

DYNAMICS-INFORMED WEIGHT DIFFUSION FOR GENERALIZABLE PREDICTION OF COMPLEX SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Data-driven methods offer an effective equation-free solution for predicting physical dynamics. However, predictive models often fail to generalize to unseen environments due to varying dynamic behaviors. In this work, we introduce DynaDiff, a novel generative meta-learning framework to enable efficient, test-time adaptation. Instead of tuning a pre-trained model or context, DynaDiff directly generates a complete, high-performance expert model from scratch, conditioned on a short observation sequence from a new target environment. Specifically, we first finetune a base model on various source environments to efficiently construct a model zoo of expert predictors. Subsequently, we leverage a weight graph representation and train a conditional diffusion model to learn the underlying distribution of expert weights, capable of generating new models from a given dynamic behavior. To effectively capture the dynamic context from the observation sequence, we design a dynamics-informed prompter that explicitly models the relationship between the system’s state and its temporal evolution, providing a highly informative prompt for the generative process. Extensive experiments demonstrate that our method can generate expert models with strong generalization for new environments, conditioned on limited observations. Code is available at <https://anonymous.4open.science/r/DynaDiff-8B1C/README.md>.

1 INTRODUCTION

Data-driven approaches have emerged as a powerful, equation-free paradigm for predicting physical dynamics (Wang et al., 2023; Ding et al., 2024), achieving considerable success across a diverse range of disciplines, including molecular dynamics (Mardt et al., 2018), fluid mechanics (Shu et al., 2023), and climate science (Bi et al., 2023). In these systems, dynamical systems governed by the same underlying equations can exhibit vastly different evolutionary behaviors under varying environmental conditions e , which can be formally expressed as $\frac{dx}{dt} = f(x, t, e)$. For instance, fluid flows, described by the Navier-Stokes equations, can exhibit different vortex structures under various Reynolds number or external driving forces. Consequently, a predictive model f_{θ, e_a} , trained on observed trajectories of a specific environmental condition e_a struggles to generalize to unseen environmental conditions e_b . Therefore, modeling the generalizable function f beyond the specific environment remains a critical problem for scientific machine learning (Subramanian et al., 2023; Goswami et al., 2022).

Significant efforts have been undertaken to enable cross-environment prediction. Meta-learning approaches facilitate adaptation to unseen environments by simultaneously learning both environment-shared weights and environment-specific contexts (Kirchmeyer et al., 2022; Wang et al., 2022; Blanke & Lelarge, 2024). When applied to a new environment, the environment-specific contexts are tuned on new data to compose or modulate a tailored predictive model. Another strategy is to train environment-unified foundation models through well-designed architectures and large-scale parameterization (Herde et al., 2024; Hao et al., 2024; McCabe et al., 2024; Yang et al., 2023; Chen et al., 2024b). These models, pretrained on massive datasets, can be partially refined by finetuning on data specific to a target environment. However, from a model weight perspective, the essence of these methods only permit adaptation within a small, expert-specified subset of weights. This approach restricts the model’s ability to represent the true, complex manifold of expert weights across diverse environments. A more fundamental path is to directly generating the complete model weights θ via modeling the conditional distribution $p(\theta|e)$ (Figure 1).

Inspired by treating model weights as a data modality, this work focuses on generating environment-specific model weights (Figure 1c). By explicitly modeling the joint distribution of environments and weights, this generative adaptation is fundamentally suited for data-scarce scenarios where finetuning is impractical. However, the challenge of generating model weights for physical dynamics tailored to specific environments lies in three points. First, model weights, interconnected by the network architecture, are inherently structured. Thus, naive flattening weights into sequences would lead to the loss of crucial structural relationships (Kofinas et al., 2024). Second, the high dimensionality of weights results in an exceptionally vast parameter space. Minor variations in the weights of even a single layer can be amplified into significant difference in predictive performance (Plattner et al., 2025; Meynent et al., 2025). Therefore, traditional metrics like MSE are inadequate for assessing weight similarity. Finally, practical applications typically lack explicit physical knowledge of the environment, leaving only short trajectory snippets as available data. Consequently, it is necessary to extract discriminative features of the underlying dynamics from such limited observations.

To address these challenges, we propose a novel generative meta learning framework, Dynamics-informed weight Diffusion (DynaDiff). DynaDiff represents predictive models as weight graphs, aggregating weights into node features to preserve their inherent connectivity and accommodate arbitrary model architectures (challenge 1). It employs a node-attention Variational Autoencoder (VAE) to learn latent representations for the diffusion model, and incorporates a functional loss for weight similarity awareness (challenge 2). For unseen environments, we design a dynamics-informed prompter, which distills both physical features and temporal dynamics, thereby providing a highly informative prompt for the diffusion model (challenge 3). Finally, we propose a domain-adaptive model zoo that enables the efficient construction of a high-quality training corpus for DynaDiff.

Our contributions can be summarized as follows:

- We propose modeling the joint distribution of model weights on environments for cross-environment prediction, thereby rapidly generating expert weights for new environments without tuning.
- We construct weight graphs based on model architecture to preserve connectivity and design a functional loss for weight similarity perception. This significantly enhances the generative model’s ability to learn effective representations of model weights.
- Extensive experiments on simulated and real-world systems demonstrate that DynaDiff improves cross-environment generalization, boosting average prediction accuracy by 10.78% over competitive baselines.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

Given environmental conditions $e \in \mathcal{E}$, the time-dependent system dynamics function is instantiated as $\frac{dx}{dt} = f(x, t, e) = f_e(x, t) \in \mathcal{F}$. The environment space \mathcal{E} and the function space \mathcal{F} are linked by the governing equations f , forming a joint set $\{e, f_e\}$. We employ a data-driven model $f_{\theta, e}$, parameterized by θ , to learn f_e , thereby formalizing the function space \mathcal{F} as the model’s weight space Θ . The environment space is divided into an observed environment set \mathcal{E}_{tr} and an unseen environment set \mathcal{E}_{te} , and consequently, the weight space is also partitioned into corresponding subspaces Θ_{tr} and Θ_{te} . Treating model weights as the modeling object, we learn the inherent joint distribution of environments and weights from the joint observation space $\{\mathcal{E}_{tr}, \Theta_{tr}\}$. For a new environment $e \in \mathcal{E}_{te}$, we generate a corresponding predictive function $f_{\theta, e}$ once learning is complete.

Notably, we posit that even when sharing the same governing equations, each environment determines a unique dynamical function. At test time, given a short observation sequence $X_L = \{x_0, \dots, x_{L-1}\}$

Figure 1: Paradigms for dynamics adaption.

Figure 1: Paradigms for dynamics adaption. The figure is divided into three main sections: a. Meta-learning Method, b. Foundation Model, and c. Generative Method (Our). Each section shows a flow from 'Env' (Environment) to a 'Data' block (Scarce data for a, b; Massive data for b; Scarce data for c). This is followed by a 'Tuning' block (forward-loss-backward for a, b; denoising process for c). In section a, the output is 'Env-specific' weights, which are then 'Merge' into a 'Partially Tailored' model (Env-shared). In section b, the output is 'Context' (modulated by 'Env'), which is then 'Modulate' into a 'Base model'. In section c, the output is 'Expert model'. The 'Generative Method (Our)' is highlighted with a green arrow and labeled 'Efficiently generate'.

Figure 2: Framework of our Dynamics-informed weight Diffusion.

from a new, unseen environment $e \in \mathcal{E}_{te}$, our goal is to generate the complete model weights θ_{new} by modeling the conditional distribution $P(\theta|X_L)$. This approach, which generates a full expert model from scratch without requiring gradient-based finetuning, significantly differs from existing practices in dynamics prediction.

2.2 CONDITIONAL DIFFUSION

Diffusion models (Rombach et al., 2022; Dhariwal & Nichol, 2021) learn a probabilistic transformation from a prior Gaussian $p_{prior} \in \mathcal{N}(\mathbf{0}, \mathbf{I})$ distribution to a target distribution p_{target} . It perturbs data distributions by adding noise and learn to reverse this process through denoising, demonstrating strong fitting capabilities for data across modalities like images, language, and speech (Croitoru et al., 2023; Tumanyan et al., 2023). We denote the original diffusion sample as x_0 . The forward noising process in standard diffusion models is computed as $x_n = \sqrt{\bar{\alpha}_n}x_0 + \sqrt{1 - \bar{\alpha}_n}\epsilon$, where ϵ and $\{\bar{\alpha}_n\}$ represent the Gaussian noise and noise schedule (Ho et al., 2020), respectively. The reverse process gradually denoises from Gaussian noise to sample data as

$$p_\theta(x_{n-1}|x_n) := \mathcal{N}(x_{n-1}; \mu_\theta(x_n, n), \sigma_n^2 \mathbf{I}), \quad (1)$$

where $\mu_\theta = \frac{1}{\sqrt{\bar{\alpha}_n}}(x_n - \frac{1 - \bar{\alpha}_n}{\sqrt{1 - \bar{\alpha}_n}}\epsilon_\theta(x_n, n))$ and $\{\sigma_n\}$ are step dependent constants. The noise ϵ_θ is computed by a parameterized neural network, typically implemented as a UNet or Transformer architecture. The network's parameters are optimized through an objective function (Ho et al., 2020)

$$L_n = \mathbb{E}_{n, \epsilon_n, x_0} \|\epsilon_n - \epsilon_\theta(\sqrt{\bar{\alpha}_n}x_0 + \sqrt{1 - \bar{\alpha}_n}\epsilon_n, n)\|^2 \quad (2)$$

to minimize the negative log-likelihood $\mathbb{E}_{x_0 \sim q(x_0)}[-p_\theta(x_0)]$. To model conditional distributions $p(x|c)$, state-of-the-art methods inject conditional information during noise prediction using techniques like adaptive layer normalization (Peebles & Xie, 2023), as $\epsilon_\theta(x_n, n, c)$.

FIX

3 METHODOLOGY

In this section, we first introduce the method for modeling the joint distribution of model weights and environments, as illustrated in Figure 2a. Subsequently, we detail the efficient construction of a domain-adaptive model zoo. Finally, we present a dynamics-informed prompter that operates with the limited observation sequence.

3.1 DYNAMICS-INFORMED WEIGHT DIFFUSION

DynaDiff first organizes the expert model weights into a weight graph. It then pretrains a weight VAE, yielding a high-quality latent space. Finally, an dynamics-informed diffusion model is trained within this latent space.

162
163

3.1.1 WEIGHT GRAPH

164
165
166
167
168
169

Model weights constitute a novel data modality, inherently structured by the network architecture. A straightforward approach is to break the network structure and flatten weights layer by layer into fixed-length token sequences for representation using sequence models like transformers. Here, we consider the inherent connection structure of the neural network. Specifically, we aggregate layer weights based on the forward data flow through the network topology to construct a weight graph that encapsulates the network’s connection structure.

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

We focus on designing the weight organization method for the basic computational units of modern AI architectures: linear layers and convolution layers (Kofinas et al., 2024). For a linear layer, learnable parameters include weights $\mathbf{w} \in \mathbb{R}^{D_{out} \times D_{in} \times 1}$ and bias $b \in \mathbb{R}^{D_{out} \times 1}$, where the D_{out} and D_{in} are the dimension of output and input respectively. A convolution layer similarly comprises weights $\mathbf{w} \in \mathbb{R}^{C_{out} \times C_{in} \times h \times w}$ and bias $b \in \mathbb{R}^{C_{out} \times 1}$, where c_{out} and c_{in} are the channels of output and input, respectively, and $h \times w$ is kernel size. We treat the output neurons of linear layers and output channels of convolution layers as nodes of the weight graph. Centering on the feature of output nodes, we flatten and concatenate the weights (and corresponding bias) associated with connections leading to each output node within a layer, forming the feature vector $\mathbf{w} \oplus b$ for that output node. Thus, a linear layer’s weights are organized as D_{out} nodes with $(D_{in} + 1)$ -dimensional features (Figure 3), and a convolution layer’s weights are organized as C_{out} nodes with $(C_{in} \times h \times w + 1)$ -dimensional features (Figure 8).

185
186
187
188
189
190

Considering the prevalence of skip connections in modern deep learning, we incorporate their weights. Following the data flow, we concatenate the weights of the skip connection path as additional features to the feature vector of the node where it merges with the main path, as depicted in Figure 8. Consequently, the entire model weights are structured as a weight graph with heterogeneous node features, where the total number of nodes equals the sum of the output neurons/channels across all layers. We normalize weights based on input-output node pairs and biases based on nodes.

191
192
193
194

The proposed weight graph aggregates weights to nodes. This not only captures inherent connection relationships but also significantly reduces computational overhead compared to maintaining dense edge features. This organization method is applicable to most architectures, as shown in Section 4.4.

195

3.1.2 WEIGHT VAE

196
197
198
199

We now encode the heterogeneous graph of model weights to build a low-dimensional and informative latent space for diffusion model. We train a node attention-based VAE with a loss function given by

$$L_{VAE} = -\mathbb{E}_{q_\phi(\mathbf{z}|\mathbf{w})} [\log p_\theta(\mathbf{w}|\mathbf{z})] + \beta \mathbf{KL}[q_\phi(\mathbf{z}|\mathbf{w})||p(\mathbf{z})], \quad (3)$$

200
201
202
203
204
205
206

where \mathbf{w} represents the heterogeneous node features of the weight graph, $\mathbf{z} \in \mathbb{R}^d$ is the latent representation, and the KL divergence term is used to constrain the posterior distribution $q_\phi(\mathbf{z}|\mathbf{w})$. The VAE architecture first employs a layer-wise linear mapping for each layer’s nodes to project them into a same dimension. Subsequently, we utilize a multi-head attention mechanism to model inter-node relationships, capturing interactions among neurons within and across original model layers. The resulting latent representation $\mathbf{z} = E(\mathbf{w})$ is then passed through another layer-wise linear mapping, projecting it back to the original dimensions for reconstruction $\hat{\mathbf{w}} = D(\mathbf{z})$.

207
208
209
210
211

We notice that prediction models exhibiting similar performance can possess distinct parameter values (Meynent et al., 2025). This observation motivates our approach to the reconstruction error term in the VAE objective. The similarity between model weights should be gauged by their functional consistency, rather than merely their identical absolute values. We introduce a function loss,

$$L_{func} = \mathbb{E}_{x_i \in X} \|f_{\hat{\mathbf{w}}}(x_i) - f_{\mathbf{w}}(x_i)\|_2^2, \quad (4)$$

212
213
214
215

where $f_{\mathbf{w}}(x_i)$ and $f_{\hat{\mathbf{w}}}(x_i)$ are the output values of the original and reconstructed weights, respectively, when applied to an input sample x_i . Intuitively, the function loss allows the VAE to reconstruct weights that may not appear identical to the originals but perform similarly. It relaxes the encoder’s optimization constraints, promoting the learning of a latent space characterized by functional semantics. We theoretically analyze the effect of the function loss on generalization error in Appendix E.

Figure 3: Weight node of linear layer.

216 3.1.3 WEIGHT LATENT DIFFUSION MODEL
217

218 In the latent space, we instantiate the noise network ϵ_θ using a transformer architecture. Conditioned
219 on dynamics-informed *prompt*, we inject this information into the network using adaptive layer
220 norm (adaLN) (Peebles & Xie, 2023), forming $\epsilon_\theta(\mathbf{z}_n, n, \text{prompt})$. Compared to performing diffusive
221 generation directly on the raw weights (Yuan et al., 2024), the latent space offers significant dimen-
222 sionality reduction, which alleviates the computationally intensive nature of the diffusion process and
223 simplifies the generation of representations.

224 FIX
225226 3.1.4 DYNAMICS-INFORMED PROMPTER
227

228 In most practical scenarios, only a short observation sequence X_L is available, instead of a known
229 environmental parameter. The central task of the Prompter is to distill a rich, informative *prompt*
230 vector from this limited sequence X_L . To leverage the strengths of both domain knowledge and
231 data-driven feature extraction, we design a hybrid architecture composed of two parallel branches.

232 First, we extract physical features to capture the system’s macroscopic dynamics. For each state x_i ,
233 we compute its first and second-order moment statistics, energy, and enstrophy. For the resulting
234 time series of length L for each statistic, we then compute its temporal mean and trend to form the
235 explicit prompt. Subsequently, we encode the microscopic evolution of the observation sequence.
236 We compute the sequence of spectra for X_L via Fast Fourier Transform (FFT), stacking the real and
237 imaginary parts. A Gated Recurrent Unit (GRU) is then used to capture the evolutionary patterns
238 across frames, with its final hidden state serving as the implicit prompt. We concatenate the explicit
239 and implicit prompts to form the final dynamics-informed *prompt*. The computational details are
240 provided in the Appendix F.

241 We sample observation sequences with a variable length ranging from 1 to L for each training epoch.
242 This enables the prompter to handle a flexible number of observation frames at test time. Additionally,
243 the prompter is trained jointly with the latent diffusion model, and its output is passed through an
244 additional linear layer to regress on the ground-truth environmental condition e , with the regression
245 error $L_{aux} = \|e - \text{linear}(\text{prompt})\|_2^2$ serving as an auxiliary supervisory signal. **We verify that this** FIX
246 **loss, although not necessary, helps to improve the interpretability of *prompt* in the Appendix H.5.**

247 3.2 DOMAIN-ADAPTIVE MODEL ZOO
248

249 DynaDiff operates on expert model weights, which are collected in a pre-constructed model zoo.
250 While a naive approach would be to train each expert model from scratch (Schürholz et al., 2024), this
251 process is computationally prohibitive and leads to a non-stationary weight distribution. To address
252 this, we introduce an efficient construction process centered on domain-adaptive initialization (Chen
253 et al., 2024b). First, we pretrain a global base model on data from all visible environments, analogous
254 to the environment-shared weights in meta-learning. Subsequently, each environment-specific expert
255 is obtained by rapidly fine-tuning this base model, as illustrated in Figure 2. To encourage sufficient
256 exploration of the weight landscape, we also introduce a minor random noise to one layer of the
257 base model before each fine-tuning process. Since each expert only needs to solve for a specific
258 environment, its size is substantially smaller than a general-purpose foundation model. Therefore,
259 our model zoo trades affordable offline storage for a massive gain in training efficiency, eliminating
260 the need for the inner-loop optimization common in prior meta-learning approaches (Finn et al.,
261 2017; Dupont et al., 2022). Moreover, this one-time offline investment eliminates the need for any
262 gradient-based computation when adapting to a new environment.

263 3.3 GENERALIZATION ANALYSIS
264

265 We provide a theoretical analysis in Appendix E, demonstrating that our framework is principally
266 designed to control its generalization error. First, by training a VAE with a functional loss, we
267 construct a latent space that is functionally smooth, where proximity between latent vectors reflects
268 the functional similarity of the decoded models. Next, a conditional diffusion model then accurately
269 generate representations within this well-behaved space. Coupled with an auxiliary loss that grounds
270 the prompter, this design ensures that each source of the total error is directly governed and minimized
271 by a specific training objective.

270

271 Table 1: Average RMSE (\pm std from 5 runs) in in- and out-domain environments. Best in bold,
272 underlined for suboptimal. The parameter sizes of predictive models are reported.

Methods	Testing Params	Cylinder Flow (96:400)		Lambda-Omega (12:39)		Kolmogorov Flow (12:39)		Navier-Stokes (24:121)	
		In-domain	Out-domain	In-domain	Out-domain	In-domain	Out-domain	In-domain	Out-domain
Not-Adaptive	$\sim 1M$	0.124 ± 0.026	0.159 ± 0.029	0.214 ± 0.045	0.232 ± 0.042	0.135 ± 0.027	0.149 ± 0.029	0.129 ± 0.030	0.144 ± 0.033
One-per-Env		0.040 ± 0.040	0.038 ± 0.040	0.038 ± 0.032	0.035 ± 0.008	0.069 ± 0.021	0.071 ± 0.019	0.046 ± 0.007	0.047 ± 0.009
One-for-All	FNO	$\sim 500M$	0.082 ± 0.025	0.083 ± 0.023	0.352 ± 0.041	0.363 ± 0.040	0.080 ± 0.020	0.096 ± 0.016	0.066 ± 0.009
	DPOT	$\sim 500M$	0.091 ± 0.008	0.090 ± 0.007	0.324 ± 0.007	0.325 ± 0.007	0.079 ± 0.012	0.084 ± 0.017	0.087 ± 0.021
	Poseidon	$\sim 600M$	0.085 ± 0.014	0.083 ± 0.015	0.301 ± 0.013	0.318 ± 0.009	0.102 ± 0.006	0.103 ± 0.005	0.092 ± 0.017
	MPP	$\sim 550M$	0.102 ± 0.020	0.098 ± 0.019	0.311 ± 0.054	0.313 ± 0.055	0.098 ± 0.017	0.103 ± 0.022	0.095 ± 0.026
Env-Adaptive	DyAd		0.096 ± 0.021	0.094 ± 0.020	0.138 ± 0.078	0.137 ± 0.075	0.099 ± 0.006	0.098 ± 0.005	0.091 ± 0.018
	LEADS		0.101 ± 0.031	0.115 ± 0.036	0.121 ± 0.031	0.123 ± 0.032	0.107 ± 0.011	0.105 ± 0.010	0.091 ± 0.022
	CoDA		0.099 ± 0.029	0.100 ± 0.031	0.119 ± 0.034	0.116 ± 0.032	0.097 ± 0.019	0.098 ± 0.019	0.096 ± 0.016
	GEPS	$\sim 1M$	0.079 ± 0.018	0.082 ± 0.020	0.094 ± 0.041	0.092 ± 0.039	0.089 ± 0.009	0.086 ± 0.008	0.098 ± 0.011
	CAMEL		0.089 ± 0.018	0.094 ± 0.016	0.104 ± 0.018	0.103 ± 0.018	0.096 ± 0.013	0.101 ± 0.016	0.106 ± 0.018
	DynaDiff		0.059 ± 0.028	0.065 ± 0.025	0.090 ± 0.021	0.089 ± 0.023	0.081 ± 0.012	0.080 ± 0.013	0.062 ± 0.017

284

285

4 EXPERIMENT

286

287

4.1 EXPERIMENTAL SETUP

288

We consider unknown environmental conditions for all dynamical systems, training models solely on observed trajectories across diverse visible environments. Test environments are categorized as in-domain (seen during training, novel initial conditions) and out-domain (unseen environments) (Nzoyem et al., 2024). At test time, models autoregressively predict future states given a single initial frame. **The prediction horizon is 100 steps for Cylinder Flow and Lambda-Omega, and 50 steps for Kolmogorov Flow and Navier-Stokes.** We evaluate prediction quality using root mean square error (RMSE) and structural similarity index (SSIM). By default, the length of the observation sequence for new environments is $L = 10$.

FIX

289

Baselines We compare against two baseline categories: foundation models (One-for-All) and meta-learning approaches (Env-Adaptive). The foundation models are trained via empirical risk minimization (Ayed et al., 2019) on trajectories from all visible environments, including DPOT (Hao et al., 2024), Poseidon (Herde et al., 2024), and MPP (McCabe et al., 2024). The meta-learning methods learn environment-shared weights and update environment-specific contexts on observation sequences, including DyAd (Wang et al., 2022), LEADS (Yin et al., 2021), CoDA (Kirchmeyer et al., 2022), GEPS (Koupaï et al., 2024), and CAMEL (Blanke & Lelarge, 2024). **Following existing work Blanke & Lelarge (2024), we enable zero-shot prediction by conditioning the hypernetwork on environmental conditions e , which assumes known ground-truth environmental conditions.** Additionally, we assume all environments are visible and train a dedicated Fourier neural operator (Li et al., 2020) (FNO) for each environment as a performance upper bound (One-per-Env). **We also train an FNO only on all visible environments, but test without any adaptation as a performance lower bound (Not-Adaptive).** Unless otherwise specified, we use FNO as the expert small model for DynaDiff and other meta-learning methods. Detailed architectural are in Appendix C and I.

FIX

310

Dynamical Systems We validate the model’s effectiveness on four time-dependent PDE systems and one real-world dataset: 1) Cylinder Flow (Li et al., 2025a); 2) Lambda-Omega (Champion et al., 2019); 3) Kolmogorov Flow (Koupaï et al., 2024); 4) Navier-Stokes Equations (Kirchmeyer et al., 2022); and 5) ERA5 Dataset (Zhang et al., 2025). For the PDE systems, we use equation coefficients or external forcing as environmental variables and simulate multiple trajectories under different environments for training and testing. We train 100 FNO weight sets for each seen environment across all systems to serve as the model zoo of DynaDiff (size 100). Detailed descriptions and data generation procedures for each system are provided in Appendix A and B.

FIX

311

320

4.2 MAIN RESULTS

321

PDE systems We report the generalization performance on 4 PDE systems in Table 1, detailing the number of in/out-domain environments and the parameter size of models for each system during testing. The generative module of DynaDiff has approximately 400M parameters, while the predictive

Figure 4: Predicting performance on Cylinder Flow. SSIM distribution of (a) One-per-Env and (b) DynaDiff; (c) Ratio where DynaDiff outperforms One-per-Env; (d) Differences between DynaDiff and One-per-Env. The green circle and box means seen environment during training and highlight region, respectively.

Figure 5: Predicting performance on ERA5 data. (a) One frame of ground true wind speed. (b) SSIM difference between DynaDiff and One-per-Env. The green box means seen environment during training. (c) Average prediction RMSE of DynaDiff and foundation models.

model at test-time has only 1M. Across nearly all systems, DynaDiff achieves the best average performance, demonstrating its ability to model the conditional dependence of the predictive model on environments. Its small, environment-specific expert models outperform foundation models with hundreds of times more parameters. Furthermore, unlike other meta-learning approaches, DynaDiff treats model weights holistically during adaption, without forcing the retention of environment-shared components. This potentially expands DynaDiff’s search space for improved generalization.

We also find that some models can outperform One-per-Env in certain environments. This is likely due to the stochasticity of initialization and the training process, as One-per-Env models do not always converge to the optimal point. We illustrate this result with Cylinder Flow (2 environmental variables), as shown in Figure 4. The overall SSIM of One-per-Env is close to 1, however, it exhibits suboptimal performance in certain regions (green box in Figure 4). The FNO weights generated by DynaDiff perform better than One-per-Env in some environments, even unseen ones. This suggests that DynaDiff captures the manifold where the joint distribution of weights and environments lies, whereas the optimizer training process can fail to converge onto this manifold possibly due to getting stuck in local optima (Sclocchi & Wyart, 2024). We provide a further analysis of the weight manifold captured by DynaDiff in Appendix H.9.

Real-world dataset We utilize the ERA5 reanalysis dataset, including east-west and north-south wind speed data at a height of 100 meters. The spatial resolution is 0.25° , and the temporal resolution is 1 hour. We use January 2018 wind speeds as the training set and January 2019 as the test set. To define different environments, we divide the globe into 6×12 grid subregions at 30° intervals (Wang et al., 2022). We randomly select 24 subregions as seen environments, with the remaining 48 as unseen environments. The experimental results are shown in Figure 5. DynaDiff’s prediction performance outperform all baselines and is able to surpass One-per-Env in partial unseen subregions.

4.3 ROBUSTNESS

We investigate the impact of the number of seen environments, model zoo size and the length of observation sequence L . We first examine the effect of model zoo size on Cylinder Flow and Lambda-Omega systems, as depicted in Figures 9a and b. The results indicate that DynaDiff exhibits relatively stable performance with a zoo size of 50. As the zoo size decreases further, performance begins to deteriorate, even within the distribution. Subsequently, we test the influence of the number of seen environments on the Kolmogorov Flow and Navier-Stokes systems. The number of environments ranged from approximately 5% to 20% of the total. The findings reveal that increasing the number of

seen environments reduces prediction error, but the gains become marginal after reaching around 20%. This suggests that DynaDiff learns the underlying joint distribution of weights and environments from a small number of environments, rather than overfitting to trajectory samples within those environments. Finally, we test DynaDiff’s sensitivity to the observation length L . The results in Table 5 show that DynaDiff robustly captures the dynamic context to generate suitable predictors even with fewer frames, a flexibility enabled by our variable-length training strategy (Section 3.1.3). Furthermore, in Appendix H.2 and H.3, we evaluate two challenging generalization scenario with a highly skewed distribution of training and testing environments, where DynaDiff consistently outperforms all baselines.

4.4 EXTENSIBILITY

The weight graph structure proposed in Section 3.1.1 is capable of organizing neural networks of arbitrary architectures. Here, we extend to more neural operators as expert models within DynaDiff, including Wavelet Neural Operator (Tripura & Chakraborty, 2023) (WNO), and U-shape Neural Operator (Rahman et al., 2022) (UNO). Our experimental results on Cylinder Flow are presented in Figure 6. DynaDiff, when using different neural operators, consistently achieves excellent generalization performance, with actual performance showing only minor variations depending on the specific operator architecture. This demonstrates that DynaDiff is a model-agnostic framework capable of benefiting from the sophisticated architectural designs of its expert models. Detailed architectures of these neural operators are provided in Appendix I.

Figure 6: DynaDiff on the Cylinder Flow with different expert models of DynaDiff.

4.5 ABLATION STUDY

DynaDiff, when using different neural operators, consistently achieves excellent generalization performance, with actual performance showing only minor variations depending on the specific operator architecture. This demonstrates that DynaDiff is a model-agnostic framework capable of benefiting from the sophisticated architectural designs of its expert models. Detailed architectures of these neural operators are provided in Appendix I.

4.5 ABLATION STUDY

Here, we verify the necessity of domain initialization when building the model zoo and the function loss used during VAE training. Experimental results on the Kolmogorov Flow and Navier-Stokes systems are presented in Table 10. When function loss is omitted, the VAE relies solely on MSE for reconstruction similarity, leading to suboptimal generated weights, particularly in unseen environments. Function loss relaxes VAE encoding constraints and helps prevent overfitting by prioritizing functional consistency over exact reconstruction. Removing domain initialization results in a significant deterioration in generated weight performance. This is attributed to the high complexity of a randomly initialized model zoo, which significantly increases the modeling difficulty. We conclude that for weight generation aimed at generalization, sample quality is far more critical than diversity.

In addition, we compare the performance using our prompter against ground-truth environmental conditions, and analyze the impact of different diffusion architectures in Appendix H.6 and H.4.

4.6 COMPUTATIONAL COST

Time cost We compare the time overhead of DynaDiff and One-per-Env when adapting to new environments, as shown in Figure 7a. One-per-Env requires training weights for each new environment using observational data. DynaDiff’s overhead includes building the model zoo (accelerated by domain initialization) and generating weights for new environments. Though the upfront time cost of preparing the model zoo, DynaDiff generates weights significantly faster than training a new predictor.

Figure 7: (a) Time cost and (b) GPU memory during testing on the Navier-Stokes system.

This highlights the trade-off of our generative meta-learning paradigm: exchanging a moderate offline cost for significant test-time efficiency.

432 **GPU memory** We compare the GPU memory usage of DynaDiff and other baselines during inference (Figure 7b). Thanks to the proposed weight graph structure, DynaDiff’s attention computation
 433 unfolds along the node dimension, significantly reducing computational overhead and memory. In
 434 addition, we detail the storage overhead of the model zoo in Appendix B.
 435

437 5 RELATED WORK

439 5.1 DYNAMICS PREDICTION ACROSS ENVIRONMENTS

441 Developing dynamic prediction models with cross-environment generalization is a crucial problem
 442 in scientific machine learning and has garnered significant research interest. We review the main
 443 approaches and related work in this area. The first category trains large-parameter neural solvers
 444 as foundation models using extensive simulated data (Rahman et al., 2024; Alkin et al., 2024;
 445 Chen et al., 2024a). Subramanian et al. (2023) explore the generalization performance of classical
 446 FNO architectures across different parameter sizes. Subsequently, models such as MPP (McCabe
 447 et al., 2024), DPOT (Hao et al., 2024), and Poseidon (Herde et al., 2024) employed more advanced
 448 architectures to improve computational efficiency and approximation capabilities. The second
 449 approach is meta-learning (Finn et al., 2017). These methods capture cross-environment invariants
 450 through environment-shared weights and fine-tune environment-specific weights or contexts on
 451 limited data from new environments for adaptation, including DyAd (Wang et al., 2022), LEADS (Yin
 452 et al., 2021), CoDA (Kirchmeyer et al., 2022), GEPS (Koupaï et al., 2024), CAMEL (Blanke &
 453 Lelarge, 2024), and NCF (Nzoyem et al., 2024). Additionally, other methods exist, like in-context
 454 learning (Chen et al., 2024b). Yang et al. (Yang et al., 2023) frame differential equation forward
 455 and inverse problems as natural language statements, pre-train transformers, and provide solution
 456 examples for new environments as context to enhance model performance. Compared to these works,
 457 we innovatively treat the complete model weights as generated objects and explicitly model their
 458 joint distribution with the environment.

459 5.2 DIFFUSION FOR NETWORK WEIGHT GENERATION

461 Generating neural network weights is a relatively nascent research area (Wang et al., 2024). An
 462 initial line of work involved training MLPs to overfit implicit neural fields, distilling them into model
 463 weights, and subsequently generating these MLP weights as an alternative to directly generating the
 464 fields (Erkoç et al., 2023; Li et al., 2025b). Another category proposes using generated weights to
 465 replace hand-crafted initialization, thereby accelerating and improving the neural network training
 466 process (Gong et al., 2024; Schürholz et al., 2022; 2024). These efforts primarily focus on image
 467 modalities. More recent studies leverage diffusion models to address generalization in various
 468 domains. Yuan et al. (Yuan et al., 2024) employ urban knowledge graph as prompts to guide diffusion
 469 for generating spatio-temporal prediction model weights for new cities. Zhang et al. (2024) replace
 470 the inner loop gradient updates of the meta learning with diffusion-generated weights. Xie et al.
 471 (2024) improve test-time generalization on time-varying systems by weight generation. Recent
 472 works (Soro et al., 2024; Charakorn et al., 2025; Liang et al., 2025) explores extracting features from
 473 unseen datasets and controlling diffusion to generate adapted model weights for them. However, most
 474 of these methods exhibit limited zero-shot performance. This may stem from them disrupting the
 475 neural network’s inherent topological connections by directly flattening the weights, which constrains
 476 the representational capacity of the generative model. In contrast, we organize weights in the form of
 477 a neural graph and introduce a function loss to guide their representation. The prediction performance
 478 of our generated expert models without tuning surpasses larger pre-trained models.

479 6 CONCLUSION

481 We proposed DynaDiff, a framework for cross-environment generalization based on a new generative
 482 adaptation paradigm. DynaDiff synthesizes complete expert models from a few observations, guided
 483 by a dynamics-informed prompter and a generative model trained on a structured weight space. Our
 484 experiments demonstrate that this approach yields lightweight models with superior generalization,
 485 improving upon competitive baselines by an average of 10.78%. We conclude that generative weight
 486 modeling is a promising direction for scientific machine learning.

486
487
ETHICS STATEMENT488
489
The authors acknowledge their responsibility to adhere to the ICLR Code of Ethics.490
491
REPRODUCIBILITY STATEMENT492
493
To ensure the reproducibility of our results, we provide comprehensive details of our methodology,
494
experiments, and implementation.495
496
• **Code and Data Availability.** We commit to making all source code, custom datasets, and data
497
preprocessing scripts publicly available upon acceptance of this paper. The materials will be hosted
498
in a public repository under a permissive open-source license to ensure full reproducibility and to
facilitate future research.
499
• **Implementation Details.** A full description of our model architectures, algorithms, and experi-
500
mental setup is provided in Appendix.
501502
503
We believe this provides sufficient information for the research community to reproduce and build
upon our findings.
504505
506
REFERENCES507
508
Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
Advances in Neural Information Processing Systems, 37:25152–25194, 2024.
509
510
Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. *arXiv preprint arXiv:1902.11136*, 2019.
511
512
Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. *Nature*, 619(7970):533–538, 2023.
513
514
515
Matthieu Blanke and Marc Lelarge. Interpretable meta-learning of physical systems. In *The Twelfth
International Conference on Learning Representations*, 2024.
516
517
Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of
sciences*, 113(15):3932–3937, 2016.
518
519
520
Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116(45):
22445–22451, 2019.
521
522
523
Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Text-to-lora: Instant
transformer adaption. *arXiv preprint arXiv:2506.06105*, 2025.
524
525
526
Tianyu Chen, Haoyi Zhou, Ying Li, Hao Wang, Chonghan Gao, Rongye Shi, Shanghang Zhang, and
Jianxin Li. Building flexible machine learning models for scientific computing at scale. *arXiv
preprint arXiv:2402.16014*, 2024a.
527
528
529
530
Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
Advances in Neural Information Processing Systems, 37:6213–6245, 2024b.
531
532
533
Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
10850–10869, 2023.
534
535
536
Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. Pysindy: A python package for the sparse identification of nonlinear dynamical systems
from data. *Journal of Open Source Software*, 5(49):2104, 2020. doi: 10.21105/joss.02104. URL
<https://doi.org/10.21105/joss.02104>.

540 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 541 *in neural information processing systems*, 34:8780–8794, 2021.
 542

543 Jingtao Ding, Chang Liu, Yu Zheng, Yunke Zhang, Zihan Yu, Ruikun Li, Hongyi Chen, Jinghua
 544 Piao, Huandong Wang, Jiazhen Liu, et al. Artificial intelligence for complex network: Potential,
 545 methodology and application. *arXiv preprint arXiv:2402.16887*, 2024.

546 Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
 547 functa: Your data point is a function and you can treat it like one. *arXiv preprint arXiv:2201.12204*,
 548 2022.

549

550 Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
 551 implicit neural fields with weight-space diffusion. In *Proceedings of the IEEE/CVF international*
 552 *conference on computer vision*, pp. 14300–14310, 2023.

553 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 554 deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

555

556 Yifan Gong, Zheng Zhan, Yanyu Li, Yerlan Idelbayev, Andrey Zharkov, Kfir Aberman, Sergey
 557 Tulyakov, Yanzhi Wang, and Jian Ren. Efficient training with denoised neural weights. In
 558 *European Conference on Computer Vision*, pp. 18–34, 2024.

559

560 Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Meta-
 561 learning probabilistic inference for prediction. *arXiv preprint arXiv:1805.09921*, 2018.

562

563 Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Deep
 564 transfer operator learning for partial differential equations under conditional shift. *Nature Machine*
Intelligence, 4(12):1155–1164, 2022.

565

566 Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
 567 mar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale
 568 pde pre-training. In *International Conference on Machine Learning*, pp. 17616–17635. PMLR,
 2024.

569

570 Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
 571 de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. *Advances in*
572 Neural Information Processing Systems, 37:72525–72624, 2024.

573

574 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
575 neural information processing systems, 33:6840–6851, 2020.

576

577 Xiajun Jiang, Ryan Missel, Zhiyuan Li, and Linwei Wang. Sequential latent variable models for
 578 few-shot high-dimensional time-series forecasting. In *The Eleventh International Conference on*
Learning Representations, 2023.

579

580 Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
 581 Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
 582 Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy: A comprehensive python package for
 583 robust sparse system identification. *Journal of Open Source Software*, 7(69):3994, 2022. doi:
 10.21105/joss.03994. URL <https://doi.org/10.21105/joss.03994>.

584

585 Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
 586 Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model. In
 587 *International Conference on Machine Learning*, pp. 11283–11301. PMLR, 2022.

588

589 Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves,
 590 Cees GM Snoek, and David W Zhang. Graph neural networks for learning equivariant representa-
 591 tions of neural networks. *arXiv preprint arXiv:2403.12143*, 2024.

592

593 Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George,
 Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar. A library for
 learning neural operators, 2024.

594 Armand Kassaï Koupaï, Jorge Mifsut Benet, Yuan Yin, Jean-Noël Vittaut, and Patrick Gallinari.
 595 Geps: Boosting generalization in parametric pde neural solvers through adaptive conditioning.
 596 *arXiv preprint arXiv:2410.23889*, 2024.

597

598 Ruikun Li, Jingwen Cheng, Huandong Wang, Qingmin Liao, and Yong Li. Predicting the dynamics
 599 of complex system via multiscale diffusion autoencoder. *arXiv preprint arXiv:2505.02450*, 2025a.

600 Ruikun Li, Jiazen Liu, Huandong Wang, Qingmin Liao, and Yong Li. Weightflow: Learning
 601 stochastic dynamics via evolving weight of neural network. *arXiv preprint arXiv:2508.00451*,
 602 2025b.

603

604 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 605 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
 606 *arXiv preprint arXiv:2010.08895*, 2020.

607 Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai
 608 Li, Peihao Wang, Konstantin Schürholt, Damian Borth, et al. Drag-and-drop llms: Zero-shot
 609 prompt-to-weights. *arXiv preprint arXiv:2506.16406*, 2025.

610

611 Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. Vampnets for deep learning of molecular
 612 kinetics. *Nature communications*, 9(1):5, 2018.

613 Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
 614 Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
 615 Multiple physics pretraining for spatiotemporal surrogate models. *Advances in Neural Information
 616 Processing Systems*, 37:119301–119335, 2024.

617

618 Léo Meynent, Ivan Melev, Konstantin Schürholt, Göran Kauermann, and Damian Borth. Structure
 619 is not enough: Leveraging behavior for neural network weight reconstruction. *arXiv preprint
 620 arXiv:2503.17138*, 2025.

621

622 Roussel Desmond Nzoyem, David AW Barton, and Tom Deakin. Neural context flows for meta-
 623 learning of dynamical systems. *arXiv preprint arXiv:2405.02154*, 2024.

624

625 Jacob Page, Peter Norgaard, Michael P Brenner, and Rich R Kerswell. Recurrent flow patterns as
 626 a basis for two-dimensional turbulence: Predicting statistics from structures. *Proceedings of the
 627 National Academy of Sciences*, 121(23):e2320007121, 2024.

628

629 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the
 630 IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

631

632 Maximilian Plattner, Arturs Berzins, and Johannes Brandstetter. Shape generation via weight space
 633 learning. *arXiv preprint arXiv:2503.21830*, 2025.

634

635 Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsu, and Supasorn Suwajanakorn. Diffusion
 636 autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the
 637 IEEE/CVF conference on computer vision and pattern recognition*, pp. 10619–10629, 2022.

638

639 Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
 640 operators. *arXiv preprint arXiv:2204.11127*, 2022.

641

642 Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
 643 Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain at-
 644 tention neural operators for solving multiphysics pdes. *Advances in Neural Information Processing
 645 Systems*, 37:104035–104064, 2024.

646

647 Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
 648 optimal transport. In *Joint European Conference on Machine Learning and Knowledge Discovery
 649 in Databases*, pp. 737–753. Springer, 2017.

650

651 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 652 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 653 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648 Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
 649 as generative models: Sampling unseen neural network weights. *Advances in Neural Information
 650 Processing Systems*, 35:27906–27920, 2022.

651 Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile
 652 weight space learning. In *Proceedings of the 41st International Conference on Machine Learning*,
 653 pp. 43947–43966, 2024.

654 Antonio Sclocchi and Matthieu Wyart. On the different regimes of stochastic gradient descent.
 655 *Proceedings of the National Academy of Sciences*, 121(9):e2316301121, 2024.

656 Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
 657 flow field reconstruction. *Journal of Computational Physics*, 478:111972, 2023.

658 Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju
 659 Hwang. Diffusion-based neural network weights generation. *arXiv preprint arXiv:2402.18153*,
 660 2024.

661 Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W
 662 Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
 663 terizing scaling and transfer behavior. *Advances in Neural Information Processing Systems*, 36:
 664 71242–71262, 2023.

665 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
 666 Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
 667 *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.

668 Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial
 669 differential equations in computational mechanics problems. *Computer Methods in Applied
 670 Mechanics and Engineering*, 404:115783, 2023.

671 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 672 text-driven image-to-image translation. In *Proceedings of the IEEE/CVF Conference on Computer
 673 Vision and Pattern Recognition*, pp. 1921–1930, 2023.

674 Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
 675 simulations of complex systems by learning their effective dynamics. *Nature Machine Intelligence*,
 676 4(4):359–366, 2022.

677 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
 678 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
 679 intelligence. *Nature*, 620(7972):47–60, 2023.

680 Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
 681 Darrell, Zhuang Liu, and Yang You. Neural network diffusion. *arXiv preprint arXiv:2402.13144*,
 682 2024.

683 Rui Wang, Robin Walters, and Rose Yu. Meta-learning dynamics forecasting using task inference.
 684 *Advances in Neural Information Processing Systems*, 35:21640–21653, 2022.

685 Mixue Xie, Shuang Li, Binhui Xie, Chi Liu, Jian Liang, Zixun Sun, Ke Feng, and Chengwei Zhu.
 686 Weight diffusion for future: Learn to generalize in non-stationary environments. *Advances in
 687 Neural Information Processing Systems*, 37:6367–6392, 2024.

688 Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
 689 prompts for differential equation problems. *Proceedings of the National Academy of Sciences*, 120
 690 (39):e2310142120, 2023.

691 Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
 692 Learning dynamical systems that generalize across environments. *Advances in Neural Information
 693 Processing Systems*, 34:7561–7573, 2021.

694 Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. Spatio-temporal few-shot
 695 learning via diffusive neural network generation. *arXiv preprint arXiv:2402.11922*, 2024.

702 Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
703 Metadiff: Meta-learning with conditional diffusion for few-shot learning. In *Proceedings of the*
704 *AAAI conference on artificial intelligence*, pp. 16687–16695, 2024.
705
706 Zongwei Zhang, Lianlei Lin, Sheng Gao, Junkai Wang, Hanqing Zhao, and Hangyi Yu. A machine
707 learning model for hub-height short-term wind speed prediction. *Nature Communications*, 16(1):
708 3195, 2025.
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 IMPACT STATEMENT
757758 This paper presents work whose goal is to advance the field of Machine Learning. There are many
759 potential societal consequences of our work, none which we feel must be specifically highlighted
760 here.
761762 LIMITATIONS & FUTURE WORK
763764 DynaDiff currently generates expert models of a fixed architecture, which may not be optimal
765 for all possible environmental complexities. A promising future direction is to extend the genera-
766 tive paradigm to synthesize heterogeneous model architectures, dynamically tailored to each new
767 environment.
768769 THE USE OF LARGE LANGUAGE MODELS (LLMs)
770771 We acknowledge the use of a large language model (LLM) to improving grammar and wording of
772 our paper. The authors are fully responsible for the content of this work.
773774 A DATA GENERATION
775776 **Cylinder Flow system** (Li et al., 2025a) is governed by:
777

778
$$\begin{cases} \dot{u}_t = -u \cdot \nabla u - \frac{1}{\alpha} \nabla p + \frac{\beta}{\alpha} \Delta u, \\ \dot{v}_t = -v \cdot \nabla v + \frac{1}{\alpha} \nabla p - \frac{\beta}{\alpha} \Delta v. \end{cases} \quad (5)$$

779
780
781

782 In this system, we use the Reynolds number Re and characteristic length r as two environmental
783 variables. The Reynolds number and characteristic length influence the lattice viscosity, which in
784 turn affects the collision frequency, leading to different dynamic behaviors.
785786 **Lambda–Omega system** (Champion et al., 2019) is governed by
787

788
$$\begin{cases} \dot{u}_t = \mu_u \Delta u + (1 - u^2 - v^2)u + \beta(u^2 + v^2)v \\ \dot{v}_t = \mu_v \Delta v + (1 - u^2 - v^2)v - \beta(u^2 + v^2)u, \end{cases} \quad (6)$$

789
790

791 where Δ is the Laplacian operator. For this system, we use β as a 1-dimensional environmental
792 variable. μ_u and μ_v are both set to 0.5.
793794 **Kolmogrov Flow system** (Page et al., 2024) is governed by
795

796
$$\begin{aligned} \partial_t \omega + (\mathbf{u} \cdot \nabla) \omega &= \frac{1}{Re} \Delta \omega - n \cos(ny), \\ \nabla^2 \psi &= -\omega, \\ \mathbf{u} &= (u, v) = \left(\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x} \right), \\ \omega &= (\nabla \times \mathbf{u}) \cdot \hat{\mathbf{z}} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}, \end{aligned}$$

797
798
799

800 For this system, we use Re as a 1-dimensional environmental variable. n is set to 3.
801802 **Navier-Stokes system** (Takamoto et al., 2022) is governed by
803

804
$$\begin{aligned} \frac{\partial \omega}{\partial t} + (\mathbf{u} \cdot \nabla) \omega &= \nu \Delta \omega + f, \\ \nabla^2 \psi &= -\omega, \\ \mathbf{u} &= (u, v) = \left(\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x} \right), \\ \omega &= (\nabla \times \mathbf{u}) \cdot \hat{\mathbf{z}} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}, \end{aligned}$$

805
806
807
808
809

810 where $f = A(\sin(2\pi(x+y+s)) + \cos(2\pi(x+y+s)))$ is the driving force. We use amplitude
 811 A and phase s as the two-dimensional environmental variables for this system, and the viscosity
 812 coefficient is set to 0.01.

813 The range of environmental values and simulation settings for each equation are listed in Table 2.
 814

815 The Cylinder flow system is simulated using the lattice Boltzmann method (LBM) (Vlachas et al.,
 816 2022), with dynamics governed by the Navier-Stokes equations for turbulent flow around a cylindrical
 817 obstacle. The system is discretized using a lattice velocity grid, and the relaxation time is determined
 818 based on the kinematic viscosity and Reynolds number. Data collection begins once the turbulence
 819 has stabilized.

820 For Lambda–Omega system, the system’s reaction-diffusion equations are numerically integrated
 821 over time using an ODE solver.

822 For Kolmogorov Flow and Navier-Stokes systems, we perform numerical simulations based on
 823 the vorticity form equations. The process includes calculating the velocity field from vorticity by
 824 solving a Poisson equation using Fourier transforms, employing numerical methods to handle spatial
 825 derivatives, and subsequently using an ODE solver for time integration to simulate the evolution of
 826 vorticity over time.

828 **Table 2: Simulation settings of each PDE system.**

	Cylinder flow	Lambda–Omega	Kolmgorov Flow	Navier-Stokes
Spatial Domain	—	$[-10, 10]^2$	$[-\pi, \pi]^2$	$[-32, 32]^2$
Grid Num	128×64	64×64	64×64	64×64
dt	200	0.04	0.2	0.025
T	45,000	40.0	40.0	50.0
Environments	$Re : [200, 500, 31]$, $r : [10, 25, 16]$	$\beta : [1.0, 1.5, 51]$	$Re : [50, 250, 51]$	$A : [0.1, 0.3, 11]$, $s : [0.0, 1.0, 11]$

835 For each environment of each system, we predict 100 trajectories from different initial conditions
 836 for training and 20 trajectories for testing. For Cylinder Flow and Lambda–Omega systems, au-
 837 toregressive prediction is performed for 100 steps during testing, while for Kolmogorov Flow and
 838 Navier-Stokes systems, prediction is performed for 50 steps during testing.

840 B MODEL ZOO

843 In our main experiments, the settings for all meta-learning methods (except for DyAd, which uses
 844 a UNet by default) and the basic model of DynaDiff are shown in Table 3. Additionally, we report
 845 the storage overhead of the model zoo and the hyperparameter settings during generation. During
 846 training, we uniformly use the Adam optimizer with a learning rate of $1e - 4$, and other parameters
 847 are set to their default values.

848 **Table 3: Detailed settings of the model zoo for each systems.**

	Cylinder flow	Lambda–Omega	Kolmgorov Flow	Navier-Stokes	ERA5
Channel Num	2	2	3	3	2
N_modes	$[12, 6]$	$[8, 8]$	$[8, 8]$	$[8, 8]$	$[8, 8]$
N_layers	4	4	8	8	4
Hidden	64	64	64	64	64
Domain Pretraining (epochs)	20	100	10	10	50
Finetuning (epochs)	50	50	50	50	20
Storage Space (GB)	18.0	3.5	3.5	7.1	3.4
Time Cost per Model (s)	6.7	28.6	5.15	56.28	30.47

860 C MODEL ARCHITECTURE

863 The learnable parameters of DynaDiff consist of a weight VAE and a weight latent transformer
 diffusion model. The VAE includes layer-wise linear projection layers at the start and end stages,

Figure 8: Layer-wise weight aggregation via forward data flow.

and inter-node attention layers in between. The diffusion model includes a noise network with a transformer architecture, where conditions are injected through adaptive layer normalization. The core model hyperparameters are configured as follows:

```
# --- VAE Hyperparameters ---
internal_dim = 1024      # Common internal dimension (D)
latent_dim = 512          # Latent dimension (h)
num_heads = 8              # Attention heads
num_attn_layers = 4        # Renamed from num_gnn_layers
# --- DiT Hyperparameters ---
hidden_size = 768          # Transformer hidden states
depth = 12                 # Number of transformer blocks/layers
num_heads = 12              # Number of attention heads
```

Taking the FNO configuration of the NS system as an example, the VAE with the above settings has 193.16M parameters, and the DiT has 131.53M parameters.

D BASELINE IMPLEMENTATION

The same training settings were used for all models, including training for 100 epochs using the Adam optimizer with a learning rate of 1e-4. Regarding the selection of foundation model parameters, we uniformly adjusted the embedding dimension, number of layers, and number of heads based on the dimensions suggested in the original papers to ensure comparable parameter counts for all models. For environment-adaptive models, we primarily used the default hyperparameters.

E GENERALIZATION ERROR ANALYSIS

In this section, we provide a theoretical analysis of the generalization error for our proposed framework, DynaDiff. Our goal is to bound the expected functional error of a generated model \hat{w} for a new, unseen environment, given a short observation sequence X_L . Let w^* be the weights of an ideal expert model for this environment. The total generalization error can be expressed as $\mathcal{E}_{total} = \mathbb{E}[L_{func}(\hat{w}, w^*)]$, where the expectation is taken over the distribution of unseen environments and their corresponding observation sequences.

Our framework can be conceptualized as a composition of two modules: a prompter P , which maps an observation sequence to a conditional prompt, $prompt = P(X_L)$, and a generator G , which maps the prompt to the final model weights, $\hat{w} = G(prompt)$. The generator G itself is a composition of the latent diffusion model and the VAE decoder D . The total error arises from imperfections in both of these modules.

To formalize the analysis, we introduce the concept of an oracle prompt, $prompt^*$, which perfectly encapsulates all necessary information about the new environment. The total error can then be decomposed using the triangle inequality:

$$\sqrt{\mathcal{E}_{total}} \leq \sqrt{\mathbb{E}[L_{func}(G(prompt), G(prompt^*))]} + \sqrt{\mathbb{E}[L_{func}(G(prompt^*), w^*)]} \quad (7)$$

This decomposition separates the total error into two terms: the error induced by the imperfect prompter, and the inherent error of the generator even when given a perfect prompt.

918 **Bounding the Promter-induced Error.** We first analyze the error originating from the promter.
 919 We posit a key assumption that the generative process is smooth with respect to its conditioning.
 920 Specifically, we assume the generator G is γ -Lipschitz continuous in its functional output space with
 921 respect to the prompt.

922 *Assumption 1 (Functional Lipschitz Continuity).* There exists a constant $\gamma > 0$ such that for any two
 923 prompts, $prompt_1$ and $prompt_2$, the following holds:

$$925 \mathbb{E}[L_{func}(G(prompt_1), G(prompt_2))] \leq \gamma \cdot \|prompt_1 - prompt_2\|_2^2 \quad (8)$$

926 This assumption is encouraged by the smooth nature of the denoising process in diffusion models
 927 (Preechakul et al., 2022). Given this, the promter-induced error is bounded by the promter’s
 928 own generalization error, $\mathcal{E}_{prompt} = \mathbb{E}[\|P(X_L) - prompt^*\|_2^2]$. In our framework, we provide direct
 929 supervision to the promter via an auxiliary regression loss, $\mathcal{L}_{aux} = \|e - \text{linear}(prompt)\|_2^2$, which
 930 forces the prompt to contain physically meaningful information correlated with the ground-truth
 931 environment e , thereby helping to minimize \mathcal{E}_{prompt} .

933 **Bounding the Inherent Generator Error.** The second term represents the generator’s error even
 934 under ideal conditioning. This error can be understood through the lens of domain adaptation
 935 theory (Redko et al., 2017; Wang et al., 2022), where the model zoo serves as the source domain
 936 and the unseen environments constitute the target domain. This error is primarily bounded by
 937 the generator’s empirical performance on the model zoo, which we denote as $\mathcal{E}_{empirical}(G) =$
 938 $\mathbb{E}_{w \sim \Theta_{tr}}[L_{func}(G(prompt_w), w)]$, where $prompt_w$ is the prompt corresponding to an expert model
 939 w .

940 To demonstrate that this empirical error is itself bounded, we analyze the two-stage generative
 941 process. *Assumption 2 (Latent Diffusion Effectiveness).* An effectively trained conditional diffusion
 942 model can reverse the noising process in the latent space with high fidelity. This implies that the
 943 expected reconstruction error in the latent space is small. Let $z = E(w)$ be the latent representation
 944 of an expert model w . The expected squared error between z and its reconstruction \hat{z} after the full
 945 forward-and-reverse diffusion process is bounded by a small constant ϵ_z :

$$946 \mathbb{E}[\|z - \hat{z}\|_2^2] \leq \epsilon_z \quad (9)$$

947 This is a standard assumption, as minimizing the denoising objective L_n (Eq. 2) directly optimizes
 948 for this reconstruction capability. *Assumption 3 (Functional Smoothness of VAE Decoder).* The VAE
 949 decoder D learns a smooth mapping from the latent space back to the functional space. This is a
 950 direct consequence of incorporating the functional loss L_{func} (Eq. 4) during its training. This implies
 951 the decoder is L_D -Lipschitz continuous in a functional sense:

$$953 \mathbb{E}[L_{func}(D(z_1), D(z_2))] \leq L_D \cdot \|z_1 - z_2\|_2 \quad (10)$$

954 The functional loss explicitly regularizes the mapping to ensure that small perturbations in the latent
 955 space do not lead to drastic changes in model behavior, thus encouraging a small L_D .

956 With these assumptions, we can bound the generator’s empirical error. Using the triangle inequality
 957 on the square root of the functional loss:

$$959 \sqrt{\mathcal{E}_{empirical}(G)} = \sqrt{\mathbb{E}[L_{func}(D(\hat{z}), w)]} \leq \sqrt{\mathbb{E}[L_{func}(D(\hat{z}), D(z))] + \mathbb{E}[L_{func}(D(z), w)]} \quad (11)$$

960 The first term on the right-hand side is the error from latent space generation, bounded by $\sqrt{L_D \cdot \epsilon_z}$
 961 due to Assumptions 2 and 3. The second term is precisely the VAE’s functional reconstruction error
 962 on the training data, which is minimized by the L_{func} term in the VAE objective (Eq. 4). Let us
 963 denote the value of this minimized loss as ϵ_{recon} .

964 This yields the final bound on the generator’s empirical error:

$$967 \mathcal{E}_{empirical}(G) \leq (\sqrt{L_D \cdot \epsilon_z} + \sqrt{\epsilon_{recon}})^2 \quad (12)$$

968 This inequality demonstrates that the generator’s performance on the training data is directly controlled
 969 by two terms that are actively minimized during our training procedure: the VAE’s functional
 970 reconstruction loss and the diffusion model’s denoising loss. This provides a strong theoretical
 971 justification for the stability and effectiveness of our framework.

972 F COMPUTATIONAL DETAILS OF THE DYNAMICS-INFORMED PROMPTER
973974 Here, we detail the computational procedure for the Dynamics-informed Prompter module. The
975 prompter takes a short observation sequence $X_L = \{x_0, x_1, \dots, x_{L-1}\}$ as input, where each state
976 $x_i \in \mathbb{R}^{C \times H \times W}$ is a multi-channel spatial field. The entire sequence has a shape of (L, C, H, W) .
977978 F.1 EXPLICIT PHYSICAL FEATURE EXTRACTOR
979980 This branch computes a set of macroscopic physical statistics to capture the global dynamics. Let
981 $S_k \in \mathbb{R}^L$ be the time series for the k -th statistic.
982983 **Instantaneous Statistics.** For each frame x_i in the sequence, we compute four statistics. After
984 calculation, we sum the values over the channel dimension C to obtain a scalar value for each frame.
985986 • **Spatial Mean (1st Moment):** The average value over the spatial domain.
987

988
$$\mu(x_i) = \frac{1}{H \times W} \sum_{h,w} x_{i,:,h,w}$$

989 • **Spatial Variance (2nd Moment):** The variance over the spatial domain.
990

991
$$\sigma^2(x_i) = \frac{1}{H \times W} \sum_{h,w} (x_{i,:,h,w} - \mu(x_i))^2$$

992 • **Energy (L2 Norm Squared):** A proxy for the total energy of the system.
993

994
$$E(x_i) = \sum_{h,w} \|x_{i,:,h,w}\|_2^2$$

995 • **Enstrophy (Squared Gradient Norm):** A proxy for the energy in the smallest scales, indicating
996 turbulence.
997

998
$$\Omega(x_i) = \sum_{h,w} \|\nabla x_{i,:,h,w}\|_2^2$$

1000 **Temporal Aggregation.** For each of the four statistic time series S_k (where $k \in \{\mu, \sigma^2, E, \Omega\}$),
1001 we compute two features to summarize its temporal evolution:
10021003 • **Temporal Mean:** The average value of the statistic over the sequence length L .
1004

1005
$$\bar{S}_k = \frac{1}{L} \sum_{i=0}^{L-1} S_{k,i}$$

1006 • **Temporal Trend:** A simple approximation of the overall trend, calculated as the difference between
1007 the last and first values.
1008

1009
$$\Delta S_k = \frac{1}{L} (S_{k,L-1} - S_{k,0})$$

1010 The final explicit prompt, p_{explicit} , is formed by concatenating these features for all statistics. If we
1011 compute $N_{\text{stats}} = 4$ statistics, the resulting vector has a shape of $N_{\text{stats}} \times 2 = 8$.
1012

1013
$$p_{\text{explicit}} = [\bar{S}_\mu, \Delta S_\mu, \bar{S}_{\sigma^2}, \Delta S_{\sigma^2}, \bar{S}_E, \Delta S_E, \bar{S}_\Omega, \Delta S_\Omega] \in \mathbb{R}^8$$

1014 F.2 IMPLICIT SPATIOTEMPORAL ENCODER
10151016 This branch learns a latent representation of the microscopic dynamics from the raw data sequence.
10171018 **Spectral Transformation.** Each frame x_i is transformed into its frequency representation s_i using
1019 a 2D Fast Fourier Transform (FFT).
1020

1021
$$s_i = \text{FFT}(x_i) \in \mathbb{C}^{C \times H \times W}$$

1022 We then stack the real and imaginary parts of the complex-valued spectra to form a real-valued tensor
1023 $\hat{s}_i \in \mathbb{R}^{2C \times H \times W}$, which is then flattened into a vector.
1024

1026 **Temporal Encoding with GRU.** The sequence of flattened spectra vectors $\{\hat{s}_0, \hat{s}_1, \dots, \hat{s}_{L-1}\}$ is
 1027 fed into a Gated Recurrent Unit (GRU). The GRU iteratively updates its hidden state h_i based on the
 1028 current input \hat{s}_i and the previous hidden state h_{i-1} :

$$1029 \quad h_i = \text{GRU}(\hat{s}_i, h_{i-1})$$

1030 The final hidden state, h_{L-1} , which encapsulates the temporal evolution of the entire spectral
 1031 sequence, is taken as the implicit prompt, p_{implicit} . If the GRU's hidden dimension is D_{hidden} , the
 1032 shape of the implicit prompt is D_{hidden} .

$$1033 \quad p_{\text{implicit}} = h_{L-1} \in \mathbb{R}^{D_{\text{hidden}}}$$

1034 F.3 FINAL PROMPT CONCATENATION

1035 The final dynamics-informed prompt p is obtained by concatenating the explicit and implicit vectors.

$$1036 \quad p = \text{concat}(p_{\text{explicit}}, p_{\text{implicit}})$$

1037 The resulting prompt vector has a shape of $(8 + D_{\text{hidden}})$. This vector serves as the condition for the
 1038 diffusion model.

1040 G COMPUTATIONAL DETAILS OF THE WEIGHT VAE

1041 Here, we elaborate on the architecture of the "node attention-based VAE". This architecture consists NEW
 1042 of a symmetric encoder E and decoder D , designed to process the weight graph W defined by
 1043 heterogeneous node features. A key design choice is that this VAE does not use global pooling along
 1044 the node dimension. Instead, it learns a dedicated latent variable for every node in the weight graph
 1045 (i.e., each neuron or channel in the FNO model).

1046 **Input** The input to the VAE is the weight graph W , which consists of L node feature tensors from
 1047 different layers (e.g., lifting, FNO blocks, projection), denoted as $W = \{W_1, \dots, W_L\}$.

- 1048 • $W_i \in \mathbb{R}^{B \times N_i \times D_i}$ is the node feature tensor for the i -th layer.
- 1049 • B is the batch size.
- 1050 • N_i is the number of nodes in the i -th layer (e.g., the number of output channels).
- 1051 • D_i is the original feature dimension of the nodes in the i -th layer (e.g., $D_i = (C_{\text{in}} \times k_h \times$
 1052 $k_w + 1)$).
- 1053 • The total number of nodes is $N_{\text{total}} = \sum_{i=1}^L N_i$.

1054 **Encoder $E(W) \rightarrow (\mu_z, \sigma_z^2)$** The encoder E compresses the input heterogeneous weight graph W
 1055 into per-node Gaussian distribution parameters.

- 1056 • Step 1: Node Projection. To handle the heterogeneous dimensions D_i , we first use a
 1057 set of layer-specific linear maps, $\text{MLP}_{\text{enc},i}$, to project all node features into a uniform,
 1058 homogeneous embedding dimension d_{model} :

$$1059 \quad H_i = \text{GELU}(\text{MLP}_{\text{enc},i}(W_i)) \quad \in \mathbb{R}^{B \times N_i \times d_{\text{model}}}$$

- 1060 • Step 2: Graph Re-assembly. We concatenate all projected node tensors H_i along the node
 1061 dimension (dim=1) to form a unified tensor H_{unified} containing all nodes in the graph:

$$1062 \quad H_{\text{unified}} = \text{Concat}[H_1, \dots, H_L] \quad \in \mathbb{R}^{B \times N_{\text{total}} \times d_{\text{model}}}$$

- 1063 • Step 3: Node Attention Blocks. H_{unified} is then passed through K standard Transformer
 1064 encoder blocks to capture complex relationships between nodes. For the k -th Transformer
 1065 block ($k = 1 \dots K$), the input is $H^{(k-1)}$ (where $H^{(0)} = H_{\text{unified}}$), and the computation
 1066 proceeds as follows:

1080
 1081 – **QKV Computation:** The block uses standard Multi-Head Self-Attention (MHA). The
 1082 Query, Key, and Value are all derived from the same normalized input tensor $H_{\text{norm1}}^{(k)}$:

$$H_{\text{norm1}}^{(k)} = \text{LayerNorm}(H^{(k-1)})$$

1083 $Q^{(k)}, K^{(k)}, V^{(k)}$ are all derived from $H_{\text{norm1}}^{(k)}$

1084
 1085 – **Attention and Feedforward:**

$$H_{\text{attn}}^{(k)} = \text{MHA}(H_{\text{norm1}}^{(k)}, H_{\text{norm1}}^{(k)}, H_{\text{norm1}}^{(k)})$$

$$H_{\text{res1}}^{(k)} = H^{(k-1)} + H_{\text{attn}}^{(k)}$$

$$H_{\text{norm2}}^{(k)} = \text{LayerNorm}(H_{\text{res1}}^{(k)})$$

$$H_{\text{ffn}}^{(k)} = \text{FeedForward}(H_{\text{norm2}}^{(k)})$$

$$H^{(k)} = H_{\text{res1}}^{(k)} + H_{\text{ffn}}^{(k)}$$

1086 After K layers, we obtain the encoder output $H_{\text{enc_out}} = H^{(K)}$.

1087
 1088 • Step 4: Per-Node Latent Projection. $H_{\text{enc_out}}$ is directly projected into the per-node latent
 1089 variable parameter space (dimension $2 \cdot d_z$):

$$\text{Params}_{\text{latent}} = \text{MLP}_{\text{latent}}(H_{\text{enc_out}}) \in \mathbb{R}^{B \times N_{\text{total}} \times (2 \cdot d_z)}$$

1090 Finally, we split this tensor along the last dimension to get the mean μ_z and log-variance
 1091 $\log \sigma_z^2$:

$$\mu_z, \log \sigma_z^2 = \text{Split}(\text{Params}_{\text{latent}}) \in \mathbb{R}^{B \times N_{\text{total}} \times d_z}$$

1092 **Reparameterization** We use the standard reparameterization trick, sampling on a per-node basis:

$$\sigma_z = \exp(0.5 \cdot \log \sigma_z^2)$$

$$\epsilon \sim \mathcal{N}(0, I) \quad (\text{with shape } \mathbb{R}^{B \times N_{\text{total}} \times d_z})$$

$$z = \mu_z + \epsilon \cdot \sigma_z \in \mathbb{R}^{B \times N_{\text{total}} \times d_z}$$

1093 **Decoder** $D(z) \rightarrow \hat{W}$ The decoder D has a symmetric structure to the encoder.

1094 • Step 1: Decoder Latent Projection. The per-node latent variable z is first projected back to
 1095 the d_{model} dimension:

$$H_{\text{dec_in}} = \text{MLP}_{\text{dec_latent}}(z) \in \mathbb{R}^{B \times N_{\text{total}} \times d_{\text{model}}}$$

1096 • Step 2: Decoder Attention Blocks. $H_{\text{dec_in}}$ is then passed through K Transformer decoder
 1097 blocks (with independent weights). The computation is identical to the encoder's Step 3,
 1098 ultimately producing the decoder output $H_{\text{dec_out}} \in \mathbb{R}^{B \times N_{\text{total}} \times d_{\text{model}}}$.

1099 • Step 3: Split and Inverse Projection. $H_{\text{dec_out}}$ is first split back into L tensors corresponding
 1100 to the original layers, $H_{\text{dec_out},i} \in \mathbb{R}^{B \times N_i \times d_{\text{model}}}$. Then, each tensor is mapped back to its
 1101 original, heterogeneous dimension D_i via its layer-specific inverse projection $\text{MLP}_{\text{dec},i}$:

$$\hat{W}_i = \text{MLP}_{\text{dec},i}(H_{\text{dec_out},i}) \in \mathbb{R}^{B \times N_i \times D_i}$$

1102 The final reconstructed weight graph $\hat{W} = \{\hat{W}_1, \dots, \hat{W}_L\}$ matches the dimensions of the
 1103 input W .

1104 H ADDITIONAL RESULTS

1105 In this section, we provide additional experiments to further validate the robustness, generalization
 1106 capabilities and design choices of our DynaDiff framework.

1134

1135 Table 4: *p*-values for the statistical significance test (Welch’s t-test) of the RMSE difference between
1136 DynaDiff and the best-performing baseline from Table 1.

Cylinder Flow (96:400)	Lambda-Omega (12:39)	Kolmogorov Flow (12:39)	Navier-Stokes (24:121)				
In-domain	Out-domain	In-domain	Out-domain	In-domain	Out-domain	In-domain	Out-domain
3.26×10^{-9}	2.90×10^{-27}	0.67	0.70	0.89	0.066	0.022	3.79×10^{-18}

1140

1141 Table 5: Average out-domain RMSE of various observation length L .

L	2	4	6	8	10
Cylinder Flow	0.069 ± 0.032	0.068 ± 0.034	0.064 ± 0.034	0.062 ± 0.031	0.059 ± 0.028
Navier-Stokes	0.080 ± 0.034	0.071 ± 0.033	0.068 ± 0.026	0.065 ± 0.023	0.062 ± 0.017

1146

1147

H.1 STATISTICAL SIGNIFICANCE ANALYSIS OF MAIN RESULTS

1148
1149 We supplemented the key results in Table 1 with a statistical significance analysis, as suggested by NEW
1150 the reviewer. We conducted pairwise Welch’s t-tests on the RMSE scores between DynaDiff and
1151 the best-performing baseline (underlined in Table 1) for each environment. The *p*-values, computed
1152 using `scipy.stats.ttest_ind`, are presented in Table 4.1153 On the Cylinder Flow and Navier-Stokes systems, the improvements by DynaDiff are statistically
1154 significant ($p < 0.05$). In the Kolmogorov Flow system, although DPOT (0.079 ± 0.012) performed
1155 slightly better on average than DynaDiff (0.081 ± 0.012) in the in-domain setting, this difference is
1156 not statistically significant. However, in the more critical out-domain generalization task, DynaDiff’s
1157 (0.080 ± 0.013) advantage over GEPS (0.084 ± 0.017) approaches statistical significance ($p = 0.066$).
1158 In the Lambda-Omega system, DynaDiff’s advantage is not statistically prominent, indicating its
1159 performance is comparable to the SOTA baseline.1160 It is worth noting that DynaDiff consistently achieves strong generalization performance across
1161 almost all systems. Conversely, no single baseline demonstrates outstanding performance across all
1162 systems. This significantly indicates that DynaDiff, as a novel paradigm of weight-space learning,
1163 can generalize stably across different types of systems. This may be attributed to the fact that
1164 although the data for each PDE system varies greatly, DynaDiff models the weight distribution of a
1165 uniformly structured predictive model (e.g., FNO), making it more robust to dataset-level shifts. This
1166 cross-scenario stability highlights the superiority of DynaDiff’s weight-space learning paradigm.1167

H.2 ROBUSTNESS TO ENVIRONMENTAL EXTRAPOLATION

1168
1169 Standard out-of-domain tests often involve interpolating between seen parameter values. A more
1170 challenging test is extrapolation, where the model must predict system behavior in a region of the
1171 parameter space far from the training data.1172 We conducted a difficult extrapolation experiment on the Cylinder Flow system, which is governed
1173 by two environmental parameters. We constructed a biased training set containing only environments
1174 from the top-right quadrant of the parameter space (i.e., where both parameters had high values).
1175 The model was then tested on the unseen bottom-left quadrant (i.e., where both parameters had low
1176 values).1177 The results are summarized in Table 6. As expected, this task is extremely challenging for all
1178 methods, and performance degrades as the training distribution becomes more biased (i.e., the seen
1179 environment ratio decreases). However, our method, DynaDiff, consistently maintains a significant
1180 performance advantage over the strong baseline models. This demonstrates that by learning a coherent
1181 representation of the weight-environment manifold, DynaDiff is more robust to extrapolation and
1182 less prone to catastrophic failure when faced with significant distributional shifts.

1183

1184

H.3 GENERALIZATION TO UNSEEN GOVERNING EQUATIONS

1185
1186 To rigorously test the upper limits of our framework’s generalization ability, we designed a challenging
1187 experiment where the model must generalize to a completely unseen physical system with different
governing equations.

1188

1189 Table 6: Out-of-domain RMSE on the Cylinder Flow extrapolation task. The models were trained on
1190 a biased (top-right quadrant) subset of environments and tested on the unseen opposite quadrant.

1191	Seen Env. Ratio	100%	90%	80%	70%	60%	50%
1192	Poseidon	0.083	0.098	0.128	0.214	0.568	0.674
1193	GEPS	0.093	0.126	0.136	0.143	0.183	0.654
1194	DynaDiff (Ours)	0.065	0.077	0.095	0.107	0.121	0.228

1195

1203

1204 Figure 9: Robustness experiments. Impact of model zoo size on DynaDiff’s performance on (a)
1205 (b) Lambda-Omega. Impact of the number of seen environments (c) on DynaDiff’s
1206 performance on (c) Kolmogorov Flow and (d) Navier-Stokes.

1207

We trained a single, unified generative model on three distinct PDE systems: Cylinder Flow, Lambda-Omega, and Navier-Stokes. The test was then performed on a completely held-out system: Kolmogorov Flow. To create a unified conditioning space for the prompter, we treated the combination of the PDE type and its specific physical coefficients as a single, high-dimensional environmental descriptor. When combining data from different systems with varying channel numbers, we padded the input channels with zero to maintain a consistent tensor shape.

1213

We evaluated the performance of all methods in both zero-shot and few-shot settings. For a fine-grained comparison, we measured the average prediction length (number of autoregressive steps) for which the Structural Similarity (SSIM) index remains above 0.8. As shown in Table 7, our method demonstrates superior performance in both scenarios. In the zero-shot case, DynaDiff achieves the longest accurate prediction horizon. For the few-shot setting, where each model was fine-tuned on a single trajectory from the held-out system, DynaDiff still maintained its advantage, showcasing its ability to generate high-quality initial models that benefit more from minimal fine-tuning. This result suggests that our framework captures a more fundamental and transferable representation of dynamical systems, extending beyond simple parameter interpolation to the structure of the dynamics itself.

1223

1224 Table 7: Performance on the held-out Kolmogorov Flow system, measured by the average prediction
1225 length with $\text{SSIM} > 0.8$. DynaDiff demonstrates superior generalization to a completely unseen
1226 physical law.

1227	Method	Zero-shot	Few-shot (1 trajectory)
1228	Poseidon	12.7	33.2
1229	DPOT	14.0	41.4
1230	MPP	10.1	38.7
1231	DynaDiff (Ours)	15.9	46.5

1232

1233

1234

H.4 ABLATION ON FRAMEWORK DESIGN CHOICES

1235

Our framework is composed of a two-stage generative stack (VAE + Latent Diffusion) that operates on a graph-based representation of weights. Here, we provide ablation studies to justify these key design choices against simpler alternatives.

1239

Two-Stage vs. Single-Stage Generation. One could bypass the VAE and train a conditional diffusion model directly on the weight graphs. We compare our two-stage approach against such a single-stage, graph-structured conditional diffusion baseline (same to our Graph VAE’s architecture).

1242 As shown in Table 8, our method’s superior performance highlights the advantage of our design. The
 1243 VAE first learns a semantically rich and low-dimensional manifold, which makes the subsequent
 1244 generation task for the diffusion model more tractable and effective. This decoupling of representation
 1245 learning from generation is crucial.

1246
 1247 **Graph vs. Sequence Representation.** An alternative to our weight graph is to flatten the weights
 1248 into a sequence and use a powerful sequence model like a Transformer. We compare our graph-based
 1249 VAE against a sequence-based Transformer VAE. The results in Table 9 show that our graph-based
 1250 approach is significantly more effective and parameter-efficient. By explicitly injecting the network’s
 1251 architectural prior, the graph representation provides a much stronger and more suitable inductive
 1252 bias for this task compared to relying on positional embeddings in a sequence.

1253
 1254 Table 8: Ablation on the generative stack. Our two-stage (VAE + Latent Diffusion) approach
 1255 significantly outperforms a direct, single-stage graph diffusion model.

Method	Cylinder Flow (RMSE)	Lambda-Omega (RMSE)
Single-Stage Graph Diffusion	0.112	0.238
Two-Stage (Ours)	0.065	0.089

1260
 1261
 1262 Table 9: Ablation on weight representation. Our graph-based approach is more effective and
 1263 parameter-efficient than a sequence-based Transformer approach.

Representation	VAE Params	CF (RMSE)	LO (RMSE)	KF (RMSE)	NS (RMSE)
Sequence-based	~1200M	0.129	0.208	0.152	0.143
Graph-based (Ours)	~380M	0.065	0.089	0.080	0.063

1264
 1265
 1266 Table 10: Average RMSE of ablation study on domain initialization and function loss. ‘w/o’ stands
 1267 for ‘without’.

	Kolmgorov Flow		Navier-Stokes	
	In-domain	Out-domain	In-domain	Out-domain
w/o Domain Init	0.156 \pm 0.082	0.188 \pm 0.102	0.197 \pm 0.0102	0.201 \pm 0.098
w/o Function Loss	0.098 \pm 0.034	0.104 \pm 0.038	0.104 \pm 0.045	0.110 \pm 0.046
DynaDiff	0.081\pm0.023	0.080\pm0.013	0.062\pm0.017	0.063\pm0.015

1281 H.5 ABLATION ON AUXILIARY SUPERVISORY SIGNAL

1282
 1283 As mentioned in Section 3.1.3, the prompter’s training utilizes an additional linear layer and a NEW
 1284 regression loss L_{aux} as an auxiliary supervisory task. However, in many practical scenarios, the
 1285 environmental condition e is often unknown. Therefore, L_{aux} cannot always be computed. Here, we
 1286 conduct an ablation study on L_{aux} using the Cylinder Flow and Lambda-Omega systems to examine
 1287 whether the generative task of the diffusion model alone can ensure the prompter learns to capture dy-
 1288 namic information from observation frames. The experimental results are shown in Table 11. We find
 1289 that removing L_{aux} does not significantly impair DynaDiff’s generalization capability. This strongly
 1290 demonstrates that DynaDiff’s core generalization ability primarily stems from the dynamical in-
 1291 formation extracted from the observation sequence X_L , rather than a dependency on the ground-truth
 1292 environment e . The role of L_{aux} is essentially to introduce a beneficial learning bias to guide training,
 1293 without providing extra knowledge. With or without L_{aux} , DynaDiff acquires physical information
 1294 through the L observation frames. We also find that without L_{aux} , the regression performance of the
 1295 dynamics-informed *prompt* learned by the Prompter on the true physical coefficients decreases for
 1296 the Cylinder Flow system (Figure 11). This suggests that while L_{aux} may not add extra dynamical
 1297 information to the *prompt*, its constraint during training helps the prompter extract more interpretable

1296

1297

Table 11: Average RMSE of ablation study on L_{aux} .

1298

1299

1300

1301

1302

1303

1304

1305

dynamical representations. In summary, even when environmental conditions are unknown, DynaDiff can still reliably identify dynamical information from limited trajectory observations to generalize.

1306

1307

H.6 PROMPTER

1308

1309

Here we conduct an experiment to validate the prompter’s ability to capture physically meaningful information from limited observations. We perform this analysis on the Cylinder Flow and Lambda-Omega systems. Specifically, we use the dynamics-informed prompt extracted by the prompter to regress the ground-truth environmental coefficients using a Random Forest regressor. The target coefficients are the Reynolds number (Re) and characteristic length (r) for Cylinder Flow, and the coefficient Beta for the Lambda-Omega system. Figure 10 reports the regression performance on out-of-distribution environments. As shown, the predicted values correlate strongly with the true values, demonstrating that the prompter can reliably infer the physical parameters. This result indicates that the prompter has successfully learned to extract the underlying dynamic signature from limited observation frames. It can therefore encode a discriminative and physically-grounded prompt to effectively guide the diffusion-based weight generation.

1310

1311

1312

1313

1314

1315

1316

1317

1318

We also compare the performance of DynaDiff when using real environmental conditions e versus surrogate environmental labels c , as shown in Table 12. Experimental results indicate that there is little difference in DynaDiff’s performance under the two settings. This demonstrates that the prompter effectively helps DynaDiff distinguish different environments for generating suitable weights.

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

Figure 10: Prompter performance on the (a, b) Cylinder Flow and (c) Lambda-Omega systems.

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Figure 11: Prompter performance without L_{aux} on the (a, b) Cylinder Flow and (c) Lambda-Omega systems.

1350

1351

Table 12: Average RMSE of ablation study on prompter.

1352

1353

	Cylinder Flow		Navier-Stokes	
	In-domain	Out-domain	In-domain	Out-domain
Prompter	0.059 ± 0.028	0.065 ± 0.025	0.062 ± 0.017	0.063 ± 0.015
Environmental condition	0.050 ± 0.014	0.061 ± 0.027	0.058 ± 0.007	0.065 ± 0.006

1354

1355

1356

1357

1358

Table 13: Time and memory costs of meta-learning methods on the Navier-Stokes system.

1359

1360

1361

1362

1363

1364

H.7 TIME AND MEMORY COST OF META-LEARNING METHODS

1365

We compare the inference cost of DynaDiff against all meta-learning methods for a single environment on the Navier-Stokes system, as shown in Table 13. Compared to other adaptive methods, the additional inference cost of DynaDiff comes from the generator, which includes latent space denoising and VAE decoding. The results show that, thanks to the low dimensionality of the latent space, the actual incremental cost is very small. Note that the GPU memory for DynaDiff reported in Figure 7b of the main paper was calculated during parallel inference across multiple environments, which is why it appears larger.

NEW

1372

1373

H.8 ANALYSIS OF GENERATOR PARAMETER COUNT AND BASELINE SCALABILITY

1374

1375

The parameter count of DynaDiff’s generator is approximately 400M, which is positioned between prior meta-learning methods (<50M) and foundation models (>500M). This difference in generator size is determined by the methodological paradigm: prior meta-learning approaches typically use a hypernetwork to generate low-dimensional context vectors, whereas our approach generates the complete weights of a 1M-parameter FNO model.

NEW

1376

1377

1378

1379

We conduct an experiment, using CAMEL and GEPS as representatives, where we increased their hypernetwork depth (3 layers) and width (15,000-dim) to scale them to a comparable size. The performance on the Cylinder Flow and Lambda-Omega systems is shown in Table 14. The results indicate that simply increasing the parameter count of the meta-learning baselines does not effectively improve their performance ceiling. This suggests that the performance bottleneck for these methods is not the parameter count itself. In contrast, our framework provides a new alternative that achieves higher generalization performance.

1380

1381

1382

1383

1384

1385

1386

1387

1388

Table 14: RMSE performance of scaled-up meta-learning baselines vs. DynaDiff.

1389

1390

1391

1392

1393

1394

1395

1396

1397

H.9 EXPLAINABILITY

1398

1399

1400

1401

1402

1403

We visualize the joint distribution of weights and environments using the Cylinder Flow system as an example to aid qualitative analysis, where over 80% environments are unseen by DynaDiff. In Figure 12, the x-axis represents the surrogate environment labels predicted by the prompter, and the y-axis represents the first principal component of the weights of a specific layer. The weight environment landscape learned by DynaDiff closely resembles that learned by One-per-Env through

Figure 12: Joint distribution of weights and environments on Cylinder Flow.

optimizer training. This indicates that DynaDiff successfully models the joint distribution of weights and environments, thereby explaining its superior performance in Table 1.

Figure 13: Generative functions of DynaDiff for the LV system.

To quantitatively analyze the environmental-weight joint distribution fitted by DynaDiff, we introduce a simple ODE system, the Lotka-Volterra (LV) equations (Kirchmeyer et al., 2022), as a toy example. We use a symbolic regression algorithm (Brunton et al., 2016) to distill the predictive model generated by DynaDiff for specific environmental conditions (β and δ) into an equation expression, as shown in Figure 13. The equivalent equation for the weights generated by DynaDiff is consistent in form with the LV equations, and the environmental coefficients are close. This quantitatively demonstrates that DynaDiff can fit the generalizable dynamics function rather than an environment-specific function. We detail the experimental setup in Appendix H.10.

H.10 LV SYSTEM

The Lotka-Volterra equations describe the interaction between a predator-prey pair in an ecosystem:

$$\frac{dx}{dt} = \alpha x - \beta xy$$

$$\frac{dy}{dt} = \delta xy - \gamma y,$$

1458 where x and y respectively represent the quantity of the prey and the predator, and $\alpha, \beta, \delta, \gamma$ define
 1459 the species interactions. We generate each trajectory with a time interval of 0.1 and a total duration of
 1460 10.0, with initial conditions randomly sampled between 1 and 3. We change β and δ as 2-dimensional
 1461 environmental conditions, with both ranging from 0.5 to 1.0, sampled at 11 equally spaced points.
 1462 Among a total of $11 \times 11 = 121$ environments, we randomly select 24 as the training set and the
 1463 rest as the test set. For all environments, $\alpha = 0.5$ and $\gamma = 0.5$. We generate 100 trajectories for each
 1464 environment.

1465 For this system, we adopt a 2-layer MLP as the parameterized dynamic model, with a hidden layer
 1466 dimension of 128 and Tanh as the activation function. We use a neural ordinary differential equation
 1467 with the *rk4* algorithm to model the dynamics. DynaDiff generates the weights of the MLP and
 1468 makes forward predictions through a numerical solver. When distilling the generated weights, we
 1469 first perform autoregressive prediction on a given trajectory using the predicted weights. Once the
 1470 prediction is complete, we employ the *pysindy* library (Kaptanoglu et al., 2022; de Silva et al., 2020)
 1471 for symbolic regression. The operator dictionary uses a 2nd order polynomial dictionary, and other
 1472 hyperparameters are set to their default values.

1473

1474 I ARCHITECTURES OF EXPERT MODELS

1475

1476 In our main experiments, we deploy three neural operators as expert models for DynaDiff: FNO,
 1477 UNO, and WNO. Here, taking the Cylinder Flow system as an example, we list the parameter
 1478 composition and hyperparameter settings of these operators.

1479

1480 **FNO** We adopt the code from the open-source repository (Kossaifi et al., 2024) as the implementa-
 1481 tion for FNO. For the NS system, the weight composition of FNO is as follows:

```
1482 lifting.fcs.0: torch.Size([128, 5])
1483 lifting.fcs.1: torch.Size([64, 129])
1484 fno_blocks.convs.0: torch.Size([64, 6209])
1485 fno_blocks.channel_mlp.0.0: torch.Size([32, 65])
1486 fno_blocks.channel_mlp.0.1: torch.Size([64, 34])
1487 fno_blocks.convs.1: torch.Size([64, 6209])
1488 fno_blocks.channel_mlp.1.0: torch.Size([32, 65])
1489 fno_blocks.channel_mlp.1.1: torch.Size([64, 34])
1490 fno_blocks.convs.2: torch.Size([64, 6209])
1491 fno_blocks.channel_mlp.2.0: torch.Size([32, 65])
1492 fno_blocks.channel_mlp.2.1: torch.Size([64, 34])
1493 fno_blocks.convs.3: torch.Size([64, 6209])
1494 fno_blocks.channel_mlp.3.0: torch.Size([32, 65])
1495 fno_blocks.channel_mlp.3.1: torch.Size([64, 34])
1496 projection.fcs.0: torch.Size([128, 65])
1497 projection.fcs.1: torch.Size([2, 129])
```

1498

1499 **UNO** We adopt the code from the open-source repository (Kossaifi et al., 2024) as the implementa-
 1500 tion for UNO. For the NS system, the weight composition of UNO is as follows:

```
1500 lifting.fcs.0: torch.Size([256, 5])
1501 lifting.fcs.1: torch.Size([64, 257])
1502 fno_blocks.0.convs.0: torch.Size([64, 5185])
1503 fno_blocks.0.channel_mlp.0: torch.Size([32, 65])
1504 fno_blocks.0.channel_mlp.1: torch.Size([64, 34])
1505 fno_blocks.1.convs.0: torch.Size([64, 5185])
1506 fno_blocks.1.channel_mlp.0: torch.Size([32, 65])
1507 fno_blocks.1.channel_mlp.1: torch.Size([64, 34])
1508 fno_blocks.2.convs.0: torch.Size([128, 10369])
1509 fno_blocks.2.channel_mlp.0: torch.Size([64, 129])
1510 fno_blocks.2.channel_mlp.1: torch.Size([128, 66])
1511 horizontal_skips.0.conv.weight: torch.Size([64, 64])
1512 projection.fcs.0: torch.Size([256, 129])
1513 projection.fcs.1: torch.Size([2, 257])
```

1512 **WNO** We adopt the code from the open-source repository (Tripura & Chakraborty, 2023) as the
 1513 implementation for WNO. For the NS system, the weight composition of WNO is as follows:
 1514

```

 1515 conv.0.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
 1516 conv.0.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
 1517 conv.0.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
 1518 conv.0.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
 1519 conv.0.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
 1520 conv.0.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
 1521 conv.0.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
 1522 conv.0.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
 1523 conv.1.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
 1524 conv.1.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
 1525 conv.1.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
 1526 conv.1.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
 1527 conv.1.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
 1528 conv.1.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
 1529 conv.1.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
 1530 conv.1.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
 1531 conv.2.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
 1532 conv.2.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
 1533 conv.2.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
 1534 conv.2.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
 1535 conv.2.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
 1536 conv.2.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
 1537 conv.2.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
 1538 conv.2.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
 1539 conv.3.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
 1540 conv.3.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
 1541 conv.3.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
 1542 conv.3.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
 1543 conv.3.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
 1544 conv.3.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
 1545 conv.3.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
 1546 conv.3.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
 1547 w.0.weight | Shape: torch.Size([40, 40, 1, 1])
 1548 w.0.bias | Shape: torch.Size([40])
 1549 w.1.weight | Shape: torch.Size([40, 40, 1, 1])
 1550 w.1.bias | Shape: torch.Size([40])
 1551 w.2.weight | Shape: torch.Size([40, 40, 1, 1])
 1552 w.2.bias | Shape: torch.Size([40])
 1553 w.3.weight | Shape: torch.Size([40, 40, 1, 1])
 1554 w.3.bias | Shape: torch.Size([40])
 1555 fc0.weight | Shape: torch.Size([40, 5])
 1556 fc0.bias | Shape: torch.Size([40])
 1557 fc1.weight | Shape: torch.Size([128, 40])
 1558 fc1.bias | Shape: torch.Size([128])
 1559 fc2.weight | Shape: torch.Size([3, 128])
 1560 fc2.bias | Shape: torch.Size([3])
```

1557 Since the parameters of normalization layers are determined by the dataset and are not controlled by
 1558 the environment, we do not enable normalization layers in all operators (they are also disabled by
 1559 default in the original code).

NEW

1562 I.1 COMPARISON WITH FINETUNING-FREE META-LEARNING APPROACHES

1563
 1564 Recent finetuning-free meta-learning approaches also achieve test-time adaptation without gradient
 1565 based optimization. For instance, methods like those proposed by (Gordon et al., 2018) and (Jiang
 et al., 2023). However, DynaDiff's paradigm differs from these works in several key aspects:

1566
 1567 **Adaptation Mechanism (Modulation vs. Generation):** Prior works typically rely on a fixed,
 1568 shared backbone network. Adaptation is achieved by generating or modulating a small subset of
 1569 parameters, such as a final linear layer Gordon et al. (2018) or a context vector c that conditions the
 1570 backbone’s dynamics Jiang et al. (2023). In contrast, DynaDiff generates the *complete* set of weights
 1571 for an entire expert predictor from scratch. This allows the framework to adapt to more fundamental
 1572 changes in dynamics, rather than only modulating the behavior of a fixed, shared model.
 1573

1574 **Weight Representation (Vector vs. Structured Graph):** Our work introduces the **Weight Graph**
 1575 to treat model weights as a structured data modality, preserving the inherent topological connectivity
 1576 of the neural network architecture. This structured representation, combined with our proposed
 1577 **Functional Loss**, differs from methods that generate unstructured weight vectors Gordon et al.
 1578 (2018). As shown in our ablation studies, this structural-awareness is critical for effectively modeling
 1579 the high-dimensional weight distribution.
 1580

1581 **Target Domain (General vs. SciML-Specific):** DynaDiff is specifically tailored for cross-
 1582 environment generalization in Scientific Machine Learning (SciML). Its **Dynamics-informed**
 1583 **Prompter** is designed to extract physically meaningful features (e.g., energy, spectral patterns)
 1584 from short observation sequences. This contrasts with the generic set-encoders used in few-shot
 1585 classification or regression (Gordon et al., 2018; Jiang et al., 2023), enabling DynaDiff to capture
 1586 informative features from complex physical dynamics even from limited observations ($L = 10$).
 1587

Figure 14: Simplest pipeline of DynaDiff.