
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMICS-INFORMED WEIGHT DIFFUSION FOR GEN-
ERALIZABLE PREDICTION OF COMPLEX SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-driven methods offer an effective equation-free solution for predicting phys-
ical dynamics. However, predictive models often fail to generalize to unseen
environments due to varying dynamic behaviors. In this work, we introduce Dy-
naDiff, a novel generative meta-learning framework to enable efficient, test-time
adaptation. Instead of tuning a pre-trained model or context, DynaDiff directly
generates a complete, high-performance expert model from scratch, conditioned
on a short observation sequence from a new target environment. Specifically,
we first finetune a base model on various source environments to efficiently con-
struct a model zoo of expert predictors. Subsequently, we leverage a weight graph
representation and train a conditional diffusion model to learn the underlying
distribution of expert weights, capable of generating new models from a given
dynamic behavior. To effectively capture the dynamic context from the observa-
tion sequence, we design a dynamics-informed prompter that explicitly models
the relationship between the system’s state and its temporal evolution, providing
a highly informative prompt for the generative process. Extensive experiments
demonstrate that our method can generate expert models with strong generalization
for new environments, conditioned on limited observations. Code is available at
https://anonymous.4open.science/r/DynaDiff-8B1C/README.md.

1 INTRODUCTION

Data-driven approaches have emerged as a powerful, equation-free paradigm for predicting physical
dynamics (Wang et al., 2023; Ding et al., 2024), achieving considerable success across a diverse range
of disciplines, including molecular dynamics (Mardt et al., 2018), fluid mechanics (Shu et al., 2023),
and climate science (Bi et al., 2023). In these systems, dynamical systems governed by the same
underlying equations can exhibit vastly different evolutionary behaviors under varying environmental
conditions e, which can be formally expressed as dx

dt = f(x, t, e). For instance, fluid flows, described
by the Navier-Stokes equations, can exhibit different vortex structures under various Reynolds number
or external driving forces. Consequently, a predictive model fθ,ea , trained on observed trajectories of
a specific environmental condition ea struggles to generalize to unseen environmental conditions eb.
Therefore, modeling the generalizable function f beyond the specific environment remains a critical
problem for scientific machine learning (Subramanian et al., 2023; Goswami et al., 2022).

Significant efforts have been undertaken to enable cross-environment prediction. Meta-learning
approaches facilitate adaptation to unseen environments by simultaneously learning both environment-
shared weights and environment-specific contexts (Kirchmeyer et al., 2022; Wang et al., 2022; Blanke
& Lelarge, 2024). When applied to a new environment, the environment-specific contexts are
tuned on new data to compose or modulate a tailored predictive model. Another strategy is to
train environment-unified foundation models through well-designed architectures and large-scale
parameterization (Herde et al., 2024; Hao et al., 2024; McCabe et al., 2024; Yang et al., 2023; Chen
et al., 2024b). These models, pretrained on massive datasets, can be partially refined by finetuning on
data specific to a target environment. However, from a model weight perspective, the essence of these
methods only permit adaptation within a small, expert-specified subset of weights. This approach
restricts the model’s ability to represent the true, complex manifold of expert weights across diverse
environments. A more fundamental path is to directly generating the complete model weights θ via
modeling the conditional distribution p(θ|e) (Figure 1).

1

https://anonymous.4open.science/r/DynaDiff-8B1C/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a. Tuning-based Method

b. Generative Method (Our)

Tuning

Tuning

Context

Modulate

Merge

Diffusion
Generate

Base model

Expert model

Env-specific Env-sharedNew

New

New Scarce data

forward-loss-backward

forward-loss-backward

denoising process

Env

Env

Env

Fixed for Old Env

Tailored for New Env

a. Meta-learning Method

c. Generative Method (Our)

Tuning

Tuning

Context

Modulate

Merge

Efficiently generate

Base model

Expert model

Env-specific Env-sharedNew

New

New Scarce data

forward-loss-backward

forward-loss-backward

denoising process

Env

Env

Env

Partially Tailored

Completely Tailored

Diffusion

b. Foundation Model

Finetuning

Large modelNew
forward-loss-backward

Env

Massive data

Scarce data

Scarce data

Resource-intensive

Figure 1: Paradigms for dynamics adaption.

Inspired by treating model weights as a data modal-
ity, this work focuses on generating environment-
specific model weights (Figure 1c). By explicitly
modeling the joint distribution of environments and
weights, this generative adaptation is fundamentally
suited for data-scarce scenarios where finetuning
is impractical. However, the challenge of generat-
ing model weights for physical dynamics tailored
to specific environments lies in three points. First,
model weights, interconnected by the network ar-
chitecture, are inherently structured. Thus, naive
flattening weights into sequences would lead to the
loss of crucial structural relationships (Kofinas et al.,
2024). Second, the high dimensionality of weights
results in an exceptionally vast parameter space. Mi-
nor variations in the weights of even a single layer
can be amplified into significant difference in predictive performance (Plattner et al., 2025; Meynent
et al., 2025). Therefore, traditional metrics like MSE are inadequate for assessing weight similarity.
Finally, practical applications typically lack explicit physical knowledge of the environment, leaving
only short trajectory snippets as available data. Consequently, it is necessary to extract discriminative
features of the underlying dynamics from such limited observations.

To address these challenges, we propose a novel generative meta learning framework, Dynamics-
informed weight Diffusion (DynaDiff). DynaDiff represents predictive models as weight graphs,
aggregating weights into node features to preserve their inherent connectivity and accommodate
arbitrary model architectures (challenge 1). It employs a node-attention Variational Autoencoder
(VAE) to learn latent representations for the diffusion model, and incorporates a functional loss for
weight similarity awareness (challenge 2). For unseen environments, we design a dynamics-informed
prompter, which distills both physical features and temporal dynamics, thereby providing a highly
informative prompt for the diffusion model (challenge 3). Finally, we propose a domain-adaptive
model zoo that enables the efficient construction of a high-quality training corpus for DynaDiff.

Our contributions can be summarized as follows:

• We propose modeling the joint distribution of model weights on environments for cross-environment
prediction, thereby rapidly generating expert weights for new environments without tuning.

• We construct weight graphs based on model architecture to preserve connectivity and design a
functional loss for weight similarity perception. This significantly enhances the generative model’s
ability to learn effective representations of model weights.

• Extensive experiments on simulated and real-world systems demonstrate that DynaDiff improves
cross-environment generalization, boosting average prediction accuracy by 10.78% over competi-
tive baselines.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

Given environmental conditions e ∈ E , the time-dependent system dynamics function is instantiated
as dx

dt = f(x, t, e) = fe(x, t) ∈ F . The environment space E and the function space F are linked
by the governing equations f , forming a joint set {e, fe}. We employ a data-driven model fθ,e,
parameterized by θ, to learn fe, thereby formalizing the function space F as the model’s weight space
Θ. The environment space is divided into an observed environment set Etr and an unseen environment
set Ete, and consequently, the weight space is also partitioned into corresponding subspaces Θtr

and Θte. Treating model weights as the modeling object, we learn the inherent joint distribution
of environments and weights from the joint observation space {Etr,Θtr}. For a new environment
e ∈ Ete, we generate a corresponding predictive function fθ,e once learning is complete.

Notably, we posit that even when sharing the same governing equations, each environment determines
a unique dynamical function. At test time, given a short observation sequence XL = {x0, ..., xL−1}

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Sample

Expert 𝑤

Tuning

Generation ෝ𝑤

Base

Weight

Graph
𝐸 𝐷Diffusion Denoising

𝒰{1, 𝐾}

Condition

𝑘 ≤ 𝐾
Expert ෝ𝑤

DDenoising
Limited

Dynamics-informed Prompter

Prompter

Spectral GRUPhysical Feature +

Domain-adaptive Model Zoo

b. Testing

Linear layer Skip connection

Weight Organization

Weight Distribution

𝑧0 𝑧𝑇 Ƹ𝑧0

Seen

Environments

Initialize

Dynamics-informed Weight Diffusion

𝑝𝑟𝑜𝑚𝑝𝑡

New environment

𝑝𝑟𝑜𝑚𝑝𝑡 Ƹ𝑧0𝑧𝑇
Predict

Data

Model Weight 𝑤

E
n
v
ir
o
n
m

e
n
t

Tuning

Env

Env

a. Training

Weight VAE

𝐿𝑉𝐴𝐸 + 𝐿𝑓𝑢𝑛𝑐

Figure 2: Framework of our Dynamics-informed weight Diffusion.

from a new, unseen environment e ∈ Ete, our goal is to generate the complete model weights θnew by
modeling the conditional distribution P (θ|XL). This approach, which generates a full expert model
from scratch without requiring gradient-based finetuning, significantly differs from existing practices
in dynamics prediction.

2.2 CONDITIONAL DIFFUSION

Diffusion models (Rombach et al., 2022; Dhariwal & Nichol, 2021) learn a probabilistic transforma-
tion from a prior Gaussian pprior ∈ N (0, I) distribution to a target distribution ptarget. It perturbs
data distributions by adding noise and learn to reverse this process through denoising, demonstrating
strong fitting capabilities for data across modalities like images, language, and speech (Croitoru et al.,
2023; Tumanyan et al., 2023). We denote the original diffusion sample as x0. The forward noising FIX
process in standard diffusion models is computed as xn =

√
anx0 +

√
1− anϵ, where ϵ and {an}

represent the Gaussian noise and noise schedule (Ho et al., 2020), respectively. The reverse process
gradually denoises from Gaussian noise to sample data as

pθ(xn−1|xn) := N (xn−1;µθ(xn, n), σ
2
nI), (1)

where µθ = 1√
αn

(xn − 1−αn√
1−αn

ϵθ(xn, n)) and {σn} are step dependent constants. The noise ϵθ
is computed by a parameterized neural network, typically implemented as a UNet or Transformer
architecture. The network’s parameters are optimized through an objective function (Ho et al., 2020)

Ln = En,ϵn,x0 ||ϵn − ϵθ(
√
αnx0 +

√
1− αnϵn, n)||2 (2)

to minimize the negative log-likelihood Ex0∼q(x0)[−pθ(x0)]. To model conditional distributions
p(x|c), state-of-the-art methods inject conditional information during noise prediction using tech-
niques like adaptive layer normalization (Peebles & Xie, 2023), as ϵθ(xn, n, c).

3 METHODOLOGY

In this section, we first introduce the method for modeling the joint distribution of model weights
and environments, as illustrated in Figure 2a. Subsequently, we detail the efficient construction of a
domain-adaptive model zoo. Finally, we present a dynamics-informed prompter that operates with
the limited observation sequence.

3.1 DYNAMICS-INFORMED WEIGHT DIFFUSION

DynaDiff first organizes the expert model weights into a weight graph. It then pretrains a weight
VAE, yielding a high-quality latent space. Finally, an dynamics-informed diffusion model is trained
within this latent space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1.1 WEIGHT GRAPH

Model weights constitute a novel data modality, inherently structured by the network architecture.
A straightforward approach is to break the network structure and flatten weights layer by layer into
fixed-length token sequences for representation using sequence models like transformers. Here, we
consider the inherent connection structure of the neural network. Specifically, we aggregate layer
weights based on the forward data flow through the network topology to construct a weight graph
that encapsulates the network’s connection structure.

Linear Layer

𝐷𝑖𝑛 𝐷𝑜𝑢𝑡

Node1 [𝑤1,1, 𝑤1,2, 𝑤1,3, 𝑏1]

Node2 [𝑤2,1, 𝑤2,2, 𝑤2,3, 𝑏2]

Node3 [𝑤3,1, 𝑤3,2, 𝑤3,3, 𝑏3]

Node4 [𝑤4,1, 𝑤4,2, 𝑤4,3, 𝑏4]

Convolution Layer

Weight nodes 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡

Node1 [𝑘𝑒𝑟𝑛𝑒𝑙1,1, 𝑘𝑒𝑟𝑛𝑒𝑙1,2, 𝑘𝑒𝑟𝑛𝑒𝑙1,3, 𝑏1]

Node2 [𝑘𝑒𝑟𝑛𝑒𝑙2,1, 𝑘𝑒𝑟𝑛𝑒𝑙2,2, 𝑘𝑒𝑟𝑛𝑒𝑙2,3, 𝑏2]

Node3 [𝑘𝑒𝑟𝑛𝑒𝑙3,1, 𝑘𝑒𝑟𝑛𝑒𝑙3,2, 𝑘𝑒𝑟𝑛𝑒𝑙3,3, 𝑏3]

Node4 [𝑘𝑒𝑟𝑛𝑒𝑙4,1, 𝑘𝑒𝑟𝑛𝑒𝑙4,2, 𝑘𝑒𝑟𝑛𝑒𝑙4,3, 𝑏4]

Weight nodes 𝐷𝑟𝑒𝑠 𝐷𝑜𝑢𝑡 Weight nodes𝐷𝑖𝑛

Node1 [𝑤1,1, 𝑤1,2, 𝑤1,3,

𝑤1,4, 𝑟1,1 , 𝑟1,2 , 𝑟1,2, 𝑏1]

Skip Connection

Node1 [𝑤2,1, 𝑤2,2, 𝑤2,3,

𝑤2,4, 𝑟2,1 , 𝑟2,2 , 𝑟2,2, 𝑏2]

𝑤𝑖,𝑗 / 𝑟𝑖,𝑗 : weights between 𝑖-th in/skip-neuron and 𝑗-th out-neuron 𝑏𝑗: bias of 𝑗-th out-neuron 𝑘𝑒𝑟𝑛𝑒𝑙𝑖,𝑗 : kernel params between 𝑖-th in-channel and 𝑗-th out-channelFigure 3: Weight node of linear layer.

We focus on designing the weight organization method for
the basic computational units of modern AI architectures:
linear layers and convolution layers (Kofinas et al., 2024).
For a linear layer, learnable parameters include weights
w ∈ RDout×Din×1 and bias b ∈ RDout×1, where the
Dout and Din are the dimension of output and input re-
spectively. A convolution layer similarly comprises weights
w ∈ RCout×Cin×h×w and bias b ∈ RCout×1, where cout and
cin are the channels of output and input, respectively, and
h × w is kernel size. We treat the output neurons of linear
layers and output channels of convolution layers as nodes of
the weight graph. Centering on the feature of output nodes, we flatten and concatenate the weights
(and corresponding bias) associated with connections leading to each output node within a layer,
forming the feature vector w ⊕ b for that output node. Thus, a linear layer’s weights are organized as
Dout nodes with (Din + 1)-dimensional features (Figure 3), and a convolution layer’s weights are
organized as Cout nodes with (Cin × h× w + 1)-dimensional features (Figure 8).

Considering the prevalence of skip connections in modern deep learning, we incorporate their weights.
Following the data flow, we concatenate the weights of the skip connection path as additional features
to the feature vector of the node where it merges with the main path, as depicted in Figure 8.
Consequently, the entire model weights are structured as a weight graph with heterogeneous node
features, where the total number of nodes equals the sum of the output neurons/channels across all
layers. We normalize weights based on input-output node pairs and biases based on nodes.

The proposed weight graph aggregates weights to nodes. This not only captures inherent connection
relationships but also significantly reduces computational overhead compared to maintaining dense
edge features. This organization method is applicable to most architectures, as shown in Section 4.4.

3.1.2 WEIGHT VAE

We now encode the heterogeneous graph of model weights to build a low-dimensional and informative
latent space for diffusion model. We train a node attention-based VAE with a loss function given by

LV AE = −Eqϕ(z|w)[log pθ(w|z)] + βKL[qϕ(z|w)||p(z)], (3)

where w represents the heterogeneous node features of the weight graph, z ∈ Rd is the latent
representation, and the KL divergence term is used to constrain the posterior distribution qϕ(z|w).
The VAE architecture first employs a layer-wise linear mapping for each layer’s nodes to project
them into a same dimension. Subsequently, we utilize a multi-head attention mechanism to model
inter-node relationships, capturing interactions among neurons within and across original model
layers. The resulting latent representation z = E(w) is then passed through another layer-wise linear
mapping, projecting it back to the original dimensions for reconstruction ŵ = D(z).

We notice that prediction models exhibiting similar performance can possess distinct parameter
values (Meynent et al., 2025). This observation motivates our approach to the reconstruction error
term in the VAE objective. The similarity between model weights should be gauged by their functional
consistency, rather than merely their identical absolute values. We introduce a function loss,

Lfunc = Exi∈X ||fŵ(xi)− fw(xi)||22, (4)
where fw(xi) and fŵ(xi) are the output values of the original and reconstructed weights, respectively,
when applied to an input sample xi. Intuitively, the function loss allows the VAE to reconstruct
weights that may not appear identical to the originals but perform similarly. It relaxes the encoder’s op-
timization constraints, promoting the learning of a latent space characterized by functional semantics.
We theoretically analyze the effect of the function loss on generalization error in Appendix E.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.3 WEIGHT LATENT DIFFUSION MODEL

In the latent space, we instantiate the noise network ϵθ using a transformer architecture. Conditioned
on dynamics-informed prompt, we inject this information into the network using adaptive layer
norm (adaLN) (Peebles & Xie, 2023), forming ϵθ(zn, n, prompt). Compared to performing diffusive
generation directly on the raw weights (Yuan et al., 2024), the latent space offers significant dimen-
sionality reduction, which alleviates the computationally intensive nature of the diffusion process and
simplifies the generation of representations.

FIX

3.1.4 DYNAMICS-INFORMED PROMPTER

In most practical scenarios, only a short observation sequence XL is available, instead of a known
environmental parameter. The central task of the Prompter is to distill a rich, informative prompt
vector from this limited sequence XL. To leverage the strengths of both domain knowledge and
data-driven feature extraction, we design a hybrid architecture composed of two parallel branches.

First, we extract physical features to capture the system’s macroscopic dynamics. For each state xi,
we compute its first and second-order moment statistics, energy, and enstrophy. For the resulting
time series of length L for each statistic, we then compute its temporal mean and trend to form the
explicit prompt. Subsequently, we encode the microscopic evolution of the observation sequence.
We compute the sequence of spectra for XL via Fast Fourier Transform (FFT), stacking the real and
imaginary parts. A Gated Recurrent Unit (GRU) is then used to capture the evolutionary patterns
across frames, with its final hidden state serving as the implicit prompt. We concatenate the explicit
and implicit prompts to form the final dynamics-informed prompt. The computational details are
provided in the Appendix F.

We sample observation sequences with a variable length ranging from 1 to L for each training epoch.
This enables the prompter to handle a flexible number of observation frames at test time. Additionally,
the prompter is trained jointly with the latent diffusion model, and its output is passed through an
additional linear layer to regress on the ground-truth environmental condition e, with the regression
error Laux = ||e− linear(prompt)||22 serving as an auxiliary supervisory signal. We verify that this FIX
loss, although not necessary, helps to improve the interpretability of prompt in the Appendix H.5.

3.2 DOMAIN-ADAPTIVE MODEL ZOO

DynaDiff operates on expert model weights, which are collected in a pre-constructed model zoo.
While a naive approach would be to train each expert model from scratch (Schürholt et al., 2024), this
process is computationally prohibitive and leads to a non-stationary weight distribution. To address
this, we introduce an efficient construction process centered on domain-adaptive initialization (Chen
et al., 2024b). First, we pretrain a global base model on data from all visible environments, analogous
to the environment-shared weights in meta-learning. Subsequently, each environment-specific expert
is obtained by rapidly fine-tuning this base model, as illustrated in Figure 2. To encourage sufficient
exploration of the weight landscape, we also introduce a minor random noise to one layer of the
base model before each fine-tuning process. Since each expert only needs to solve for a specific
environment, its size is substantially smaller than a general-purpose foundation model. Therefore,
our model zoo trades affordable offline storage for a massive gain in training efficiency, eliminating
the need for the inner-loop optimization common in prior meta-learning approaches (Finn et al.,
2017; Dupont et al., 2022). Moreover, this one-time offline investment eliminates the need for any
gradient-based computation when adapting to a new environment.

3.3 GENERALIZATION ANALYSIS

We provide a theoretical analysis in Appendix E, demonstrating that our framework is principally
designed to control its generalization error. First, by training a VAE with a functional loss , we
construct a latent space that is functionally smooth, where proximity between latent vectors reflects
the functional similarity of the decoded models. Next, a conditional diffusion model then accurately
generate representations within this well-behaved space. Coupled with an auxiliary loss that grounds
the prompter, this design ensures that each source of the total error is directly governed and minimized
by a specific training objective.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average RMSE (± std from 5 runs) in in- and out-domain environments. Best in bold,
underlined for suboptimal. The parameter sizes of predictive models are reported.

Methods Testing
Params

Cylinder Flow (96:400) Lambda-Omega (12:39) Kolmogorov Flow (12:39) Navier-Stokes (24:121)
In-domain Out-domain In-domain Out-domain In-domain Out-domain In-domain Out-domain

Not-Adaptive ∼ 1M
0.124±0.026 0.159±0.029 0.214±0.045 0.232±0.042 0.135±0.027 0.149±0.029 0.129±0.030 0.144±0.033

One-per-Env 0.040±0.040 0.038±0.040 0.038±0.032 0.035±0.008 0.069±0.021 0.071±0.019 0.046±0.007 0.047±0.009

O
ne

-f
or

-A
ll FNO ∼ 500M 0.082±0.025 0.083±0.023 0.352±0.041 0.363±0.040 0.080±0.020 0.096±0.016 0.066±0.009 0.074±0.015

DPOT ∼ 500M 0.091±0.008 0.090±0.007 0.324±0.007 0.325±0.007 0.079±0.012 0.084±0.017 0.087±0.021 0.093±0.020

Poseidon ∼ 600M 0.085±0.014 0.083±0.015 0.301±0.013 0.318±0.009 0.102±0.006 0.103±0.005 0.092±0.017 0.095±0.016

MPP ∼ 550M 0.102±0.020 0.098±0.019 0.311±0.054 0.313±0.055 0.098±0.017 0.103±0.022 0.095±0.026 0.096±0.028

E
nv

-A
da

pt
iv

e DyAd

∼ 1M

0.096±0.021 0.094±0.020 0.138±0.078 0.137±0.075 0.099±0.006 0.098±0.005 0.091±0.018 0.096±0.015

LEADS 0.101±0.031 0.115±0.036 0.121±0.031 0.123±0.032 0.107±0.011 0.105±0.010 0.091±0.022 0.094±0.020

CoDA 0.099±0.029 0.100±0.031 0.119±0.034 0.116±0.032 0.097±0.019 0.098±0.019 0.096±0.016 0.098±0.014

GEPS 0.079±0.018 0.082±0.020 0.094±0.041 0.092±0.039 0.089±0.009 0.086±0.008 0.098±0.011 0.099±0.010

CAMEL 0.089±0.018 0.094±0.016 0.104±0.018 0.103±0.018 0.096±0.013 0.101±0.016 0.106±0.018 0.109±0.015

DynaDiff 0.059±0.028 0.065±0.025 0.090±0.021 0.089±0.023 0.081±0.012 0.080±0.013 0.062±0.017 0.063±0.015

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We consider unknown environmental conditions for all dynamical systems, training models solely
on observed trajectories across diverse visible environments. Test environments are categorized
as in-domain (seen during training, novel initial conditions) and out-domain (unseen environ-
ments) (Nzoyem et al., 2024). At test time, models autoregressively predict future states given
a single initial frame. The prediction horizon is 100 steps for Cylinder Flow and Lambda-Omega, and FIX
50 steps for Kolmogorov Flow and Navier-Stokes. We evaluate prediction quality using root mean
square error (RMSE) and structural similarity index (SSIM). By default, the length of the observation
sequence for new environments is L = 10.

Baselines We compare against two baseline categories: foundation models (One-for-All) and
meta-learning approaches (Env-Adaptive). The foundation models are trained via empirical risk
minimization (Ayed et al., 2019) on trajectories from all visible environments, including DPOT (Hao
et al., 2024), Poseidon (Herde et al., 2024), and MPP (McCabe et al., 2024). The meta-learning
methods learn environment-shared weights and update environment-specific contexts on observation
sequences, including DyAd (Wang et al., 2022), LEADS (Yin et al., 2021), CoDA (Kirchmeyer et al.,
2022), GEPS (Koupaï et al., 2024), and CAMEL (Blanke & Lelarge, 2024). Following existing FIX
work Blanke & Lelarge (2024), we enable zero-shot prediction by conditioning the hypernetwork on
environmental conditions e, which assumes known ground-truth environmental conditions. Addition-
ally, we assume all environments are visible and train a dedicated Fourier neural operator (Li et al.,
2020) (FNO) for each environment as a performance upper bound (One-per-Env). We also train an FIX
FNO only on all visible environments, but test without any adaptation as a performance lower bound
(Not-Adaptive). Unless otherwise specified, we use FNO as the expert small model for DynaDiff and
other meta-learning methods. Detailed architectural are in Appendix C and I.

Dynamical Systems We validate the model’s effectiveness on four time-dependent PDE systems
and one real-world dataset: 1) Cylinder Flow (Li et al., 2025a); 2) Lambda-Omega (Champion et al.,
2019); 3) Kolmogorov Flow (Koupaï et al., 2024); 4) Navier-Stokes Equations (Kirchmeyer et al.,
2022); and 5) ERA5 Dataset (Zhang et al., 2025). For the PDE systems, we use equation coefficients
or external forcing as environmental variables and simulate multiple trajectories under different
environments for training and testing. We train 100 FNO weight sets for each seen environment
across all systems to serve as the model zoo of DynaDiff (size 100). Detailed descriptions and data
generation procedures for each system are provided in Appendix A and B.

4.2 MAIN RESULTS

PDE systems We report the generalization performance on 4 PDE systems in Table 1, detailing
the number of in/out-domain environments and the parameter size of models for each system during
testing. The generative module of DynaDiff has approximately 400M parameters, while the predictive

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Predicting performance on Cylinder Flow. SSIM distribution of (a) One-per-Env and (b)
DynaDiff; (c) Ratio where DynaDiff outperforms One-per-Env; (d) Differences between DynaDiff
and One-per-Env. The green circle and box means seen environment during training and highlight
region, respectively.

a b

Figure 5: Predicting performance on ERA5 data. (a) One frame of ground true wind speed. (b)
SSIM difference between DynaDiff and One-per-Env. The green box means seen environment during
training. (c) Average prediction RMSE of DynaDiff and foundation models.

model at test-time has only 1M. Across nearly all systems, DynaDiff achieves the best average
performance, demonstrating its ability to model the conditional dependence of the predictive model
on environments. Its small, environment-specific expert models outperform foundation models with
hundreds of times more parameters. Furthermore, unlike other meta-learning approaches, DynaDiff
treats model weights holistically during adaption, without forcing the retention of environment-shared
components. This potentially expands DynaDiff’s search space for improved generalization.

We also find that some models can outperform One-per-Env in certain environments. This is likely
due to the stochasticity of initialization and the training process, as One-per-Env models do not
always converge to the optimal point. We illustrate this result with Cylinder Flow (2 environmental
variables), as shown in Figure 4. The overall SSIM of One-per-Env is close to 1, however, it exhibits
suboptimal performance in certain regions (green box in Figure 4). The FNO weights generated by
DynaDiff perform better than One-per-Env in some environments, even unseen ones. This suggests
that DynaDiff captures the manifold where the joint distribution of weights and environments lies,
whereas the optimizer training process can fail to converge onto this manifold possibly due to getting
stuck in local optima (Sclocchi & Wyart, 2024). We provide a further analysis of the weight manifold
captured by DynaDiff in Appendix H.9.

Real-world dataset We utilize the ERA5 reanalysis dataset, including east-west and north-south
wind speed data at a height of 100 meters. The spatial resolution is 0.25°, and the temporal resolution
is 1 hour. We use January 2018 wind speeds as the training set and January 2019 as the test set. To
define different environments, we divide the globe into 6×12 grid subregions at 30° intervals (Wang
et al., 2022). We randomly select 24 subregions as seen environments, with the remaining 48
as unseen environments. The experimental results are shown in Figure 5. DynaDiff’s prediction
performance outperform all baselines and is able to surpass One-per-Env in partial unseen subregions.

4.3 ROBUSTNESS

We investigate the impact of the number of seen environments, model zoo size and the length of
observation sequence L. We first examine the effect of model zoo size on Cylinder Flow and Lambda-
Omega systems, as depicted in Figures 9a and b. The results indicate that DynaDiff exhibits relatively
stable performance with a zoo size of 50. As the zoo size decreases further, performance begins to
deteriorate, even within the distribution. Subsequently, we test the influence of the number of seen
environments on the Kolmogorov Flow and Navier-Stokes systems. The number of environments
ranged from approximately 5% to 20% of the total. The findings reveal that increasing the number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

seen environments reduces prediction error, but the gains become marginal after reaching around 20%.
This suggests that DynaDiff learns the underlying joint distribution of weights and environments
from a small number of environments, rather than overfitting to trajectory samples within those
environments. Finally, we test DynaDiff’s sensitivity to the observation length L. The results in
Table 5 show that DynaDiff robustly captures the dynamic context to generate suitable predictors
even with fewer frames, a flexibility enabled by our variable-length training strategy (Section 3.1.3).

Furthermore, in Appendix H.2 and H.3, we evaluate two challenging generalization scenario with
a highly skewed distribution of training and testing environments, where DynaDiff consistently
outperforms all baselines.

4.4 EXTENSIBILITY

GT FNO

WNO UNO

Figure 6: DynaDiff on the Cylinder Flow with
different expert models of DynaDiff.

The weight graph structure proposed in Sec-
tion 3.1.1 is capable of organizing neural net-
works of arbitrary architectures. Here, we ex-
tent to more neural operators as expert mod-
els within DynaDiff, including Wavelet Neu-
ral Operator (Tripura & Chakraborty, 2023)
(WNO), and U-shape Neural Operator (Rahman
et al., 2022) (UNO). Our experimental results on
Cylinder Flow are presented in Figure 6. DynaD-
iff, when using different neural operators, consistently achieves excellent generalization performance,
with actual performance showing only minor variations depending on the specific operator architec-
ture. This demonstrates that DynaDiff is a model-agnostic framework capable of benefiting from
the sophisticated architectural designs of its expert models. Detailed architectures of these neural
operators are provided in Appendix I.

4.5 ABLATION STUDY

Here, we verify the necessity of domain initialization when building the model zoo and the function
loss used during VAE training. Experimental results on the Kolmogorov Flow and Navier-Stokes
systems are presented in Table 10. When function loss is omitted, the VAE relies solely on MSE for
reconstruction similarity, leading to suboptimal generated weights, particularly in unseen environ-
ments. Function loss relaxes VAE encoding constraints and helps prevent overfitting by prioritizing
functional consistency over exact reconstruction. Removing domain initialization results in a signifi-
cant deterioration in generated weight performance. This is attributed to the high complexity of a
randomly initialized model zoo, which significantly increases the modeling difficulty. We conclude
that for weight generation aimed at generalization, sample quality is far more critical than diversity.

In addition, we compare the performance using our prompter against ground-truth environmental
conditions, and analyze the impact of different diffusion architectures in Appendix H.6 and H.4.

4.6 COMPUTATIONAL COST

a b

Figure 7: (a) Time cost and (b) GPU memory during
testing on the Navier-Stokes system.

Time cost We compare the time over-
head of DynaDiff and One-per-Env when
adapting to new environments, as shown in
Figure 7a. One-per-Env requires training
weights for each new environment using ob-
servational data. DynaDiff’s overhead in-
cludes building the model zoo (accelerated
by domain initialization) and generating
weights for new environments. Though the
upfront time cost of preparing the model
zoo, DynaDiff generates weights signifi-
cantly faster than training a new predictor. This highlights the trade-off of our generative meta-
learning paradigm: exchanging a moderate offline cost for significant test-time efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPU memory We compare the GPU memory usage of DynaDiff and other baselines during infer-
ence (Figure 7b). Thanks to the proposed weight graph structure, DynaDiff’s attention computation
unfolds along the node dimension, significantly reducing computational overhead and memory. In
addition, we detail the storage overhead of the model zoo in Appendix B.

5 RELATED WORK

5.1 DYNAMICS PREDICTION ACROSS ENVIRONMENTS

Developing dynamic prediction models with cross-environment generalization is a crucial problem
in scientific machine learning and has garnered significant research interest. We review the main
approaches and related work in this area. The first category trains large-parameter neural solvers
as foundation models using extensive simulated data (Rahman et al., 2024; Alkin et al., 2024;
Chen et al., 2024a). Subramanian et al. (2023) explore the generalization performance of classical
FNO architectures across different parameter sizes. Subsequently, models such as MPP (McCabe
et al., 2024), DPOT (Hao et al., 2024), and Poseidon (Herde et al., 2024) employed more advanced
architectures to improve computational efficiency and approximation capabilities. The second
approach is meta-learning (Finn et al., 2017). These methods capture cross-environment invariants
through environment-shared weights and fine-tune environment-specific weights or contexts on
limited data from new environments for adaptation, including DyAd (Wang et al., 2022), LEADS (Yin
et al., 2021), CoDA (Kirchmeyer et al., 2022), GEPS (Koupaï et al., 2024), CAMEL (Blanke &
Lelarge, 2024), and NCF (Nzoyem et al., 2024). Additionally, other methods exist, like in-context
learning (Chen et al., 2024b). Yang et al. (Yang et al., 2023) frame differential equation forward
and inverse problems as natural language statements, pre-train transformers, and provide solution
examples for new environments as context to enhance model performance. Compared to these works,
we innovatively treat the complete model weights as generated objects and explicitly model their
joint distribution with the environment.

5.2 DIFFUSION FOR NETWORK WEIGHT GENERATION

Generating neural network weights is a relatively nascent research area (Wang et al., 2024). An
initial line of work involved training MLPs to overfit implicit neural fields, distilling them into model
weights, and subsequently generating these MLP weights as an alternative to directly generating the
fields (Erkoç et al., 2023; Li et al., 2025b). Another category proposes using generated weights to
replace hand-crafted initialization, thereby accelerating and improving the neural network training
process (Gong et al., 2024; Schürholt et al., 2022; 2024). These efforts primarily focus on image
modalities. More recent studies leverage diffusion models to address generalization in various
domains. Yuan et al. (Yuan et al., 2024) employ urban knowledge graph as prompts to guide diffusion
for generating spatio-temporal prediction model weights for new cities. Zhang et al. (2024) replace
the inner loop gradient updates of the meta learning with diffusion-generated weights. Xie et al.
(2024) improve test-time generalization on time-varying systems by weight generation. Recent
works (Soro et al., 2024; Charakorn et al., 2025; Liang et al., 2025) explores extracting features from
unseen datasets and controlling diffusion to generate adapted model weights for them. However, most
of these methods exhibit limited zero-shot performance. This may stem from them disrupting the
neural network’s inherent topological connections by directly flattening the weights, which constrains
the representational capacity of the generative model. In contrast, we organize weights in the form of
a neural graph and introduce a function loss to guide their representation. The prediction performance
of our generated expert models without tuning surpasses larger pre-trained models.

6 CONCLUSION

We proposed DynaDiff, a framework for cross-environment generalization based on a new generative
adaptation paradigm. DynaDiff synthesizes complete expert models from a few observations, guided
by a dynamics-informed prompter and a generative model trained on a structured weight space. Our
experiments demonstrate that this approach yields lightweight models with superior generalization,
improving upon competitive baselines by an average of 10.78%. We conclude that generative weight
modeling is a promising direction for scientific machine learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors acknowledge their responsibility to adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive details of our methodology,
experiments, and implementation.

• Code and Data Availability. We commit to making all source code, custom datasets, and data
preprocessing scripts publicly available upon acceptance of this paper. The materials will be hosted
in a public repository under a permissive open-source license to ensure full reproducibility and to
facilitate future research.

• Implementation Details. A full description of our model architectures, algorithms, and experi-
mental setup is provided in Appendix.

We believe this provides sufficient information for the research community to reproduce and build
upon our findings.

REFERENCES

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
Advances in Neural Information Processing Systems, 37:25152–25194, 2024.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. arXiv preprint arXiv:1902.11136, 2019.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

Matthieu Blanke and Marc Lelarge. Interpretable meta-learning of physical systems. In The Twelfth
International Conference on Learning Representations, 2024.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):
22445–22451, 2019.

Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Text-to-lora: Instant
transformer adaption. arXiv preprint arXiv:2506.06105, 2025.

Tianyu Chen, Haoyi Zhou, Ying Li, Hao Wang, Chonghan Gao, Rongye Shi, Shanghang Zhang, and
Jianxin Li. Building flexible machine learning models for scientific computing at scale. arXiv
preprint arXiv:2402.16014, 2024a.

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
Advances in Neural Information Processing Systems, 37:6213–6245, 2024b.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, 2023.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. Pysindy: A python package for the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104. URL
https://doi.org/10.21105/joss.02104.

10

https://doi.org/10.21105/joss.02104

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jingtao Ding, Chang Liu, Yu Zheng, Yunke Zhang, Zihan Yu, Ruikun Li, Hongyi Chen, Jinghua
Piao, Huandong Wang, Jiazhen Liu, et al. Artificial intelligence for complex network: Potential,
methodology and application. arXiv preprint arXiv:2402.16887, 2024.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204,
2022.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 14300–14310, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Yifan Gong, Zheng Zhan, Yanyu Li, Yerlan Idelbayev, Andrey Zharkov, Kfir Aberman, Sergey
Tulyakov, Yanzhi Wang, and Jian Ren. Efficient training with denoised neural weights. In
European Conference on Computer Vision, pp. 18–34, 2024.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Meta-
learning probabilistic inference for prediction. arXiv preprint arXiv:1805.09921, 2018.

Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Deep
transfer operator learning for partial differential equations under conditional shift. Nature Machine
Intelligence, 4(12):1155–1164, 2022.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
mar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale
pde pre-training. In International Conference on Machine Learning, pp. 17616–17635. PMLR,
2024.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances in
Neural Information Processing Systems, 37:72525–72624, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Xiajun Jiang, Ryan Missel, Zhiyuan Li, and Linwei Wang. Sequential latent variable models for
few-shot high-dimensional time-series forecasting. In The Eleventh International Conference on
Learning Representations, 2023.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy: A comprehensive python package for
robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994. URL https://doi.org/10.21105/joss.03994.

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model. In
International Conference on Machine Learning, pp. 11283–11301. PMLR, 2022.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves,
Cees GM Snoek, and David W Zhang. Graph neural networks for learning equivariant representa-
tions of neural networks. arXiv preprint arXiv:2403.12143, 2024.

Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George,
Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar. A library for
learning neural operators, 2024.

11

https://doi.org/10.21105/joss.03994

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Armand Kassaï Koupaï, Jorge Mifsut Benet, Yuan Yin, Jean-Noël Vittaut, and Patrick Gallinari.
Geps: Boosting generalization in parametric pde neural solvers through adaptive conditioning.
arXiv preprint arXiv:2410.23889, 2024.

Ruikun Li, Jingwen Cheng, Huandong Wang, Qingmin Liao, and Yong Li. Predicting the dynamics
of complex system via multiscale diffusion autoencoder. arXiv preprint arXiv:2505.02450, 2025a.

Ruikun Li, Jiazhen Liu, Huandong Wang, Qingmin Liao, and Yong Li. Weightflow: Learning
stochastic dynamics via evolving weight of neural network. arXiv preprint arXiv:2508.00451,
2025b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai
Li, Peihao Wang, Konstantin Schürholt, Damian Borth, et al. Drag-and-drop llms: Zero-shot
prompt-to-weights. arXiv preprint arXiv:2506.16406, 2025.

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. Vampnets for deep learning of molecular
kinetics. Nature communications, 9(1):5, 2018.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for spatiotemporal surrogate models. Advances in Neural Information
Processing Systems, 37:119301–119335, 2024.

Léo Meynent, Ivan Melev, Konstantin Schürholt, Göran Kauermann, and Damian Borth. Structure
is not enough: Leveraging behavior for neural network weight reconstruction. arXiv preprint
arXiv:2503.17138, 2025.

Roussel Desmond Nzoyem, David AW Barton, and Tom Deakin. Neural context flows for meta-
learning of dynamical systems. arXiv preprint arXiv:2405.02154, 2024.

Jacob Page, Peter Norgaard, Michael P Brenner, and Rich R Kerswell. Recurrent flow patterns as
a basis for two-dimensional turbulence: Predicting statistics from structures. Proceedings of the
National Academy of Sciences, 121(23):e2320007121, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Maximilian Plattner, Arturs Berzins, and Johannes Brandstetter. Shape generation via weight space
learning. arXiv preprint arXiv:2503.21830, 2025.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629, 2022.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain at-
tention neural operators for solving multiphysics pdes. Advances in Neural Information Processing
Systems, 37:104035–104064, 2024.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 737–753. Springer, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. Advances in Neural Information
Processing Systems, 35:27906–27920, 2022.

Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Proceedings of the 41st International Conference on Machine Learning,
pp. 43947–43966, 2024.

Antonio Sclocchi and Matthieu Wyart. On the different regimes of stochastic gradient descent.
Proceedings of the National Academy of Sciences, 121(9):e2316301121, 2024.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, 2023.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju
Hwang. Diffusion-based neural network weights generation. arXiv preprint arXiv:2402.18153,
2024.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior. Advances in Neural Information Processing Systems, 36:
71242–71262, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial
differential equations in computational mechanics problems. Computer Methods in Applied
Mechanics and Engineering, 404:115783, 2023.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1921–1930, 2023.

Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelligence,
4(4):359–366, 2022.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,
2024.

Rui Wang, Robin Walters, and Rose Yu. Meta-learning dynamics forecasting using task inference.
Advances in Neural Information Processing Systems, 35:21640–21653, 2022.

Mixue Xie, Shuang Li, Binhui Xie, Chi Liu, Jian Liang, Zixun Sun, Ke Feng, and Chengwei Zhu.
Weight diffusion for future: Learn to generalize in non-stationary environments. Advances in
Neural Information Processing Systems, 37:6367–6392, 2024.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences, 120
(39):e2310142120, 2023.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Advances in Neural Information
Processing Systems, 34:7561–7573, 2021.

Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. Spatio-temporal few-shot
learning via diffusive neural network generation. arXiv preprint arXiv:2402.11922, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. In Proceedings of the
AAAI conference on artificial intelligence, pp. 16687–16695, 2024.

Zongwei Zhang, Lianlei Lin, Sheng Gao, Junkai Wang, Hanqing Zhao, and Hangyi Yu. A machine
learning model for hub-height short-term wind speed prediction. Nature Communications, 16(1):
3195, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

LIMITATIONS & FUTURE WORK

DynaDiff currently generates expert models of a fixed architecture, which may not be optimal
for all possible environmental complexities. A promising future direction is to extend the genera-
tive paradigm to synthesize heterogeneous model architectures, dynamically tailored to each new
environment.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of a large language model (LLM) to improving grammar and wording of
our paper. The authors are fully responsible for the content of this work.

A DATA GENERATION

Cylinder Flow system (Li et al., 2025a) is governed by:
u̇t = −u · ∇u− 1

α
∇p+ β

α
∆u,

v̇t = −v · ∇v + 1

α
∇p− β

α
∆v.

(5)

In this system, we use the Reynolds number Re and characteristic length r as two environmental
variables. The Reynolds number and characteristic length influence the lattice viscosity, which in
turn affects the collision frequency, leading to different dynamic behaviors.

Lambda–Omega system (Champion et al., 2019) is governed by{
u̇t = µu∆u+ (1− u2 − v2)u+ β(u2 + v2)v

v̇t = µv∆v + (1− u2 − v2)v − β(u2 + v2)u,
(6)

where ∆ is the Laplacian operator. For this system, we use β as a 1-dimensional environmental
variable. µv and µv are both set to 0.5.

Kolmogrov Flow system (Page et al., 2024) is governed by

∂tω + (u · ∇)ω =
1

Re
∆ω − n cos(ny),

∇2ψ = −ω,

u = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
,

ω = (∇× u) · ẑ =
∂v

∂x
− ∂u

∂y
,

For this system, we use Re as a 1-dimensional environmental variable. n is set to 3.

Navier-Stokes system (Takamoto et al., 2022) is governed by
∂ω

∂t
+ (u · ∇)ω = ν∆ω + f,

∇2ψ = −ω,

u = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
,

ω = (∇× u) · ẑ =
∂v

∂x
− ∂u

∂y
,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where f = A (sin (2π(x+ y + s)) + cos (2π(x+ y + s))) is the driving force. We use amplitude
A and phase s as the two-dimensional environmental variables for this system, and the viscosity
coefficient is set to 0.01.

The range of environmental values and simulation settings for each equation are listed in Table 2.

The Cylinder flow system is simulated using the lattice Boltzmann method (LBM) (Vlachas et al.,
2022), with dynamics governed by the Navier-Stokes equations for turbulent flow around a cylindrical
obstacle. The system is discretized using a lattice velocity grid, and the relaxation time is determined
based on the kinematic viscosity and Reynolds number. Data collection begins once the turbulence
has stabilized.

For Lambda–Omega system, the system’s reaction-diffusion equations are numerically integrated
over time using an ODE solver.

For Kolmogorov Flow and Navier-Stokes systems, we perform numerical simulations based on
the vorticity form equations. The process includes calculating the velocity field from vorticity by
solving a Poisson equation using Fourier transforms, employing numerical methods to handle spatial
derivatives, and subsequently using an ODE solver for time integration to simulate the evolution of
vorticity over time.

Table 2: Simulation settings of each PDE system.
Cylinder flow Lambda–Omega Kolmgorov Flow Navier-Stokes

Spatial Domain —— [−10, 10]2 [−π, π]2 [−32, 32]2

Grid Num 128× 64 64× 64 64× 64 64× 64

dt 200 0.04 0.2 0.025
T 45,000 40.0 40.0 50.0

Environments Re : [200, 500, 31], r : [10, 25, 16] β : [1.0, 1.5, 51] Re : [50, 250, 51] A : [0.1, 0.3, 11], s : [0.0, 1.0, 11]

For each environment of each system, we predict 100 trajectories from different initial conditions
for training and 20 trajectories for testing. For Cylinder Flow and Lambda–Omega systems, au-
toregressive prediction is performed for 100 steps during testing, while for Kolmogorov Flow and
Navier-Stokes systems, prediction is performed for 50 steps during testing.

B MODEL ZOO

In our main experiments, the settings for all meta-learning methods (except for DyAd, which uses
a UNet by default) and the basic model of DynaDiff are shown in Table 3. Additionally, we report
the storage overhead of the model zoo and the hyperparameter settings during generation. During
training, we uniformly use the Adam optimizer with a learning rate of 1e− 4, and other parameters
are set to their default values.

Table 3: Detailed settings of the model zoo for each systems.
Cylinder flow Lambda–Omega Kolmgorov Flow Navier-Stokes ERA5

Channel Num 2 2 3 3 2
N_modes [12, 6] [8, 8] [8, 8] [8, 8] [8, 8]

N_layers 4 4 8 8 4
Hidden 64 64 64 64 64

Domain Pretraining (epochs) 20 100 10 10 50
Finetuning (epochs) 50 50 50 50 20
Storage Space (GB) 18.0 3.5 3.5 7.1 3.4

Time Cost per Model (s) 6.7 28.6 5.15 56.28 30.47

C MODEL ARCHITECTURE

The learnable parameters of DynaDiff consist of a weight VAE and a weight latent transformer
diffusion model. The VAE includes layer-wise linear projection layers at the start and end stages,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Linear Layer

𝐷𝑖𝑛 𝐷𝑜𝑢𝑡

Node1 [𝑤1,1, 𝑤1,2, 𝑤1,3, 𝑏1]

Node2 [𝑤2,1, 𝑤2,2, 𝑤2,3, 𝑏2]

Node3 [𝑤3,1, 𝑤3,2, 𝑤3,3, 𝑏3]

Node4 [𝑤4,1, 𝑤4,2, 𝑤4,3, 𝑏4]

Convolution Layer

Weight nodes 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡

Node1 [𝑘𝑒𝑟𝑛𝑒𝑙1,1, 𝑘𝑒𝑟𝑛𝑒𝑙1,2, 𝑘𝑒𝑟𝑛𝑒𝑙1,3, 𝑏1]

Node2 [𝑘𝑒𝑟𝑛𝑒𝑙2,1, 𝑘𝑒𝑟𝑛𝑒𝑙2,2, 𝑘𝑒𝑟𝑛𝑒𝑙2,3, 𝑏2]

Node3 [𝑘𝑒𝑟𝑛𝑒𝑙3,1, 𝑘𝑒𝑟𝑛𝑒𝑙3,2, 𝑘𝑒𝑟𝑛𝑒𝑙3,3, 𝑏3]

Node4 [𝑘𝑒𝑟𝑛𝑒𝑙4,1, 𝑘𝑒𝑟𝑛𝑒𝑙4,2, 𝑘𝑒𝑟𝑛𝑒𝑙4,3, 𝑏4]

Weight nodes 𝐷𝑟𝑒𝑠 𝐷𝑜𝑢𝑡 Weight nodes𝐷𝑖𝑛

Node1 [𝑤1,1, 𝑤1,2, 𝑤1,3,

𝑤1,4, 𝑟1,1 , 𝑟1,2 , 𝑟1,2, 𝑏1]

Skip Connection

Node1 [𝑤2,1, 𝑤2,2, 𝑤2,3,

𝑤2,4, 𝑟2,1 , 𝑟2,2 , 𝑟2,2, 𝑏2]

𝑤𝑖,𝑗 / 𝑟𝑖,𝑗 : weights between 𝑖-th in/skip-neuron and 𝑗-th out-neuron 𝑏𝑗: bias of 𝑗-th out-neuron 𝑘𝑒𝑟𝑛𝑒𝑙𝑖,𝑗 : kernel params between 𝑖-th in-channel and 𝑗-th out-channel

Figure 8: Layer-wise weight aggregation via forward data flow.

and inter-node attention layers in between. The diffusion model includes a noise network with a
transformer architecture, where conditions are injected through adaptive layer normalization. The
core model hyperparameters are configured as follows:

--- VAE Hyperparameters ---
internal_dim = 1024 # Common internal dimension (D)
latent_dim = 512 # Latent dimension (h)
num_heads = 8 # Attention heads
num_attn_layers = 4 # Renamed from num_gnn_layers
--- DiT Hyperparameters ---
hidden_size = 768 # Transformer hidden states
depth = 12 # Number of transformer blocks/layers
num_heads = 12 # Number of attention heads

Taking the FNO configuration of the NS system as an example, the VAE with the above settings has
193.16M parameters, and the DiT has 131.53M parameters.

D BASELINE IMPLEMENTATION

The same training settings were used for all models, including training for 100 epochs using the
Adam optimizer with a learning rate of 1e-4. Regarding the selection of foundation model parameters,
we uniformly adjusted the embedding dimension, number of layers, and number of heads based on
the dimensions suggested in the original papers to ensure comparable parameter counts for all models.
For environment-adaptive models, we primarily used the default hyperparameters.

E GENERALIZATION ERROR ANALYSIS

In this section, we provide a theoretical analysis of the generalization error for our proposed frame-
work, DynaDiff. Our goal is to bound the expected functional error of a generated model ŵ for
a new, unseen environment, given a short observation sequence XL. Let w∗ be the weights of
an ideal expert model for this environment. The total generalization error can be expressed as
Etotal = E[Lfunc(ŵ, w

∗)], where the expectation is taken over the distribution of unseen environ-
ments and their corresponding observation sequences.

Our framework can be conceptualized as a composition of two modules: a prompter P , which maps
an observation sequence to a conditional prompt, prompt = P (XL), and a generator G, which maps
the prompt to the final model weights, ŵ = G(prompt). The generator G itself is a composition of
the latent diffusion model and the VAE decoder D. The total error arises from imperfections in both
of these modules.

To formalize the analysis, we introduce the concept of an oracle prompt, prompt∗, which perfectly
encapsulates all necessary information about the new environment. The total error can then be
decomposed using the triangle inequality:√

Etotal ≤
√
E[Lfunc(G(prompt), G(prompt∗))] +

√
E[Lfunc(G(prompt∗), w∗)] (7)

This decomposition separates the total error into two terms: the error induced by the imperfect
prompter, and the inherent error of the generator even when given a perfect prompt.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Bounding the Prompter-induced Error. We first analyze the error originating from the prompter.
We posit a key assumption that the generative process is smooth with respect to its conditioning.
Specifically, we assume the generator G is γ-Lipschitz continuous in its functional output space with
respect to the prompt.

Assumption 1 (Functional Lipschitz Continuity). There exists a constant γ > 0 such that for any two
prompts, prompt1 and prompt2, the following holds:

E[Lfunc(G(prompt1), G(prompt2))] ≤ γ · ||prompt1 − prompt2||22 (8)

This assumption is encouraged by the smooth nature of the denoising process in diffusion mod-
els (Preechakul et al., 2022). Given this, the prompter-induced error is bounded by the prompter’s
own generalization error, Eprompt = E[||P (XL)−prompt∗||22]. In our framework, we provide direct
supervision to the prompter via an auxiliary regression loss, Laux = ||e− linear(prompt)||22, which
forces the prompt to contain physically meaningful information correlated with the ground-truth
environment e, thereby helping to minimize Eprompt.

Bounding the Inherent Generator Error. The second term represents the generator’s error even
under ideal conditioning. This error can be understood through the lens of domain adaptation
theory (Redko et al., 2017; Wang et al., 2022), where the model zoo serves as the source domain
and the unseen environments constitute the target domain. This error is primarily bounded by
the generator’s empirical performance on the model zoo, which we denote as Eempirical(G) =
Ew∼Θtr

[Lfunc(G(promptw), w)], where promptw is the prompt corresponding to an expert model
w.

To demonstrate that this empirical error is itself bounded, we analyze the two-stage generative
process. Assumption 2 (Latent Diffusion Effectiveness). An effectively trained conditional diffusion
model can reverse the noising process in the latent space with high fidelity. This implies that the
expected reconstruction error in the latent space is small. Let z = E(w) be the latent representation
of an expert model w. The expected squared error between z and its reconstruction ẑ after the full
forward-and-reverse diffusion process is bounded by a small constant ϵz:

E[||z − ẑ||22] ≤ ϵz (9)

This is a standard assumption, as minimizing the denoising objective Ln (Eq. 2) directly optimizes
for this reconstruction capability. Assumption 3 (Functional Smoothness of VAE Decoder). The VAE
decoder D learns a smooth mapping from the latent space back to the functional space. This is a
direct consequence of incorporating the functional loss Lfunc (Eq. 4) during its training. This implies
the decoder is LD-Lipschitz continuous in a functional sense:

E[Lfunc(D(z1), D(z2))] ≤ LD · ||z1 − z2||22 (10)

The functional loss explicitly regularizes the mapping to ensure that small perturbations in the latent
space do not lead to drastic changes in model behavior, thus encouraging a small LD.

With these assumptions, we can bound the generator’s empirical error. Using the triangle inequality
on the square root of the functional loss:√

Eempirical(G) =
√
E[Lfunc(D(ẑ), w)] ≤

√
E[Lfunc(D(ẑ), D(z))] +

√
E[Lfunc(D(z), w)]

(11)
The first term on the right-hand side is the error from latent space generation, bounded by

√
LD · ϵz

due to Assumptions 2 and 3. The second term is precisely the VAE’s functional reconstruction error
on the training data, which is minimized by the Lfunc term in the VAE objective (Eq. 4). Let us
denote the value of this minimized loss as ϵrecon.

This yields the final bound on the generator’s empirical error:

Eempirical(G) ≤ (
√
LD · ϵz +

√
ϵrecon)

2 (12)

This inequality demonstrates that the generator’s performance on the training data is directly controlled
by two terms that are actively minimized during our training procedure: the VAE’s functional
reconstruction loss and the diffusion model’s denoising loss. This provides a strong theoretical
justification for the stability and effectiveness of our framework.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F COMPUTATIONAL DETAILS OF THE DYNAMICS-INFORMED PROMPTER

Here, we detail the computational procedure for the Dynamics-informed Prompter module. The
prompter takes a short observation sequence XL = {x0, x1, . . . , xL−1} as input, where each state
xi ∈ RC×H×W is a multi-channel spatial field. The entire sequence has a shape of (L,C,H,W).

F.1 EXPLICIT PHYSICAL FEATURE EXTRACTOR

This branch computes a set of macroscopic physical statistics to capture the global dynamics. Let
Sk ∈ RL be the time series for the k-th statistic.

Instantaneous Statistics. For each frame xi in the sequence, we compute four statistics. After
calculation, we sum the values over the channel dimension C to obtain a scalar value for each frame.

• Spatial Mean (1st Moment): The average value over the spatial domain.

µ(xi) =
1

H ×W

∑
h,w

xi,:,h,w

• Spatial Variance (2nd Moment): The variance over the spatial domain.

σ2(xi) =
1

H ×W

∑
h,w

(xi,:,h,w − µ(xi))
2

• Energy (L2 Norm Squared): A proxy for the total energy of the system.

E(xi) =
∑
h,w

∥xi,:,h,w∥22

• Enstrophy (Squared Gradient Norm): A proxy for the energy in the smallest scales, indicating
turbulence.

Ω(xi) =
∑
h,w

∥∇xi,:,h,w∥22

Temporal Aggregation. For each of the four statistic time series Sk (where k ∈ {µ, σ2, E,Ω}),
we compute two features to summarize its temporal evolution:

• Temporal Mean: The average value of the statistic over the sequence length L.

S̄k =
1

L

L−1∑
i=0

Sk,i

• Temporal Trend: A simple approximation of the overall trend, calculated as the difference between
the last and first values.

∆Sk =
1

L
(Sk,L−1 − Sk,0)

The final explicit prompt, pexplicit, is formed by concatenating these features for all statistics. If we
compute Nstats = 4 statistics, the resulting vector has a shape of Nstats × 2 = 8.

pexplicit = [S̄µ,∆Sµ, S̄σ2 ,∆Sσ2 , S̄E ,∆SE , S̄Ω,∆SΩ] ∈ R8

F.2 IMPLICIT SPATIOTEMPORAL ENCODER

This branch learns a latent representation of the microscopic dynamics from the raw data sequence.

Spectral Transformation. Each frame xi is transformed into its frequency representation si using
a 2D Fast Fourier Transform (FFT).

si = FFT(xi) ∈ CC×H×W

We then stack the real and imaginary parts of the complex-valued spectra to form a real-valued tensor
ŝi ∈ R2C×H×W , which is then flattened into a vector.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Temporal Encoding with GRU. The sequence of flattened spectra vectors {ŝ0, ŝ1, . . . , ŝL−1} is
fed into a Gated Recurrent Unit (GRU). The GRU iteratively updates its hidden state hi based on the
current input ŝi and the previous hidden state hi−1:

hi = GRU(ŝi, hi−1)

The final hidden state, hL−1, which encapsulates the temporal evolution of the entire spectral
sequence, is taken as the implicit prompt, pimplicit. If the GRU’s hidden dimension is Dhidden, the
shape of the implicit prompt is Dhidden.

pimplicit = hL−1 ∈ RDhidden

F.3 FINAL PROMPT CONCATENATION

The final dynamics-informed prompt p is obtained by concatenating the explicit and implicit vectors.

p = concat(pexplicit, pimplicit)

The resulting prompt vector has a shape of (8 +Dhidden). This vector serves as the condition for the
diffusion model.

G COMPUTATIONAL DETAILS OF THE WEIGHT VAE

Here, we elaborate on the architecture of the "node attention-based VAE". This architecture consists NEW
of a symmetric encoder E and decoder D, designed to process the weight graph W defined by
heterogeneous node features. A key design choice is that this VAE does not use global pooling along
the node dimension. Instead, it learns a dedicated latent variable for every node in the weight graph
(i.e., each neuron or channel in the FNO model).

Input The input to the VAE is the weight graph W , which consists of L node feature tensors from
different layers (e.g., lifting, FNO blocks, projection), denoted as W = {W1, . . . ,WL}.

• Wi ∈ RB×Ni×Di is the node feature tensor for the i-th layer.

• B is the batch size.

• Ni is the number of nodes in the i-th layer (e.g., the number of output channels).

• Di is the original feature dimension of the nodes in the i-th layer (e.g., Di = (Cin × kh ×
kw + 1)).

• The total number of nodes is Ntotal =
∑L

i=1Ni.

Encoder E(W) → (µz, σ
2
z) The encoder E compresses the input heterogeneous weight graph W

into per-node Gaussian distribution parameters.

• Step 1: Node Projection. To handle the heterogeneous dimensions Di, we first use a
set of layer-specific linear maps, MLPenc,i, to project all node features into a uniform,
homogeneous embedding dimension dmodel:

Hi = GELU(MLPenc,i(Wi)) ∈ RB×Ni×dmodel

• Step 2: Graph Re-assembly. We concatenate all projected node tensors Hi along the node
dimension (dim=1) to form a unified tensor Hunified containing all nodes in the graph:

Hunified = Concat[H1, . . . ,HL] ∈ RB×Ntotal×dmodel

• Step 3: Node Attention Blocks. Hunified is then passed through K standard Transformer
encoder blocks to capture complex relationships between nodes. For the k-th Transformer
block (k = 1 . . .K), the input is H(k−1) (where H(0) = Hunified), and the computation
proceeds as follows:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

– QKV Computation: The block uses standard Multi-Head Self-Attention (MHA). The
Query, Key, and Value are all derived from the same normalized input tensor H(k)

norm1:

H
(k)
norm1 = LayerNorm(H(k−1))

Q(k),K(k), V (k) are all derived from H
(k)
norm1

– Attention and Feedforward:

H
(k)
attn = MHA(H

(k)
norm1, H

(k)
norm1, H

(k)
norm1)

H
(k)
res1 = H(k−1) +H

(k)
attn

H
(k)
norm2 = LayerNorm(H

(k)
res1)

H
(k)
ffn = FeedForward(H(k)

norm2)

H(k) = H
(k)
res1 +H

(k)
ffn

After K layers, we obtain the encoder output Henc_out = H(K).

• Step 4: Per-Node Latent Projection. Henc_out is directly projected into the per-node latent
variable parameter space (dimension 2 · dz):

Paramslatent = MLPlatent(Henc_out) ∈ RB×Ntotal×(2·dz)

Finally, we split this tensor along the last dimension to get the mean µz and log-variance
log σ2

z :
µz, log σ

2
z = Split(Paramslatent) ∈ RB×Ntotal×dz

Reparameterization We use the standard reparameterization trick, sampling on a per-node basis:

σz = exp(0.5 · log σ2
z)

ϵ ∼ N (0, I) (with shape RB×Ntotal×dz)

z = µz + ϵ · σz ∈ RB×Ntotal×dz

Decoder D(z) → Ŵ The decoder D has a symmetric structure to the encoder.

• Step 1: Decoder Latent Projection. The per-node latent variable z is first projected back to
the dmodel dimension:

Hdec_in = MLPdec_latent(z) ∈ RB×Ntotal×dmodel

• Step 2: Decoder Attention Blocks. Hdec_in is then passed through K Transformer decoder
blocks (with independent weights). The computation is identical to the encoder’s Step 3,
ultimately producing the decoder output Hdec_out ∈ RB×Ntotal×dmodel .

• Step 3: Split and Inverse Projection. Hdec_out is first split back into L tensors corresponding
to the original layers, Hdec_out,i ∈ RB×Ni×dmodel . Then, each tensor is mapped back to its
original, heterogeneous dimension Di via its layer-specific inverse projection MLPdec,i:

Ŵi = MLPdec,i(Hdec_out,i) ∈ RB×Ni×Di

The final reconstructed weight graph Ŵ = {Ŵ1, . . . , ŴL} matches the dimensions of the
input W .

H ADDITIONAL RESULTS

In this section, we provide additional experiments to further validate the robustness, generalization
capabilities and design choices of our DynaDiff framework.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: p-values for the statistical significance test (Welch’s t-test) of the RMSE difference between
DynaDiff and the best-performing baseline from Table 1.

Cylinder Flow (96:400) Lambda-Omega (12:39) Kolmogorov Flow (12:39) Navier-Stokes (24:121)
In-domain Out-domain In-domain Out-domain In-domain Out-domain In-domain Out-domain
3.26× 10−9 2.90× 10−27 0.67 0.70 0.89 0.066 0.022 3.79× 10−18

Table 5: Average out-domain RMSE of various observation length L.
L 2 4 6 8 10

Cylinder Flow 0.069±0.032 0.068±0.034 0.064±0.034 0.062±0.031 0.059±0.028

Navier-Stokes 0.080±0.034 0.071±0.033 0.068±0.026 0.065±0.023 0.062±0.017

H.1 STATISTICAL SIGNIFICANCE ANALYSIS OF MAIN RESULTS

We supplemented the key results in Table 1 with a statistical significance analysis, as suggested by NEW
the reviewer. We conducted pairwise Welch’s t-tests on the RMSE scores between DynaDiff and
the best-performing baseline (underlined in Table 1) for each environment. The p-values, computed
using scipy.stats.ttest_ind, are presented in Table 4.

On the Cylinder Flow and Navier-Stokes systems, the improvements by DynaDiff are statistically
significant (p < 0.05). In the Kolmogorov Flow system, although DPOT (0.079± 0.012) performed
slightly better on average than DynaDiff (0.081± 0.012) in the in-domain setting, this difference is
not statistically significant. However, in the more critical out-domain generalization task, DynaDiff’s
(0.080±0.013) advantage over GEPS (0.084±0.017) approaches statistical significance (p = 0.066).
In the Lambda-Omega system, DynaDiff’s advantage is not statistically prominent, indicating its
performance is comparable to the SOTA baseline.

It is worth noting that DynaDiff consistently achieves strong generalization performance across
almost all systems. Conversely, no single baseline demonstrates outstanding performance across all
systems. This significantly indicates that DynaDiff, as a novel paradigm of weight-space learning,
can generalize stably across different types of systems. This may be attributed to the fact that
although the data for each PDE system varies greatly, DynaDiff models the weight distribution of a
uniformly structured predictive model (e.g., FNO), making it more robust to dataset-level shifts. This
cross-scenario stability highlights the superiority of DynaDiff’s weight-space learning paradigm.

H.2 ROBUSTNESS TO ENVIRONMENTAL EXTRAPOLATION

Standard out-of-domain tests often involve interpolating between seen parameter values. A more
challenging test is extrapolation, where the model must predict system behavior in a region of the
parameter space far from the training data.

We conducted a difficult extrapolation experiment on the Cylinder Flow system, which is governed
by two environmental parameters. We constructed a biased training set containing only environments
from the top-right quadrant of the parameter space (i.e., where both parameters had high values).
The model was then tested on the unseen bottom-left quadrant (i.e., where both parameters had low
values).

The results are summarized in Table 6. As expected, this task is extremely challenging for all
methods, and performance degrades as the training distribution becomes more biased (i.e., the seen
environment ratio decreases). However, our method, DynaDiff, consistently maintains a significant
performance advantage over the strong baseline models. This demonstrates that by learning a coherent
representation of the weight-environment manifold, DynaDiff is more robust to extrapolation and
less prone to catastrophic failure when faced with significant distributional shifts.

H.3 GENERALIZATION TO UNSEEN GOVERNING EQUATIONS

To rigorously test the upper limits of our framework’s generalization ability, we designed a challenging
experiment where the model must generalize to a completely unseen physical system with different
governing equations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Out-of-domain RMSE on the Cylinder Flow extrapolation task. The models were trained on
a biased (top-right quadrant) subset of environments and tested on the unseen opposite quadrant.

Seen Env. Ratio 100% 90% 80% 70% 60% 50%
Poseidon 0.083 0.098 0.128 0.214 0.568 0.674
GEPS 0.093 0.126 0.136 0.143 0.183 0.654
DynaDiff (Ours) 0.065 0.077 0.095 0.107 0.121 0.228

Figure 9: Robustness experiments. Impact of model zoo size on DynaDiff’s performance on (a)
Cylinder Flow and (b) Lambda-Omega. Impact of the number of seen environments (e) on DynaDiff’s
performance on (c) Kolmogorov Flow and (d) Navier-Stokes.

We trained a single, unified generative model on three distinct PDE systems: Cylinder Flow, Lambda-
Omega, and Navier-Stokes. The test was then performed on a completely held-out system: Kol-
mogorov Flow. To create a unified conditioning space for the prompter, we treated the combination
of the PDE type and its specific physical coefficients as a single, high-dimensional environmental
descriptor. When combining data from different systems with varying channel numbers, we padded
the input channels with zero to maintain a consistent tensor shape.

We evaluated the performance of all methods in both zero-shot and few-shot settings. For a fine-
grained comparison, we measured the average prediction length (number of autoregressive steps) for
which the Structural Similarity (SSIM) index remains above 0.8. As shown in Table 7, our method
demonstrates superior performance in both scenarios. In the zero-shot case, DynaDiff achieves the
longest accurate prediction horizon. For the few-shot setting, where each model was fine-tuned on
a single trajectory from the held-out system, DynaDiff still maintained its advantage, showcasing
its ability to generate high-quality initial models that benefit more from minimal fine-tuning. This
result suggests that our framework captures a more fundamental and transferable representation of
dynamical systems, extending beyond simple parameter interpolation to the structure of the dynamics
itself.

Table 7: Performance on the held-out Kolmogorov Flow system, measured by the average prediction
length with SSIM > 0.8. DynaDiff demonstrates superior generalization to a completely unseen
physical law.

Method Zero-shot Few-shot (1 trajectory)
Poseidon 12.7 33.2
DPOT 14.0 41.4
MPP 10.1 38.7
DynaDiff (Ours) 15.9 46.5

H.4 ABLATION ON FRAMEWORK DESIGN CHOICES

Our framework is composed of a two-stage generative stack (VAE + Latent Diffusion) that operates
on a graph-based representation of weights. Here, we provide ablation studies to justify these key
design choices against simpler alternatives.

Two-Stage vs. Single-Stage Generation. One could bypass the VAE and train a conditional
diffusion model directly on the weight graphs. We compare our two-stage approach against such a
single-stage, graph-structured conditional diffusion baseline (same to our Graph VAE’s architecture).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

As shown in Table 8, our method’s superior performance highlights the advantage of our design. The
VAE first learns a semantically rich and low-dimensional manifold, which makes the subsequent
generation task for the diffusion model more tractable and effective. This decoupling of representation
learning from generation is crucial.

Graph vs. Sequence Representation. An alternative to our weight graph is to flatten the weights
into a sequence and use a powerful sequence model like a Transformer. We compare our graph-based
VAE against a sequence-based Transformer VAE. The results in Table 9 show that our graph-based
approach is significantly more effective and parameter-efficient. By explicitly injecting the network’s
architectural prior, the graph representation provides a much stronger and more suitable inductive
bias for this task compared to relying on positional embeddings in a sequence.

Table 8: Ablation on the generative stack. Our two-stage (VAE + Latent Diffusion) approach
significantly outperforms a direct, single-stage graph diffusion model.

Method Cylinder Flow (RMSE) Lambda-Omega (RMSE)
Single-Stage Graph Diffusion 0.112 0.238
Two-Stage (Ours) 0.065 0.089

Table 9: Ablation on weight representation. Our graph-based approach is more effective and
parameter-efficient than a sequence-based Transformer approach.

Representation VAE Params CF (RMSE) LO (RMSE) KF (RMSE) NS (RMSE)
Sequence-based ∼1200M 0.129 0.208 0.152 0.143
Graph-based (Ours) ∼380M 0.065 0.089 0.080 0.063

Table 10: Average RMSE of ablation study on domain initialization and function loss. ’w/o’ stands
for ’without’.

Kolmgorov Flow Navier-Stokes
In-domain Out-domain In-domain Out-domain

w/o Domain Init 0.156±0.082 0.188±0.102 0.197±0.0102 0.201±0.098

w/o Function Loss 0.098±0.034 0.104±0.038 0.104±0.045 0.110±0.046

DynaDiff 0.081±0.023 0.080±0.013 0.0620.017 0.063±0.015

H.5 ABLATION ON AUXILIARY SUPERVISORY SIGNAL

As mentioned in Section 3.1.3, the prompter’s training utilizes an additional linear layer and a NEW
regression loss Laux as an auxiliary supervisory task. However, in many practical scenarios, the
environmental condition e is often unknown. Therefore, Laux cannot always be computed. Here, we
conduct an ablation study on Laux using the Cylinder Flow and Lambda-Omega systems to examine
whether the generative task of the diffusion model alone can ensure the prompter learns to capture dy-
namic information from observation frames. The experimental results are shown in Table 11. We find
that removing Laux does not significantly impair DynaDiff’s generalization capability. This strongly
demonstrates that DynaDiff’s core generalization ability primarily stems from the dynamical infor-
mation extracted from the observation sequence XL, rather than a dependency on the ground-truth
environment e. The role of Laux is essentially to introduce a beneficial learning bias to guide training,
without providing extra knowledge. With or without Laux, DynaDiff acquires physical information
through the L observation frames. We also find that without Laux, the regression performance of the
dynamics-informed prompt learned by the Prompter on the true physical coefficients decreases for
the Cylinder Flow system (Figure 11). This suggests that while Laux may not add extra dynamical
information to the prompt, its constraint during training helps the prompter extract more interpretable

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Average RMSE of ablation study on Laux.
Cylinder Flow Lambda-Omega

In-domain Out-domain In-domain Out-domain
w/o Laux 0.063±0.023 0.064±0.026 0.088±0.027 0.091±0.025

DynaDiff 0.059±0.028 0.065±0.025 0.090±0.021 0.089±0.023

dynamical representations. In summary, even when environmental conditions are unknown, DynaDiff
can still reliably identify dynamical information from limited trajectory observations to generalize.

H.6 PROMPTER

Here we conduct an experiment to validate the prompter’s ability to capture physically meaningful
information from limited observations. We perform this analysis on the Cylinder Flow and Lambda-
Omega systems. Specifically, we use the dynamics-informed prompt extracted by the prompter to
regress the ground-truth environmental coefficients using a Random Forest regressor. The target
coefficients are the Reynolds number (Re) and characteristic length (r) for Cylinder Flow, and the
coefficient Beta for the Lambda-Omega system. Figure 10 reports the regression performance on
out-of-distribution environments. As shown, the predicted values correlate strongly with the true
values, demonstrating that the prompter can reliably infer the physical parameters. This result
indicates that the prompter has successfully learned to extract the underlying dynamic signature from
limited observation frames. It can therefore encode a discriminative and physically-grounded prompt
to effectively guide the diffusion-based weight generation.

We also compare the performance of DynaDiff when using real environmental conditions e versus
surrogate environmental labels c, as shown in Table 12. Experimental results indicate that there is little
difference in DynaDiff’s performance under the two settings. This demonstrates that the prompter
effectively helps DynaDiff distinguish different environments for generating suitable weights.

a b c

Figure 10: Prompter performance on the (a, b) Cylinder Flow and (c) Lambda-Omega systems.

Figure 11: Prompter performance without Laux on the (a, b) Cylinder Flow and (c) Lambda-Omega
systems.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: Average RMSE of ablation study on prompter.
Cylinder Flow Navier-Stokes

In-domain Out-domain In-domain Out-domain
Prompter 0.059±0.028 0.065±0.025 0.062±0.017 0.063±0.015

Environmental condition 0.050±0.014 0.061±0.027 0.058±0.007 0.065±0.006

Table 13: Time and memory costs of meta-learning methods on the Navier-Stokes system.
DyAd LEADS CoDA GEPS CAMEL DynaDiff

GPU Memory (GB) 0.796 0.902 1.122 1.028 0.846 2.168
Time Cost (s) 5.96 29.23 20.88 28.80 20.25 31.96

H.7 TIME AND MEMORY COST OF META-LEARNING METHODS

We compare the inference cost of DynaDiff against all meta-learning methods for a single envi- NEW
ronment on the Navier-Stokes system, as shown in Table 13. Compared to other adaptive methods,
the additional inference cost of DynaDiff comes from the generator, which includes latent space
denoising and VAE decoding. The results show that, thanks to the low dimensionality of the latent
space, the actual incremental cost is very small. Note that the GPU memory for DynaDiff reported in
Figure 7b of the main paper was calculated during parallel inference across multiple environments,
which is why it appears larger.

H.8 ANALYSIS OF GENERATOR PARAMETER COUNT AND BASELINE SCALABILITY

The parameter count of DynaDiff’s generator is approximately 400M, which is positioned between NEW
prior meta-learning methods (<50M) and foundation models (>500M). This difference in generator
size is determined by the methodological paradigm: prior meta-learning approaches typically use
a hypernetwork to generate low-dimensional context vectors, whereas our approach generates the
complete weights of a 1M-parameter FNO model.

We conduct an experiment, using CAMEL and GEPS as representatives, where we increased their
hypernetwork depth (3 layers) and width (15,000-dim) to scale them to a comparable size. The
performance on the Cylinder Flow and Lambda-Omega systems is shown in Table 14. The results
indicate that simply increasing the parameter count of the meta-learning baselines does not effectively
improve their performance ceiling. This suggests that the performance bottleneck for these methods
is not the parameter count itself. In contrast, our framework provides a new alternative that achieves
higher generalization performance.

Table 14: RMSE performance of scaled-up meta-learning baselines vs. DynaDiff.
Cylinder Flow Lambda-Omega

In-domain Out-domain In-domain Out-domain
GEPS-10M 0.079 0.082 0.094 0.092
GEPS-450M 0.083 0.084 0.097 0.100
CAMEL-5M 0.089 0.094 0.104 0.103
CAMEL-400M 0.097 0.099 0.102 0.104
DynaaDiff-400M 0.059 0.065 0.090 0.089

H.9 EXPLAINABILITY

We visualize the joint distribution of weights and environments using the Cylinder Flow system as
an example to aid qualitative analysis, where over 80% environments are unseen by DynaDiff. In
Figure 12, the x-axis represents the surrogate environment labels predicted by the prompter, and
the y-axis represents the first principal component of the weights of a specific layer. The weight-
environment landscape learned by DynaDiff closely resembles that learned by One-per-Env through

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Lifting

Skip Conv

Projection

+

×NFno block

FNO Architecture

Environment

W
ei

gh
t

Model Zoo DynaDiff

Figure 12: Joint distribution of weights and environments on Cylinder Flow.

optimizer training. This indicates that DynaDiff successfully models the joint distribution of weights
and environments, thereby explaining its superior performance in Table 1.

𝑑𝑥

𝑑𝑡
= 0.5𝑥 − 𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 0.5𝑦

 DynaDiff

𝛽 𝛿

0.5

0.6 0.6

(x)‘ = 0.488x - 0.492xy

(y)‘ = 0.477xy - 0.479y

0.7 0.7

0.8

(x)‘ = 0.454x - 0.574xy

(y)‘ = 0.483xy - 0.578y

(x)‘ = 0.384x - 0.640xy

(y)‘ = 0.677xy - 0.484y

(x)‘ = 0.482x - 0.788xy

(y)‘ = 0.760xy - 0.491y

0.5

0.8

Generate Symbolic

Regression
Dynamics

Model Weight

E
n
v
ir
o
n
m

e
n
t

High-accuracy

Manifold

unseen

envir

Figure 13: Generative functions of DynaDiff for the LV system.

To quantitatively analyze the environmental-weight joint distribution fitted by DynaDiff, we introduce
a simple ODE system, the Lotka-Volterra (LV) equations (Kirchmeyer et al., 2022), as a toy example.
We use a symbolic regression algorithm (Brunton et al., 2016) to distill the predictive model generated
by DynaDiff for specific environmental conditions (β and δ) into an equation expression, as shown in
Figure 13. The equivalent equation for the weights generated by DynaDiff is consistent in form with
the LV equations, and the environmental coefficients are close. This quantitatively demonstrates that
DynaDiff can fit the generalizable dynamics function rather than an environment-specific function.
We detail the experimental setup in Appendix H.10.

H.10 LV SYSTEM

The Lotka-Volterra equations describe the interaction between a predator-prey pair in an ecosystem:

dx

dt
= αx− βxy

dy

dt
= δxy − γy,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where x and y respectively represent the quantity of the prey and the predator, and α, β, δ, γ define
the species interactions. We generate each trajectory with a time interval of 0.1 and a total duration of
10.0, with initial conditions randomly sampled between 1 and 3. We change β and δ as 2-dimensional
environmental conditions, with both ranging from 0.5 to 1.0, sampled at 11 equally spaced points.
Among a total of 11 × 11 = 121 environments, we randomly select 24 as the training set and the
rest as the test set. For all environments, α = 0.5 and γ = 0.5. We generate 100 trajectories for each
environment.

For this system, we adopt a 2-layer MLP as the parameterized dynamic model, with a hidden layer
dimension of 128 and Tanh as the activation function. We use a neural ordinary differential equation
with the rk4 algorithm to model the dynamics. DynaDiff generates the weights of the MLP and
makes forward predictions through a numerical solver. When distilling the generated weights, we
first perform autoregressive prediction on a given trajectory using the predicted weights. Once the
prediction is complete, we employ the pysindy library (Kaptanoglu et al., 2022; de Silva et al., 2020)
for symbolic regression. The operator dictionary uses a 2nd order polynomial dictionary, and other
hyperparameters are set to their default values.

I ARCHITECTURES OF EXPERT MODELS

In our main experiments, we deploy three neural operators as expert models for DynaDiff: FNO,
UNO, and WNO. Here, taking the Cylinder Flow system as an example, we list the parameter
composition and hyperparameter settings of these operators.

FNO We adopt the code from the open-source repository (Kossaifi et al., 2024) as the implementa-
tion for FNO. For the NS system, the weight composition of FNO is as follows:

lifting.fcs.0: torch.Size([128, 5])
lifting.fcs.1: torch.Size([64, 129])
fno_blocks.convs.0: torch.Size([64, 6209])
fno_blocks.channel_mlp.0.0: torch.Size([32, 65])
fno_blocks.channel_mlp.0.1: torch.Size([64, 34])
fno_blocks.convs.1: torch.Size([64, 6209])
fno_blocks.channel_mlp.1.0: torch.Size([32, 65])
fno_blocks.channel_mlp.1.1: torch.Size([64, 34])
fno_blocks.convs.2: torch.Size([64, 6209])
fno_blocks.channel_mlp.2.0: torch.Size([32, 65])
fno_blocks.channel_mlp.2.1: torch.Size([64, 34])
fno_blocks.convs.3: torch.Size([64, 6209])
fno_blocks.channel_mlp.3.0: torch.Size([32, 65])
fno_blocks.channel_mlp.3.1: torch.Size([64, 34])
projection.fcs.0: torch.Size([128, 65])
projection.fcs.1: torch.Size([2, 129])

UNO We adopt the code from the open-source repository (Kossaifi et al., 2024) as the implementa-
tion for UNO. For the NS system, the weight composition of UNO is as follows:

lifting.fcs.0: torch.Size([256, 5])
lifting.fcs.1: torch.Size([64, 257])
fno_blocks.0.convs.0: torch.Size([64, 5185])
fno_blocks.0.channel_mlp.0: torch.Size([32, 65])
fno_blocks.0.channel_mlp.1: torch.Size([64, 34])
fno_blocks.1.convs.0: torch.Size([64, 5185])
fno_blocks.1.channel_mlp.0: torch.Size([32, 65])
fno_blocks.1.channel_mlp.1: torch.Size([64, 34])
fno_blocks.2.convs.0: torch.Size([128, 10369])
fno_blocks.2.channel_mlp.0: torch.Size([64, 129])
fno_blocks.2.channel_mlp.1: torch.Size([128, 66])
horizontal_skips.0.conv.weight: torch.Size([64, 64])
projection.fcs.0: torch.Size([256, 129])
projection.fcs.1: torch.Size([2, 257])

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

WNO We adopt the code from the open-source repository (Tripura & Chakraborty, 2023) as the
implementation for WNO. For the NS system, the weight composition of WNO is as follows:

conv.0.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
conv.0.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
conv.1.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
conv.2.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_a1 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_a2 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_h1 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_h2 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_v1 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_v2 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_d1 | Shape: torch.Size([40, 40, 5, 5])
conv.3.weights_d2 | Shape: torch.Size([40, 40, 5, 5])
w.0.weight | Shape: torch.Size([40, 40, 1, 1])
w.0.bias | Shape: torch.Size([40])
w.1.weight | Shape: torch.Size([40, 40, 1, 1])
w.1.bias | Shape: torch.Size([40])
w.2.weight | Shape: torch.Size([40, 40, 1, 1])
w.2.bias | Shape: torch.Size([40])
w.3.weight | Shape: torch.Size([40, 40, 1, 1])
w.3.bias | Shape: torch.Size([40])
fc0.weight | Shape: torch.Size([40, 5])
fc0.bias | Shape: torch.Size([40])
fc1.weight | Shape: torch.Size([128, 40])
fc1.bias | Shape: torch.Size([128])
fc2.weight | Shape: torch.Size([3, 128])
fc2.bias | Shape: torch.Size([3])

Since the parameters of normalization layers are determined by the dataset and are not controlled by
the environment, we do not enable normalization layers in all operators (they are also disabled by
default in the original code).

NEW

I.1 COMPARISON WITH FINETUNING-FREE META-LEARNING APPROACHES

Recent finetuning-free meta-learning approaches also achieve test-time adaptation without gradient- NEW
based optimization. For instance, methods like those proposed by (Gordon et al., 2018) and (Jiang
et al., 2023). However, DynaDiff’s paradigm differs from these works in several key aspects:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Adaptation Mechanism (Modulation vs. Generation): Prior works typically rely on a fixed,
shared backbone network. Adaptation is achieved by generating or modulating a small subset of
parameters, such as a final linear layer Gordon et al. (2018) or a context vector c that conditions the
backbone’s dynamics Jiang et al. (2023). In contrast, DynaDiff generates the complete set of weights
for an entire expert predictor from scratch. This allows the framework to adapt to more fundamental
changes in dynamics, rather than only modulating the behavior of a fixed, shared model.

Weight Representation (Vector vs. Structured Graph): Our work introduces the Weight Graph
to treat model weights as a structured data modality, preserving the inherent topological connectivity
of the neural network architecture. This structured representation, combined with our proposed
Functional Loss, differs from methods that generate unstructured weight vectors Gordon et al.
(2018). As shown in our ablation studies, this structural-awareness is critical for effectively modeling
the high-dimensional weight distribution.

Target Domain (General vs. SciML-Specific): DynaDiff is specifically tailored for cross-
environment generalization in Scientific Machine Learning (SciML). Its Dynamics-informed
Prompter is designed to extract physically meaningful features (e.g., energy, spectral patterns)
from short observation sequences. This contrasts with the generic set-encoders used in few-shot
classification or regression (Gordon et al., 2018; Jiang et al., 2023), enabling DynaDiff to capture
informative features from complex physical dynamics even from limited observations (L = 10).

Figure 14: Simplest pipeline of DynaDiff.

30

	Introduction
	Preliminary
	Problem Definition
	Conditional Diffusion

	Methodology
	Dynamics-informed Weight Diffusion
	Weight Graph
	Weight VAE
	Weight Latent Diffusion Model
	Dynamics-informed Prompter

	Domain-adaptive Model Zoo
	Generalization Analysis

	Experiment
	Experimental Setup
	Main Results
	Robustness
	Extensibility
	Ablation Study
	Computational Cost

	Related Work
	Dynamics Prediction across Environments
	Diffusion for Network Weight Generation

	Conclusion
	Data Generation
	Model Zoo
	Model Architecture
	Baseline Implementation
	Generalization Error Analysis
	Computational Details of the Dynamics-informed Prompter
	Explicit Physical Feature Extractor
	Implicit Spatiotemporal Encoder
	Final Prompt Concatenation

	Computational Details of the Weight VAE
	Additional Results
	Statistical Significance Analysis of Main Results
	Robustness to Environmental Extrapolation
	Generalization to Unseen Governing Equations
	Ablation on Framework Design Choices
	Ablation on Auxiliary Supervisory Signal
	Prompter
	Time and Memory Cost of Meta-learning Methods
	Analysis of Generator Parameter Count and Baseline Scalability
	Explainability
	LV system

	Architectures of Expert Models
	Comparison with Finetuning-Free Meta-Learning Approaches

