1.522s 17.655 6.703% 59.297s
ML4TSP Meta + RL – Sampling Two-Opt 5.791 1.821% 0.141s 7.979 2.880% 0.232s 17.578 6.228% 6.406s
ML4TSP Meta + RL Active Search Sampling Two-Opt 5.776 1.549% 4.414s 7.925 2.176% 8.859s 17.263 4.322% 277.031s
ML4TSP Meta + RL Active Search Sampling+RandStart – 5.735 0.823% 4.862s 7.918 2.089% 9.330s 17.646 6.635% 272.813s

Edge Regret Prediction

ML4TSP SL Regret – Greedy – 6.179 8.651% 18.8ms 8.966 15.597% 16.4ms – – –
ML4TSP SL Regret – Greedy Two-Opt 5.707 0.333% 19.5ms 7.857 1.295% 0.129s – – –
ML4TSP SL Regret – Greedy LS 5.784 1.695% 0.064s 8.127 4.786% 0.306s – – –

GNNGLS (Hudson et al., 2021) SL Regret – Greedy Guided LS (t=1s) 5.693 0.098% 1.080s 7.837 1.049% 1.389s – – –
GNNGLS (Hudson et al., 2021) SL Regret – Greedy Guided LS (t=10s) 5.688 0.004% 10.078s 7.793 0.483% 10.359s – – –

ML4TSP SL Regret – Greedy MCTS 5.702 0.255% 17.2ms 7.927 2.210% 54.0ms – – –
ML4TSP SL Regret – Random (n=50) MCTS 5.688 0.000% 0.207s 7.770 0.179% 1.843s – – –
ML4TSP SL Regret – MCTS Solver (10t) 5.688 0.001% 63.4ms 7.843 1.116% 0.218s – – –

Solution Generation

DIFUSCO (Sun & Yang, 2023) Generative – Greedy – 5.709 0.384% 0.388s 7.845 1.136% 0.409s 18.144 9.639% 1.188s
DIFUSCO (Sun & Yang, 2023) Generative – Greedy Two-Opt 5.694 0.105% 0.394s 7.776 0.261% 0.409s 16.800 1.524% 1.203s
DIFUSCO (Sun & Yang, 2023) Generative – 8× Greedy – 5.688 0.014% 0.688s 7.761 0.062% 2.355s 17.312 4.613% 6.867s
DIFUSCO (Sun & Yang, 2023) Generative – 8× Greedy Two-Opt 5.688 0.010% 0.689s 7.759 0.035% 2.356s 16.662 0.686% 6.914s

T2T (Li et al., 2023) Generative Gradient Search Greedy – 5.690 0.039% 1.164s 7.788 0.127% 1.198s 17.444 5.414% 2.805s
T2T (Li et al., 2023) Generative Gradient Search Greedy Two-Opt 5.689 0.022% 1.181s 7.761 0.065% 1.217s 16.695 0.885% 2.836s

ML4TSP Generative + Sym. – Greedy – 5.692 0.076% 0.229s 7.770 0.186% 0.398s 17.628 6.734% 1.578s
ML4TSP Generative + Sym. – Greedy Two-Opt 5.690 0.046% 0.230s 7.762 0.077% 0.400s 16.680 0.811% 1.586s
ML4TSP Generative + Sym. – Greedy MCTS 5.690 0.040% 0.318s 7.762 0.080% 0.489s 16.689 0.863% 1.716s
ML4TSP Generative + Sym. – 8× Greedy – 5.688 0.007% 0.701s 7.757 0.011% 2.450s 16.790 1.476% 10.328s
ML4TSP Generative + Sym. – 8× Greedy Two-Opt 5.688 0.006% 0.702s 7.757 0.009% 2.450s 16.596 0.303% 10.375s
ML4TSP Generative + Sym. – 8× Greedy MCTS 5.688 0.006% 0.859s 7.757 0.009% 3.141s 16.605 0.357% 21.734s
ML4TSP Generative + Sym. – MCTS Solver (10t) 5.691 0.051% 0.446s 7.763 0.096% 1.002s 17.027 2.910% 11.510s
ML4TSP Generative + Sym. – Random (n=50) MCTS 5.689 0.032% 0.439s 7.761 0.068% 3.916s 16.619 0.443% 56.554s
ML4TSP Generative + Sym. Gradient Search Greedy – 5.688 0.015% 0.717s 7.758 0.023% 0.825s 16.987 2.666% 3.711s
ML4TSP Generative + Sym. Gradient Search Greedy Two-Opt 5.688 0.012% 0.718s 7.758 0.023% 0.827s 16.619 0.442% 3.750s
ML4TSP Generative + Sym. Gradient Search Greedy MCTS 5.688 0.018% 1.208s 7.759 0.041% 0.827s 16.621 0.455% 3.914s
ML4TSP Generative + Sym. Gradient Search 8× Greedy – 5.688 0.002% 1.317s 7.756 0.003% 4.406s 16.616 0.424% 26.898s
ML4TSP Generative + Sym. Gradient Search 8× Greedy Two-Opt 5.688 0.002% 1.327s 7.756 0.003% 4.453s 16.577 0.188% 27.094s
ML4TSP Generative + Sym. Gradient Search 8× Greedy MCTS 5.688 0.002% 1.380s 7.756 0.003% 4.969s 16.599 0.323% 28.594s

Sequential Node Prediction

AM (Kool et al., 2018) RL – Greedy – 5.747 1.040% 0.1ms 7.951 2.520% 0.2ms – – –
ML4TSP RL – Greedy Two-Opt 5.733 0.799% 1.0ms 7.902 1.887% 3.6ms – – –
ML4TSP RL – Greedy + Multistart – 5.732 0.782% 0.3ms 7.920 2.110% 1.2ms – – –
ML4TSP RL – Greedy + Multistart Two-Opt 5.697 0.167% 48.4ms 7.826 0.898% 0.438s – – –

AM (Kool et al., 2018) RL Sampling – 5.747 1.212% 0.1ms 7.977 2.846% 0.2ms – – –
ML4TSP RL – Sampling Two-Opt 5.735 0.838% 1.117ms 7.906 1.927% 4.3ms – – –
ML4TSP RL – Sampling + Multistart – 5.730 0.739% 0.4ms 7.918 2.092% 1.2ms – – –
ML4TSP RL – Sampling + Multistart Two-Opt 5.694 0.113% 55.5ms 7.827 0.919% 1.248s – – –

POMO (Kwon et al., 2020) RL + Multistart Greedy – 5.698 0.179% 1.7ms 7.883 1.641% 1.6ms – – –
ML4TSP RL + Multistart – Greedy Two-Opt 5.693 0.103% 16.4ms 7.854 1.261% 76.6ms – – –

POMO (Kwon et al., 2020) RL + Multistart Sampling – 5.697 0.156% 1.3ms 7.881 1.618% 1.6ms – – –
ML4TSP RL + Multistart – Sampling Two-Opt 5.693 0.087% 18.0ms 7.847 1.172% 0.161s – – –

Sym-NCO (Kim et al., 2022) RL + Sym. Baseline Greedy – 5.738 0.877% 0.6ms 7.927 2.209% 0.6ms – – –
ML4TSP RL + Sym. Baseline – Greedy Two-Opt 5.726 0.680% 1.5ms 7.891 1.745% 3.8ms – – –
ML4TSP RL + Sym. Baseline – Greedy + Multistart – 5.719 0.549% 0.9ms 7.901 1.869% 1.7ms – – –
ML4TSP RL + Sym. Baseline – Greedy + Multistart Two-Opt 5.695 0.122% 0.120s 7.818 0.796% 0.543s – – –

Sym-NCO (Kim et al., 2022) RL + Sym. Baseline Sampling – 5.747 1.041% 0.6ms 7.957 2.593% 0.6ms – – –
ML4TSP RL + Sym. Baseline – Sampling Two-Opt 5.729 0.726% 1.7ms 7.901 1.872% 4.4ms – – –
ML4TSP RL + Sym. Baseline – Sampling + Multistart – 5.717 0.512% 0.9ms 7.898 1.838% 1.7ms – – –
ML4TSP RL + Sym. Baseline – Sampling + Multistart Two-Opt 5.694 0.110% 0.173s 7.813 0.729% 1.502s – – –

A GENERAL DISCUSSION OF DESIGN CHOICES

With the recomposition results, we obtain the following observations regarding the general design
choices for ML4TSP solvers: 1) MCTS variants can significantly enhance the performance, while it is
not universally compatible with all learning designs. For adaptability, smoother and more continuous
predictions tend to combine more easily with MCTS. With MCTS, the optimal combination in our
framework is achieved when learning the solution proximity objective with node-wise normalization
for edge prediction. This combination, together with the random MCTS solving strategy, achieves
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drops of 0.000%, 0.001%, and 0.142% on TSP of sizes 50, 100, and 500, respectively. 2) Without
relying on tailored heuristics like MCTS, the generative distribution proximity objective based on the
symmetry representation achieves the optimal results when adopting gradient search, 8× Greedy, and
Two-Opt for the solving stage, achieving drops of 0.002%, 0.003%, and 0.188% on TSP of sizes 50,
100, and 500, respectively. 3) Regarding the paradigms of learning-based solvers, we discover a clear
performance advantage of non-autoregressive methods to autoregressive sequence models, and super-
vised methods are significantly ahead of unsupervised methods, especially without the support of pow-
erful heuristic search. For scalability, we notice that acquiring supervision for edge regret is extremely
time-consuming, making it impractical for solving larger-scale problems like TSP-500. Meanwhile,
RL-based sequence models also face challenges on larger-scale problems due to issues like sparse
rewards and training instability, which also struggle to support training on larger-scale instances.

B ADAPTATION OF THE FRAMEWORK TO OTHER CO PROBLEMS

B.1 GUIDE FOR CROSS-PROBLEM ADAPTATION

The ML field has gone the farthest optimizing the TSP, and we consider TSP as one of the most
extensively studied CO problems with the richest learning and searching techniques. Note numerous
methods have been devised in ML4CO. While some of the best-performing methods show promising
results, they still exhibit a gap compared to traditional methods. The very first motivation of this work
is to reassess the role of learning for CO (or specifically TSP) and to discern which parts of existing
techniques are genuinely beneficial and which are not. For this purpose, we select TSP to incorporate
and analyze learning and searching techniques as comprehensively as possible and, to the maximum
extent, retain the potential for application to other problems.

This framework can be customized for other CO problems with the same modular organization and
learning-based designs. The primary adaptions required would involve adjusting the optimization
variables, e.g. replacing edges with nodes for node-decision problems such as Maximum Independent
Set (MIS), as well as modifying the (optional) heuristic search designs that are problem-specific.
Specifically, the pipeline for a new problem can be still generally be organized by a prediction-and-
seach pipeline like TSP, where the learning models can be trained with learning tasks including 1)
decision variable prediction, 2) variable regret prediction, 3) solution generation, and 4) sequential
variable prediction, as well as training objectives including 1) supervised solution proximity, 2)
unsupervised solving objective, 3) reinforcement solving objective, 4) supervised variable regret
proximity, 5) solution distribution proximity, potentially with the support of 6) meta learning objective.
Then in the solving stage, the neural prediction can be further improved by learning-based search
methods for specific problems, and the search phase can follow the construction-search pipeline with
constructive search like Greedy and improvement-based search like local search.

Additionally, many parts of our analysis, e.g., the study of the relationship between learning and
solving objectives, the benefits of satisfying certain design principles like joint probability estimation,
symmetry solution representation, online optimization, etc., indeed study the general learning designs
and its synergy with search methods, maintaining the potential to have applicability beyond TSP
in design. For example, for MIS, we can also consider achieving joint probability estimation by
introducing a normalization term on the predicted node probabilities to enhance performance. For
other problems with sequential solutions, we can consider enforcing the symmetry property for
solution representations. In general pipeline designs, we can also consider introducing optimization
during the testing phase to enhance performance.

Meta Framework. To facilitate adaptation to other CO problems, we have developed a task-agnostic
skeleton and common toolkit, which provides robust support for the development of learning-based
solvers across different tasks. This toolkit focuses on facilitating method development while leaving
room for customizations of problem-specific implementations. Key features include:

1. A generic skeleton for organizing ML4CO frameworks;

2. Base classes to streamline method development;

3. Traditional solver baselines and reference solution acquisition;
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4. Data generation for various distributions;

5. Problem and solution visualization tools;

6. Evaluators for multiple problem types;

7. Common post-processing algorithms.

This toolkit enables straightforward adaptation of our framework to new problems by inheriting base
classes and adhering to the pre-defined project structure. We extend our framework design to CVRP
and MIS problems, which include foundational classes for developing learning-based CVRP and
MIS solvers. These frameworks currently implement several popular learning-based solvers and can
be expanded to integrate additional methods using the same modular structure.

B.2 EMPIRICAL RESULTS

This subsection verifies the effectiveness of satisfying the discovered design principles in TSP to show
the reference value of the ML4TSP analysis to other CO problems. Here, we verify the Capacitated
Vehicle Routing Problem (VRP) and Maximum Independent Set (MIS) problems. Building upon the
principles, we introduce novel designs seamlessly integrated into existing pipelines to boost solving
performance and validate the effectiveness of adhering to these principles throughout the process.

B.2.1 EXPERIMENTAL SETUP

CVRP Datasets. Following Ma et al. (2024), we use samples with coordinates that are randomly
uniformly distributed, demands that are random integers between 1 and 9, and a total capacity of
40 as our training and testing sets. The training set size is 128000, with 100 training epochs. The
testing set size is 10000, consistent with Ma et al. (2024). Note that when using neural networks for
inference, the batch size is set to 100.

CVRP Metrics. We adopt three evaluation metrics to measure performance: 1) Length: the
average total distance of the solved tours w.r.t. the corresponding instances; 2) Drop: the relative
performance drop w.r.t. length compared to the nearly optimal solutions (obtained by the heuristic
solver HGS (Vidal, 2022) in this paper); 3) Time: the average computational time per instance.

MIS Datasets. We use SATLIB2 as the dataset. Following Qiu et al. (2022); Sun & Yang (2023); Li
et al. (2023), we use 39500 samples as the training set and 500 samples as the test set.

MIS Metrics. Following Qiu et al. (2022); Sun & Yang (2023); Li et al. (2023), we adopt three
evaluation metrics to measure model performance: 1) Size: the average size of the solutions w.r.t.
the corresponding instances, i.e. the objective. 2) Drop: the relative performance drop w.r.t. size
compared to the nearly optimal solutions (obtained by the heuristic solver KaMIS (Lamm et al., 2016)
in this paper); 3) Time: the average computational time per instance.

B.2.2 JOINT PROBABILITY ESTIMATION HELPS CAPTURE VARIABLE CORRELATIONS

This subsection verifies whether the joint probability estimation property also benefits other CO
problems. Here, we adopt the MIS problem for evaluation. For MIS, the decision variable is the nodes
in the given graph. In the learning functionality of node prediction, the SL training objective generally
enforces supervision over each node’s binary classification results. This is based on the assumption
of mutual statistical independence of the individual solution parameters, such that the solution can be
represented by a product of Bernoulli distributions for the individual solution variables Sanokowski
et al. (2023). However, since the CO solutions are highly constrained with strong correlations among
the solution variables, such an assumption can lead to a performance drop.

With GNN raw predictions, which correspond to n nodes, prior methods utilize the softmax operation
over the last dimension to ensure that the probabilities of positive and negative edges sum up to 1.
The cross-entropy loss involves n nodes’ binary classification, lacking a general capture of joint
probability over the solution variables. To this end, we propose a relaxed probability normalization
term achieved by LinSAT layer Wang et al. (2023), which projects the raw predicted probabilities to

2https://www.cs.ubc.ca/˜hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
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the constrained space, where the positive node probabilities within each node’s adjacent node group
to sum up to less than the size of the adjacent group minus one:∑

j∈N(i)

pj ≤ |N(i)| − 1,∀i (6)

where N(i) denotes the adjacent node group (including itself) of node i, and pj denotes the predicted
probability for node j. This is a largely relaxed constraint for the MIS problem, yet it provides the
chance to connect among the node probabilities.

Under the node prediction functionality, we also include methods of solution distribution proximity
objective into comparison, which considers a solution as the whole entity, allowing it to naturally
adhere to the joint probability distribution. Table 10 shows the ablation. Methods with joint probability
estimation generally achieve lower drops.

Table 10: Joint probability estimation ablation based on methods with Variable Prediction as the
learning functionality for MIS.

Objective Joint Prob. Solving Stage SATLIB

Size↑ Drop↓ Time

KaMIS (10s) (Lamm et al., 2016) 425.954 0.000±0.000% 10s

SL % Greedy 421.692 1.004±0.524% 22.7ms
SL + LinSAT Norm " Greedy 422.098 0.907±0.473% 0.545s

Generative " Greedy 424.496 0.344±0.329% 1.101s

B.2.3 SYMMETRY SOLUTION REPRESENTATION INTRODUCES EQUIVALENCE AWARENESS

Similar to TSP, a CVRP tour holds symmetry or permutation invariance (Kwon et al., 2020). Since
CO aims to produce optimal solutions, the neural model is expected to be aware of the equivalences
among such sequences and should be optimized to consistently yield the same solution regardless of
the variances in forms. This subsection endeavors to introduce the symmetry solution representation
attribute to methods lacking symmetry consideration within the framework, thereby enhancing
problem-solving performance.

For the RL objective, methods decode solutions sequentially during optimization. To achieve
symmetry, we refer to Kwon et al. (2020) to optimize over diverse rollouts with multiple starting
points as well as use symmetry baselines (Kim et al., 2022) for Sequential functionality. These
techniques raise the model’s awareness of symmetry. Table 11 presents solving results on CVRP-50,
showing a notable performance gain by introducing symmetry.

Table 11: Symmetry ablation based on methods with RL as the training objective on CVRP.

Functionality Symmetry Solving Stage CVRP-50

Length↓ Drop↓ Time

HGS (1s) (Vidal, 2022) 10.366 0.000±0.000% 1.0s

Sequential % Greedy 11.138 7.479±2.953% 0.9ms
+ MultiStart " Greedy 10.605 2.305±1.184% 2.2ms

+ Sym. Baseline " Greedy 10.989 6.035±2.613% 0.9ms

Sequential % Sampling 11.201 8.093±3.187% 0.9ms
+ MultiStart " Sampling 10.594 2.195±1.102% 2.2ms

+ Sym. Baseline " Sampling 11.031 6.441±2.705% 0.9ms

B.2.4 ONLINE OPTIMIZATION COMPLEMENTS GENERALIZATION CAPABILITY

In order to bridge the gap between training for average performance and solving for performance in
new instances, instance-specific optimization can be helpful. We verify the effectiveness of techniques
that optimize in the testing phase in Sec. 3.2.1: the gradient search for methods with Generation as the
functionality. Table 12 ablates learning-based search, indicating a promising gain with learning-based
search, however at the cost of additional computation.
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Table 12: Ablation on online optimization property achieved by learning-based search on MIS.

Functionality Objective Solving Stage SATLIB

Size↑ Drop↓ Time

Generation Generative Greedy 424.496 0.344±0.329% 1.101s
Generative Gradient Search + Greedy 425.006 0.224±0.213% 2.380s

B.2.5 SEARCH FRIENDLINESS CONTRIBUTES TO LEARNING-SEARCH SYNERGY

Techniques that consider how to better integrate learning with search can benefit problem-solving.
This subsection verifies the effectiveness of search friendliness designs by promoting diversity in the
predicted solutions (e.g. modeling solution distribution) and incorporating the search process into
optimization (e.g. through meta learning to learn optimal initialization for solving stage). For the
effectiveness of prediction diversity, Table 13 demonstrates the improvement in solving performance
achieved by adopting meta learning and employing multiple sampling, which is contributed by
increased diversity.

Table 13: Ablation on search friendliness property on MIS.

Functionality Objective Search Frnd. Solving Stage SATLIB

Size↑ Drop↓ Time

Variable Prediction RL % Sampling 408.480 4.104±3.558% 27m34s
Variable Prediction Meta + RL " Sampling 410.596 3.607±2.864% 28m5s

Variable Prediction Generative % Greedy 424.496 0.344±0.329% 1.101s
Variable Prediction Generative " 8×Greedy 425.142 0.192±0.198% 5.324s

C MINIMALISTIC CODE EXAMPLE FOR ML4TSP SOLVERS

C.1 TSPSOLVER

To accommodate diverse data types and facilitate the evaluation of solution quality, we provide
a TSPSolver base class that offers a user-friendly approach for solving TSP. This class includes
functionalities for data input and output, as well as an evaluation function. The solver supports
different data inputs, such as Numpy arrays and .txt and .tsp files. The outputs can be saved to
corresponding types of files as needed. Additionally, the solver offers an evaluation function, by
which users can quickly obtain the average tour length, average gap, and standard deviation of the
test dataset. Below is an example of using TSPSolver to obtain the average tour length of the LKH
test dataset, as well as its gap with standard deviation relative to the Concorde test dataset.

>>> from ml4tsp import TSPSolver

# Read the test file

>>> solver = TSPSolver()

>>> solver.from_txt("dataset/tsp_uniform/tsp500_lkh.txt")

# Assign the ref_tour of the tested solver as the solution path

>>> solver.read_tours(solver.ref_tours)

# Read the reference file

>>> solver.from_txt("dataset/tsp_uniform/tsp500_concorde.txt")

# (costs_avg, ref_costs_avg, gap_avg, gap_std)

>>> lkh_solver.evaluate(calculate_gap=True)
(16.548110417020276, 16.545805334644392,

0.0139392061675804, 0.028643127914360397)
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C.2 LEARNING-BASED SOLVERS

To enhance the modularization and cohesion within our proposed framework, we have extended the
TSPSolver base class to support two highly integrated learning-based solvers: ML4TSPNARSolver
and ML4TSPARSolver. These solvers can efficiently configure design choices and be called to solve
given instances. The following code snippet shows minimalistic code for TSP solving exemplified by
solution proximity objective with greedy and MCTS as heuristic search:

>>> from ml4tsp import ML4TSPGNNSolver, ML4TSPNAREnv

# Create ML4TSPEnv

>>> env = ML4TSPNAREnv(

nodes_num=500, # the number of nodes

sparse_factor=50 # KNN graph representation

)

# Create Solver

# If ``pretrained`` is True and ``pretrained_path`` is None,

# ML4TSP will automatically download the corresponding

# pre-trained file online.

>>> solver = ML4TSPGNNSolver(

env=env,

encode_device="cuda",

decoder="random",

decoder_kwargs={"samples_num": 50},

local_search="mcts",

local_search_kwargs={"time_limit": 1.0},

local_search_device="cpu",

scale=1,

pretrained=True,
pretrained_path="weights/tsp500_gnn.pt"

)

# Read data

>>> solver.from_txt("dataset/tsp_uniform/tsp500_test.txt")

# Solve

>>> solver.solve(batch_size=1)

Encoding: 100%|----| 128/128 [00:05<00:00, 25.23it/s]

Encode Time: 9.426303148269653

Decoding: 100%|----| 128/128 [00:00<00:00, 650.48it/s]

Decode Time: 1.578188419342041

Local Search: 100%|----| 6400/6400 [1:57:33<00:00, 1.10s/it]

Local Search Time: 7054.012353181839

# Using the evaluate function to obtain result

>>> solver.evaluate(calculate_gap=True)
(16.59568398521005, 16.545805334644392,

0.3014236256908176, 0.15272430899596431)

# Output and Save the solution results

>>> solver.to_txt("tsp500_gnn_random50_mcts.txt")
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C.3 TSPLKHSOLVER AND TSPCONCORDESOLVER

In order to make the traditional C-based solvers, LKH and Concorde, more accessible to Python users,
TSPLKHSolver and TSPConcordeSolver are built upon the TSPSolver framework, providing a
user-friendly interface that allows Python users to effectively utilize the powerful capabilities of LKH
and Concorde for solving TSP. Here is a simple example solved using the TSPLKHSolver:

>>> from ml4tsp import TSPLKHSolver

# 'lkh_max_trials' controls the maximum number of attempts in LKH

>>> lkh_solver = TSPLKHSolver(lkh_max_trials=50000)

>>> lkh_solver.from_txt("data/uniform/test/tsp500.txt")

# Using multi-threading to speed up the solution.

>>> lkh_solver.solve(num_threads=32, show_time=True)
>>> lkh_solver.to_txt("data/uniform/test/tsp500_lkh.txt")

C.4 EVALUATE ON TSPLIB

We filter problems from the TSPLIB dataset with the number of nodes greater than or equal to 51 and
less than or equal to 1002, and with EDGE WEIGHT TYPE as EUC 2D. We then rescale the node
coordinates to the range of 0 to 1 globally. To facilitate future research endeavors on TSP, we use
Concorde to precisely solve these problems and produce the corresponding text files. Furthermore,
we provide the TSPLIB4MLDataset dataset, which can be used to quickly evaluate TSP solvers. In
the experiments of this paper, we selected problems with the number of nodes ranging from 201 to
1002 as the test cases, and below is an illustrative evaluation example.

>>> from ml4tsp import TSPLIB4MLEvaluator, ML4TSPGNNSolver

# Create Evaluator

>>> eval = TSPLIB4MLEvaluator()

# Create Solver

>>> env = ML4TSPNAREnv(sparse_factor=50)

>>> solver = ML4TSPGNNSolver(

env=env,

encode_device="cuda",

decoder="greedy",

local_search="mcts",

pretrained_path="weights/tsp500_gnn.pt"

)

# evaluate

>>> eval.evaluate(solver, min_nodes_num=201, max_nodes_num=1002)

solved_costs ref_costs gaps

ts225 10.713846 10.553828 1.516214

tsp225 7.989420 7.895329 1.191729

pr226 5.290722 5.278835 0.225199

gil262 12.054229 12.049518 0.039099

pr264 6.230572 6.200001 0.493082

a280 9.444607 9.238463 2.231368

pr299 6.730816 6.638419 1.391851

lin318 10.410730 10.169940 2.367660
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rd400 15.408393 15.343968 0.419871

fl417 6.424722 6.285529 2.214497

pr439 9.492026 8.990802 5.574861

pcb442 13.469691 13.364091 0.790177

d493 9.474022 9.350242 1.323819

u574 12.127684 12.022998 0.870709

rat575 13.684484 13.619173 0.479546

p654 7.410115 7.195604 2.981133

d657 12.389867 12.211812 1.458056

u724 14.504233 14.436550 0.468836

rat783 15.308325 15.246543 0.405221

pr1002 16.704860 16.396624 1.879873

AVG 10.763168 10.624413 1.416140

D SUPPLEMENTARY EXPERIMENTAL RESULTS AND DISCUSSION

D.1 FULL RECOMPOSITION RESULTS

We show the full experimental results of learning and searching technique recomposition for ML4TSP
solvers in Table 9. Recompositions that exactly correspond to prior methods are noted in the first
column.

D.2 GENERALIZATION TO VARYING DISTRIBUTIONS

Table 4 shows the generalization results of models trained on TSP-500 to varying distributions, e.g.,
cluster (gaussian mixture), rotation, explosion etc., instead of uniform Zhou et al. (2023). We find that
methods with more complex heuristic search methods and methods with online optimization designs
may be less affected by distribution shifts. Meanwhile, different methods have their specialization on
different data distributions, yet the ranking may not differ much due to their inherent powerfulness.

Table 14: Generalization results of models trained on TSP-500 to varying distributions, e.g., cluster
(gaussian mixture), rotation, explosion etc., instead of uniform. The TSP data of different distributions
are from Zhou et al. (2023).

Dataset Functionality Training Objective Learning Search Construction Impr. Search Tour Length Drop Time

TSP300-Cluster 3 10

Edge Prediction SL + Node Norm – Greedy MCTS 9.562 1.482% 0.209s
Edge Pred SL + Node Norm – Random (n=10) MCTS 9.493 0.732% 2.016s
Generation Generative + Symmetry – Greedy Two-Opt 9.569 1.560% 0.617s
Generation Generative + Symmetry Gradient Search 8 × Greedy Two-Opt 9.482 0.629% 10.563s

TSP500-Explosion

Edge Pred SL + Node Norm – Greedy MCTS 11.911 1.298% 1.245s
Edge Pred SL + Node Norm – Random (n=10) MCTS 11.817 0.496% 11.617s
Generation Generative + Symmetry – Greedy Two-Opt 11.973 1.815% 0.867s
Generation Generative + Symmetry Gradient Search 8 × Greedy Two-Opt 11.853 0.807% 18.021s

TSP500-Rotation

Edge Pred SL + Node Norm – Greedy MCTS 12.404 0.745% 1.220s
Edge Pred SL + Node Norm – Random (n=10) MCTS 12.357 0.352% 11.063s
Generation SL + Symmetry – Greedy Two-Opt 12.472 1.295% 0.852s
Generation SL + Symmetry Gradient Search 8 × Greedy Two-Opt 12.386 0.592% 17.844s

D.3 SUPPLEMENTARY RESULTS FOR FIG. 2

Fig. 3 serves as a supplementary figure to Fig. 2, providing the scatter plots for the correlation between
solving performance and the learning loss across reference proximity objectives on TSP-50 test sets.

D.4 SUPPLEMENTARY RESULTS OF RUNTIME-DROP CURVE.

Fig. 4 shows the progress of solving within the heuristic search, showing the variation of the drop
with respect to search time in the subsequent heuristic search conducted on predicted heatmaps.
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Supervised Solution Proximity Solution Distribution Proximity Supervised Edge Regret Proximity

Figure 3: Correlation of performance and learning loss across three reference proximity objectives on
TSP50.

Figure 4: Correlation of performance and runtime.

Figure 5: Correlation of performance and sampling number within the estimated distribution for the
distribution proximity objective.

D.5 SUPPLEMENTARY RESULTS FOR SEC. 4.3.4

To further illustrate the positive impact of prediction diversity on the solving performance, based
on the solution distribution proximity objective, Fig. 5 shows the effect of increasing the number of
sampling in the estimated solution distribution during solving. As can be observed, with the diversity
in neural predictions, the solving performance can be improved through a larger sampling number.

D.6 DISCUSSION OF UNSUPERVISED OBJECTIVES

In edge prediction learning functionality, although unsupervised loss provides seemingly reliable
training objectives, we observe that the effectiveness of these methods, including both unsupervised
solving objective and reinforcement solving objective, relies heavily on heuristic search. Their
performance often suffers when subjected to naive construction methods like greedy decoding,
with typical drops exceeding 10%. While reproducing these methods, we note that their original
implementations heavily relied on the MCTS solver in the search process, where their primary impact
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TSP50 Unsupervised Solving Objective TSP100 Unsupervised Solving Objective 

Figure 6: Correlation of performance and learning loss on the unsupervised solving objective.

(a) GCN learned heatmap (b) SAG learned heatmap

Figure 7: Edge heatmap prediction learned by different graph networks.

lies in providing overall guidance to MCTS. Therefore, incorporating alternative methods during the
construction phase to introduce more diversity tends to yield better results. We observe that these
methods perform better with Random MCTS and Beam MCTS. In particular, we verify that the
unsupervised solving objective relies on the Scattering Attention GNN (SAG) (Min et al., 2023) to
take effect. Fig. 7 shows the effectiveness of SAG in producing sharper heatmaps, avoiding the over-
smooth issue as observed in GCN. However, this SAG-learned heatmap still merely brings a greedy
solving performance gain from 20% to 13%. Furthermore, we conducted an in-depth analysis of
the correlation between solving performance and learning loss within the framework of unsupervised
training, as depicted in Fig. 6. However, it’s disappointed to find that a decrease in learning loss did
not result in an improvement in solving performance. Thus, it is crucial for edge prediction based
unsupervised designs to develop more compatible heuristic search and pursue better integration.

D.7 DISCUSSION OF SUPERVISION QUALITY

We observe that the default setting of LKH3 (Helsgaun, 2017) does not generally produce the optimal
solutions as claimed by previous works (Qiu et al., 2022; Sun & Yang, 2023). We experiment by
adjusting the max trials hyperparameter in LKH. We gradually increase it and observe that, for
TSP-500, the solution quality continues to improve even as we increase the number of trials from
10,000 to 50,000. In this paper, we utilize LKH3 as our source for supervised signals. We employ
500, 5000, and 50000 trials for TSP-50, TSP-100, and TSP-500, respectively.

D.8 DISCUSSION OF MCTS

We make an intriguing observation investigating MCTS that the tour length before and after applying
MCTS does not show a straightforward proportional relationship. This observation serves as the
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(a) Different decoding methods (b) Different types of heatmap

Figure 8: Effects of different decoding methods and heatmap types on MCTS

motivation for us to investigate and develop a range of search methods rooted in MCTS, each
incorporating distinct decoding strategies: Random MCTS, Beam MCTS, and Sampling MCTS.

Fig. 8 (a) illustrates the variation in tour length before and after applying these different search
methods. The experiments are conducted on the same TSP-100 instance utilizing the same heatmap
generated by the model trained with solution proximity objective with node-wise normalization. Each
method is sampled 100 times. Note Beam MCTS, employing beam search as the sampling strategy,
achieves notably shorter average tour lengths before the heuristic search compared to the other two
strategies. However, its performance after applying MCTS is found to be comparatively inferior
to the other two strategies, as we consistently select the best result obtained from all the samples
for each method. This finding aligns with the results presented in Table 9, where, with a sampling
number of 50, Beam MCTS exhibits an average drop of 0.013%, while the other two methods show a
drop of 0.003%, 0.002% respectively.

Furthermore, we investigate the impact of the predicted heatmaps on MCTS. Four types of heatmaps
are examined: heatmaps generated by neural networks (NN), all-one heatmaps (Ones), random
heatmaps (Random), and distance heatmaps (Distance). Fig. 8 (b) illustrates that the heatmap
obtained from the neural network achieved the highest performance compared to the other types.
This finding further confirms the significant role of machine learning in enhancing the MCTS method
to solve TSP problems.

E SUPPLEMENTARY DETAILS OF INCORPORATED METHODS

E.1 TRAINING OBJECTIVES

Supervised Solution Proximity. In implementation, we adopt GCN for edge prediction, which
receives the node coordinates as the input features and the output edge features would be further
mapped by an MLP to predict the probability of including this edge in the optimal solution. The
weights of the weighted binary cross-entropy loss are given as w0 = n2

(n2−2n)×c and w1 = n2

(2n)×c

where c = 2 denotes the number of classes.

Supervised Edge Regret Proximity. Using the same GCN+MLP network architecture, the model
is trained with mean squared error loss to predict the regret associated with each edge. Due to the
high computational complexity, obtaining the optimal solutions for calculating the corresponding
regret is not tractable. Therefore, supervision signals are obtained through LKH3 (Helsgaun, 2017).
The max trials parameters for TSP-50 and 100 are set as 10 and 5, respectively. In this process, a
global reference solution is computed, and the supervision for approximate regret is derived by fixing
a particular edge and assessing the degradation in the reference solution caused by fixing that edge.

Solution Distribution Proximity. In this paper, we mainly implement the discrete diffusion mod-
els (Sun & Yang, 2023; Li et al., 2023) as the representative of generative model based solvers.
Taking discrete diffusion models (Sun & Yang, 2023; Li et al., 2023) as representation in this pa-
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per, which generates solutions S0 ∈ {0, 1}n×n by T -step denoising process from random noises
ST , and the latent variables include noised solution S1:T . For each entry, the model estimates a
Bernoulli distribution indicating whether this entry should be selected. In implementation, each
entry of solution is represented by a one-hot vector3 such that S0 ∈ {0, 1}n×n×2. Following the
notations of Ho et al. (2020); Austin et al. (2021), the general framework of diffusion includes
a forward noising and a reverse denoising Markov process. The noising process takes the initial
solution S0 and progressively introduces noise to generate a sequence of latent variables S1:T . The
denoising process is learned by the model, which starts from the final latent variable ST and denoises
St at each time step to generate the preceding variables St−1 based on the instance G, eventually
recovering the target data distribution. The formulation of the denoising process is expressed as
pθ(S0:T |G) = p(ST )

∏T
t=1 pθ(St−1|St, G). The training optimization aims to align pθ(S0|G) with

the data distribution q(S0|G) using ELBO:

L =Eq

[∑
t>1

DKL [q(St−1|St,S0) ∥ pθ(St−1|St, G)]− log pθ(S0|S1, G)

]
+ C (7)

Specifically, the forward noising process is achieved by multiplying St ∈ [0, 1]N×N×2 at step t
with a forward transition probability matrix Qt ∈ [0, 1]2×2 where [Qt]i,j indicates the probability

of transforming Ei in each entry to Ej . We set Qt =

[
βt 1− βt

1− βt βt

]
(Austin et al., 2021),

where βt ∈ [0, 1] such that the transition matrix is doubly stochastic with strictly positive entries,
ensuring that the stationary distribution is uniform which is an unbiased prior for sampling. The
noising process for each step and the t-step marginal are formulated as:

q(St|St−1) = Cat(St;p = St−1Qt) and q(St|S0) = Cat(St;p = S0Qt) (8)

where Cat(S;p) is a categorical distribution over N one-hot variables with probabilities given by
vector p and Qt = Q1Q2 · · ·Qt. Through Bayes’ theorem, the posterior can be achieved as:

q(St−1|St,S0) =
q(St|St−1,S0)q(St−1|S0)

q(St|S0)
= Cat

(
St−1;p =

StQ
⊤
t ⊙ S0Qt−1

S0QtS
⊤
t

)
(9)

The neural network is trained to predict the logits of the distribution p̃θ(S̃0|St, G), such that the
denoising process can be parameterized through q(St−1|St, S̃0):

pθ(St−1|St) ∝
∑
S̃0

q(St−1|St, S̃0)p̃θ(S̃0|St, G) (10)

Reinforcement Solving Objective. For edge prediction functionality, to calculate the gradient
estimation by REINFORCE as presented in Eq. 4, we follow Qiu et al. (2022) to build the auxiliary
distribution for TSP. Representing the solution as a permutation π, the auxiliary distribution can be
formulated as:

qθ(π|G) :=

n−1∑
j=0

1

n
· qθ(π|π0 = j,G) =

n−1∑
j=0

1

n
·
n−1∏
i=1

qθ(πi|π<i, G) =

n−1∑
j=0

1

n
·
n−1∏
i=1

exp(Ĥπt−1,πt)∑n
j=i exp(Ĥπt−1,πt)

(11)
where Ĥ represents the estimated edge heatmap. With this auxiliary distribution, in each REIN-
FORCE update, we sample 2,000 samples for TSP-50/100 and 120 samples for TSP-500 from
qθ(π|G) to estimate the gradients.

For the learning functionality of sequential node prediction, instead of establishing the per-step
node heatmap from the estimated edge heatmap, sequence models decode each step’s node heatmap
sequentially. The attention based encoder-decoder model defines a stochastic policy p(π|G) by
modeling pθ(πt|πt−1, G) at each step. The encoder produces embeddings of all the nodes and the
decoder takes the node embeddings, and context of the current state as input, then it uses the attention
mechanism to output the attention map over the nodes. With visited nodes masked, the attention map
over other unvisited nodes serves as the per-step node heatmap. The gradients are estimated by Eq. 4,
where the auxiliary distribution is established upon node heatmaps.

3Each entry with [0, 1] indicates that it is included in S and [1, 0] indicates the opposite.
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The symmetric baseline on top of the sequential node prediction objective optimized with RL is
implemented referring to Kim et al. (2022). The training objective leverages the symmetricities of
CO by incorporating the regularization loss of invariant representation Linv, the REINFORCE loss
with solution symmetricity regularization Lss, and the REINFORCE loss with both solution and
problem symmetricity regularization Lps. The final loss is written as Ltotal = Lps + αLinv + βLss.
Lss regularizes the symmetric solutions to have the same objective values:

Lss = −Epθ(π|G)[R(π;G)]

∇Lss ≈ − 1

K

K∑
k=1

[
[R(πk;G)− 1

K

K∑
k=1

R(πk;G)]∇θ log pθ

]
(12)

where {πk}Kk=1 are the solutions from pθ(π|G). Lps regularizes the problem symmetricity when two
problems have identical optimal solution sets, which is obtained through rotation:

Lps = −EQl∼QEpθ(π|Ql(G))[R(π;G)]

∇Lss ≈ − 1

LK

L∑
l=1

K∑
k=1

[
[R(πl,k;G)− 1

LK

L∑
l=1

K∑
k=1

R(πl,k;G)]∇θ log pθ

]
(13)

where Q is the distribution of random orthogonal matrices, Ql is the lth sampled rotation matrix, and
πl,k is the kth sample solution of the lth rotated problem. Linv regularizes the model to predict close
hidden representations of symmetric problems:

Linv = −Scos (MLP (hθ(G)) ,MLP (hθ (Q(G)))) (14)

where Scos is the cosine similarity metric, hθ is the neural feature projection, Q(G) is the rotated
problem, and MLP is a projection head.

E.2 LEARNING-BASED SEARCH

Gradient Search. Following T2T (Li et al., 2023), the algorithm starts with an initial solution
S0 and conducts several iterations to enhance the given solution. Each iteration involves adding a
certain degree of noise to disrupt the structure, denoising with objective gradient guidance to obtain a
lower-cost solution. The algorithm eventually reports the solution with the lowest objective score.
To introduce a controlled degree of disruption to the given solution, we employ S0QαT to derive
the distribution of the disrupted solution q(SαT |S0) as N Bernoulli distributions, where α serves as
a hyperparameter to control the degree of noise. Subsequently, the disrupted solution SαT can be
sampled from q(SαT |S0). From SαT , we employ pθ(St−1|St, G, y∗) to perform denoising, which
aimed at recovering a potentially lower-cost S′

0.

E.3 LOCAL SEARCH

Two-Opt. For a TSP tour sequence x1, ..., xp, xp+1, ..., xq, xq+1, ..., suppose we select two nodes xp

and xq , and perform a Twp-Opt operation by swapping the subsequence between them, the resulting
path becomes x1, ..., xp, xq, xq−1..., xp+1, xq+1. The difference between the path lengths before and
after the swap is denoted as reward = Dp,p+1 +Dq,q+1 −Dp,q −Dp+1,q+1, where Di,j represents
the distance between node i and node j. In each iteration, the two nodes that can obtain the maximum
reward are selected to perform the Twp-Opt operation. The iteration terminates when either no more
improvements or the maximum number of iterations has been reached. In the experiments of this
paper, the maximum number of iterations was set to 5,000.

Monte Carlo Tree Search. In our MCTS implementation, we adopt the framework of the MCTS
Solver (Fu et al., 2021) while refining certain design aspects.

The first improvement is the Two-Opt module. The MCTS Solver’s Two-Opt strategy involves
performing the swap immediately upon identifying a pair of nodes that can yield a gain. In contrast,
our approach aligns with the raw Two-Opt implementation, where we select the optimal pair of nodes
in each iteration.

The second aspect pertains to our observation that the MCTS derived from the MCTS Solver
underutilizes the allocated time slice. When a better solution cannot be found with the current random
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(a) TSP50

(b) TSP100

(c) TSP500

Figure 9: The relationship between the solution quality and the search time of MCTS for different
problem scales.

seed, the search terminates prematurely. Additionally, we discover that continuously replacing
the random seed somewhat guides the search toward improved solutions, especially on large-scale
problems like TSP500, where the gap of the model, which trains with solution proximity objective
with node-wise normalization, is reduced from 0.900% to 0.578%.

Based on observation and improvement, we study the optimal search time for MCTS under different
problem scales. We take the heatmap encoded by the GNN model and the tour obtained by greedy
decoding of this heatmap as a baseline for this investigation. The results are presented in Fig. 9.
Based on the results, we set the time limits for the MCTS on problems with 50, 100, and 500 nodes
as 0.005, 0.020, and 1.000 seconds, respectively.

Note that although continuous search offers benefits for small-scale problems, the gains are marginal
when weighed against the extra time spent. Therefore, to improve the solving speed, we retain the
original fixed random number scheme for the TSP50 and TSP100. However, for the TSP500 problem,
we implement the optimized scheme to enhance efficiency.
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F NETWORK ARCHITECTURE DETAILS

The network backbones include GNN variants like Graph Convolutional Networks (GCN) (Kipf &
Welling, 2016; Joshi et al., 2019), Graph Attention Networks (GAT) (Veličković et al., 2017; Kool
et al., 2018), and Scattering Attention GNN (SAG) (Min et al., 2023). In the implementation of non-
autoregressive methods, we employ GCN as the model backbone, while for autoregressive methods,
we use the transformer (Kool et al., 2018) architecture to build the sequence model, with GAT
serving as the essential network backbone. We ensure consistency in GCN and GAT implementations,
including the number of layers and feature dimensions. In particular, for the unsupervised solving
objectives for edge prediction, due to their reliance on the signal filtering capability of the SAG
network, we utilize the SAG network in the implementation of this method, while again keeping its
number of layers and feature dimensions consistent.

F.1 GRAPH CONVOLUTIONAL NETWORKS

Input Embedding Layer. Given node vector x ∈ RN×2 and weighted edge vector e ∈ RE , we
compute the sinusoidal features of each input element respectively. The denoising timestep t is
optional, and it is required when using the diffusion model. Here, N denotes the number of nodes in
the graph, and E denotes the number of edges, t ∈ τ1, . . . , τM .

x̃i = concat(x̃i,0, x̃i,1) (15)

x̃i,j = concat

(
sin

xi,j

T
0
d

, cos
xi,j

T
0
d

, sin
xi,j

T
2
d

, cos
xi,j

T
2
d

, . . . , sin
xi,j

T
d
d

, cos
xi,j

T
d
d

)
(16)

ẽi = concat

(
sin

ei

T
0
d

, cos
ei

T
0
d

, sin
ei

T
2
d

, cos
ei

T
2
d

, . . . , sin
ei

T
d
d

, cos
ei

T
d
d

)
(17)

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(18)

where d is the embedding dimension, T is a large number (usually selected as 10000), concat(·)
denotes concatenation.

Next, we compute the input features of the graph convolution layer:

x0
i = W 0

1 x̃i (19)

e0i = W 0
2 ẽi (20)

t0 = W 0
4 (ReLU(W 0

3 t̃)) (21)

where t0 ∈ Rdt , dt is the time feature embedding dimension. Specifically, for TSP, the embedding
input edge vector e is a weighted adjacency matrix, which represents the distance between different
nodes, and e0 is computed as above.

Graph Convolution Layer. Following Joshi et al. (2019), the cross-layer convolution operation is
formulated as:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +
∑
j∼i

ηlij ⊙W l
2x

l
j)) (22)

el+1
ij = eli +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) (23)

ηlij =
σ(elij)∑

j′∼i σ(e
l
ij′) + ϵ

(24)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

For TSP, we aggregate the timestep feature with the edge convolutional feature and reformulate the
update for edge features as follows:

el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) +W l

6(ReLU(t0)) (25)
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Output Layer. The prediction of the edge heatmap in TSP is as follows:

ei,j = Softmax(norm(ReLU(Wee
L
i,j))) (26)

where L is the number of GCN layers and norm is layer normalization.

F.2 GRAPH ATTENTION NETWORKS

Input Embedding Layer. Given node vector x ∈ RN×2, we compute initial dh-dimensional node
embeddings h(0)

i through a learned linear projection with parameters W x and bx: h(0)
i = W xxi + bx

Attention Layer. Following Veličković et al. (2017); Kool et al. (2018), we denote with h
(l)
1 the node

embeddings produced by layer l ∈ {1, ..., N} and the attention layer operation is formulated as:

ĥi = BNl(h
(l−1)
i +MHAl

i(h
(l−1)
1 , ..., h(l−1)

n ) (27)

h
(l)
i = BNl(ĥi + FFl ĥi) (28)

where BN represents batch normalization, MHA denotes the multi-head attention layer, and FF refers
to the node-wise fully connected feed-forward layer.

F.3 SCATTERING ATTENTION GNN

Input Embedding Layer. Given node vector x ∈ RN×2, we compute initial dh-dimensional node
embeddings H0 through a learned linear projection with parameters W x and bx: H0 = W xxi + bx

Diffusion Module. Following Min et al. (2023), the diffusion module consists of a cascade of
K ∈ N aggregation (or diffusion) layers with operations that are chosen for each node via an attention
mechanism. In each layer l, every node has access to node representations from a set of filters F that
contains a selection of low-pass and band-pass filters as follows:

flow,r(H
l−1) = ArH l−1 (29)

fband,k(H
l−1) = ΨkH

l−1 (30)

where Ψk ∈ Rn×n represents a wavelet (Wenkel et al., 2022) at scale 2k.

To assess the relevance of filter f to node v, data-driven scores sf (v) are computed. The variable H l
f

represents the outcome of applying filter f to H l−1. These scores are determined using an attention
mechanism, which can be defined as:

slf := σ(H l
f ||H l−1) al (31)

where || denotes the concatenation operation and al ∈ R2dh denotes the attention vector.

Moreover, the scores are normalized across the filters using the softmax function, denoted as αf (v) =
SoftmaxF (sf (v)). These normalized scores are stored in αl

f . Next, the node representations are
updated through the following process:

H l
agg :=

∑
f∈F

αl
f ⊙H l

f (32)

where ⊙ is the element-wise multiplication (applied separately to each column of H l
f )

Output Layer. The formulas for the output layer is as follows:

T = Softmax(ml(H l
agg)) (33)

where ml is the MLP: Rdh → Rdh .where ml is the MLP: Rdh → Rdh . For the TSP problem, T
represents the assignment matrix in the output, and subsequently, the edge heatmap will be obtained
by TV TT .
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Table 15: Design choices of existing major methods.

Method Offline Learning Offline Solving Paradigm
Learning Functionality Training Objective Learning-based Search Heuristic Search

GCN (Joshi et al., 2019) Edge Prediction Supervised Solution Proximity None Greedy / Beam Search b) c)
Att-GCN (Fu et al., 2021) Edge Prediction Supervised Solution Proximity None MCTS c)
DIMES (Qiu et al., 2022) Edge Prediction (Meta) Reinforcement Solving Objective Active Search Greedy / Sampling / MCTS b) c)
UTSP (Min et al., 2023) Edge Prediction Unsupervised Solving Objective None Best-first Local Search c)

GNNGLS (Hudson et al., 2021) Edge Regret Prediction Supervised Edge Regret Proximity None Guided Local Search c)
DIFUSCO (Sun & Yang, 2023) Solution Generation Solution Distribution Proximity None Greedy / Sampling / MCTS b) c)

T2T (Li et al., 2023) Solution Generation Solution Distribution Proximity Gradient Search Greedy / Sampling / MCTS c)
AM (Kool et al., 2018) Sequential Node Prediction Reinforcement Solving Objective None Greedy / Sampling b)

POMO (Kwon et al., 2020) Sequential Node Prediction Reinforcement Solving Objective None Greedy / Sampling b)
EAS (Hottung et al., 2021b) Sequential Node Prediction Reinforcement Solving Objective Active Search Greedy b)

Sym-NCO (Kim et al., 2022) Sequential Node Prediction Reinforcement Solving Objective None Greedy / Sampling b)

G DISCUSSION FOR THE SYNERGY OF TRAINING AND SOLVING FOR CO

Recall that the solving process of traditional CO solvers primarily involves an online solving procedure
based on manually designed heuristics, while the introduction of learning techniques has recently
brought about a paradigm shift in this field. In this section, we present the general formulation of
CO and specifically TSP, as well as three paradigms for how existing CO solvers exploit machine
learning, which serves as a design guideline for our modular framework.
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Solve Solution
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(b) Offline Learning for Direct Solving
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(c) Offline Learning in Support of Online Solving

Figure 10: Solving paradigms for existing mainstream CO solvers. Blue and orange stand for offline
and online processes, respectively.

Pure Online Solving. This paradigm, as shown in Fig. 10 (a), typically comprises classic exact (Ap-
plegate et al., 2006) and heuristic (Lin & Kernighan, 1973; Helsgaun, 2017; Fu et al., 2021; Silver
et al., 2016) solvers, which operate in a real-time manner without any prior offline learning phase.
These solvers rely solely on the data received on the fly according to some unknown distribution and
do not leverage any pre-learned knowledge or historical data. They make immediate decisions based
on the features of the current problem instance and the objective is to minimize the objective cost
for every encountered instance. This classic paradigm has been well-optimized and verified by the
operation research community.

However, instances in real-world applications are often from a specific distribution with similar
patterns and characteristics (Bengio et al., 2021), e.g., the scheduling of daily deliveries within a
particular region may exhibit commonalities. Since this paradigm learns nothing from the pre-existing
data, the computation for each instance can be inefficiently repetitive when the data exhibits structural
similarity.

Offline Learning for Direct Solving. In this paradigm as shown in Fig. 10 (b), the neural solver
undergoes an offline learning phase where it learns from historical data before engaging in online
solving. The offline learning algorithms produce predictive models that can directly predict solutions
based on the given instance features. The primary goal is to learn the predictive models that produce
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solution predictions with the minimized average estimation error (for supervised learning) or average
objective cost (for unsupervised learning) compared to the optimal solutions.

However, following the classic machine learning mechanism, the neural network is optimized
by minimizing the average objective score across the distribution of historical problem instances,
diverging from the core target of CO of seeking optimal solutions for every newly encountered
instance (Li et al., 2023; Wang & Li, 2022). Without a particular procedure of online search for
the specific instance, the predictive model struggles to adapt quality solutions to newly encountered
instances, and the typical local minima convergence limits further active search.

Offline Learning in Support of Online Solving. This paradigm, as shown in Fig. 10 (c), incorporates
an offline learning phase that complements the online solving process. During the offline phase, the
solver gathers insights from historical data, which are then leveraged to bolster and optimize the
efficiency of the online problem-solving procedures. The offline learning phase can provide valuable
support to the online solver through various means, including solution initialization for online solving
e.g. naive network prediction (Joshi et al., 2019; Fu et al., 2021), solution distribution estimation e.g.
generative modeling (Sun & Yang, 2023; Li et al., 2023), and clues to searching for higher quality
solutions e.g. regret estimation for local search (Hudson et al., 2021).

Overview. In general, offline learning as a data-driven process can serve as a complement to the
per-instance online solving process, such that the solver can excel in both efficiency in processing
instances with similar structure and generalizing to every newly encountered instance with sufficient
specialized search. Table 15 summarizes the current mainstream algorithms for the TSP problem and
categorizes them into the above paradigms to facilitate the follow-up detailed analysis.

H EXPERIMENTAL DETAILS

All the experiments are performed on GPUs of NVIDIA RTX3090 and a CPU of AMD Ryzen
Threadripper 3970X 32-Core Processor. All the test evaluations are performed on a single GPU.

H.1 IMPLEMENTATION AND HYPERPARAMETERS

Graph convolutional networks:

• Feature dimensions: the dimension of the input features for implemented graph networks
equals 2 indicating the 2D coordinates of the nodes; the feature dimension of the intermediate
layers is set as 256; The output channel dimensions of the networks are set as 2 for TSPGNN,
TSPGNNWISE, and TSPDiffusion, and 1 for TSPDIMES , TSPGNN4REG and USTP.

• Number of layers: default be set as 12.
• Sparse factor: for TSP500, in order to reduce computational and GPU memory require-

ments, the sparse factor is set as 50, which indicates that each node in the network only
considers its nearest 50 nodes for computations. While for TSP50 and TSP100, sparse
processing is typically not employed, hence their sparse factor is set as -1.

Graph attention networks:

• Feature dimensions: the feature dimension of the intermediate layers is set as 128.
• Number of layers: default be set as 3.
• Number of heads: the number of heads for the attention is set as 8.

Scattering attention GNN:

• Feature dimensions: the feature dimension of the intermediate layers is set as 64.
• Number of layers: default be set as 3.

Training objectives:

• Solution distribution proximity: We implement the model with 50 inference steps for
denoising, and the models are trained with 1000 denoising steps, i.e., T = 1000. We
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additionally follow Sun & Yang (2023); Li et al. (2023) to apply the technique of denoising
diffusion implicit models (DDIMs) (Song et al., 2020) for accelerating inference and solution
reconstruction.

• Meta learning objective: The number of epochs for the inner optimization loop is set as
100, and the learning rate is 5e-2. The outer loop can be exactly viewed as the process of
active search.

• Unsupervised solving objective: The weights of the Hamiltonian cycle losses and the no
self-loop constraints, i.e. λ1 and λ2 in Eq. 3, are set as 10 and 0.1, respectively.

Learning-based search methods:

• Gradient Search: ratio of noise adding in rewrite steps equals 0.4; the number of rewriting
steps i.e. guided denoising steps is set as 5 for TSP-50 and 100, and 10 for TSP-500.

• Active Search: as steps is set as 100 and as samples is set as 1000.

Improved search methods:

• Two-opt Search: The maximum number of iterations is set as 5000.

• Guided LS: The maximum number of moves is set as 100, and the maximum search time is
limited to 10 seconds.

• MCTS: The maximum search time is one-tenth of the total number of nodes, and the
maximum search depth is 10.

H.2 DETIALS OF EXPERIMENTS

Training Details. All models are trained with a cosine learning rate schedule starting from 2× 10−4

and ending at 0. For TSP-50, we generally use 1,280,000 random instances for training and train
the models for 100 epochs. For TSP-100, we use 1,280,000 random instances and train the models
for 50 epochs. We apply curriculum learning and initialize the models from TSP-50 checkpoints.
For TSP-500, we use 128,000 random instances and train the models for 50 epochs. We also apply
curriculum learning and initialize the models from TSP-100 checkpoints.

Experimental Details of Fig. 2. To reflect the correlation between the solving performance and the
offline learning quality, we show the scatter plots for the optimality drops with the corresponding
learning objective values. During training, we equivalently sample 10 time points for recording and
additionally sample the first 5 epochs for their importance as key representatives in the trends. The
solid straight lines in the figures represent the fitted trend based on the scatters.

Experimental Details of Fig. 4. As the improvement-based search continuously optimizes within
the feasible solution space, we can output intermediate solutions at any point to observe the trajectory
of solution quality. In our experiments, we set time slots for these improvement-based algorithms
to track the variation in solution quality at different running times. Given that 2-opt operates quite
swiftly in practice, its descent process is rapid and almost appears as a straight line.

I LIMITATIONS AND BROADER IMPACTS

Limitations. The main limitation of this paper lies in the fact that our primary research revolves
around ML4TSP and has not yet fully explored all other problems. While we aim to provide insights
into the entire ML4CO domain, on the other hand, we intend to thoroughly deconstruct the existing
system to explore various aspects of the current major research. Therefore, we have chosen the widely
studied and researched TSP problem for comprehensive decomposition and investigation. This also
means that the workload of our work solely on ML4TSP is already substantial. We believe that our
exhaustive exploration of TSP could also provide valuable insights and reference points for the CO
community. Moreover, the framework can be adapted to other CO problems, where the methods
requiring reconstruction from scratch are primarily confined to problem-specific heuristic searches.

For the importance of studying ML4TSP and its reference value for other CO problems, we consider
TSP as one of the most extensively studied CO problems with the richest learning and searching
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techniques, making this analysis representative for ML4CO. Note numerous papers like Fu et al.
(2021); Min et al. (2023); Joshi et al. (2019); Hudson et al. (2021); da Costa et al. (2020) concentrate
on TSP, and it also maintains its own surveys (Pop et al., 2023; Anbuudayasankar et al., 2014;
Cheikhrouhou & Khoufi, 2021; Matai et al., 2010) and competitions like AI4TSP (Zhang et al., 2023),
highlighting its significant importance. Meanwhile, any other NP problems can reduced to TSP in
poly-time (since it is NP-hard) to solve, and problems like VRP can directly be broken down to
TSP (Luo et al., 2024).

Broader Impacts. The proposed principled and comprehensive framework for tackling combi-
natorial optimization problems can address the lack of unification and offer guidance on crucial
design principles for ML4TSP and can be generalized to ML4CO. The demonstrated advantages
of specific techniques, along with the development of new solvers, are expected to inspire further
research and innovation in the field. The strategic decoupling of existing methods and the unified
modular framework that reproduces or even enhances the performance of existing methods can
serve as the codebase and the methodology pool for further research and engineering practices. The
paper’s insights and observations underscore its potential to enhance the effectiveness of ML-based
approaches in solving complex optimization problems, ultimately benefiting various application
domains that rely on combinatorial optimization.
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