GarmentCrafter: Progressive Novel View Synthesis for Single-View
3D Garment Reconstruction and Editing
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Figure 1. From a real-world clothing image, GarmentCrafter synthesizes high-quality novel views, enabling the reconstruction of garment
meshes with accurate geometry and rich detail. Additionally, users can easily apply 2D edits (e.g., modifying parts or surface details) using
off-the-shelf tools on a single image, and GarmentCrafter seamlessly applies these edits across the 3D model with multi-view consistency.

Abstract

We introduce GarmentCrafter, a new approach to enable
non-professional users to create and modify 3D garments
from a single-view image. While recent advances in im-
age generation have facilitated 2D garment design, creat-
ing and editing 3D garments remains challenging for non-
professional users. Existing methods for single-view 3D re-
construction often rely on pre-trained generative models to
hallucinate novel views conditioning on the reference im-
age and camera pose, yet they lack cross-view consistency,
failing to capture the internal relationships across differ-

ent views. In this paper, we tackle this challenge through
progressive depth prediction and image warping to approxi-
mate novel views. Subsequently, we train a multi-view diffu-
sion model to complete occluded and unknown clothing re-
gions, informed by the evolving camera pose. By jointly in-
ferring RGB and depth, GarmentCrafter enforces inter-view
coherence and reconstructs precise geometries and fine de-
tails. Extensive experiments demonstrate that our method
achieves superior visual fidelity and inter-view coherence
compared to state-of-the-art single-view 3D garment recon-
struction methods. Our code will be publicly available.



1. Introduction

Professional fashion designers use sophisticated software to
create and edit garments in 3D, crafting highly detailed vir-
tual apparels [6, 13, 59, 62]. However, as digital garments
become integral to virtual environments and personalized
digital experiences [8, 19, 25, 52, 73], there is a growing
demand for intuitive tools that allow non-professional users
to design and interact with 3D garments. For broader ac-
cessibility, such tools should allow users to work with 3D
garments with minimal input, ideally from just a single im-
age. This raises a key question: How can we create and edit
3D garments with simple manipulations in an image?

Recent advancements in image generation models [49,
51, 53, 66] and image editing techniques [5, 46, 48, 67,
84, 87] have enabled high-quality garment design in 2D.
Yet, achieving the same level of control and realism for
3D garments remains challenging for common users. Cur-
rently, state-of-the-art methods on single-view 3D garments
rely either on 1) deforming, matching, and registration with
the human body prior [41] and/or predefined garment tem-
plates [3, 14, 18, 35, 37, 43, 55], or 2) novel view synthesis
techniques [39, 70] that use pre-trained 2D diffusion models
conditioned on a reference image and target pose. However,
they often fall short in capturing accurate, realistic geome-
try and appearance.

Two characteristics of garments pose challenges. First,
garments exhibit diverse shapes, complex geometries, and
rich textures, making template-based methods limited in
their ability to generalize across clothing styles. Most ex-
isting methods prioritize either geometry [14, 42] or tex-
ture [50, 79], rarely balancing both [18, 43, 55]. Second, the
fine details in garments demand stronger multi-view consis-
tency. Existing novel view synthesis methods [40, 74], con-
ditioned on a reference image and target pose, often neglect
critical semantic connections across different views.

How can we ensure that a pixel in one view corresponds
to a point visible in another, with consistent appearance?
In this paper, we propose a different approach, progressive
novel view synthesis, to enhance cross-view coherence. Our
method begins by estimating the depth of the input image
and warping projected points to approximate unseen views.
We then apply a multi-view diffusion model to complete
missing and occluded regions based on the evolving camera
pose. Furthermore, we incorporate a monocular depth esti-
mation model to generate depth maps that remain consistent
with the warped depths. Unlike existing novel view synthe-
sis, our key insight is to use the depth-based warped image
as an additional condition to guide cross-view alignment.
By progressively synthesizing views and depths along a pre-
defined camera trajectory, our method gradually refines the
geometry and texture of the garment across viewpoints.

We name our method GarmentCrafter, a novel solu-
tion for 3D garment creation and editing while users just

need to operate on a single-view image, as shown in Fig-
ure 1. Specifically, GarmentCrafter not only generates high-
quality 3D garments but also extends garment editing from
2D to 3D. Thanks to our progressive novel view synthesis,
users can make local edits (e.g., editing surface details) or
perform part-based manipulations (e.g., modifying garment
parts) directly on a single-view image, with precise effects
reflected in 3D space — capabilities that are absent in the
existing methods [55]. Trained on large-scale 3D garment
datasets [4, 16, 88], GarmentCrafter demonstrates superior
performance on held-out 3D garment data as well as in-the-
wild clothing images. Extensive experiments show that our
method outperforms state-of-the-art 2D-to-3D garment re-
construction approaches in terms of geometric accuracy, vi-
sual fidelity, and cross-view consistency.

Remark. Professional digital fashion designers typically
construct 3D garments from reference images through a
progressive workflow that involves initial reconstruction
followed by iterative refinement. Our method is designed
to support this established practice by offering two mod-
ules: a reconstruction module that generates a base 3D gar-
ment from a single reference image, and an editing mod-
ule that allows for detailed 3D adjustments. We explicitly
adopt garments in a canonical T-pose or rest pose, which
is consistent with industry conventions and facilitates both
geometric manipulation and downstream processing. While
this constraint may appear limiting, it aligns with common
authoring pipelines and enables a more controllable and re-
producible design process for non-expert users.

2. Related Work

Single-View 3D Garment Reconstruction and Editing.
Reconstructing 3D garments from a single image has been
widely explored, with existing methods approaching the
task from several perspectives. One line of work relies
on parametric body templates, such as SMPL [3, 14, 27,
45], or employs 2D shape priors and keypoint-based tech-
niques [83] to optimize garment structure. Another cate-
gory of work uses explicit or implicit 3D parametric gar-
ment models [3, 15, 18, 35, 42, 43, 55, 86] to capture gar-
ment shape and support pose-guided deformations. Ad-
ditionally, some methods incorporate garment sewing pat-
terns [2, 9, 11, 26, 37, 76, 88], offering flexibility by recon-
structing garments from 2D panels. However, these works
often struggle to capture diverse garment styles and fine
surface details (e.g., wrinkles), and lack support for intu-
itive garment manipulation, such as modifying surface de-
tails or garment parts. In contrast, GarmentCrafter prior-
itizes novel view synthesis for detailed geometry and tex-
ture reconstruction, without relying on garment templates
or human body priors, allowing it to handle a wide range of
garment styles. Furthermore, single-view edits can also be
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Figure 2. An illustration of progressive novel view synthesis in GarmentCrafter. Left: Given a garment image, our method performs
depth-aware novel view synthesis along a predefined zigzag camera trajectory. Right: For each camera rotation from ;1 to m;, we project
the current point cloud P;_; into the image space based on camera pose 7;, resulting in incomplete RGB and depth images. Our diffusion
model completes the RGB image using the warped view, input image, and camera pose as conditions, while a depth completion network
refines the depth map based on the completed RGB, warped depth, and camera pose. The re-projected point cloud P} is then merged with
P;_1 to produce an updated point cloud P;. This iterative process continues until a full 3D representation of the garment is achieved.

seamlessly extended to the 3D model. Note that, our focus
in this paper is on garments in a rest pose — well suited to
the fashion industry, where ease of adjustment is essential.

Novel View Synthesis from Sparse Images. Our method
is inspired by novel view synthesis. Popular approaches
such as Neural Radiance Fields (NeRFs) [44] and 3D
Gaussian Splatting (3D-GS) [30] rely on numerous posed
inputs, limiting their use in single-view scenarios. Re-
cently, distillation from pre-trained 2D generative models
has emerged as a promising solution for hallucinating novel
views from limited input, with applications in human dig-
itization [1, 20, 21, 32, 54, 71, 72, 82] and object-centric
reconstruction [24, 24, 38-40, 47, 57, 60, 70, 85]. How-
ever, these methods often lack cross-view consistency and
high-quality details, crucial for garment-focused tasks. Un-
like models that sample views independently, our method
takes semantic cues (i.e., wrapped images) from other views
as an additional condition for view synthesis. This might
be reminiscent of scene-level approaches, such as Perpetual
View Synthesis [7, 12, 28, 36, 63, 78], which condition on
warped images for neighbor view image completion. How-
ever, we note that scene-centric methods often lack the pre-
cision needed for object-centric cases (e.g., garment manip-
ulation) and overlook loop closure for garment shape com-
pletion. Our work represents a novel attempt of progressive
view synthesis with a predefined camera trajectory for gar-
ment reconstruction and editing.

Image-to-3D Reconstruction. Our approach builds on re-
cent advancements in image-to-3D reconstruction, where
most methods distill pre-trained generative models via per-
scene optimization [10, 33, 47, 58, 65] or multi-view diffu-
sion techniques [24, 38—40, 56, 64, 85]. With the availabil-
ity of large-scale 3D datasets [16, 17], generalizable Large
Reconstruction Models (LRMs) [22, 34, 61, 74, 75] are be-

ing trained for feed-forward image-to-3D generation. Un-
like Zero-1-to-3 and its variants [39], our method leverages
diffusion models to progressively condition on projected
images with carefully designed camera trajectory and er-
ror reduction methods to enhance cross-view consistency.
Additionally, we curated a 3D garment dataset, incorporat-
ing assets from existing 3D collections [4, 16, 88], allow-
ing our model to synthesize highly detailed, multi-view im-
ages and corresponding depth maps. This process yields
multi-view image and depth maps, enabling high-quality
mesh reconstruction through standard point cloud-to-mesh
methods [29]. While we demonstrate point aggregation and
mesh reconstruction in our work, our primary focus is on
advancing the multi-view and depth synthesis stages rather
than optimizing the point-to-mesh conversion process itself.

3. Approach

We first present problem statement in Section 3.1, followed
by our proposed progressive novel view synthesis in Sec-
tion 3.2. We introduce garment-centric applications enabled
by our method in Section 3.3. We describe the details of
data curation and model training methods in Section 3.4.

3.1. Problem Definition

Given a single-view garment image Iy, our goal is to gener-
ate consistent novel views with detailed RGB textures and
accurate depths, which support both single-view 3D recon-
struction and editing. Specifically, we first estimate a depth
map Dy based on the input Iy. Then, we project every pixel
in the foreground of the garment to the world space, creat-
ing a colored point cloud Fy. Our goal is to complete this
point cloud by sequentially incorporating information from
synthesized novel views. To achieve this, we propose an
progressive 3D completion process with a predefined cam-



era trajectory w = {1, 72, ..., Ty } that forms a closed loop
around the garment object. Figure 2 illustrates the overall
framework. Next, we elaborate the details of an arbitrary
step in the following sections.

3.2. Progressive Novel View Synthesis

Overview. At the step 4 of the progressive novel view syn-
thesis (see Figure 2), we first project the existing point cloud
P;_4 to the image plane of camera 7m; € 7, producing an
incomplete image I/ and an incomplete depth map D;. We
then apply an image completion model to inpaint the miss-
ing areas in I, resulting in J;. Next, we use an monocular
depth estimation model to estimate the corresponding depth
map D; consistent with the known depths in Dj. Finally, we
integrate I; and D; with the existing point cloud to obtain
a merged P;. By following a predefined camera trajectory,
our method can generate view-dependent images and cor-
responding depths that enable high-quality garment recon-
struction and edit with improved cross-view consistency.

3.2.1 Conditional Image Generation.

At step 4, the goal is to synthesize I; € R7*W*3  the im-
age of the garment object from the viewpoint of camera 7;,
given the input image Iy, the projected image I/, and the rel-
ative camera rotation R; € R3*3 and translation T; € R3
from 7o to 7;. We aim to train a model fiye such that:

I = fime(Io, I}, R;, T;), (D

where I; is the synthesized complete image that retains the
appearance of I/ in the known regions, and synthesizes
plausible appearance in the unknown regions that remain
perceptually consistent with I/ and the original input 1.

To learn fimg, we fine-tune a denoising diffusion model,
leveraging its strong generalization capabilities in image
generation. Specifically, we adopt a latent diffusion archi-
tecture based on Stable Diffusion [51] with an image en-
coder &, a denoising network €y, and a decoder D. At de-
noising step s € S, let z; denote the noisy latent of the
target image * = I;, and let ¢ = ¢(lo, I/, R;, T;) be the
embedding of the anchor view image, target view projected
image, and relative camera extrinsics. We optimize the fol-
lowing latent diffusion objective:

L(0) = Eg(10),6(17),e~N(0,1),5 [||€ —eo(zs.s,0)*]. @

Unlike existing multi-view diffusion models (e.g., [39,
56]), which synthesize novels views from an arbitrary in-
put viewpoint, we unify our garment-centric task by fixing
the input image to a near-frontal view of the garment. This
allows R; and T; to be interpreted as the absolute camera
transformation from the frontal view. Furthermore, in addi-
tion to conditioning on the anchor view image, we incorpo-
rate the warped image (i.e., I/ in Figure 2 and Equation 1) at

the target view as an additional condition input, which pro-
vides a strong prior that enhances cross-view consistency in
garment reconstruction, as demonstrated in Section 4.4.

Conditional Depth Generation. Given complete RGB im-
age I;, we learn a depth model fyepm to estimate the depth
map D; € REXW X1 conditioned on the warped incomplete
depth map D/:

D; = faepn(Li, D)) 3)

Similar to the conditional image generation, we enforce
depth preservation in known regions by framing the task
as metric depth estimation. To ensure consistency, we align
the depth values of D; and D during training. The model
is optimized using an £; loss:

L1 =|(D;i — Dy) - ml|, “4)

where D; is the ground-truth depth, and m is the foreground
mask. To train fgepm, we fine-tune the pretrained human
foundation model, Sapiens [31], leveraging its strong priors
for human-related tasks. To condition the model on D}, we
concatenate D] with I; as input and add an extra channel to
the first projection layer of Sapiens model. The weights of
the added channel are initialized to zero.

Point Cloud Merging and Projection. To integrate novel
view observations (i.e., I; and D;) into the existing point
cloud P;_;, we first identify the inpainted regions from the
image model. Pixels in these regions are projected into
world space and merged with P;_; to form P;, with ex-
panded borders to include overlapping regions. To mini-
mize stitching artifacts, we align the depth map of the in-
painted regions with the warped depth map of P;_;. When
projecting a partial point cloud to a novel view, only sur-
faces facing the camera should be rendered. To enforce this,
we track the orientation of each point. For a point x added
at step ¢, its orientation vector v is derived from the normal
direction of the corresponding pixel in D;. During projec-
tion, a point is ignored if dot (v,vy) < 0, where vy is the
viewing direction.

We illustrate the whole process of P-NVS and show the
intermediate results in the supplementary. After completing
all steps along the camera trajectory, we optionally sample
a few random views for additional inpainting to cover any
region occluded in previous views.

3.3. Garment Digitization and Editing

Garment Digitization. Our method enables garment digi-
tization from a single image by progressively synthesizing
novel views, generating multi-view consistent RGBD im-
ages and a colored point cloud. This output serves as an in-
termediate representation that can be converted to other 3D
representations. In this work, we employ Screened Poisson
surface reconstruction [29] to convert the point cloud into



a textured mesh. Note that each point of the point cloud
contains both the RGB color information and the surface
normals. The Screened Poisson method interpolates these
attributes to map textures onto the mesh vertices and pro-
duces a watertight mesh. To preserve the non-watertight
garment topology, we apply a trimming operation to remove
unwanted mesh surfaces introduced by Poisson Reconstruc-
tion. Please see supplementary for a comparison with and
without surface trimming. To further reduce artifacts, we
remove floating faces unconnected to the main mesh and
apply Laplacian smoothing to refine the mesh surface.

Interactive Editing. Redesigning a 3D garment model typ-
ically requires significant expertise, making it impractical
for most users. GarmentCrafter provides an intuitive alter-
native, allowing users to edit a rendered image of the gar-
ment from a selected view, which is then lifted into 3D. In
this work, we focus on two types of edits: (1) Part-based
Editing: Modifies the geometry or texture of specific gar-
ment parts, such as sleeves or pant legs. Users can add,
remove, or resize components. (2) Local surface editing:
Adjusts the geometry and texture of localized regions, such
as adding a pocket or modifying the neckline design.

The garment part editing is achieved with the following
strategy. Given a 3D garment object GG, the user selects an
anchor view 7 and edits the rendered image I to obtain I.g.
This editing step can be done using any image editing tool,
such as Photoshop or Al-based methods. We first identify
the edited region in I.4;; and remove the corresponding gar-
ment parts from G, leaving a partial 3D garment G'. We
reformulate the editing task as single-view 3D garment part
reconstruction, conditioned on G’. We follow the process
described in Section 3.2 with two modifications: (1) At each
step along the camera trajectory, the conditional image and
depth are generated by combining the projected point cloud
with observations from the partial garment G’. (2) After
computing image and depth maps, only pixels within the
edited region are projected and merged with the existing
point cloud. The final output is a colored point cloud of
the edited parts, which is then merged with G’. For local
surface editing, instead of removing and reconstructing an
entire garment part, we apply the same process to a local-
ized surface region.

3.4. Data Preparation and Training

We construct the training dataset by replicating the infer-
ence procedure. For each 3D garment, we sample 6 uniform
views at 20° elevation (following the full camera trajectory)
and 4 additional random views between 60° and —30° for
inpainting.

Training Data for Reconstruction. We follow the zigzag
camera trajectory (Figure 2) and at each step ¢, we
form a training pair for the image generation model fimg:
{(I, Io, R;, T;), I}, where I is the projected image, Iy is

the anchor view, and (R;, T;) are the relative camera trans-
formations. Similarly, the depth generation model fycpin
is trained with {(D}, I;), D;}, where Dj is the projected
depth, and D; is the ground-truth depth. We merge the point
cloud with I; and D; before proceeding. Finally, we repeat
the process for four random views to simulate inpainting.

Training Data for Editing. We generate training data
for 3D editing by randomly removing parts of a 3D gar-
ment. At each step, we create a partial image I/ and depth
map D} by merging I} and D] with known observations.
The training pairs become {(I;’, Iy, R;,T;), I; } for fime and
{(DY, I;), Dy} for faepn.

Joint Training. To learn a unified model for both recon-
struction and editing, we combine their training data. We
randomly apply small rotations to the 3D object when gen-
erating the training data, enabling the model to handle in-
the-wild inputs that may not be well-posed. Please refer to
the supplementary materials for details.

4. Experiments

We present experimental results of our method on single-
view garment reconstruction and editing. Please see sup-
plementary for additional details, analyses, and results.

4.1. Datasets, Metrics, and Baselines

Datasets. We validate GarmentCrafter using 3D garment
assets from a number of sources. (1) Curated dataset: We
collect ~700 3D garments with diverse shape and texture
from online sources. (2) Objaverse 1.0 (Garment) [16]:
the original v1.0 dataset contains more than 800K 3D ob-
jects, where most of the existing method trained on [39,
74, 77]. We manually curated a subset only contain ~900
high-quality garment assets. (3) BEDLAM [4]: 114 gar-
ments, each has many textures, ~1600 assets in total. (4)
Cloth4D [88]: ~1100 artists made garments.

Quantitative Metrics. (1) Texture and appearance qual-
ity: we evaluate the novel view synthesis using commonly
used LPIPS [80], PSNR [23], SSIM [68]. (2) Geometry
quality: we measure the performance using geometric er-
rors with Chamfer distance (bi-directional point-to-mesh)
between ground-truth and reconstructed meshes.

Baselines. We compare GarmentCrafter with state-of-the-
art models for image-to-3D object and image-to-garment
reconstruction. (1) Hunyuan3D-2.0 [81]: a powerful large
model for high-quality image-to-3D object reconstruction.
(2) InstantMesh [74]: object reconstruction by generating
novel views using Zero-1-to-3++ [56]. (3) CRM [69]: gen-
erate six orthographic views for 3D object reconstruction.
(4) Garment3DGen [55]: a state-of-the-art garment-specific
model based on template optimization, with templates ini-
tialized by InstantMesh [74]. As the texture code is not re-
leased, we compare only mesh geometry.
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Figure 3. Qualitative comparison on single-view 3D garment reconstruction. Our method demonstrates better performance in handling
complex texture patterns and geometric structures compared to Hunyuan3D-2.0 [81], InstantMesh [74], and CRM [69].

For fair comparisons, we fine-tuned InstantMesh* on our
garment dataset. Hunyuan3D-2.0 and CRM require signif-
icant computing for full fine-tuning, making it impractical
given our resource constraints.

4.2. Results on Single-View Reconstruction

We evaluate GarmentCrafter on single-view reconstruction
using a held-out test dataset of 150 garment assets. For each
test case, we sample 12 views with alternating elevations of
0° and 20° and azimuth angles evenly spaced over 360°. To
assess image quality, we convert the generated point clouds
to meshes using a classical surface reconstruction method
and render multi-view images. For geometry evaluation, we
compute the Chamfer distance directly between the gener-
ated point cloud and the ground-truth mesh.

Qualitative Results. Figure 3 shows qualitative compar-
isons, where GarmentCrafter demonstrates superior texture
and geometry generation compared to all other baselines.

Table 1. Quantitative comparison of texture and geometry
quality. Garment3DGen provides no texture reconstruction code.

| Appearance | Geometry
| LPIPS| PSNRT SSIM? | Chamfer]
Hunyuan3D-2.0 | 0.1743 18.79  0.8158 0.0088
InstantMesh* 0.1848 19.14  0.7944 0.0139
CRM 0.2213 17.51  0.8131 0.0127
Garment3DGen - - - 0.0123
GarmentCrafter | 0.1190 2236  0.8317 | 0.0044

Our method, benefiting from consistent multi-view gener-
ation, produces sharp textures, intricate geometric details,
and tight alignment with the input image. Notably, even
against the highly capable Hunyuan3D-2.0, our method
maintains a clear edge across these dimensions. Figure 4
shows additional qualitative results of GarmentCrafter.

Quantitative Results on Geometry Quality. We present
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Figure 4. More qualitative results of GarmentCrafter on single-view reconstruction. Please see supplementary for more results.

Table 2. Ablation study on Progressive Novel View Synthesis (P-
NVS) and analysis on multi-view consistency. We show results
with and without P-NVS. CVCS: Cross-View Consistency Score.

P-NVS | LPIPS| PSNRT  SSIM?t | CVCSt
X 0.1195 21.512 0.8369 0.9030
v 0.1052 22.776 0.8557 0.9512

quantitative geometry evaluation results in Table 1. Gar-
mentCrafter outperforms baseline methods in terms of
Chamfer distance, highlighting its enhanced ability to cap-
ture detailed surface geometries in 3D garments.

Quantitative Results on Texture Quality. We conduct
a quantitative analysis of texture quality on our held-out
test dataset and show results in Table 1. Across all image
metrics, GarmentCrafter surpasses all baseline methods,
demonstrating its effectiveness in producing high-fidelity
textures and preserving fine-grained details.

4.3. Results on Single-View Editing

Figure 5 shows qualitative results on single-view editing,
including various types of edits such as resizing, element
swapping, and surface edits. GarmentCrafter applies these
edits in 3D while preserving cross-view consistency.

4.4. Analyses and Ablation Studies

Importance of Progressive Novel View Synthesis. A key
insight of our method is to progressively synthesize novel
view by conditioning the generation on the projected im-
ages. We conduct an ablation study on the effect of pro-
jected image conditioning. For each test case, we select an
anchor view 7, and a second camera view, 7, at a 60° az-
imuthal angle relative to ;. We compare the performance
of our image model with or without projected image con-
ditioning at synthesizing view o in Table 2. We observe a
drop in performance measured in image similarity metrics
when removing the projected condition.

Analysis on multi-view consistency. Common image met-
rics (e.g., LPIPS, PSNR, and SSIM) measure similarity but
do not directly reflect cross-view consistency. We propose
a new metric, the Cross-View Consistency Score (CVCS),
to gain deeper insights into the consistency of our results.

SI-ry-m
Xm/

CVCS =1 — 5)
where I is the synthesized image at camera view 7, I’ is
a partial image projected from an observed view my with
known depth, and m’ is a binary mask indicating the pro-
jection regions. This assumes 7 and 7 are relatively close.

We use the CVCS metric to ablate the impact of P-
NVS. As shown in Table 2, GarmentCrafter achieves su-
perior cross-view consistency with P-NVS. We further val-
idate this with a visual example in the supplementary.

Effect of Trajectory on Loop Closure. For better loop clo-
sure, we use a “zigzag” camera trajectory where we rotate
the camera to left and right alternatively and converge at
the center back of the garment (see Figure 2). This design
aims to better capture overlapping views, thereby improv-
ing reconstruction accuracy. We validate this design choice
by comparing the quality of the 3D meshes generated us-
ing zigzag and sequential trajectories. We report quantita-
tive results in Table 3. We find that our chosen trajectory
achieves better performance across both image and geome-
try metrics. We additionally show a qualitative comparison
in Figure 6. When using a circular trajectory, achieving loop
closure from the side view is challenging; the generated ge-
ometry (left sleeve) often conflicts with prior predictions,
leading to model failure.

5. Conclusion

We present GarmentCrafter, a new approach to reconstruct
and edit 3D garments from a single input image. Our
method synthesizes novel view images progressively to en-
sure cross-view consistency, thereby achieving high quality
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Figure 5. Qualitative results on single-view 3D garment editing. GarmentCrafter enables single-view edit such as modify the geometry
and surface details of the garment, with the changes accurately reflected across the 3D model. Please see supplementary for more results.

Table 3. Ablation study on camera trajectory selection. We
study two types camera trajectory for progressive novel view syn-
thesis. Circular: the camera moves around the object in regular
steps, either clockwise or counterclockwise. Zigzag: the camera
alternates directions with each step, as shown in Figure 2. Results
indicate that our proposed zigzag achieves better appearance and
geometry quality compared to using circular trajectory. We show
an actual example in Figure 6 for qualitative analyses.

Trajectory | LPIPS | PSNR?T SSIM? | Chamfer |
Circular 0.1503 2079 0.8130 0.0054
Zigzag (Ours) | 0.1454 2122 0.8173 0.0044

geometry and texture results. We have conducted exten-
sive experiments to demonstrate the superior performance
of GarmentCrafter with other baseline methods. Please see
supplementary materials for additional implementation and
training details, more qualitative results on garment recon-
struction and editing, as well as an ablation study on the
rotation angles in the camera trajectory.

We focus on garments in a rest pose rather than arbitrary
poses. This scope is a deliberate choice, as GarmentCrafter

ge R

Zigzag (ours) Circular

Input RGB

Figure 6. Camera trajectory selection for loop closure. Zigzag
achieves better loop closure, while the circular trajectory struggles
with side-view closure, leading to geometric conflicts and failure.
We argue that there are numerous ways to select camera trajecto-
ries, our proposed approach offers an intuitive solution tailored for
single-view reconstruction and editing.

is designed as a tool to facilitate digital garment design and
editing, and rest poses provide a consistent and intuitive
baseline well suited to this purpose. Future work could ex-
tend the training dataset to include 3D garments in varied
poses, allowing the method to generalize to arbitrary gar-
ment inputs. Additionally, our model reconstructs only the
external surface of the garments, without accounting for in-
ner layers or internal structures. This will be addressed in
future work.
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