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Abstract

We propose an approach for estimating the
latent knowledge embedded inside large lan-
guage models (LLMs). We leverage the in-
context learning (ICL) abilities of LLMs to es-
timate the extent to which an LLM knows the
facts stored in a knowledge base. Our knowl-
edge estimator avoids reliability concerns with
previous prompting-based methods, is both con-
ceptually simpler and easier to apply, and we
demonstrate that it can surface more of the la-
tent knowledge embedded in LLMs. We also
investigate how different design choices affect
the performance of ICL-based knowledge es-
timation. Using the proposed estimator, we
perform a large-scale evaluation of the factual
knowledge of a variety of open source LLMs,
like OPT, Pythia, Llama(2), Mistral, Gemma,
etc. over a large set of relations and facts from
the Wikidata knowledge base. We observe dif-
ferences in the factual knowledge between dif-
ferent model families and models of different
sizes, that some relations are consistently better
known than others but that models differ in the
precise facts they know, and differences in the
knowledge of base models and their finetuned
counterparts.

1 Introduction

Conversational chatbots (e.g., OpenAI’s ChatGPT)
built around large language models (e.g., OpenAl’s
GPT) are increasingly being used for a variety of
information retrieval tasks such as searching for
information or seeking recommendations related to
real world entities like people or places (Wu et al.,
2023; Zhu et al., 2023). A worrisome concern in
such scenarios is the factual correctness of informa-
tion generated by the LLMs (Peng et al., 2023; Hu
etal., 2023a; Snyder et al., 2023; Yao et al., 2023; Ji
et al., 2023; Zhang et al., 2023; Wang et al., 2023).

The latent knowledge estimation problem: To
avoid making false assertions about a real-world
entity, an LLLM first needs to have factual (true)

knowledge about the entity. Given a prompt like
“Einstein was born in the year”, LLMs may gener-
ate both the correct answer (“/879”) and wrong
answers (e.g., “1878” or “1880”) with some prob-
abilities. If an LLM knows the fact, one can hope
that the probability with which it would generate
the correct answer would be much higher than the
wrong answers (Jiang et al., 2021). As LLMs are
typically pretrained over a Web corpus (including
Wikipedia data) with millions of facts about real-
world entities, they have the opportunity to learn
factual knowledge about our world and latently em-
bed the knowledge in their parameters. But, how
can we estimate the extent to which LLMs have
knowledge of real-world facts?

Reliability of latent knowledge estimates:
Prior works (Jiang et al., 2020; Bouraoui et al.,
2020) followed (Petroni et al., 2019), and rep-
resented factual knowledge in the form of
triplets (x,r,y), where the subject = has a
relation of type r with the object y (e.g.,
(Einstein, birth-year, 1879)). The central chal-
lenge of latent knowledge estimation is to infer y
given x and r by only using information extracted
from the LLM. Typically, the inference relies on
probing the LLM with prompts constructed us-
ing x and r and analyzing the responses. Current
approaches have few well-defined rules to avoid
prompt engineering and prompt hacking, raising
serious concerns about the reliability of their esti-
mates. Against this background, in this paper, we
make four primary contributions:

1. A simple yet reliable latent knowledge esti-
mator (LKE) leveraging in-context learning (ICL):
We propose a latent knowledge estimator (LKE)
that leverages in-context learning (ICL), called IC-
LKE, in a simple yet clever way to avoid the many
reliability concerns with prompting based previous
knowledge estimators.

2. Exploring the nuances of using ICL for knowl-
edge estimation: We investigate the impact of dif-



ferent ICL design choices on the estimation of la-
tent knowledge, such as the number of in-context
examples, when some of the examples are unknown
to the model or simply incorrect, as well as the se-
quence in which they appear. While we focus on
knowledge estimation, our findings can inform the
application of ICL in other contexts.

3. A comparison of IC-LKE with previous
approaches: 'We empirically demonstrate that
IC-LKE outperforms previous knowledge estima-
tion approaches that rely on human-generated or
machine-mined prompts across a variety of differ-
ent open-source models and different types of fac-
tual relations. In contrast to prompting based meth-
ods, which are relation-specific and LLM-specific,
IC-LKE’s design is straightforward to apply.

4. A systematic comparison of latent knowledge
of open source LLMs at scale: We use IC-LKE to
evaluate the knowledge of 49 open-source LLMs
spanning many families such as Llama(2), Gemma,
Mistral, OPT, Pythia, etc. across a wide range of
sizes, both with and without instruction-finetuning
over 50 different relations and 20,000 facts from
Wikidata. We find that models from some families
such as Llama2, Mistral and Gemma and larger
models know more facts than others, that models
within the same family differ in the specific facts
they know, despite being trained on the same data,
and that fine-tuning reduces the amount of factual
knowledge that can be extracted from the models.

Related Work: Researchers have proposed sev-
eral approaches to estimate latent knowledge from
LLMs, which can be categorized into two ways:
(i) Model-internals based approaches leverage the
LLM attention map (Wang et al., 2020), activation
function (Burns et al., 2022), or model parame-
ters (Kazemnejad et al., 2023) to decide whether
factual information can be extracted from the LLM.
In our study, we rely on the probability distribu-
tion of generated tokens in an LLM — thereby our
method belongs to the model-responses based ap-
proach. (ii) Model-responses based approaches —
generally applicable to a wide range of LLM mod-
els — often propose different prompting techniques
to nudge the LLM to validate whether a target fact
is stored in it (Chern et al., 2023; Sun et al., 2023;
Wang et al., 2020; Petroni et al., 2019; Jiang et al.,
2021; Newman et al., 2022; Jiang et al., 2020).
Prompt-based methods differ subtly by the choice
of prompts and evaluation criteria. Besides, the
prompts are often brittle (Zamfirescu-Pereira et al.,

2023; Arora et al., 2023; Sclar et al., 2023) — their
success depends on the hypothesis that the LLM
indeed understands the prompts. In our study, we
instead seek a minimal understanding of prompts
by an LLM and design a knowledge estimation
method based on the in-context learning. As a test
bed (Elsahar et al., 2018; Hu et al., 2023b; Sun
et al., 2023; Petroni et al., 2019; Zhu and Li, 2023;
Kryscinski et al., 2019), we consider facts from ex-
isting knowledge graphs for performing knowledge
estimation of LLMs.

2 Designing Reliable LKEs

Today, there exist many general-purpose as well
as domain-specific factual knowledge bases that
contain a very large number (millions to billions)
of facts. The facts can be encapsulated as triplets,
represented as (subject (x), relation (1), object (y)).
These triplets offer a general way to represent fac-
tual knowledge about real-world entities in knowl-
edge graphs or other structured knowledge bases.
The goal of latent knowledge estimation is to in-
fer what fraction of the facts are known to a LLM.
We call methods that estimate the amount of la-
tent knowledge inside an LLM latent knowledge
estimators (LKEs).

2.1 Reliability concerns with existing LKEs

Existing approaches to estimating latent knowledge
in LLMs use a variety of factual knowledge tests.
Below, we identify several reliability concerns with
current designs that motivate our new LKE design.

1. LLM-specific restrictions on test topics: Many
prior works (Petroni et al., 2019; Jiang et al., 2020)
limit the choice of facts that can be used in tests
to those where the surface form of the objects (y)
is represented by a single token by the LLM’s to-
kenizer. As different LLMs use different tokeniz-
ers, this limitation prevents us from comparing the
latent knowledge across different LLMs. Further-
more, only popular objects tend to be represented
by a single token and so the resulting estimates are
not representative of the LLM’s knowledge of facts
with multi-token object representations.

2. Unrestricted choice of test prompts: Many
past works have attempted to use test prompts
without any restrictions, including both human-
generated or machine-mined prompts (Jiang et al.,
2020; Zamfirescu-Pereira et al., 2023; Arora et al.,
2023; Sclar et al., 2023). They typically intersperse
the subject x and object y between additional re-
lationship context-communicating tokens. Some



analyze the performance of a variety of prompts
and then pick the best-performing or use an ensem-
ble of the best-performing prompts (Jiang et al.,
2020; Newman et al., 2022; Fernando et al., 2023).
However, these approaches raise two important
concerns: First, the generated prompts, particu-
larly those that are machine-mined, may include
tokens that can implicitly or explicitly introduce
additional (side-channel) information that makes
it easier to answer the question. As a specific ex-
ample, in a prior work (Jiang et al., 2020), for the
relation “position held”, the prompt “z has the
position of y" performed worse than “x is elected
y". But, note that the second prompt potentially
introduces a side-channel: it implicitly rules out
answer choices for unelected positions like Pro-
fessor and favors elected positions like President.
Second, selecting from an unbounded number of
potential prompt choices raises concerns about the
complexity of LKEs (the size of the set of all con-
sidered prompts) and the potential for over-fitting,
which in turn brings the reliability of estimates into
question.

3. Reliance on LLMs’ meta-linguistic judgments:
Prior works used prompts (Chern et al., 2023; Sun
et al., 2023; Wang et al., 2020; Petroni et al., 2019;
Jiang et al., 2021; Newman et al., 2022; Jiang et al.,
2020) for communicating the question as well as
the expected format of answers. But, the scores (es-
timates) resulting from such prompt-based testing
conflate an LLM’s latent knowledge of the facts
with the LLM’s meta-linguistic judgments, i.e., the
LLM’s ability to comprehend the prompt, under-
stand the question embedded within the prompt and
output the answer in some expected format (Hu
and Levy, 2023). The impact on meta-linguistic
judgments can be seen from the fact that multiple
semantically-equivalent prompts result in different
responses from an LLM and thereby, different esti-
mates of latent knowledge (Hu and Levy, 2023).

Motivated from the above, we derive the follow-
ing three design principles for LKEs. A reliable
LKE design should:

* DP1: generate estimates for any factual topic
and tokenization scheme.

e DP2: limit arbitrary prompt engineering to
minimize over-fitting & side-channels.

* DP3: minimize reliance on meta-linguistic
prompts.

2.2 A new In Context learning based LKE
(IC-LKE)

Our goal is to estimate whether an LLM knows a
fact f = (x,r,y). The challenge is to probe the
LLM and evaluate its responses in a way compati-
ble with the design principles set in Section 2.1.

Key idea: Leverage in-context learning.

LLMs have shown to exhibit In-Context Learning
(ICL) abilities (Brown et al., 2020) that allow them
to infer and extrapolate patterns in their inputs. We
leverage this ability to communicate information
about relation 7 without additional instructions to
the LLM (DP3) by providing it with a list of facts
based on r.
Example 1. Assume that we want to probe for
whether an LLM knows the fact ( Einstein, birth-
year, 1879 ). We can use other facts for the birth-
year relation such as ( Feynman, birth-year, 1918
), ( Heisenberg, birth-year, 1901 ) to construct an
input “Feynman 1918 Heisenberg 1901 Einstein”.
By providing in-context examples to the model,
we communicate the relation between subjects and
objects. To correctly extrapolate the pattern, the
model needs to retrieve Einstein’s birth-year as the
completion of the sequence.

More formally, given a training dataset of facts
Fr = {(xi,r,y;) }I- for relation r, as well as a
test fact f = (x,r, y), we leverage ICL to construct
prompts that elicit information about f as

0(9577"):3713/1 e T Yn T (1)

We use r to pick facts from ;. and concatenate the
tokens corresponding to the subjects and objects,
but do not include any other information about r
(DP2). We use space “” as the separator token and
discuss this choice in more detail in Section 4.1.
We discuss other design choices for IC-LKE con-
struction in Section 3. When further details are not
needed, we simply refer to some input as o.
Evaluating model outputs. We evaluate the
output of model @ for input o(x,r) based on the
probabilities # assigns to the tokens of the corre-
sponding object y. To allow for objects y consisting
of multiple tokens and to be independent of the spe-
cific tokenization scheme (DP1), we compute the
object probability over multiple tokens as follows:

[yl
Po(ylo) =[Py | 4" o) RV o), @
=2
where |y| denotes the number of tokens in y and
Py(y® | yl=111 ) is the conditional probability



of predicting the i-th token y*) of y given the pre-
ceding tokens y(=1), ... y(M) and 0.

Multiple-choice testing. To determine whether
model 6 knows a fact f = (x,r,y*), we test
whether given input o (z, 1), 6 can choose the cor-
rect object y* from among a set of M unique al-
ternatives. Specifically, given fact f, we derive a
test instance called choice ¢ = (x,r,y*,)), where
Y is a set of M plausible but incorrect alternatives.
We discuss the choice of ) in Section 4.

argmax Py(y | o(z,r)) (3)
ye{y*tuy

predy(c) £

denotes the prediction of 6 for choice ¢ =
(x,r,y*,Y). The predicted object has the maxi-
mal object probability within {y*} U V.

Evaluation Metric. We evaluate the factual
knowledge of model # over a dataset of choices
D = {¢;}I" ; using multiple choice accuracy:

o Ceen 8 (" = predg(c))
D]

acc(0, D) 4)
where 4(+) is the indicator function.

The IC-LKE design satisfies the knowledge
estimation design principles. The IC-LKE design
proposed here satisfies the design principles from
Section 2.1, since

* DP1: its relative probability comparisons be-

tween different answer-options make it appli-
cable to arbitrary types of facts.

* DP2: it uses the same, minimal prompt design

based on ICL across all relations.

* DP3: its only requirement is that the LLM is

able to use ICL, no further assumptions about
any metalinguistic abilities are made.

3 Exploring the design space of IC-LKE

By design, IC-LKE avoids many limitations of
prior works. However, IC-LKE introduces a few
design choices for the input, i.e., o(z,r) in Equa-
tion (1). One must decide the right n, the num-
ber of in-context examples included in o(z,).
Further, it is unclear how IC-LKE would be im-
pacted when some of the chosen examples are un-
known to the model or are incorrect. We study
both these factors in detail by varying n and in-
troducing unknown or incorrect examples within
these n examples. These experiments allows us to
better understand the number of in-context exam-
ples needed and how robust IC-LKE is to several
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Figure 1: [Influence of the number of in-context
examples] We examine how varying numbers of in-
context examples influence the accuracy (calculated as
defined in Eq 5) across different LLMs. The vertical
dashed line indicates the number of examples at which
the models achieve 95% of their respective stable accu-
racy at 50 examples.

types of noise in these in-context examples. We
perform an in-depth empirical analysis on a Nobel
Laureate dataset for the relation ‘birth year’ (de-
tails in A.1). The dataset consists of facts formatted
as (Person(x), birth-year(r), YYYY(y)).

More knowledgeable models need fewer in-
context examples, but a small number suffices
for most models. In Figure 1, we report knowl-
edge estimation accuracy (Eq. (5)) for different
LLMs evaluated on 900 test samples, with varying
numbers of in-context examples (n) by randomly
sampling from the training set using five random
seeds. With an increasing number of in-context ex-
amples, the mean accuracy increases while the stan-
dard deviation decreases in different LLMs, i.e., the
models gradually converge to a stable performance.
Using dashed vertical lines, we report the minimum
number of examples required by different LLMs to
achieve 95% of the accuracy at 50 in-context exam-
ples. Interestingly, LLMs with higher estimation
accuracy tend to require fewer in-context examples
compared to those with lower accuracy. A poten-
tial explanation for this behavior is that in order to
infer the relation r, models need to comprehend
the examples presented in the prompt. Therefore,
less knowledgeable models need to see more ex-
amples in order to infer r. To further investigate
which individual facts may be known or unknown
to a model, we look at the generation probability of
in-context objects in 200 correct subject (x)-object
(y) pairs using the Mistral-7B model, as shown in
Figure 2a. Similar results for additional models
are presented in Appendix E. Note that here we
are only looking at probabilities of the object (y)
for in-context examples given previous x y pairs in
the input to understand which of these samples are
known by the LLM. The Mistral-7B model demon-
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Figure 2: [Variation in object probabilities of Nobel laureate data using Mistral-7B] Figure 2a illustrates the
probability of each object at various positions in the prompt. We show the impact on probabilities after replacing
objects with unknown ones at randomly distributed positions in Figure 2b and at continuous positions in Figure 2d.
Similarly, we also show the impact of incorrect examples when replaced at randomly distributed positions (Figure 2d)
and continuous positions (Figure 2e). In all plots, the horizontal dashed line shows the average probability of the

correct examples (blue dots).

strates a gradual increase in probability for gener-
ating correct objects as we go from left to right
on the x-axis (note that for a point on the x-axis,
points before it are in context, thus points on the
right have more context to leverage) in Figure 2a,
stabilizing at a mean probability of approximately
85%. We also see that some objects at later po-
sitions have a lower generation probability. This
suggests that the LLM may be less confident about
its knowledge of the facts corresponding to them.
We can leverage the token generation probability
as a signal of LLM’s confidence when evaluating
LKE:s (see Appendix D).

Models are robust to unknown examples.
Next, we investigate the robustness of estimates
to occurrence of unknown examples. We insert un-
known examples in two distinct ways: one where
we randomly distribute the occurrence of unknown
examples throughout o(z,r), and another more
extreme scenario where we replace a continuous
block of examples with unknown ones. We chose
40 out of the 200 examples and replaced them with
unknown examples created using fictitious names
and birth years '. Our findings are shown in Fig-
ures 2b and 2¢ for random and continuous replace-
ment respectively. Unknown examples are marked
by red dots, examples immediately following un-
known ones in cyan dots and the rest in blue dots.
The unknown examples show generation probabili-
ties close to zero, confirming the LLM’s tendency
to assign low probabilities to unknown data. How-
ever, interestingly, unknown examples minimally
impact surrounding data in both settings.

Models are vulnerable to incorrect examples.
We investigate the impact of including incorrect ex-
amples in o (z, 7). Similar to the setup for unknown

! generated via https://en.namefake.com/api

examples, we also insert 40 (out of 200) incorrect
examples randomly (Figure 2d) and simultaneously
(Figure 2e). In our experiments, these incorrect ex-
amples are created by altering the birth years of
known Nobel laureates and are marked by red dots
in the plots. In contrast to inserting unknown exam-
ples, the LLM significantly struggles with incorrect
examples. Injection of such examples detrimentally
affects the LLM’s performance in both settings. We
highlight one randomly marked yellow star exam-
ple in Figure 2a, Figure 2b, and Figure 2d to show
how the presence of incorrect samples brings down
the probability of surrounding points.

Summary: LLMs can identify the relation pat-
tern of subject-object pairs even with a small set
of in-context examples in the prompt. LLMs are
relatively robust to unknown examples, but their
ability to recollect factual knowledge is vulnera-
ble to incorrect examples, particularly when they
appear in a continuous sequence. Our findings al-
lude to the effectiveness of designing an IC-LKE,
where we carefully place correct examples from a
training dataset and proceed to estimate the latent
knowledge of the LLM on examples from the test
set. Furthermore, the findings also motivate us to
design a more efficient in-context learning based
LKE, called EIC-LKE, that can process multiple
test examples simultaneously in a single prompt
where training examples are placed preceding each
test example, see more details in the Appendix F.

4 Experiments and Results

We present the empirical findings of IC-LKE (as
well as the efficient version, EIC-LKE) on the
knowledge-estimation task on 49 open-source (pre-
trained and fine-tuned) LLMs across different LLM
families and sizes. We enlist models and their sim-
plified names used in this paper in Appendix 6, Ta-
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Figure 3: [Performance comparison for different la-
tent knowledge extractors] We compare the accuracy
of IC-LKE and EIC-LKE with the baseline method
(Jiang et al., 2020) across 12 relations from T-REx-MC.

ble 6, and provide a leader-board of models based
on IC-LKE in Table 7.

Dataset: We evaluate the knowledge of models
on a large set of facts from the T-REx dataset® (El-
sahar et al., 2018). We selected relations from T-
REx with at least 500 samples and linked to a min-
imum of 100 unique objects. This filtering leads to
50 distinct relations spanning categories like birth
dates, directorial roles, parental relationships, and
educational lineage. The resulting T-REx Multiple
Choice (T-REx-MC) dataset comprises 5,000 train-
ing and 20,000 test facts. Appendix A contains
detailed information on the dataset and relations.

Choosing the set ) & its impact on test dif-
ficulty: For each fact (subject (), relation (r),
object (y*)), we generate alternative objects ) to
create multiple choices. Note that the alternative
objects in ) are viable choices and cannot be easily
eliminated. Therefore, for each fact (z,r, y*) we
select y € Y from other facts in the dataset that
share the same relationship . For computational
feasibility, we sample || = 99 alternative objects
per fact, so that a random guess between {y*} U Y
has a 0.01 probability of being correct.

4.1 IC-LKE vs. prompt-based approaches

We compare the performance of IC-LKE and EIC-
LKE with the existing prompt-based approaches
(Jiang et al., 2020) and report two key takeaways.
IC-LKE outperforms prompt-based ap-
proaches. We randomly sample three human-
generated prompts (HGP) and machine-mined
prompts (MMP) from (Jiang et al., 2020) for 12
common relations between T-REx-MC and (Jiang
et al., 2020). The HGPs and MMPs for all relations
are in Appendix G. In Figure 3, IC-LKE and EIC-
LKE outperform HGP and MMP in terms of higher
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In-Context Prompt
Figure 4: [Influence of different separators] We re-
place the ‘[space]” token separating the subject-object
pairs with human-generated prompts (HGP, red back-
ground) and machine-mined prompts (MMP, blue back-
ground) for the relation ‘original broadcaster’. Accuracy
performance is agnostic to the separators.

mean accuracy across different models and 12 re-
lations. Also, IC-LKE and EIC-LKE have lower
standard deviation than HGP and MMP, indicating
a higher consistency of IC-LKE and EIC-LKE on
knowledge estimation tasks. In Appendix H.2, we
report relation specific results, where IC-LKE and
EIC-LKE estimate higher factual knowledge than
the existing works in most relations, thereby demon-
strating the superiority of IC-LKE and EIC-LKE
over existing methods.

IC-LKE is a flexible and effective knowledge
estimator. We adapt IC-LKE by replacing the sepa-
rator ‘[space]” with three separators from HGP and
MMP each for the relation ‘original broadcaster’
and report estimation accuracy in Figure 4. We can
observe that ‘[space]” token demonstrates an equiv-
alent performance with semantically meaningful
prompts via HGP and MMP. Therefore, adding
relation specific separators has a limited impact
on factual knowledge estimation, as long as the
subject-object pairs are correctly presented. Fur-
thermore, finding relation-specifc prompts often
require hand-crafted efforts vs. an automatic in-
context based approach like ours where (subject,
object) pairs are used. Therefore, IC-LKE can po-
tentially extend to any facts from knowledge graphs
over any LLM while HGP and MMP requires addi-
tional supervision and relation-specific validation.

4.2 Evaluating Diverse Models and Relations

We investigate the performance of 35 pre-trained
LLMs and 14 fine-tuned LLMs across 50 rela-
tions using the IC-LKE framework. Our analy-
sis is designed to uncover nuanced insights into
the knowledge levels and structures within these
models. We will examine the results through two
primary lenses: (1) the variations in knowledge
across different model families, and (2) the influ-
ence of model size and fine-tuning within the same
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Figure 5: [Accuracy for 35 pre-trained LLMs on
the 50 different relations in T-REx-MC] Models are
grouped by family and arranged from left to right based
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Figure 6: [Pearson correlation coefficients between
model families] We compute the Pearson correlation co-
efficients between each pair of models and then compute
the average correlation across the same model family.

model family on their knowledge attributes.

4.2.1 Comparing different LLLMs families

Some model families are consistently more
knowledgeable than the rest. We sort the model
families based on the performance of the model
closest to 7B parameters >, and the models within
each family based on average accuracy across 50
relations. Figure 5 shows that the Mistral, Llama2,
Gemma, and Llama families have higher perfor-
mance on most of the relations than Pythia, Bloom,
and OPT, indicating their lower factual knowledge.

Different model families align in their relative
factual knowledge. We investigate the correla-

37B parameters is a good reference point since all model
families except GPT-NEO-X have models within a gap of <
1B parameters: Mistral-7B, Gemma-7B, Llama-7B, Falcon-
7B, MPT-7B, OPT-6.7B, GPT-J-6B, Pythia-6.9B, and Bloom-
7.1B.

tions between each model pair’s performance over
50 relations to assess the agreement in their knowl-
edge levels of the 50 relations. We compute the
average correlations within each model family (e.g.
Llama2 7B, 13B, 70B) in Figure 6. Despite differ-
ences in architecture and training datasets among
model families, there is a significant consensus
(correlation > 0.6, see Figure 14) regarding the hi-
erarchy of knowledge across various relations. We
also compile the three best and worst-performing
relations for each model in Table 9, illustrating the
consensus among all models.

4.2.2 Comparing within the same LLM family

Larger models embed more knowledge. We
show in Figure 5 that, within each model family,
bigger models (e.g. Llama-65B) generally outper-
form their smaller counterparts (e.g. Llama-13B)
in terms of accuracy with an exception in the OPT
family. Models within the same family are typically
pre-trained on the same datasets (Biderman et al.,
2023; Zhang et al., 2022; Touvron et al., 2023).
Thus, this observation suggests that, when trained
on identical datasets, the larger models capture a
broader set of facts.

Despite being trained on the same data, mod-
els might remember different facts. From these
results, however, it is not clear if the larger mod-
els are subsuming smaller models in their factual
knowledge, i.e., are the larger models also correct
on the facts that the smaller models are correct on?
To assess this, we compute the subsumption rate 7:

|6(61, F) N (6, F)|
|4(61, F)|

i.e., the fraction of facts from F known by smaller
model #; that larger model 6 also knows. A
subsumption rate of ~ 1 indicates that all of the
smaller model’s knowledge is also contained in
the larger model. To ensure a meaningful com-
parison across scales, we only consider models
that were pre-trained using the same training data.
Table 1 shows the average subsumption rate (1) be-
tween the largest and smallest models in a family,
as well as the average accuracy, over all relations
for different model families. Interestingly, 7 is rela-
tively low (< 0.5) for OPT, Pythia and Bloom (i.e.,
the larger models know less than 50% of what the
smaller models know) and only reaching up to 0.8
for Gemma, Llama and Llama-2. Therefore, even
though models within each family are trained on
the same datasets and generally agree on the rel-
ative knowledge of different relations (Figure 6),

(01102, F) =




Table 1: Average subsumption rate (n) for different
model families over the relations in T-REx-MC. Despite
being trained on the same datasets, models of different
sizes differ in the specific facts that they know (low 7).

Smallest Model Largest Model

Family  #Parameters Accuracy #Parameters Accuracy \ n
Llama 7B 0.699 65B 0.836 0.769
Llama-2 7B 0.741 70B 0.846 0.801
Gemma 2B 0.666 7B 0.750 0.710
OPT 125m 0.430 30B 0.588 0.481
Pythia 70m 0.334 12B 0.648 0.403
Bloom 560m 0.410 7.1B 0.548 0.498
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Figure 7: [Accuracy of base vs chat-finetuned models]
We see that finetuned versions (in lighter shades) obtain
lower accuracy across the relations in T-REx-MC than
pre-trained models (in darker shades).

there are differences in the knowledge of specific
facts they retain from their training data.

Fine-tuning reduces latent knowledge. Finally,
we investigate the effects of chat-based fine-tuning
on the factual knowledge of models. Base lan-
guage models are often fine-tuned (using a mix
of supervised and reinforcement learning (Ouyang
et al., 2022)) to make them better at following in-
structions. While prior works have shown that this
makes the models better at various benchmarks, it’s
unclear how such fine-tuning affects latent knowl-
edge. Figure 7 illustrates the comparative accuracy
of pre-trained models and their fine-tuned counter-
parts. In almost all cases, the fine-tuned models ob-
tain lower accuracy than their base versions. This
suggests that fine-tuning reduces the amount of
extractable latent knowledge in the models. A sim-
ilar observation was also made by Yu et al. (2024).
We observe a similar trend using EIC-LKE in Ap-
pendix H.6, Figure 15. Additional results on evalu-
ating generated outputs (using 50 tokens) in Figure
16 reveal the same pattern. To further assess if
the fine-tuned models are acquiring new knowl-
edge, we compute the subsumption rate between
pre-trained and fine-tuned versions (Table 10). We
find that most of the latent knowledge in fine-tuned
models is already present in base models (high 7),
thus indicating, that fine-tuned models may not be
obtaining additional knowledge.

5 Concluding Discussion

In this work, we investigate a new way to estimate
latent factual knowledge from an LLM. Unlike
prior approaches that use prompting, our method re-
lies on in-context learning. Our method not only ad-
dresses many reliability concerns with prompting,
but it also recollects (at time significantly) more
factual knowledge than prompting. In contrast
to prompting, which requires relationship-specific
and LLM-specific prompt engineering, our method
can be applied with minimal effort to test factual
knowledge of relations across a variety of struc-
tured knowledge bases and LLMs. This ability
enables us to compare the latent knowledge cap-
tured by many different families of open-source
LLMs; we expect our results to be of interest to
designers of these LLMs. Finally, to design our in-
context learning based LKE, we explore the impact
of the number and ordering of correct, incorrect,
and unknown examples used as inputs; our find-
ings may be of independent interest to developing
a better understanding of in-context learning.

A fundamental question posed by our and prior
work on estimating latent knowledge in LLMs:
What does it mean for an LLM to know a fact?
Suppose we tried to infer if an LLM knows the
capital of Germany using the input "France Paris;
Spain Madrid; Germany " and suppose the answer
were Berlin. What we have learnt is that the LLM
knows that the relationship r between Germany and
Berlin is similar to that between France and Paris
or Spain and Madrid. What we have not learned is
whether the LLM knows that the relation 7 is called
"capital” in English or "hauptstadt” in German. The
latter is revealed by prompts such as "The capital
of Germany is ". But, such prompts don’t reveal
whether the LLM knows that what Berlin means to
Germany is similar to what Paris means to France.

Is one type of knowing facts better than other?
It is difficult to answer in general. Neither type of
knowing guarantees that the knowledge can be put
to use in different contexts and tasks, such as when
we ask the LLM where the parliament of Germany
is located. Nevertheless, one clear takeaway from
our study is related to how factual knowledge is la-
tently embedded in an LLM. We show that more fac-
tual knowledge can be recollected using in-context
learning, i.e., the representations of subjects and
objects that share the same relationship, than by
prompting with the name of their relationship.



6 Limitations

This study contributes to advancing our understand-
ing of latent factual knowledge in LLMs through an
innovative in-context learning approach. However,
it is essential to acknowledge the inherent limita-
tions of our work. While the use of in-context
learning aims to mitigate the influence of prompt
engineering and the reliability issues associated
with previous prompting methods, it introduces its
own biases based on the selection and formulation
of in-context examples. We discus these in detail
in Section 3. For example, the choice of which
examples to include, their order, and their factual
accuracy can influence model responses, and thus
these in-context examples must be carefully curated
for reliable latent knowledge estimation. Addition-
ally, our study’s limitation in testing simple-format
facts underlines a critical gap in assessing LLMs’
complex reasoning abilities. The knowledge esti-
mation framework employed predominantly hinges
on the LLM’s capacity to correctly recall or recog-
nize factual information from a given set of triplets
or structured prompts. This narrows the scope of
evaluation to straightforward factual recall, thereby
overlooking the models’ capability to engage in
more sophisticated cognitive processes such as rea-
soning, synthesis, and inference, which we leave
as open avenues for future work.
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A Dataset

A.1 Creation of Nobel laureates dataset from Wikidata

The Nobel Dataset is a collection of biographical information about all Nobel laureates up until the year
2022, totaling 954 individuals. This dataset was curated using data obtained from Wikidata’s querying
service*. The following attributes are included for each laureate:

e Name: The full name of the Nobel laureate.
* Birth Year: The year in which the laureate was born.
* Award Year: The year(s) in which the laureate was awarded the Nobel Prize.

* Nature of Award: A brief description of the reason for the award, including the field of the Nobel
Prize (e.g., Physics, Peace).

* Gender: The gender of the laureate.
Here are some examples from the Nobel Dataset:

Table 2: Excerpt from the Nobel Dataset

Name Birth Year | Award Year | Nature of Award | Gender
Albert Einstein 1879 1921 Physics male
Louis de Broglie 1892 1929 Physics male
Carl D. Anderson 1905 1936 Physics male
Polykarp Kusch 1911 1955 Physics male
Melvin Schwartz 1932 1988 Physics male
Jerome I. Friedman 1930 1990 Physics male

A.2 Creation of multiple choices from T-REx: TREx-MC

T-REx (Elsahar et al., 2018) is a large-scale alignment dataset that aligns between Wikipedia abstracts and
Wikipedia triples. We have utilized the processed version of T-REx available on HuggingFace > for our
experiments. We filtered out the relations that have more than 500 facts and 100 unique object entities.
The unique objects ensure having 100 feasible multiple-choices for each fact in each relation. We curated
50 relations for our dataset TREx-MC that essentially consists of < subject, relation, multiple choices >.
The multiple choices comprise the correct answer along with 99 other potential choices. We list the 50
relations in Table 3 below.
The following attributes are included in TREx-MC dataset for each relation:

* Subject : The subject entity for each fact.

* Object: The object entity or the correct answer for each fact.

* Multiple choices: The list of other potential choices for each fact.
* Title : The Wikipedia title for each fact.

» Text: The Wikipedia abstract corresponding to each fact.

Some examples from the T-REx-MC dataset for 2 relations are listed in Table 4

*https://query.wikidata.org/
Shttps://huggingface.co/datasets/relbert/t_rex
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Table 3: List of 50 relations from T-REx-MC

date of date of . . . isa
birth death director father spouse child sibling composer ributary of student of
contains the
instance of cast - administrative | educated | parent screen former ital roducer
stance o member genre territorial at taxon writer performe capita produce
entity
has .
is made by n(}med developer publisher founded drafted played part OfA manufacturer production
after by by at the series company
languages | original
h cause of has ates point in . " publication | spoken, language official
mother death subsidiary creates time mneeption date written of film or language
or signed TV show
position
natve played original record author dlS'C overer characters lyrics by distributed by | home venue
language on team / broadcaster | label or inventor
speciality
Table 4: Excerpts from T-REx-MC Dataset
Subject Object Multiple choices Title Text
Date of birth

Giovanni Bia

24 October 1968

[’26 September 1981°,
’20 February 1981°,
.., 20 September 1960’]

Giovanni Bia

Giovanni Bia

(born 24 October 1968)
is a former

Italian footballer...

[’24 December 1931°,

Brian Harold May, CBE

Brian May 19 July 1947 ’1 December 1976°, Brian May (born 19 July 1947)
... '23 August 1964] is an English musician...
Composer
The Mexico Trilogy or
. R s Mariachi Trilogy
Mexico Trilogy Robert Rodriguez [ lir;d SchrTelder ’ B,randy ’ Mexico Trilogy (also Desperado Trilogy
.., 'Tommaso Traetta’]
on some DVD releases)
is a series of American..
Chelsea Walls is a 2001
[’Carmine Coppola’, independent film
Chelsea Walls Jeff Tweedy *Jimmy Chi’, Chelsea Walls directed by Ethan Hawke
..”Maurice Ravel’] and released by Lions Gate
Entertainment.
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B Inference Setup

We experiment with and use three different inference setups:

1. Transformers Based Setup: This setup utilizes the utilities present in the transformers library (Wolf
et al., 2020) to obtain the log probabilities for generating the different options.

2. vLLM Based Setup: vLLM ((Kwon et al., 2023)) is a fast inference library for large language models
(LLMs). It efficiently manages attention key and value memory using PagedAttention. We observed
considerable speed boosts for all 3 LKEs compared to the standard Transformers API.

3. SGLang Based Setup: SGLang (Zheng et al., 2023) is a structured generation language designed
for large language models (LLMs). It speeds up LLM interactions and provides enhanced control
through tight integration of its frontend language and backend runtime system. SGLang also leverages
Radix Attention to cache common components across queries in the KV cache, enabling substantial
speedups. We observed sizable speed boosts for IC-LKE and EIC-LKE over vLLM. However, we
are constrained by SGLang’s limited model family support at the moment, and only utilize it for the
Llama, Mistral, and Mixtral families.
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C Implementation Details

C.1 IC-LKE

IC-LKE leverages 50 randomly chosen samples from the training data as in-context examples but does
not use the relation name. The base prompt is now composed of 50 different examples followed by the
name of the entity being tested. A sample would be “Albert Einstein 14 March 1879 Ernest Rutherford 30
August 1871 ... J.J. Thomson 18 December 1856 Max Planck."

The subsequent process is the same as PB-LKE . The process involves adding 100 different choices to
the base prompt. A single forward pass is conducted for each sequence, generating log probabilities for
the entire sequence. The common part, represented by the tokens for the base prompt is then removed
from the tokens of the concatenated base prompt and option resulting in the log probabilities for the option.
Similar to PB-LKE , if the option is tokenized into multiple tokens, a single probability value is obtained
by multiplying the individual token probabilities. The resulting values are normalized across multiple
choices, and the option with the highest probability is selected as the correct answer. We use the vVLLM
Based & SGLang Based Setup for this LKE.

C.2 EIC-LKE

The EIC-LKE retrieves all 100 samples from our training dataset, initially maintaining them in a single
sequence. Then, starting from the 50th training sample, we intersperse our test sample with all the choices
every 5 examples. This results in a sequence that includes both the correct and incorrect choices. To
determine the probability of each choice, we first use a tokenizer to tokenize all the subjects and choices
separately. Then, we combine their token IDs, using a space token to separate the subject and object, and
a comma to differentiate between different tuples. After obtaining the sequence’s token IDs, we input
these token IDs into a simple forward pass. We use the token length of each subject and object to locate
the probability of their corresponding tokens. Finally, we calculate the probability of all the choices by
multiplying the probabilities of all their tokens. The resulting values are normalized across the choices,
and the choice with the highest probability is selected as the correct answer. We use a vLLM Based Setup
for this LKE.

D Different Metrics

The evaluation metric can readily be adapted to existing classification metrics. For example, we introduced
the metric Accuracy @K, a calibrated measure that assesses a model’s confidence in its predictions. This
metric quantifies how accurately the model identifies knowledge at specified confidence levels for a
given relation. We filter the instances that have their confidence levels > threshold K and form the
set D = {ci|predy(c;) > K Ve € D} . Following this, we use our accuracy measure to compute
Accuracy @K for varying values of K, the results of which are shown in Figure 8.

Z 5(y* :Pfede(%ray*’y))
) é <I7T,y*7y>E/DK (5)
Dk |

acck (0, D
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Figure 8: Accuracy @K for different models We evaluated five models on the Nobel dataset, which consists of 50
examples. Each model’s performance was measured using the Accuracy @K metric at various thresholds.
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E Probabilities of objects in sequence

We first consider 200 correct examples (subject-object pairs) and report the absolute generation probability
of objects in corresponding examples. We showed the results for Llama2-7B, Falcon-7B, Gemma-7B, and
Pythia-12B in Figure 11, Figure 9 and Figure 10. Figure 11a, Figure 9a, and Figure 10a illustrates the
probability of each object at various sequence positions; Figure 11b, Figure 9b, and Figure 10b shows the
impact on probabilities after substituting 40 objects dispersed within the sequence with incorrect ones.
Figure 11c, Figure 9c, and Figure 10c visualizes the effect of replacing objects at simultaneous positions.
Figures 11d, Figure 9d, Figure 10d, Figure 11e, Figure 9e, and Figure 10e present the outcomes of using
unknown subject-object pairs as replacements. We used a horizontal dashed line showing an average
probability of the correct examples. The yellow star notated the example at position 114 in the sequence.
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Figure 9: [Analysis of object probability in one sequence of Nobel laureate data using Llama2-7b]

F Efficient In Context learning based LKE (EIC-LKE)

We improve the efficiency of IC-LKE to perform knowledge extraction of multiple test facts in a single
prompt. Leveraging the context length in LLMs, the efficient version, namely EIC-LKE, places multiple
test facts surrounded by training facts into the same prompt. We measure the object probability of each of
the (alternative) test facts in the seugence to determine whether the LLM assigns higher probability to the
correct fact than the others.

Example 2. Considering the training facts in Example 1, we evaluate two test choices (highlighted in
yellow) for the birth-year relation: ( Einstein, birth-year 1879, )y = {1880}) and ( Louis birth-year,
1892, YV, = {1850}) using two prompts instead of four as in IC-LKE.

Feynman 1918 Einstein 1879 Heisenberg 1901 Louis 1850
Feynman 1918 Einstein 1880 Heisenberg 1901 Louis 1892"

G Details about the human-generated prompts and machine-mined prompts

We list the used human-generated and machine-mined prompts from (Jiang et al., 2020) in Table 5 with
subjects denoted as <‘head’>.
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Figure 10: [Analysis of object probability in one sequence of Nobel laureate data using Pythia-12B]
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Figure 11: [Analysis of object probability in one sequence of Nobel laureate data using Falcon-7B]
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Table 5: Templates for Selected Relations

Relation Name

Index

HGP Template

MMP Template

Instance of

{subject} means
{subject} is one
{subject} is a

{subject} is a small
{subject} and liberal
{subject} artist

Genre

{subject} is playing music
{subject} play
{subject} performs

{subject} series of
{subject} favorite
{subject} is an american

Position played on team / speciality

{subject} plays in position
{subject} plays at position
{subject} is in the position

{subject} substitutions :
{subject} substitutes :

Original language of film/TV show

The original language of {subject} is
The source language of {subject} is
The default language of {subject} is

{subject} a. r. rahman

Capital

The capital of {subject} is
The capital city of {subject} is
Its capital {subject} is

{subject} united states embassy in
{subject} representative legislature
{subject} rock band from

Native language

{subject} is a native language of
The mother tongue of {subject} is
{subject} means

{subject} descent
{subject} speak the
{subject} population or a widely spoken

Named after

{subject} is named after
{subject} is named for
{subject} is called after

{subject} and produces
{subject} variety of standard )
{subject} official

The official language {subject} is

{subject} professor of

Official language {subject} is {subject} is the official language in
{subject} is officially {subject} is the official language spoken in
{subject} is developed by {subject} was developed by
Developer {subject} is created by {subject} 2008

{subject} is designed by

{subject} references external links

Original broadcaster

{subject} was originally aired on
{subject} was originally broadcast on
{subject} was originally shown in

{subject} premiered on
{subject} aired on
{subject} 2021

{subject} is signed to

{subject} signed with

Record label {subject} is a recording artist for {subject} sohmed a recording contract with
{subject} is a recording artist on {subject} released by
{subject} is represented by music label {subject} attributed to the
Manufacturer {subject} is represented by the record label {subject} 113

LN =W =N =D =W =W =W = WN =W =W —WN =W —

{subject} is represented by

{subject} cedar point
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H Additional results

H.1 Model Name Simplification

We list all the models and their simplified names we evaluated in the paper in Table 6.

H.2 Additional results on baseline comparison

We compare IC-LKE and EIC-LKE on 12 relations from T-REx-MC: capital, named after, developer,
manufacturer, genre, instance of, native language, original broadcaster, language spoken written or
signed, original language of film / TV show, official language, position played on team/speciality. We
chose those 12 relations from T-REx-MCthat are found to be in common with (Jiang et al., 2020) where
they define the templates for HGP and MMP. We evaluated 4 models (Mistral-7B, Llama-7B, Falcon-7B,
and Pythia-12B) and showed all the results in Figure 12.

H.3 Full order of models and relations

We evaluated 49 models on 50 relations by our IC-LKEand EIC-LKE. Table 7 shows the ordered models
by the average accuracy of all the 50 relations. Table 8 shows the ordered relations by the average accuracy
of all the 49 models.

H.4 Full evaluation on EIC-LKE

We evaluated all the pre-trained models using EIC-LKE, but didn’t evaluate GPT-NEOX-20B due to the
limitation of its context window size. Figure 13 shows the heatmap of models vs. relations, ordered in the
same way as in Figure 5.

H.5 Relation accuracy correlation of all the pre-trained models

In Table 14, we show the Pearson correlation coefficients between each model pair’s performance across
the 50 relations.
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Figure 12: Accuracy for different latent knowledge estimators on all 12 relations
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Table 6: Model Name Simplifications

Original Name

Simplified Name in Paper

mistral-mixtral-8x7B-v0.1

Mixtral-8x7B

Nous-Hermes-2-Mixtral-8x7B-SFT

Mixtral-8x7B-FT1

Nous-Hermes-2-Mixtral-8x7B-DPO

Mixtral-8x7B-FT2

mistral-7b

Mistral-7B

mistral-instruct-7b

Mistral-7B-FT1

openhermes-2.5-mistral-7b

Mistral-7B-FT2

llama2-70b Llama2-70B
llama2-70b-chat Llama2-70B-FT1

llama2-13b Llama2-13B
Llama2-13B-FT1

llama2-13b-chat

vicuna-13b-v1.5

Llama2-13B-FT2

llama2-7b

Llama2-7B

llama2-7b-chat

Llama2-7B-FT1

vicuna-7b-v1.5

Llama2-7B-FT2

gemma-7b Gemma-7B
gemma-7b-it Gemma-7B-FT1
gemma-2b Gemma-2B
gemma-2b-it Gemma-2B-FT1
Ilama-65b Llama-65B
llama-33b Llama-33B
llama-13b Llama-13B
vicuna-13b-1.3 Llama-13B-FT1
llama-7b Llama-7B
vicuna-7b-1.3 Llama-7B-FT1
falcon-7b Falcon-7B
falcon-instruct-7b Falcon-7B-FT1
mpt-7b MPT-7B
gpt-neox-20b GPT-NEOX-20B
opt-30b OPT-30B
opt-13b OPT-13B
opt-6.7b OPT-6.7B
opt-2.7b OPT-2.7B
opt-1.3b OPT-1.3B
opt-350m OPT-350M
opt-125m OPT-125M
gpt-j-6b GPT-J-6B
pythia-12b Pythia-12B
pythia-6.9b Pythia-6.9B
pythia-2.8b Pythia-2.8B
pythia-1.4b Pythia-1.4B
pythia-1b Pythia-1B
pythia-410m Pythia-410M
pythia-160m Pythia-160M
pythia-70m Pythia-70M
bloom-7.1b Bloom-7.1B
bloom-3b Bloom-3B
bloom-1.7b Bloom-1.7B
bloom-1.1b Bloom-1.1B
bloom-560m Bloom-560M
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https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/meta-llama/Llama-2-70b
https://huggingface.co/meta-llama/Llama-2-70b-chat
https://huggingface.co/meta-llama/Llama-2-13b
https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/google/gemma-7b
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/huggyllama/llama-65b
https://huggingface.co/huggyllama/llama-33b
https://huggingface.co/huggyllama/llama-13b
https://huggingface.co/lmsys/vicuna-13b-v1.3
https://huggingface.co/huggyllama/llama-7b
https://huggingface.co/lmsys/vicuna-7b-v1.3
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/tiiuae/falcon-instruct-7b
https://huggingface.co/mosaicml/mpt-7b
https://huggingface.co/EleutherAI/gpt-neox-20b
https://huggingface.co/facebook/opt-30b
https://huggingface.co/facebook/opt-13b
https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-350m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/pythia-12b
https://huggingface.co/EleutherAI/pythia-6.9b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-160m
https://huggingface.co/EleutherAI/pythia-70m
https://huggingface.co/bigscience/bloomz-7b1
https://huggingface.co/bigscience/bloomz-3b
https://huggingface.co/bigscience/bloomz-1b7
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloom-560m

Table 7: Model Performance Comparision

Model Average Accuracy Standard Deviation
Llama2-70B 0.8511 0.17591
Mixtral-8x7B-SFT 0.84765 0.16919
Mixtral-8x7B 0.84605 0.16653
Llama-65B 0.84185 0.17528
Mixtral-8x7B-DPO 0.81535 0.17580
Llama-33B 0.81255 0.19088
Mistral-7B 0.79310 0.20000
Llama2-13B 0.78692 0.21892
Llama-13B 0.76845 0.21796
Llama2-70B-chat 0.75815 0.21272
Llama2-7B 0.74945 0.24069
Vicuna-13B 0.74940 0.21427
Gemma-7B 0.74717 0.25668
Openhermes-2.5 0.74365 0.21241
Vicuna-13B-2 0.74080 0.22807
Vicuna-7B-2 0.71695 0.24016
Falcon-7B 0.70190 0.27052
Vicuna-7B 0.70155 0.24724
Llama2-13B-chat 0.69387 0.22966
Llama-7B 0.69260 0.27912
Gemma-2B 0.66600 0.28627
GPT-NEOX-20B 0.66145 0.30972
Llama2-7B-chat 0.66130 0.24996
Mistral-instruct-7B 0.66120 0.26173
MPT-7B 0.64545 0.30638
Pythia-12B 0.63325 0.32412
OPT-6.7B 0.62110 0.31313
GPT-J-6B 0.60965 0.32319
OPT-13B 0.60845 0.31017
Pythia-6.9B 0.59185 0.32359
Bloom-7.1B 0.58270 0.31404
OPT-30B 0.57925 0.31813
Pythia-2.8B 0.57580 0.32773
Pythia-1.4B 0.56330 0.33600
Gemma-7B-instruct 0.55327 0.30689
OPT-2.7B 0.55109 0.33260
Bloom-3B 0.54375 0.29199
Pythia-1B 0.54220 0.31560
OPT-1.3B 0.53610 0.33335
Bloom-1.1B 0.51115 0.29346
OPT-350M 0.50735 0.30716
Gemma-2B-instruct 0.49474 0.29628
Pythia-410M 0.47995 0.29598
Bloom-1.7B 0.47660 0.29658
OPT-125M 0.45195 0.29330
Bloom-560M 0.38465 0.28747
Pythia-160M 0.37145 0.28505
Pythia-70M 0.31260 0.27404
Falcon-instruct-7B 0.00605 0.01459
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Table 8: Relations and their average accuracies

Order Relation Average Accuracy

1 publication date 0.992071428571429
2 inception 0.983214285714286
3 point in time 0.975714285714286
4 drafted by 0.922214285714286
5 native language 0.8825

6 production company 0.873428571428571
7 languages spoken, written or signed 0.865071428571429
8 performer 0.831142857142857
9 has played at 0.826642857142857
10 capital 0.815857142857143
11 is made by 0.815357142857143
12 producer 0.794714285714286
13 record label 0.794571428571429
14 named after 0.791071428571429
15 developer 0.786928571428571
16  publisher 0.7835

17 original broadcaster 0.781214285714286
18 cast member 0.777

19  home venue 0.771714285714286
20 has subsidiary 0.754142857142857
21 manufacturer 0.749928571428571
22 screenwriter 0.732285714285714
23 contains the administrative territorial entity  0.7255
24 creates 0.721214285714286
25  official language 0.709857142857143
26  mother 0.697857142857143
27  part of the series 0.692214285714286
28  founded by 0.684714285714286
29 original language of film or TV show 0.6825

30  date of birth 0.668857142857143
31 date of death 0.641594184576485
32 instance of 0.588990518331226
33 position played on team / speciality 0.537642857142857
34 genre 0.536

35 distributed by 0.522785714285714
36  parent taxon 0.488428571428571
37  director 0.432928571428571
38  author 0.331285714285714
39  father 0.309214285714286
40  educated at 0.306285714285714
41 characters 0.282857142857143
42 composer 0.276785714285714
43 child 0.259142857142857
44 lyrics by 0.258428571428571
45 sibling 0.250285714285714
46 spouse 0.238785714285714
47 s atributary of 0.212142857142857
48 cause of death 0.206

49  discoverer or inventor 0.173142857142857
50  student of 0.123357142857143
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Figure 14: [Pearson Correlation Coefficients Between All Pre-trained Models] We calculated the Pearson
correlation coefficients for each model pair among 49 models across 50 relations.
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Figure 15: [Base vs chat-finetuned models] We see that finetuned versions (depicted in lighter shades) obtain lower
accuracy across the relations in T-REx-MC than pre-trained models (shown in darker shades), evaluated by IC-LKE.

Family Model Type Accuracy Model Type Accuracy‘ n

Llama-7B Base 0.699 FT-1 0.693 0.779
Llama-13B Base 0.770 FT-1 0.735 0.854
Llama2-7B Base 0.741 FT-1 0.712 0.808
Llama2-7B Base 0.741 FT-2 0.664 0.790
Llama2-13B Base 0.771 FT-1 0.748 0.831
Llama2-13B Base 0.771 FT-2 0.692 0.801
Llama2-70B Base 0.846 FT-1 0.739 0.811
Mistral-7B Base 0.793 FT-1 0.639 0.793
Mistral-7B Base 0.793 FT-2 0.750 0.869
Mixtral-7Bx8 Base 0.832 FT-1 0.835 0.928
Mixtral-7Bx8 Base 0.832 FT-2 0.817 0.911
Gemma-2B Base 0.666 FT-1 0.488 0.577
Gemma-7B Base 0.749 FT-1 0.511 0.557

Table 10: Average subsumption rate (1) for base models and fine-tuned models over the relations in T-REx-MC.
Despite being fine-tuned on smaller datasets, fine-tuned models (low 7). The results are based on IC-LKE.

H.6 Impact of finetuning

We show the results evaluated by EIC-LKE for all the pre-trained models and fine-tuned models in
Figure 15 from the relations in TREx-MC, which also conveys the message about reduced knowledge in
fine-tuned models. We also show the results for the average subsumption rate (1) for base models and
fine-tuned models over the relations in T-REx-MC.

H.7 Evaluation of Generated Output

We also evaluated the generated output, where we used greedy searching(temperature=0), and asked both
pre-trained and fine-tuned models to generate 50 tokens using different prompts from HGP and MMP.
Following this, we checked for the presence of the ground truth in the generated output of 50 tokens. The
generation is correct if present, and incorrect otherwise, then we compute the generation accuracy on
the test dataset. We report the average generation accuracy based on 12 relations and the HGP/MMP
templates shown in Table 5.
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Figure 16: Accuracies computed over generated outputs (50 tokens) for pre-trained and fine-tuned models using
HGP, MMP, and IC-LKE.

29



	Introduction
	Designing Reliable LKEs
	Reliability concerns with existing LKEs
	A new In Context learning based LKE (IC-LKE)

	Exploring the design space of IC-LKE
	Experiments and Results
	IC-LKE vs. prompt-based approaches
	Evaluating Diverse Models and Relations
	Comparing different LLMs families
	Comparing within the same LLM family


	Concluding Discussion
	Limitations
	Dataset
	Creation of Nobel laureates dataset from Wikidata
	Creation of multiple choices from T-REx: TREx-MC

	Inference Setup
	Implementation Details
	IC-LKE
	EIC-LKE

	Different Metrics
	Probabilities of objects in sequence
	Efficient In Context learning based LKE (EIC-LKE)
	Details about the human-generated prompts and machine-mined prompts
	Additional results
	Model Name Simplification
	Additional results on baseline comparison
	Full order of models and relations
	Full evaluation on EIC-LKE
	Relation accuracy correlation of all the pre-trained models
	Impact of finetuning
	Evaluation of Generated Output


