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Abstract

We propose an approach for estimating the001
latent knowledge embedded inside large lan-002
guage models (LLMs). We leverage the in-003
context learning (ICL) abilities of LLMs to es-004
timate the extent to which an LLM knows the005
facts stored in a knowledge base. Our knowl-006
edge estimator avoids reliability concerns with007
previous prompting-based methods, is both con-008
ceptually simpler and easier to apply, and we009
demonstrate that it can surface more of the la-010
tent knowledge embedded in LLMs. We also011
investigate how different design choices affect012
the performance of ICL-based knowledge es-013
timation. Using the proposed estimator, we014
perform a large-scale evaluation of the factual015
knowledge of a variety of open source LLMs,016
like OPT, Pythia, Llama(2), Mistral, Gemma,017
etc. over a large set of relations and facts from018
the Wikidata knowledge base. We observe dif-019
ferences in the factual knowledge between dif-020
ferent model families and models of different021
sizes, that some relations are consistently better022
known than others but that models differ in the023
precise facts they know, and differences in the024
knowledge of base models and their finetuned025
counterparts.026

1 Introduction027

Conversational chatbots (e.g., OpenAI’s ChatGPT)028

built around large language models (e.g., OpenAI’s029

GPT) are increasingly being used for a variety of030

information retrieval tasks such as searching for031

information or seeking recommendations related to032

real world entities like people or places (Wu et al.,033

2023; Zhu et al., 2023). A worrisome concern in034

such scenarios is the factual correctness of informa-035

tion generated by the LLMs (Peng et al., 2023; Hu036

et al., 2023a; Snyder et al., 2023; Yao et al., 2023; Ji037

et al., 2023; Zhang et al., 2023; Wang et al., 2023).038

The latent knowledge estimation problem: To039

avoid making false assertions about a real-world040

entity, an LLM first needs to have factual (true)041

knowledge about the entity. Given a prompt like 042

“Einstein was born in the year”, LLMs may gener- 043

ate both the correct answer (“1879”) and wrong 044

answers (e.g., “1878” or “1880”) with some prob- 045

abilities. If an LLM knows the fact, one can hope 046

that the probability with which it would generate 047

the correct answer would be much higher than the 048

wrong answers (Jiang et al., 2021). As LLMs are 049

typically pretrained over a Web corpus (including 050

Wikipedia data) with millions of facts about real- 051

world entities, they have the opportunity to learn 052

factual knowledge about our world and latently em- 053

bed the knowledge in their parameters. But, how 054

can we estimate the extent to which LLMs have 055

knowledge of real-world facts? 056

Reliability of latent knowledge estimates: 057

Prior works (Jiang et al., 2020; Bouraoui et al., 058

2020) followed (Petroni et al., 2019), and rep- 059

resented factual knowledge in the form of 060

triplets ⟨x, r, y⟩, where the subject x has a 061

relation of type r with the object y (e.g., 062

⟨Einstein, birth-year, 1879⟩). The central chal- 063

lenge of latent knowledge estimation is to infer y 064

given x and r by only using information extracted 065

from the LLM. Typically, the inference relies on 066

probing the LLM with prompts constructed us- 067

ing x and r and analyzing the responses. Current 068

approaches have few well-defined rules to avoid 069

prompt engineering and prompt hacking, raising 070

serious concerns about the reliability of their esti- 071

mates. Against this background, in this paper, we 072

make four primary contributions: 073

1. A simple yet reliable latent knowledge esti- 074

mator (LKE) leveraging in-context learning (ICL): 075

We propose a latent knowledge estimator (LKE) 076

that leverages in-context learning (ICL), called IC- 077

LKE, in a simple yet clever way to avoid the many 078

reliability concerns with prompting based previous 079

knowledge estimators. 080

2. Exploring the nuances of using ICL for knowl- 081

edge estimation: We investigate the impact of dif- 082
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ferent ICL design choices on the estimation of la-083

tent knowledge, such as the number of in-context084

examples, when some of the examples are unknown085

to the model or simply incorrect, as well as the se-086

quence in which they appear. While we focus on087

knowledge estimation, our findings can inform the088

application of ICL in other contexts.089

3. A comparison of IC-LKE with previous090

approaches: We empirically demonstrate that091

IC-LKE outperforms previous knowledge estima-092

tion approaches that rely on human-generated or093

machine-mined prompts across a variety of differ-094

ent open-source models and different types of fac-095

tual relations. In contrast to prompting based meth-096

ods, which are relation-specific and LLM-specific,097

IC-LKE’s design is straightforward to apply.098

4. A systematic comparison of latent knowledge099

of open source LLMs at scale: We use IC-LKE to100

evaluate the knowledge of 49 open-source LLMs101

spanning many families such as Llama(2), Gemma,102

Mistral, OPT, Pythia, etc. across a wide range of103

sizes, both with and without instruction-finetuning104

over 50 different relations and 20,000 facts from105

Wikidata. We find that models from some families106

such as Llama2, Mistral and Gemma and larger107

models know more facts than others, that models108

within the same family differ in the specific facts109

they know, despite being trained on the same data,110

and that fine-tuning reduces the amount of factual111

knowledge that can be extracted from the models.112

Related Work: Researchers have proposed sev-113

eral approaches to estimate latent knowledge from114

LLMs, which can be categorized into two ways:115

(i) Model-internals based approaches leverage the116

LLM attention map (Wang et al., 2020), activation117

function (Burns et al., 2022), or model parame-118

ters (Kazemnejad et al., 2023) to decide whether119

factual information can be extracted from the LLM.120

In our study, we rely on the probability distribu-121

tion of generated tokens in an LLM – thereby our122

method belongs to the model-responses based ap-123

proach. (ii) Model-responses based approaches –124

generally applicable to a wide range of LLM mod-125

els – often propose different prompting techniques126

to nudge the LLM to validate whether a target fact127

is stored in it (Chern et al., 2023; Sun et al., 2023;128

Wang et al., 2020; Petroni et al., 2019; Jiang et al.,129

2021; Newman et al., 2022; Jiang et al., 2020).130

Prompt-based methods differ subtly by the choice131

of prompts and evaluation criteria. Besides, the132

prompts are often brittle (Zamfirescu-Pereira et al.,133

2023; Arora et al., 2023; Sclar et al., 2023) – their 134

success depends on the hypothesis that the LLM 135

indeed understands the prompts. In our study, we 136

instead seek a minimal understanding of prompts 137

by an LLM and design a knowledge estimation 138

method based on the in-context learning. As a test 139

bed (Elsahar et al., 2018; Hu et al., 2023b; Sun 140

et al., 2023; Petroni et al., 2019; Zhu and Li, 2023; 141

Kryściński et al., 2019), we consider facts from ex- 142

isting knowledge graphs for performing knowledge 143

estimation of LLMs. 144

2 Designing Reliable LKEs 145

Today, there exist many general-purpose as well 146

as domain-specific factual knowledge bases that 147

contain a very large number (millions to billions) 148

of facts. The facts can be encapsulated as triplets, 149

represented as ⟨subject (x), relation (r), object (y)⟩. 150

These triplets offer a general way to represent fac- 151

tual knowledge about real-world entities in knowl- 152

edge graphs or other structured knowledge bases. 153

The goal of latent knowledge estimation is to in- 154

fer what fraction of the facts are known to a LLM. 155

We call methods that estimate the amount of la- 156

tent knowledge inside an LLM latent knowledge 157

estimators (LKEs). 158

2.1 Reliability concerns with existing LKEs 159

Existing approaches to estimating latent knowledge 160

in LLMs use a variety of factual knowledge tests. 161

Below, we identify several reliability concerns with 162

current designs that motivate our new LKE design. 163

1. LLM-specific restrictions on test topics: Many 164

prior works (Petroni et al., 2019; Jiang et al., 2020) 165

limit the choice of facts that can be used in tests 166

to those where the surface form of the objects (y) 167

is represented by a single token by the LLM’s to- 168

kenizer. As different LLMs use different tokeniz- 169

ers, this limitation prevents us from comparing the 170

latent knowledge across different LLMs. Further- 171

more, only popular objects tend to be represented 172

by a single token and so the resulting estimates are 173

not representative of the LLM’s knowledge of facts 174

with multi-token object representations. 175

2. Unrestricted choice of test prompts: Many 176

past works have attempted to use test prompts 177

without any restrictions, including both human- 178

generated or machine-mined prompts (Jiang et al., 179

2020; Zamfirescu-Pereira et al., 2023; Arora et al., 180

2023; Sclar et al., 2023). They typically intersperse 181

the subject x and object y between additional re- 182

lationship context-communicating tokens. Some 183
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analyze the performance of a variety of prompts184

and then pick the best-performing or use an ensem-185

ble of the best-performing prompts (Jiang et al.,186

2020; Newman et al., 2022; Fernando et al., 2023).187

However, these approaches raise two important188

concerns: First, the generated prompts, particu-189

larly those that are machine-mined, may include190

tokens that can implicitly or explicitly introduce191

additional (side-channel) information that makes192

it easier to answer the question. As a specific ex-193

ample, in a prior work (Jiang et al., 2020), for the194

relation “position held", the prompt “x has the195

position of y" performed worse than “x is elected196

y". But, note that the second prompt potentially197

introduces a side-channel: it implicitly rules out198

answer choices for unelected positions like Pro-199

fessor and favors elected positions like President.200

Second, selecting from an unbounded number of201

potential prompt choices raises concerns about the202

complexity of LKEs (the size of the set of all con-203

sidered prompts) and the potential for over-fitting,204

which in turn brings the reliability of estimates into205

question.206

3. Reliance on LLMs’ meta-linguistic judgments:207

Prior works used prompts (Chern et al., 2023; Sun208

et al., 2023; Wang et al., 2020; Petroni et al., 2019;209

Jiang et al., 2021; Newman et al., 2022; Jiang et al.,210

2020) for communicating the question as well as211

the expected format of answers. But, the scores (es-212

timates) resulting from such prompt-based testing213

conflate an LLM’s latent knowledge of the facts214

with the LLM’s meta-linguistic judgments, i.e., the215

LLM’s ability to comprehend the prompt, under-216

stand the question embedded within the prompt and217

output the answer in some expected format (Hu218

and Levy, 2023). The impact on meta-linguistic219

judgments can be seen from the fact that multiple220

semantically-equivalent prompts result in different221

responses from an LLM and thereby, different esti-222

mates of latent knowledge (Hu and Levy, 2023).223

Motivated from the above, we derive the follow-224

ing three design principles for LKEs. A reliable225

LKE design should:226

• DP1: generate estimates for any factual topic227

and tokenization scheme.228

• DP2: limit arbitrary prompt engineering to229

minimize over-fitting & side-channels.230

• DP3: minimize reliance on meta-linguistic231

prompts.232

2.2 A new In Context learning based LKE 233

(IC-LKE) 234

Our goal is to estimate whether an LLM knows a 235

fact f = ⟨x, r, y⟩. The challenge is to probe the 236

LLM and evaluate its responses in a way compati- 237

ble with the design principles set in Section 2.1. 238

Key idea: Leverage in-context learning. 239

LLMs have shown to exhibit In-Context Learning 240

(ICL) abilities (Brown et al., 2020) that allow them 241

to infer and extrapolate patterns in their inputs. We 242

leverage this ability to communicate information 243

about relation r without additional instructions to 244

the LLM (DP3) by providing it with a list of facts 245

based on r. 246

Example 1. Assume that we want to probe for 247

whether an LLM knows the fact ⟨ Einstein, birth- 248

year, 1879 ⟩. We can use other facts for the birth- 249

year relation such as ⟨ Feynman, birth-year, 1918 250

⟩, ⟨ Heisenberg, birth-year, 1901 ⟩ to construct an 251

input “Feynman 1918 Heisenberg 1901 Einstein”. 252

By providing in-context examples to the model, 253

we communicate the relation between subjects and 254

objects. To correctly extrapolate the pattern, the 255

model needs to retrieve Einstein’s birth-year as the 256

completion of the sequence. 257

More formally, given a training dataset of facts 258

Fr = {⟨xi, r, yi⟩}ni=1 for relation r, as well as a 259

test fact f = ⟨x, r, y⟩, we leverage ICL to construct 260

prompts that elicit information about f as 261

σ(x, r) = x1 y1 . . . xn yn x (1) 262

We use r to pick facts from Fr and concatenate the 263

tokens corresponding to the subjects and objects, 264

but do not include any other information about r 265

(DP2). We use space “ ” as the separator token and 266

discuss this choice in more detail in Section 4.1. 267

We discuss other design choices for IC-LKE con- 268

struction in Section 3. When further details are not 269

needed, we simply refer to some input as σ. 270

Evaluating model outputs. We evaluate the 271

output of model θ for input σ(x, r) based on the 272

probabilities θ assigns to the tokens of the corre- 273

sponding object y. To allow for objects y consisting 274

of multiple tokens and to be independent of the spe- 275

cific tokenization scheme (DP1), we compute the 276

object probability over multiple tokens as follows: 277

Pθ(y | σ) =
|y|∏
i=2

Pθ(y
(i) | y[i−1:1] σ) · Pθ(y

(1) | σ), (2) 278

where |y| denotes the number of tokens in y and 279

Pθ(y
(i) | y[i−1:1] σ) is the conditional probability 280
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of predicting the i-th token y(i) of y given the pre-281

ceding tokens y(i−1), . . . , y(1), and σ.282

Multiple-choice testing. To determine whether283

model θ knows a fact f = ⟨x, r, y∗⟩, we test284

whether given input σ(x, r), θ can choose the cor-285

rect object y∗ from among a set of M unique al-286

ternatives. Specifically, given fact f , we derive a287

test instance called choice c = ⟨x, r, y∗,Y⟩, where288

Y is a set of M plausible but incorrect alternatives.289

We discuss the choice of Y in Section 4.290

predθ(c) ≜ argmax
y ∈{y∗}∪Y

Pθ(y | σ(x, r)) (3)291

denotes the prediction of θ for choice c =292

⟨x, r, y∗,Y⟩. The predicted object has the maxi-293

mal object probability within {y∗} ∪ Y .294

Evaluation Metric. We evaluate the factual295

knowledge of model θ over a dataset of choices296

D = {ci}ni=1 using multiple choice accuracy:297

acc(θ,D) ≜

∑
c∈D δ (y∗ = predθ(c))

|D|
(4)298

where δ(·) is the indicator function.299

The IC-LKE design satisfies the knowledge300

estimation design principles. The IC-LKE design301

proposed here satisfies the design principles from302

Section 2.1, since303

• DP1: its relative probability comparisons be-304

tween different answer-options make it appli-305

cable to arbitrary types of facts.306

• DP2: it uses the same, minimal prompt design307

based on ICL across all relations.308

• DP3: its only requirement is that the LLM is309

able to use ICL, no further assumptions about310

any metalinguistic abilities are made.311

3 Exploring the design space of IC-LKE312

By design, IC-LKE avoids many limitations of313

prior works. However, IC-LKE introduces a few314

design choices for the input, i.e., σ(x, r) in Equa-315

tion (1). One must decide the right n, the num-316

ber of in-context examples included in σ(x, r).317

Further, it is unclear how IC-LKE would be im-318

pacted when some of the chosen examples are un-319

known to the model or are incorrect. We study320

both these factors in detail by varying n and in-321

troducing unknown or incorrect examples within322

these n examples. These experiments allows us to323

better understand the number of in-context exam-324

ples needed and how robust IC-LKE is to several325
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Figure 1: [Influence of the number of in-context
examples] We examine how varying numbers of in-
context examples influence the accuracy (calculated as
defined in Eq 5) across different LLMs. The vertical
dashed line indicates the number of examples at which
the models achieve 95% of their respective stable accu-
racy at 50 examples.

types of noise in these in-context examples. We 326

perform an in-depth empirical analysis on a Nobel 327

Laureate dataset for the relation ‘birth year’ (de- 328

tails in A.1). The dataset consists of facts formatted 329

as ⟨Person(x), birth-year(r),YYYY(y)⟩. 330

More knowledgeable models need fewer in- 331

context examples, but a small number suffices 332

for most models. In Figure 1, we report knowl- 333

edge estimation accuracy (Eq. (5)) for different 334

LLMs evaluated on 900 test samples, with varying 335

numbers of in-context examples (n) by randomly 336

sampling from the training set using five random 337

seeds. With an increasing number of in-context ex- 338

amples, the mean accuracy increases while the stan- 339

dard deviation decreases in different LLMs, i.e., the 340

models gradually converge to a stable performance. 341

Using dashed vertical lines, we report the minimum 342

number of examples required by different LLMs to 343

achieve 95% of the accuracy at 50 in-context exam- 344

ples. Interestingly, LLMs with higher estimation 345

accuracy tend to require fewer in-context examples 346

compared to those with lower accuracy. A poten- 347

tial explanation for this behavior is that in order to 348

infer the relation r, models need to comprehend 349

the examples presented in the prompt. Therefore, 350

less knowledgeable models need to see more ex- 351

amples in order to infer r. To further investigate 352

which individual facts may be known or unknown 353

to a model, we look at the generation probability of 354

in-context objects in 200 correct subject (x)-object 355

(y) pairs using the Mistral-7B model, as shown in 356

Figure 2a. Similar results for additional models 357

are presented in Appendix E. Note that here we 358

are only looking at probabilities of the object (y) 359

for in-context examples given previous x y pairs in 360

the input to understand which of these samples are 361

known by the LLM. The Mistral-7B model demon- 362
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Figure 2: [Variation in object probabilities of Nobel laureate data using Mistral-7B] Figure 2a illustrates the
probability of each object at various positions in the prompt. We show the impact on probabilities after replacing
objects with unknown ones at randomly distributed positions in Figure 2b and at continuous positions in Figure 2d.
Similarly, we also show the impact of incorrect examples when replaced at randomly distributed positions (Figure 2d)
and continuous positions (Figure 2e). In all plots, the horizontal dashed line shows the average probability of the
correct examples (blue dots).

strates a gradual increase in probability for gener-363

ating correct objects as we go from left to right364

on the x-axis (note that for a point on the x-axis,365

points before it are in context, thus points on the366

right have more context to leverage) in Figure 2a,367

stabilizing at a mean probability of approximately368

85%. We also see that some objects at later po-369

sitions have a lower generation probability. This370

suggests that the LLM may be less confident about371

its knowledge of the facts corresponding to them.372

We can leverage the token generation probability373

as a signal of LLM’s confidence when evaluating374

LKEs (see Appendix D).375

Models are robust to unknown examples.376

Next, we investigate the robustness of estimates377

to occurrence of unknown examples. We insert un-378

known examples in two distinct ways: one where379

we randomly distribute the occurrence of unknown380

examples throughout σ(x, r), and another more381

extreme scenario where we replace a continuous382

block of examples with unknown ones. We chose383

40 out of the 200 examples and replaced them with384

unknown examples created using fictitious names385

and birth years 1. Our findings are shown in Fig-386

ures 2b and 2c for random and continuous replace-387

ment respectively. Unknown examples are marked388

by red dots, examples immediately following un-389

known ones in cyan dots and the rest in blue dots.390

The unknown examples show generation probabili-391

ties close to zero, confirming the LLM’s tendency392

to assign low probabilities to unknown data. How-393

ever, interestingly, unknown examples minimally394

impact surrounding data in both settings.395

Models are vulnerable to incorrect examples.396

We investigate the impact of including incorrect ex-397

amples in σ(x, r). Similar to the setup for unknown398

1generated via https://en.namefake.com/api

examples, we also insert 40 (out of 200) incorrect 399

examples randomly (Figure 2d) and simultaneously 400

(Figure 2e). In our experiments, these incorrect ex- 401

amples are created by altering the birth years of 402

known Nobel laureates and are marked by red dots 403

in the plots. In contrast to inserting unknown exam- 404

ples, the LLM significantly struggles with incorrect 405

examples. Injection of such examples detrimentally 406

affects the LLM’s performance in both settings. We 407

highlight one randomly marked yellow star exam- 408

ple in Figure 2a, Figure 2b, and Figure 2d to show 409

how the presence of incorrect samples brings down 410

the probability of surrounding points. 411

Summary: LLMs can identify the relation pat- 412

tern of subject-object pairs even with a small set 413

of in-context examples in the prompt. LLMs are 414

relatively robust to unknown examples, but their 415

ability to recollect factual knowledge is vulnera- 416

ble to incorrect examples, particularly when they 417

appear in a continuous sequence. Our findings al- 418

lude to the effectiveness of designing an IC-LKE, 419

where we carefully place correct examples from a 420

training dataset and proceed to estimate the latent 421

knowledge of the LLM on examples from the test 422

set. Furthermore, the findings also motivate us to 423

design a more efficient in-context learning based 424

LKE, called EIC-LKE, that can process multiple 425

test examples simultaneously in a single prompt 426

where training examples are placed preceding each 427

test example, see more details in the Appendix F. 428

4 Experiments and Results 429

We present the empirical findings of IC-LKE (as 430

well as the efficient version, EIC-LKE) on the 431

knowledge-estimation task on 49 open-source (pre- 432

trained and fine-tuned) LLMs across different LLM 433

families and sizes. We enlist models and their sim- 434

plified names used in this paper in Appendix 6, Ta- 435
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Figure 3: [Performance comparison for different la-
tent knowledge extractors] We compare the accuracy
of IC-LKE and EIC-LKE with the baseline method
(Jiang et al., 2020) across 12 relations from T-REx-MC.

ble 6, and provide a leader-board of models based436

on IC-LKE in Table 7.437

Dataset: We evaluate the knowledge of models438

on a large set of facts from the T-REx dataset2 (El-439

sahar et al., 2018). We selected relations from T-440

REx with at least 500 samples and linked to a min-441

imum of 100 unique objects. This filtering leads to442

50 distinct relations spanning categories like birth443

dates, directorial roles, parental relationships, and444

educational lineage. The resulting T-REx Multiple445

Choice (T-REx-MC) dataset comprises 5,000 train-446

ing and 20,000 test facts. Appendix A contains447

detailed information on the dataset and relations.448

Choosing the set Y & its impact on test dif-449

ficulty: For each fact ⟨subject (x), relation (r),450

object (y∗)⟩, we generate alternative objects Y to451

create multiple choices. Note that the alternative452

objects in Y are viable choices and cannot be easily453

eliminated. Therefore, for each fact ⟨x, r, y∗⟩ we454

select y ∈ Y from other facts in the dataset that455

share the same relationship r. For computational456

feasibility, we sample |Y| = 99 alternative objects457

per fact, so that a random guess between {y∗} ∪ Y458

has a 0.01 probability of being correct.459

4.1 IC-LKE vs. prompt-based approaches460

We compare the performance of IC-LKE and EIC-461

LKE with the existing prompt-based approaches462

(Jiang et al., 2020) and report two key takeaways.463

IC-LKE outperforms prompt-based ap-464

proaches. We randomly sample three human-465

generated prompts (HGP) and machine-mined466

prompts (MMP) from (Jiang et al., 2020) for 12467

common relations between T-REx-MC and (Jiang468

et al., 2020). The HGPs and MMPs for all relations469

are in Appendix G. In Figure 3, IC-LKE and EIC-470

LKE outperform HGP and MMP in terms of higher471

2https://huggingface.co/datasets/relbert/t_rex
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Figure 4: [Influence of different separators] We re-
place the ‘[space]’ token separating the subject-object
pairs with human-generated prompts (HGP, red back-
ground) and machine-mined prompts (MMP, blue back-
ground) for the relation ‘original broadcaster’. Accuracy
performance is agnostic to the separators.

mean accuracy across different models and 12 re- 472

lations. Also, IC-LKE and EIC-LKE have lower 473

standard deviation than HGP and MMP, indicating 474

a higher consistency of IC-LKE and EIC-LKE on 475

knowledge estimation tasks. In Appendix H.2, we 476

report relation specific results, where IC-LKE and 477

EIC-LKE estimate higher factual knowledge than 478

the existing works in most relations, thereby demon- 479

strating the superiority of IC-LKE and EIC-LKE 480

over existing methods. 481

IC-LKE is a flexible and effective knowledge 482

estimator. We adapt IC-LKE by replacing the sepa- 483

rator ‘[space]’ with three separators from HGP and 484

MMP each for the relation ‘original broadcaster’ 485

and report estimation accuracy in Figure 4. We can 486

observe that ‘[space]’ token demonstrates an equiv- 487

alent performance with semantically meaningful 488

prompts via HGP and MMP. Therefore, adding 489

relation specific separators has a limited impact 490

on factual knowledge estimation, as long as the 491

subject-object pairs are correctly presented. Fur- 492

thermore, finding relation-specifc prompts often 493

require hand-crafted efforts vs. an automatic in- 494

context based approach like ours where (subject, 495

object) pairs are used. Therefore, IC-LKE can po- 496

tentially extend to any facts from knowledge graphs 497

over any LLM while HGP and MMP requires addi- 498

tional supervision and relation-specific validation. 499

4.2 Evaluating Diverse Models and Relations 500

We investigate the performance of 35 pre-trained 501

LLMs and 14 fine-tuned LLMs across 50 rela- 502

tions using the IC-LKE framework. Our analy- 503

sis is designed to uncover nuanced insights into 504

the knowledge levels and structures within these 505

models. We will examine the results through two 506

primary lenses: (1) the variations in knowledge 507

across different model families, and (2) the influ- 508

ence of model size and fine-tuning within the same 509
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Figure 5: [Accuracy for 35 pre-trained LLMs on
the 50 different relations in T-REx-MC] Models are
grouped by family and arranged from left to right based
on the accuracy of the model closest to 7 billion param-
eters. Within each family, models are ordered by their
average accuracy.
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Figure 6: [Pearson correlation coefficients between
model families] We compute the Pearson correlation co-
efficients between each pair of models and then compute
the average correlation across the same model family.

model family on their knowledge attributes.510

4.2.1 Comparing different LLMs families511

Some model families are consistently more512

knowledgeable than the rest. We sort the model513

families based on the performance of the model514

closest to 7B parameters 3, and the models within515

each family based on average accuracy across 50516

relations. Figure 5 shows that the Mistral, Llama2,517

Gemma, and Llama families have higher perfor-518

mance on most of the relations than Pythia, Bloom,519

and OPT, indicating their lower factual knowledge.520

Different model families align in their relative521

factual knowledge. We investigate the correla-522

37B parameters is a good reference point since all model
families except GPT-NEO-X have models within a gap of ≤
1B parameters: Mistral-7B, Gemma-7B, Llama-7B, Falcon-
7B, MPT-7B, OPT-6.7B, GPT-J-6B, Pythia-6.9B, and Bloom-
7.1B.

tions between each model pair’s performance over 523

50 relations to assess the agreement in their knowl- 524

edge levels of the 50 relations. We compute the 525

average correlations within each model family (e.g. 526

Llama2 7B, 13B, 70B) in Figure 6. Despite differ- 527

ences in architecture and training datasets among 528

model families, there is a significant consensus 529

(correlation > 0.6, see Figure 14) regarding the hi- 530

erarchy of knowledge across various relations. We 531

also compile the three best and worst-performing 532

relations for each model in Table 9, illustrating the 533

consensus among all models. 534

4.2.2 Comparing within the same LLM family 535

Larger models embed more knowledge. We 536

show in Figure 5 that, within each model family, 537

bigger models (e.g. Llama-65B) generally outper- 538

form their smaller counterparts (e.g. Llama-13B) 539

in terms of accuracy with an exception in the OPT 540

family. Models within the same family are typically 541

pre-trained on the same datasets (Biderman et al., 542

2023; Zhang et al., 2022; Touvron et al., 2023). 543

Thus, this observation suggests that, when trained 544

on identical datasets, the larger models capture a 545

broader set of facts. 546

Despite being trained on the same data, mod- 547

els might remember different facts. From these 548

results, however, it is not clear if the larger mod- 549

els are subsuming smaller models in their factual 550

knowledge, i.e., are the larger models also correct 551

on the facts that the smaller models are correct on? 552

To assess this, we compute the subsumption rate η: 553

η(θ1|θ2,F) =
|ϕ(θ1,F) ∩ ϕ(θ2,F)|

|ϕ(θ1,F)| 554

i.e., the fraction of facts from F known by smaller 555

model θ1 that larger model θ2 also knows. A 556

subsumption rate of ∼ 1 indicates that all of the 557

smaller model’s knowledge is also contained in 558

the larger model. To ensure a meaningful com- 559

parison across scales, we only consider models 560

that were pre-trained using the same training data. 561

Table 1 shows the average subsumption rate (η) be- 562

tween the largest and smallest models in a family, 563

as well as the average accuracy, over all relations 564

for different model families. Interestingly, η is rela- 565

tively low (< 0.5) for OPT, Pythia and Bloom (i.e., 566

the larger models know less than 50% of what the 567

smaller models know) and only reaching up to 0.8 568

for Gemma, Llama and Llama-2. Therefore, even 569

though models within each family are trained on 570

the same datasets and generally agree on the rel- 571

ative knowledge of different relations (Figure 6), 572
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Table 1: Average subsumption rate (η) for different
model families over the relations in T-REx-MC. Despite
being trained on the same datasets, models of different
sizes differ in the specific facts that they know (low η).

Smallest Model Largest Model

Family #Parameters Accuracy #Parameters Accuracy η

Llama 7B 0.699 65B 0.836 0.769
Llama-2 7B 0.741 70B 0.846 0.801
Gemma 2B 0.666 7B 0.750 0.710

OPT 125m 0.430 30B 0.588 0.481
Pythia 70m 0.334 12B 0.648 0.403
Bloom 560m 0.410 7.1B 0.548 0.498
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Figure 7: [Accuracy of base vs chat-finetuned models]
We see that finetuned versions (in lighter shades) obtain
lower accuracy across the relations in T-REx-MC than
pre-trained models (in darker shades).

there are differences in the knowledge of specific573

facts they retain from their training data.574

Fine-tuning reduces latent knowledge. Finally,575

we investigate the effects of chat-based fine-tuning576

on the factual knowledge of models. Base lan-577

guage models are often fine-tuned (using a mix578

of supervised and reinforcement learning (Ouyang579

et al., 2022)) to make them better at following in-580

structions. While prior works have shown that this581

makes the models better at various benchmarks, it’s582

unclear how such fine-tuning affects latent knowl-583

edge. Figure 7 illustrates the comparative accuracy584

of pre-trained models and their fine-tuned counter-585

parts. In almost all cases, the fine-tuned models ob-586

tain lower accuracy than their base versions. This587

suggests that fine-tuning reduces the amount of588

extractable latent knowledge in the models. A sim-589

ilar observation was also made by Yu et al. (2024).590

We observe a similar trend using EIC-LKE in Ap-591

pendix H.6, Figure 15. Additional results on evalu-592

ating generated outputs (using 50 tokens) in Figure593

16 reveal the same pattern. To further assess if594

the fine-tuned models are acquiring new knowl-595

edge, we compute the subsumption rate between596

pre-trained and fine-tuned versions (Table 10). We597

find that most of the latent knowledge in fine-tuned598

models is already present in base models (high η),599

thus indicating, that fine-tuned models may not be600

obtaining additional knowledge.601

5 Concluding Discussion 602

In this work, we investigate a new way to estimate 603

latent factual knowledge from an LLM. Unlike 604

prior approaches that use prompting, our method re- 605

lies on in-context learning. Our method not only ad- 606

dresses many reliability concerns with prompting, 607

but it also recollects (at time significantly) more 608

factual knowledge than prompting. In contrast 609

to prompting, which requires relationship-specific 610

and LLM-specific prompt engineering, our method 611

can be applied with minimal effort to test factual 612

knowledge of relations across a variety of struc- 613

tured knowledge bases and LLMs. This ability 614

enables us to compare the latent knowledge cap- 615

tured by many different families of open-source 616

LLMs; we expect our results to be of interest to 617

designers of these LLMs. Finally, to design our in- 618

context learning based LKE, we explore the impact 619

of the number and ordering of correct, incorrect, 620

and unknown examples used as inputs; our find- 621

ings may be of independent interest to developing 622

a better understanding of in-context learning. 623

A fundamental question posed by our and prior 624

work on estimating latent knowledge in LLMs: 625

What does it mean for an LLM to know a fact? 626

Suppose we tried to infer if an LLM knows the 627

capital of Germany using the input "France Paris; 628

Spain Madrid; Germany " and suppose the answer 629

were Berlin. What we have learnt is that the LLM 630

knows that the relationship r between Germany and 631

Berlin is similar to that between France and Paris 632

or Spain and Madrid. What we have not learned is 633

whether the LLM knows that the relation r is called 634

"capital" in English or "hauptstadt" in German. The 635

latter is revealed by prompts such as "The capital 636

of Germany is ". But, such prompts don’t reveal 637

whether the LLM knows that what Berlin means to 638

Germany is similar to what Paris means to France. 639

Is one type of knowing facts better than other? 640

It is difficult to answer in general. Neither type of 641

knowing guarantees that the knowledge can be put 642

to use in different contexts and tasks, such as when 643

we ask the LLM where the parliament of Germany 644

is located. Nevertheless, one clear takeaway from 645

our study is related to how factual knowledge is la- 646

tently embedded in an LLM. We show that more fac- 647

tual knowledge can be recollected using in-context 648

learning, i.e., the representations of subjects and 649

objects that share the same relationship, than by 650

prompting with the name of their relationship. 651
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6 Limitations652

This study contributes to advancing our understand-653

ing of latent factual knowledge in LLMs through an654

innovative in-context learning approach. However,655

it is essential to acknowledge the inherent limita-656

tions of our work. While the use of in-context657

learning aims to mitigate the influence of prompt658

engineering and the reliability issues associated659

with previous prompting methods, it introduces its660

own biases based on the selection and formulation661

of in-context examples. We discus these in detail662

in Section 3. For example, the choice of which663

examples to include, their order, and their factual664

accuracy can influence model responses, and thus665

these in-context examples must be carefully curated666

for reliable latent knowledge estimation. Addition-667

ally, our study’s limitation in testing simple-format668

facts underlines a critical gap in assessing LLMs’669

complex reasoning abilities. The knowledge esti-670

mation framework employed predominantly hinges671

on the LLM’s capacity to correctly recall or recog-672

nize factual information from a given set of triplets673

or structured prompts. This narrows the scope of674

evaluation to straightforward factual recall, thereby675

overlooking the models’ capability to engage in676

more sophisticated cognitive processes such as rea-677

soning, synthesis, and inference, which we leave678

as open avenues for future work.679
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A Dataset885

A.1 Creation of Nobel laureates dataset from Wikidata886

The Nobel Dataset is a collection of biographical information about all Nobel laureates up until the year887

2022, totaling 954 individuals. This dataset was curated using data obtained from Wikidata’s querying888

service4. The following attributes are included for each laureate:889

• Name: The full name of the Nobel laureate.890

• Birth Year: The year in which the laureate was born.891

• Award Year: The year(s) in which the laureate was awarded the Nobel Prize.892

• Nature of Award: A brief description of the reason for the award, including the field of the Nobel893

Prize (e.g., Physics, Peace).894

• Gender: The gender of the laureate.895

Here are some examples from the Nobel Dataset:896

Table 2: Excerpt from the Nobel Dataset

Name Birth Year Award Year Nature of Award Gender
Albert Einstein 1879 1921 Physics male
Louis de Broglie 1892 1929 Physics male
Carl D. Anderson 1905 1936 Physics male
Polykarp Kusch 1911 1955 Physics male
Melvin Schwartz 1932 1988 Physics male
Jerome I. Friedman 1930 1990 Physics male

A.2 Creation of multiple choices from T-REx: TREx-MC897

T-REx (Elsahar et al., 2018) is a large-scale alignment dataset that aligns between Wikipedia abstracts and898

Wikipedia triples. We have utilized the processed version of T-REx available on HuggingFace 5 for our899

experiments. We filtered out the relations that have more than 500 facts and 100 unique object entities.900

The unique objects ensure having 100 feasible multiple-choices for each fact in each relation. We curated901

50 relations for our dataset TREx-MC that essentially consists of < subject, relation, multiple choices >.902

The multiple choices comprise the correct answer along with 99 other potential choices. We list the 50903

relations in Table 3 below.904

The following attributes are included in TREx-MC dataset for each relation:905

• Subject : The subject entity for each fact.906

• Object: The object entity or the correct answer for each fact.907

• Multiple choices: The list of other potential choices for each fact.908

• Title : The Wikipedia title for each fact.909

• Text: The Wikipedia abstract corresponding to each fact.910

Some examples from the T-REx-MC dataset for 2 relations are listed in Table 4911

4https://query.wikidata.org/
5https://huggingface.co/datasets/relbert/t_rex
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Table 3: List of 50 relations from T-REx-MC

date of
birth

date of
death director father spouse child sibling composer is a

tributary of student of

instance of cast
member genre

contains the
administrative
territorial
entity

educated
at

parent
taxon

screen
writer performer capital producer

is made by named
after developer publisher founded

by
drafted
by

has
played
at

part of
the series manufacturer production

company

mother cause of
death

has
subsidiary creates point in

time inception publication
date

languages
spoken,
written
or signed

original
language
of film or
TV show

official
language

native
language

position
played
on team /
speciality

original
broadcaster

record
label author discoverer

or inventor characters lyrics by distributed by home venue

Table 4: Excerpts from T-REx-MC Dataset

Subject Object Multiple choices Title Text
Date of birth

Giovanni Bia 24 October 1968
[’26 September 1981’,
’20 February 1981’,
..,’20 September 1960’]

Giovanni Bia

Giovanni Bia
(born 24 October 1968)
is a former
Italian footballer...

Brian May 19 July 1947
[’24 December 1931’,
’1 December 1976’,
... ’23 August 1964]

Brian May
Brian Harold May, CBE
(born 19 July 1947)
is an English musician...

Composer

Mexico Trilogy Robert Rodriguez [’Fred Schneider’, ’Brandy’,
.., ’Tommaso Traetta’] Mexico Trilogy

The Mexico Trilogy or
Mariachi Trilogy
(also Desperado Trilogy
on some DVD releases)
is a series of American..

Chelsea Walls Jeff Tweedy
[’Carmine Coppola’,
’Jimmy Chi’,
...’Maurice Ravel’]

Chelsea Walls

Chelsea Walls is a 2001
independent film
directed by Ethan Hawke
and released by Lions Gate
Entertainment.
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B Inference Setup912

We experiment with and use three different inference setups:913

1. Transformers Based Setup: This setup utilizes the utilities present in the transformers library (Wolf914

et al., 2020) to obtain the log probabilities for generating the different options.915

2. vLLM Based Setup: vLLM ((Kwon et al., 2023)) is a fast inference library for large language models916

(LLMs). It efficiently manages attention key and value memory using PagedAttention. We observed917

considerable speed boosts for all 3 LKEs compared to the standard Transformers API.918

3. SGLang Based Setup: SGLang (Zheng et al., 2023) is a structured generation language designed919

for large language models (LLMs). It speeds up LLM interactions and provides enhanced control920

through tight integration of its frontend language and backend runtime system. SGLang also leverages921

Radix Attention to cache common components across queries in the KV cache, enabling substantial922

speedups. We observed sizable speed boosts for IC-LKE and EIC-LKE over vLLM. However, we923

are constrained by SGLang’s limited model family support at the moment, and only utilize it for the924

Llama, Mistral, and Mixtral families.925
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C Implementation Details 926

C.1 IC-LKE 927

IC-LKE leverages 50 randomly chosen samples from the training data as in-context examples but does 928

not use the relation name. The base prompt is now composed of 50 different examples followed by the 929

name of the entity being tested. A sample would be “Albert Einstein 14 March 1879 Ernest Rutherford 30 930

August 1871 ... J.J. Thomson 18 December 1856 Max Planck." 931

The subsequent process is the same as PB-LKE . The process involves adding 100 different choices to 932

the base prompt. A single forward pass is conducted for each sequence, generating log probabilities for 933

the entire sequence. The common part, represented by the tokens for the base prompt is then removed 934

from the tokens of the concatenated base prompt and option resulting in the log probabilities for the option. 935

Similar to PB-LKE , if the option is tokenized into multiple tokens, a single probability value is obtained 936

by multiplying the individual token probabilities. The resulting values are normalized across multiple 937

choices, and the option with the highest probability is selected as the correct answer. We use the vLLM 938

Based & SGLang Based Setup for this LKE. 939

C.2 EIC-LKE 940

The EIC-LKE retrieves all 100 samples from our training dataset, initially maintaining them in a single 941

sequence. Then, starting from the 50th training sample, we intersperse our test sample with all the choices 942

every 5 examples. This results in a sequence that includes both the correct and incorrect choices. To 943

determine the probability of each choice, we first use a tokenizer to tokenize all the subjects and choices 944

separately. Then, we combine their token IDs, using a space token to separate the subject and object, and 945

a comma to differentiate between different tuples. After obtaining the sequence’s token IDs, we input 946

these token IDs into a simple forward pass. We use the token length of each subject and object to locate 947

the probability of their corresponding tokens. Finally, we calculate the probability of all the choices by 948

multiplying the probabilities of all their tokens. The resulting values are normalized across the choices, 949

and the choice with the highest probability is selected as the correct answer. We use a vLLM Based Setup 950

for this LKE. 951

D Different Metrics 952

The evaluation metric can readily be adapted to existing classification metrics. For example, we introduced 953

the metric Accuracy@K, a calibrated measure that assesses a model’s confidence in its predictions. This 954

metric quantifies how accurately the model identifies knowledge at specified confidence levels for a 955

given relation. We filter the instances that have their confidence levels > threshold K and form the 956

set DK = {ci| predθ(ci) ≥ K ∀c ∈ D} . Following this, we use our accuracy measure to compute 957

Accuracy@K for varying values of K, the results of which are shown in Figure 8. 958

accK(θ,DK) ≜

∑
⟨x,r,y∗,Y⟩∈DK

δ (y∗ = predθ(x, r, y
∗,Y))

|DK |
(5) 959

. 960
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Figure 8: Accuracy@K for different models We evaluated five models on the Nobel dataset, which consists of 50
examples. Each model’s performance was measured using the Accuracy@K metric at various thresholds.
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E Probabilities of objects in sequence 961

We first consider 200 correct examples (subject-object pairs) and report the absolute generation probability 962

of objects in corresponding examples. We showed the results for Llama2-7B, Falcon-7B, Gemma-7B, and 963

Pythia-12B in Figure 11, Figure 9 and Figure 10. Figure 11a, Figure 9a, and Figure 10a illustrates the 964

probability of each object at various sequence positions; Figure 11b, Figure 9b, and Figure 10b shows the 965

impact on probabilities after substituting 40 objects dispersed within the sequence with incorrect ones. 966

Figure 11c, Figure 9c, and Figure 10c visualizes the effect of replacing objects at simultaneous positions. 967

Figures 11d, Figure 9d, Figure 10d, Figure 11e, Figure 9e, and Figure 10e present the outcomes of using 968

unknown subject-object pairs as replacements. We used a horizontal dashed line showing an average 969

probability of the correct examples. The yellow star notated the example at position 114 in the sequence. 970
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Figure 9: [Analysis of object probability in one sequence of Nobel laureate data using Llama2-7b]

F Efficient In Context learning based LKE (EIC-LKE) 971

We improve the efficiency of IC-LKE to perform knowledge extraction of multiple test facts in a single 972

prompt. Leveraging the context length in LLMs, the efficient version, namely EIC-LKE, places multiple 973

test facts surrounded by training facts into the same prompt. We measure the object probability of each of 974

the (alternative) test facts in the seuqence to determine whether the LLM assigns higher probability to the 975

correct fact than the others. 976

Example 2. Considering the training facts in Example 1, we evaluate two test choices (highlighted in 977

yellow) for the birth-year relation: ⟨ Einstein, birth-year 1879, Y1 = {1880}⟩ and ⟨ Louis birth-year, 978

1892, Y2 = {1850}⟩ using two prompts instead of four as in IC-LKE. 979

Feynman 1918 Einstein 1879∗ Heisenberg 1901 Louis 1850 980

Feynman 1918 Einstein 1880 Heisenberg 1901 Louis 1892∗ 981

G Details about the human-generated prompts and machine-mined prompts 982

We list the used human-generated and machine-mined prompts from (Jiang et al., 2020) in Table 5 with 983

subjects denoted as <‘head’>. 984
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Figure 10: [Analysis of object probability in one sequence of Nobel laureate data using Pythia-12B]
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Figure 11: [Analysis of object probability in one sequence of Nobel laureate data using Falcon-7B]
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Table 5: Templates for Selected Relations

Relation Name Index HGP Template MMP Template
1 {subject} means {subject} is a small

Instance of 2 {subject} is one {subject} and liberal
3 {subject} is a {subject} artist
1 {subject} is playing music {subject} series of

Genre 2 {subject} play {subject} favorite
3 {subject} performs {subject} is an american
1 {subject} plays in position {subject} substitutions :

Position played on team / speciality 2 {subject} plays at position {subject} substitutes :
3 {subject} is in the position
1 The original language of {subject} is {subject} a. r. rahman

Original language of film/TV show 2 The source language of {subject} is
3 The default language of {subject} is
1 The capital of {subject} is {subject} united states embassy in

Capital 2 The capital city of {subject} is {subject} representative legislature
3 Its capital {subject} is {subject} rock band from
1 {subject} is a native language of {subject} descent

Native language 2 The mother tongue of {subject} is {subject} speak the
3 {subject} means {subject} population or a widely spoken
1 {subject} is named after {subject} and produces

Named after 2 {subject} is named for {subject} variety of standard )
3 {subject} is called after {subject} official
1 The official language {subject} is {subject} professor of

Official language 2 {subject} is {subject} is the official language in
3 {subject} is officially {subject} is the official language spoken in
1 {subject} is developed by {subject} was developed by

Developer 2 {subject} is created by {subject} 2008
2 {subject} is designed by {subject} references external links
1 {subject} was originally aired on {subject} premiered on

Original broadcaster 2 {subject} was originally broadcast on {subject} aired on
3 {subject} was originally shown in {subject} 2021
1 {subject} is signed to {subject} signed with

Record label 2 {subject} is a recording artist for {subject} sohmed a recording contract with
3 {subject} is a recording artist on {subject} released by
1 {subject} is represented by music label {subject} attributed to the

Manufacturer 2 {subject} is represented by the record label {subject} 113
3 {subject} is represented by {subject} cedar point
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H Additional results985

H.1 Model Name Simplification986

We list all the models and their simplified names we evaluated in the paper in Table 6.987

H.2 Additional results on baseline comparison988

We compare IC-LKE and EIC-LKE on 12 relations from T-REx-MC: capital, named after, developer,989

manufacturer, genre, instance of, native language, original broadcaster, language spoken written or990

signed, original language of film / TV show, official language, position played on team/speciality. We991

chose those 12 relations from T-REx-MCthat are found to be in common with (Jiang et al., 2020) where992

they define the templates for HGP and MMP. We evaluated 4 models (Mistral-7B, Llama-7B, Falcon-7B,993

and Pythia-12B) and showed all the results in Figure 12.994

H.3 Full order of models and relations995

We evaluated 49 models on 50 relations by our IC-LKEand EIC-LKE. Table 7 shows the ordered models996

by the average accuracy of all the 50 relations. Table 8 shows the ordered relations by the average accuracy997

of all the 49 models.998

H.4 Full evaluation on EIC-LKE999

We evaluated all the pre-trained models using EIC-LKE, but didn’t evaluate GPT-NEOX-20B due to the1000

limitation of its context window size. Figure 13 shows the heatmap of models vs. relations, ordered in the1001

same way as in Figure 5.1002

H.5 Relation accuracy correlation of all the pre-trained models1003

In Table 14, we show the Pearson correlation coefficients between each model pair’s performance across1004

the 50 relations.1005
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Figure 12: Accuracy for different latent knowledge estimators on all 12 relations

21



M
is

t
r
a
l-

8
x
7
B

M
is

t
r
a
l-

7
B

L
la

m
a
2
-
7
0
B

L
la

m
a
2
-
1
3
B

L
la

m
a
2
-
7
B

G
e
m

m
a
-
7
B

G
e
m

m
a
-
2
B

L
la

m
a
-
6
5
B

L
la

m
a
-
3
3
B

L
la

m
a
-
1
3
B

L
la

m
a
-
7
B

F
a
lc

o
n
-
7
B

M
P
T
-
7
B

O
P
T
-
6
.7

B
O

P
T
-
1
3
B

O
P
T
-
3
0
B

O
P
T
-
2
.7

B
O

P
T
-
1
.3

B
O

P
T
-
3
5
0
M

O
P
T
-
1
2
5
M

G
P
T
-
J-
6
B

P
y
t
h
ia

-
1
2
B

P
y
t
h
ia

-
6
.9

B
P
y
t
h
ia

-
2
.8

B
P
y
t
h
ia

-
1
.4

B
P
y
t
h
ia

-
1
B

P
y
t
h
ia

-
4
1
0
M

P
y
t
h
ia

-
1
6
0
M

P
y
t
h
ia

-
7
0
M

B
lo

o
m

-
7
.1

B
B

lo
o
m

-
3
B

B
lo

o
m

-
1
.7

B
B

lo
o
m

-
1
.1

B
B

lo
o
m

-
5
6
0
M

3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

0

0.2

0.4

0.6

0.8

1

Model

R
e
la

t
io

n
 O

r
d
e
r

Figure 13: Accuracy for 35 pre-trained LLMs on the 50 different relations in T-REx-MC, evaluated by EIC-LKE.
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Table 6: Model Name Simplifications

Original Name Simplified Name in Paper
mistral-mixtral-8x7B-v0.1 Mixtral-8x7B

Nous-Hermes-2-Mixtral-8x7B-SFT Mixtral-8x7B-FT1
Nous-Hermes-2-Mixtral-8x7B-DPO Mixtral-8x7B-FT2

mistral-7b Mistral-7B
mistral-instruct-7b Mistral-7B-FT1

openhermes-2.5-mistral-7b Mistral-7B-FT2
llama2-70b Llama2-70B

llama2-70b-chat Llama2-70B-FT1
llama2-13b Llama2-13B

llama2-13b-chat Llama2-13B-FT1
vicuna-13b-v1.5 Llama2-13B-FT2

llama2-7b Llama2-7B
llama2-7b-chat Llama2-7B-FT1
vicuna-7b-v1.5 Llama2-7B-FT2

gemma-7b Gemma-7B
gemma-7b-it Gemma-7B-FT1
gemma-2b Gemma-2B

gemma-2b-it Gemma-2B-FT1
llama-65b Llama-65B
llama-33b Llama-33B
llama-13b Llama-13B

vicuna-13b-1.3 Llama-13B-FT1
llama-7b Llama-7B

vicuna-7b-1.3 Llama-7B-FT1
falcon-7b Falcon-7B

falcon-instruct-7b Falcon-7B-FT1
mpt-7b MPT-7B

gpt-neox-20b GPT-NEOX-20B
opt-30b OPT-30B
opt-13b OPT-13B
opt-6.7b OPT-6.7B
opt-2.7b OPT-2.7B
opt-1.3b OPT-1.3B

opt-350m OPT-350M
opt-125m OPT-125M
gpt-j-6b GPT-J-6B

pythia-12b Pythia-12B
pythia-6.9b Pythia-6.9B
pythia-2.8b Pythia-2.8B
pythia-1.4b Pythia-1.4B
pythia-1b Pythia-1B

pythia-410m Pythia-410M
pythia-160m Pythia-160M
pythia-70m Pythia-70M
bloom-7.1b Bloom-7.1B
bloom-3b Bloom-3B

bloom-1.7b Bloom-1.7B
bloom-1.1b Bloom-1.1B

bloom-560m Bloom-560M
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https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/meta-llama/Llama-2-70b
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/google/gemma-7b
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/huggyllama/llama-65b
https://huggingface.co/huggyllama/llama-33b
https://huggingface.co/huggyllama/llama-13b
https://huggingface.co/lmsys/vicuna-13b-v1.3
https://huggingface.co/huggyllama/llama-7b
https://huggingface.co/lmsys/vicuna-7b-v1.3
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/tiiuae/falcon-instruct-7b
https://huggingface.co/mosaicml/mpt-7b
https://huggingface.co/EleutherAI/gpt-neox-20b
https://huggingface.co/facebook/opt-30b
https://huggingface.co/facebook/opt-13b
https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-350m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/pythia-12b
https://huggingface.co/EleutherAI/pythia-6.9b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-160m
https://huggingface.co/EleutherAI/pythia-70m
https://huggingface.co/bigscience/bloomz-7b1
https://huggingface.co/bigscience/bloomz-3b
https://huggingface.co/bigscience/bloomz-1b7
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloom-560m


Table 7: Model Performance Comparision

Model Average Accuracy Standard Deviation

Llama2-70B 0.8511 0.17591
Mixtral-8x7B-SFT 0.84765 0.16919
Mixtral-8x7B 0.84605 0.16653
Llama-65B 0.84185 0.17528
Mixtral-8x7B-DPO 0.81535 0.17580
Llama-33B 0.81255 0.19088
Mistral-7B 0.79310 0.20000
Llama2-13B 0.78692 0.21892
Llama-13B 0.76845 0.21796
Llama2-70B-chat 0.75815 0.21272
Llama2-7B 0.74945 0.24069
Vicuna-13B 0.74940 0.21427
Gemma-7B 0.74717 0.25668
Openhermes-2.5 0.74365 0.21241
Vicuna-13B-2 0.74080 0.22807
Vicuna-7B-2 0.71695 0.24016
Falcon-7B 0.70190 0.27052
Vicuna-7B 0.70155 0.24724
Llama2-13B-chat 0.69387 0.22966
Llama-7B 0.69260 0.27912
Gemma-2B 0.66600 0.28627
GPT-NEOX-20B 0.66145 0.30972
Llama2-7B-chat 0.66130 0.24996
Mistral-instruct-7B 0.66120 0.26173
MPT-7B 0.64545 0.30638
Pythia-12B 0.63325 0.32412
OPT-6.7B 0.62110 0.31313
GPT-J-6B 0.60965 0.32319
OPT-13B 0.60845 0.31017
Pythia-6.9B 0.59185 0.32359
Bloom-7.1B 0.58270 0.31404
OPT-30B 0.57925 0.31813
Pythia-2.8B 0.57580 0.32773
Pythia-1.4B 0.56330 0.33600
Gemma-7B-instruct 0.55327 0.30689
OPT-2.7B 0.55109 0.33260
Bloom-3B 0.54375 0.29199
Pythia-1B 0.54220 0.31560
OPT-1.3B 0.53610 0.33335
Bloom-1.1B 0.51115 0.29346
OPT-350M 0.50735 0.30716
Gemma-2B-instruct 0.49474 0.29628
Pythia-410M 0.47995 0.29598
Bloom-1.7B 0.47660 0.29658
OPT-125M 0.45195 0.29330
Bloom-560M 0.38465 0.28747
Pythia-160M 0.37145 0.28505
Pythia-70M 0.31260 0.27404
Falcon-instruct-7B 0.00605 0.01459

24



Table 8: Relations and their average accuracies

Order Relation Average Accuracy

1 publication date 0.992071428571429
2 inception 0.983214285714286
3 point in time 0.975714285714286
4 drafted by 0.922214285714286
5 native language 0.8825
6 production company 0.873428571428571
7 languages spoken, written or signed 0.865071428571429
8 performer 0.831142857142857
9 has played at 0.826642857142857
10 capital 0.815857142857143
11 is made by 0.815357142857143
12 producer 0.794714285714286
13 record label 0.794571428571429
14 named after 0.791071428571429
15 developer 0.786928571428571
16 publisher 0.7835
17 original broadcaster 0.781214285714286
18 cast member 0.777
19 home venue 0.771714285714286
20 has subsidiary 0.754142857142857
21 manufacturer 0.749928571428571
22 screenwriter 0.732285714285714
23 contains the administrative territorial entity 0.7255
24 creates 0.721214285714286
25 official language 0.709857142857143
26 mother 0.697857142857143
27 part of the series 0.692214285714286
28 founded by 0.684714285714286
29 original language of film or TV show 0.6825
30 date of birth 0.668857142857143
31 date of death 0.641594184576485
32 instance of 0.588990518331226
33 position played on team / speciality 0.537642857142857
34 genre 0.536
35 distributed by 0.522785714285714
36 parent taxon 0.488428571428571
37 director 0.432928571428571
38 author 0.331285714285714
39 father 0.309214285714286
40 educated at 0.306285714285714
41 characters 0.282857142857143
42 composer 0.276785714285714
43 child 0.259142857142857
44 lyrics by 0.258428571428571
45 sibling 0.250285714285714
46 spouse 0.238785714285714
47 is a tributary of 0.212142857142857
48 cause of death 0.206
49 discoverer or inventor 0.173142857142857
50 student of 0.123357142857143

25



1 0.82 0.85 0.83 0.86 0.72 0.73 0.94 0.97 0.89 0.66 0.89 0.62 0.77 0.76 0.73 0.68 0.65 0.66 0.69 0.7 0.84 0.66 0.76 0.65 0.67 0.84 0.7 0.4 0.53 0.67 0.85 0.69 0.7 0.6

0.82 1 0.91 0.83 0.84 0.66 0.87 0.91 0.83 0.89 0.76 0.81 0.72 0.8 0.87 0.84 0.73 0.85 0.77 0.81 0.75 0.73 0.78 0.74 0.78 0.81 0.76 0.73 0.59 0.56 0.79 0.79 0.72 0.85 0.68

0.85 0.91 1 0.83 0.87 0.57 0.82 0.93 0.85 0.86 0.71 0.8 0.66 0.77 0.82 0.78 0.71 0.72 0.75 0.75 0.7 0.69 0.73 0.69 0.73 0.7 0.72 0.64 0.55 0.47 0.75 0.74 0.61 0.79 0.61

0.83 0.83 0.83 1 0.96 0.62 0.82 0.83 0.86 0.88 0.83 0.87 0.79 0.87 0.83 0.75 0.7 0.82 0.78 0.81 0.75 0.84 0.88 0.79 0.81 0.88 0.82 0.7 0.61 0.59 0.88 0.79 0.67 0.81 0.69

0.86 0.84 0.87 0.96 1 0.62 0.86 0.86 0.89 0.85 0.81 0.91 0.78 0.93 0.88 0.8 0.74 0.81 0.84 0.84 0.79 0.82 0.87 0.81 0.84 0.87 0.83 0.71 0.6 0.57 0.89 0.82 0.66 0.85 0.68

0.72 0.66 0.57 0.62 0.62 1 0.6 0.64 0.8 0.65 0.79 0.77 0.54 0.62 0.51 0.73 0.68 0.66 0.66 0.47 0.51 0.72 0.53 0.71 0.68 0.66 0.72 0.7 0.43 0.52 0.53 0.74 0.65 0.5 0.66

0.73 0.87 0.82 0.82 0.86 0.6 1 0.83 0.77 0.83 0.7 0.85 0.7 0.93 0.94 0.88 0.84 0.89 0.92 0.85 0.81 0.77 0.93 0.88 0.92 0.85 0.79 0.72 0.72 0.61 0.93 0.84 0.68 0.91 0.74

0.94 0.91 0.93 0.83 0.86 0.64 0.83 1 0.91 0.95 0.65 0.84 0.63 0.77 0.83 0.79 0.74 0.72 0.73 0.73 0.71 0.78 0.73 0.78 0.71 0.67 0.8 0.67 0.5 0.52 0.75 0.82 0.67 0.77 0.63

0.97 0.83 0.85 0.86 0.89 0.8 0.77 0.91 1 0.88 0.73 0.94 0.69 0.82 0.76 0.76 0.74 0.73 0.72 0.71 0.73 0.84 0.71 0.81 0.71 0.75 0.84 0.75 0.46 0.6 0.72 0.87 0.73 0.72 0.67

0.89 0.89 0.86 0.88 0.85 0.65 0.83 0.95 0.88 1 0.71 0.83 0.65 0.75 0.83 0.8 0.74 0.81 0.73 0.75 0.72 0.87 0.81 0.85 0.76 0.75 0.87 0.72 0.54 0.59 0.81 0.84 0.71 0.78 0.71

0.66 0.76 0.71 0.83 0.81 0.79 0.7 0.65 0.73 0.71 1 0.76 0.73 0.74 0.66 0.8 0.68 0.8 0.8 0.68 0.61 0.72 0.73 0.68 0.83 0.85 0.74 0.71 0.62 0.53 0.76 0.69 0.61 0.69 0.72

0.89 0.81 0.8 0.87 0.91 0.77 0.85 0.84 0.94 0.83 0.76 1 0.74 0.9 0.83 0.8 0.79 0.82 0.81 0.8 0.82 0.88 0.82 0.89 0.8 0.84 0.88 0.81 0.58 0.68 0.82 0.92 0.77 0.8 0.75

0.62 0.72 0.66 0.79 0.78 0.54 0.7 0.63 0.69 0.65 0.73 0.74 1 0.78 0.71 0.64 0.72 0.76 0.69 0.71 0.72 0.64 0.74 0.64 0.68 0.82 0.65 0.72 0.66 0.59 0.74 0.67 0.75 0.73 0.75

0.77 0.8 0.77 0.87 0.93 0.62 0.93 0.77 0.82 0.75 0.74 0.9 0.78 1 0.93 0.84 0.79 0.86 0.9 0.88 0.84 0.82 0.91 0.85 0.89 0.91 0.83 0.75 0.67 0.61 0.92 0.86 0.71 0.9 0.72

0.76 0.87 0.82 0.83 0.88 0.51 0.94 0.83 0.76 0.83 0.66 0.83 0.71 0.93 1 0.89 0.79 0.87 0.89 0.93 0.88 0.83 0.9 0.85 0.88 0.85 0.86 0.77 0.7 0.63 0.93 0.88 0.73 0.96 0.72

0.73 0.84 0.78 0.75 0.8 0.73 0.88 0.79 0.76 0.8 0.8 0.8 0.64 0.84 0.89 1 0.84 0.82 0.94 0.8 0.76 0.83 0.8 0.83 0.93 0.8 0.86 0.8 0.7 0.59 0.85 0.86 0.71 0.87 0.76

0.68 0.73 0.71 0.7 0.74 0.68 0.84 0.74 0.74 0.74 0.68 0.79 0.72 0.79 0.79 0.84 1 0.78 0.87 0.73 0.75 0.74 0.78 0.85 0.85 0.73 0.77 0.84 0.73 0.68 0.81 0.8 0.84 0.78 0.8

0.65 0.85 0.72 0.82 0.81 0.66 0.89 0.72 0.73 0.81 0.8 0.82 0.76 0.86 0.87 0.82 0.78 1 0.85 0.86 0.83 0.79 0.92 0.88 0.88 0.95 0.82 0.8 0.72 0.73 0.92 0.82 0.76 0.88 0.84

0.66 0.77 0.75 0.78 0.84 0.66 0.92 0.73 0.72 0.73 0.8 0.81 0.69 0.9 0.89 0.94 0.87 0.85 1 0.85 0.81 0.77 0.87 0.84 0.97 0.85 0.82 0.77 0.8 0.61 0.92 0.83 0.67 0.9 0.78

0.69 0.81 0.75 0.81 0.84 0.47 0.85 0.73 0.71 0.75 0.68 0.8 0.71 0.88 0.93 0.8 0.73 0.86 0.85 1 0.95 0.79 0.85 0.76 0.81 0.87 0.84 0.84 0.74 0.73 0.89 0.86 0.77 0.97 0.73

0.7 0.75 0.7 0.75 0.79 0.51 0.81 0.71 0.73 0.72 0.61 0.82 0.72 0.84 0.88 0.76 0.75 0.83 0.81 0.95 1 0.79 0.79 0.79 0.74 0.82 0.84 0.87 0.76 0.82 0.83 0.89 0.81 0.93 0.8

0.84 0.73 0.69 0.84 0.82 0.72 0.77 0.78 0.84 0.87 0.72 0.88 0.64 0.82 0.83 0.83 0.74 0.79 0.77 0.79 0.79 1 0.82 0.91 0.8 0.81 0.98 0.83 0.56 0.67 0.82 0.94 0.78 0.79 0.75

0.66 0.78 0.73 0.88 0.87 0.53 0.93 0.73 0.71 0.81 0.73 0.82 0.74 0.91 0.9 0.8 0.78 0.92 0.87 0.85 0.79 0.82 1 0.9 0.91 0.92 0.82 0.71 0.71 0.64 0.98 0.8 0.69 0.88 0.76

0.76 0.74 0.69 0.79 0.81 0.71 0.88 0.78 0.81 0.85 0.68 0.89 0.64 0.85 0.85 0.83 0.85 0.88 0.84 0.76 0.79 0.91 0.9 1 0.87 0.82 0.91 0.78 0.62 0.7 0.88 0.91 0.76 0.8 0.81

0.65 0.78 0.73 0.81 0.84 0.68 0.92 0.71 0.71 0.76 0.83 0.8 0.68 0.89 0.88 0.93 0.85 0.88 0.97 0.81 0.74 0.8 0.91 0.87 1 0.88 0.82 0.75 0.78 0.59 0.94 0.81 0.66 0.87 0.78

0.67 0.81 0.7 0.88 0.87 0.66 0.85 0.67 0.75 0.75 0.85 0.84 0.82 0.91 0.85 0.8 0.73 0.95 0.85 0.87 0.82 0.81 0.92 0.82 0.88 1 0.82 0.79 0.69 0.68 0.91 0.81 0.74 0.87 0.79

0.84 0.76 0.72 0.82 0.83 0.72 0.79 0.8 0.84 0.87 0.74 0.88 0.65 0.83 0.86 0.86 0.77 0.82 0.82 0.84 0.84 0.98 0.82 0.91 0.82 0.82 1 0.85 0.61 0.7 0.84 0.96 0.8 0.84 0.8

0.7 0.73 0.64 0.7 0.71 0.7 0.72 0.67 0.75 0.72 0.71 0.81 0.72 0.75 0.77 0.8 0.84 0.8 0.77 0.84 0.87 0.83 0.71 0.78 0.75 0.79 0.85 1 0.7 0.81 0.73 0.89 0.93 0.81 0.82

0.4 0.59 0.55 0.61 0.6 0.43 0.72 0.5 0.46 0.54 0.62 0.58 0.66 0.67 0.7 0.7 0.73 0.72 0.8 0.74 0.76 0.56 0.71 0.62 0.78 0.69 0.61 0.7 1 0.69 0.76 0.64 0.64 0.78 0.83

0.53 0.56 0.47 0.59 0.57 0.52 0.61 0.52 0.6 0.59 0.53 0.68 0.59 0.61 0.63 0.59 0.68 0.73 0.61 0.73 0.82 0.67 0.64 0.7 0.59 0.68 0.7 0.81 0.69 1 0.66 0.74 0.8 0.71 0.78

0.67 0.79 0.75 0.88 0.89 0.53 0.93 0.75 0.72 0.81 0.76 0.82 0.74 0.92 0.93 0.85 0.81 0.92 0.92 0.89 0.83 0.82 0.98 0.88 0.94 0.91 0.84 0.73 0.76 0.66 1 0.82 0.69 0.93 0.79

0.85 0.79 0.74 0.79 0.82 0.74 0.84 0.82 0.87 0.84 0.69 0.92 0.67 0.86 0.88 0.86 0.8 0.82 0.83 0.86 0.89 0.94 0.8 0.91 0.81 0.81 0.96 0.89 0.64 0.74 0.82 1 0.85 0.87 0.8

0.69 0.72 0.61 0.67 0.66 0.65 0.68 0.67 0.73 0.71 0.61 0.77 0.75 0.71 0.73 0.71 0.84 0.76 0.67 0.77 0.81 0.78 0.69 0.76 0.66 0.74 0.8 0.93 0.64 0.8 0.69 0.85 1 0.76 0.8

0.7 0.85 0.79 0.81 0.85 0.5 0.91 0.77 0.72 0.78 0.69 0.8 0.73 0.9 0.96 0.87 0.78 0.88 0.9 0.97 0.93 0.79 0.88 0.8 0.87 0.87 0.84 0.81 0.78 0.71 0.93 0.87 0.76 1 0.78

0.6 0.68 0.61 0.69 0.68 0.66 0.74 0.63 0.67 0.71 0.72 0.75 0.75 0.72 0.72 0.76 0.8 0.84 0.78 0.73 0.8 0.75 0.76 0.81 0.78 0.79 0.8 0.82 0.83 0.78 0.79 0.8 0.8 0.78 1

M
is
t
r
a
l-
8
x
7
B

M
is
t
r
a
l-
7
B

L
la
m
a
2
-
7
0
B

L
la
m
a
2
-
1
3
B

L
la
m
a
2
-
7
B

G
e
m
m
a
-
7
B

G
e
m
m
a
-
2
B

L
la
m
a
-
6
5
B

L
la
m
a
-
3
3
B

L
la
m
a
-
1
3
B

L
la
m
a
-
7
B

F
a
lc
o
n
-
7
B

M
P
T
-
7
B

G
P
T
-
N
E
O
X
-
2
0
B

O
P
T
-
6
.7
B

O
P
T
-
1
3
B

O
P
T
-
3
0
B

O
P
T
-
2
.7
B

O
P
T
-
1
.3
B

O
P
T
-
3
5
0
M

O
P
T
-
1
2
5
M

G
P
T
-
J-
6
B

P
y
t
h
ia
-
1
2
B

P
y
t
h
ia
-
6
.9
B

P
y
t
h
ia
-
2
.8
B

P
y
t
h
ia
-
1
.4
B

P
y
t
h
ia
-
1
B

P
y
t
h
ia
-
4
1
0
M

P
y
t
h
ia
-
1
6
0
M

P
y
t
h
ia
-
7
0
M

B
lo
o
m
-
7
.1
B

B
lo
o
m
-
3
B

B
lo
o
m
-
1
.7
B

B
lo
o
m
-
1
.1
B

B
lo
o
m
-
5
6
0
M

Mistral-8x7B

Mistral-7B

Llama2-70B

Llama2-13B

Llama2-7B

Gemma-7B

Gemma-2B

Llama-65B

Llama-33B

Llama-13B

Llama-7B

Falcon-7B

MPT-7B

GPT-NEOX-20B

OPT-6.7B

OPT-13B

OPT-30B

OPT-2.7B

OPT-1.3B

OPT-350M

OPT-125M

GPT-J-6B

Pythia-12B

Pythia-6.9B

Pythia-2.8B

Pythia-1.4B

Pythia-1B

Pythia-410M

Pythia-160M

Pythia-70M

Bloom-7.1B

Bloom-3B

Bloom-1.7B

Bloom-1.1B

Bloom-560M

0

0.2

0.4

0.6

0.8

1

Model

M
o
d
e
l

Figure 14: [Pearson Correlation Coefficients Between All Pre-trained Models] We calculated the Pearson
correlation coefficients for each model pair among 49 models across 50 relations.
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Figure 15: [Base vs chat-finetuned models] We see that finetuned versions (depicted in lighter shades) obtain lower
accuracy across the relations in T-REx-MC than pre-trained models (shown in darker shades), evaluated by IC-LKE.

Family Model Type Accuracy Model Type Accuracy η

Llama-7B Base 0.699 FT-1 0.693 0.779
Llama-13B Base 0.770 FT-1 0.735 0.854
Llama2-7B Base 0.741 FT-1 0.712 0.808
Llama2-7B Base 0.741 FT-2 0.664 0.790
Llama2-13B Base 0.771 FT-1 0.748 0.831
Llama2-13B Base 0.771 FT-2 0.692 0.801
Llama2-70B Base 0.846 FT-1 0.739 0.811
Mistral-7B Base 0.793 FT-1 0.639 0.793
Mistral-7B Base 0.793 FT-2 0.750 0.869

Mixtral-7Bx8 Base 0.832 FT-1 0.835 0.928
Mixtral-7Bx8 Base 0.832 FT-2 0.817 0.911
Gemma-2B Base 0.666 FT-1 0.488 0.577
Gemma-7B Base 0.749 FT-1 0.511 0.557

Table 10: Average subsumption rate (η) for base models and fine-tuned models over the relations in T-REx-MC.
Despite being fine-tuned on smaller datasets, fine-tuned models (low η). The results are based on IC-LKE.

H.6 Impact of finetuning1006

We show the results evaluated by EIC-LKE for all the pre-trained models and fine-tuned models in1007

Figure 15 from the relations in TREx-MC, which also conveys the message about reduced knowledge in1008

fine-tuned models. We also show the results for the average subsumption rate (η) for base models and1009

fine-tuned models over the relations in T-REx-MC.1010

H.7 Evaluation of Generated Output1011

We also evaluated the generated output, where we used greedy searching(temperature=0), and asked both1012

pre-trained and fine-tuned models to generate 50 tokens using different prompts from HGP and MMP.1013

Following this, we checked for the presence of the ground truth in the generated output of 50 tokens. The1014

generation is correct if present, and incorrect otherwise, then we compute the generation accuracy on1015

the test dataset. We report the average generation accuracy based on 12 relations and the HGP/MMP1016

templates shown in Table 5.1017
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Figure 16: Accuracies computed over generated outputs (50 tokens) for pre-trained and fine-tuned models using
HGP, MMP, and IC-LKE.
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