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ABSTRACT

Understanding the internal thinking process of Large Language Models (LLMs)
and the cause of hallucinations remains a key challenge. To this end, we introduce
latent debate, a novel framework for interpreting model predictions through the
lens of implicit internal arguments. Unlike the current work of self-consistency
and multi-agent debate, which relies on explicit debates among multiple answers
or multiple models, latent debate captures the hidden supporting and attacking
signals that arise within a single model during a single inference step. We first
present a model- and task-agnostic conceptual framework, and then instantiate it
symbolically to approximate the thinking process of LLMs on True/False prediction
tasks. Empirical studies demonstrate that latent debate is a faithful surrogate model
that has highly consistent predictions with the original LLM. Further analysis
reveals strong correlations between hallucinations and debate patterns, such as
a high degree of latent debates in the middle layers is linked to a higher risk of
hallucinations. These findings position latent debate as a potential framework
for understanding internal mechanisms of LLMs, especially for scenarios where
internal (dis)agreements appear during the inference steps.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable progress on many reasoning tasks, yet they
continue to suffer from hallucinations (Xu et al.,[2024b; Huang et al.,|2025). For example, LLMs may
generate answers that contradict user prompts and or conflict with the source of training data (Ji et al.
2023} [Kalai et al., [2025; |Bang et al.,|2025)), seriously undermining their reliability and trustworthiness.
This is further aggravated by the fact that, due to their opacity, it is difficult to understand why LLMs
make given predictions, or why their “thinking” process is flawed.

Recent work in mechanistic interpretability has examined hallucinations through various internal
signals, including activations (Ferrando et al.| 2025)), attention patterns (Chuang et al.,|2024), and
hidden states (Azaria & Mitchell, 2023)). Another line of relevant research (Wang et al., [2022)
leverages external consistency, i.e., the agreement among multiple answers, to analyze hallucination
behaviors. Their findings reveal that hallucinated outputs tend to have low self-consistency (Wang
et al.| [2022). This phenomenon suggests that strong agreement among multiple answers often yields
more certain and accurate answers, whereas disagreement indicates higher uncertainty and can serve
as a good signal for understanding hallucinations. Subsequent approaches (Irving et al.l2018; Du
et al., [2024} |Chen et al.| 2024b; [Liang et al.||2024a)) further introduce Multiple-Agent Debate (MAD)
to reduce hallucinated answers via a debate process of multiple language models, often outperforming
single-model baselines.

Inspired by these prior studies of mechanistic interpretability and disagreement/debate, we aim to
understand how hallucinations emerge within LLMs but shifting to latent debate, i.e., arising among
different layers and “thinking” steps within an individual model and a signle inference step (Chuang
et al., 2023} [Liang et al., |2024b; Xie et al.| 2024), rather than externally to it as in prior work.
Unlike in a conventional debate, the arguments in our latent debate are not explicitly observable, but
instead operate implicitly, to reflect the thinking and decision-making process beneath the surface. In
psychological theories, the human thinking process often involves internal debate-like behaviors such
as inner speech (Barker & Wiseman, |1966) and the dialogical self (Hermans,|[2001). Here, we extend
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this psychological insight to LLMs and introduce the term latent debate to describe an analogous
process taking place within a model.

We focus on two key research questions in this work: (1) Can we use latent debate to model
the LLM thinking process? (2) Can latent debate identify patterns that cause hallucinations?

To answer the first question, we present a con-

ceptual framework of latent debate that depicts L31 L31
(dis)agreement within a model, which is model-
and task-agnostic. The framework consists of L26 L26
three abstract components: latent arguments de-
rived from internal signals, an argument inter- L2t L2t

preter that translates these implicit arguments

into human-readable opinions such as support- %, Sl

ing or attacking a claim, and a thinking module - -

that aggregates them to make the final decisions. ™, L

We then instantiate this framework in decoder-

based LLMs on True/False prediction tasks (see

Figure E]), where hidden states serve as latent Lo Lo

arguments, the unembedding matrix acts as the

argument interpreter, and the thinking module L1 Query Tokens L1 Query Tokens

is realized through a symbovlic argumentation (2) Correct: The city of (b) Hallucinated: The
framework, in the spirit of (Cyras et al., 2021}). Zhangzhou is in China. letter ] is the  most

An empirical study demonstrates that this latent commonly used letter
debate acts as a surrogate model, providing a in English-language
faithful approximation of LLM thinking, which writing.

achieves up to 98.3% consistency with LLaMA-

13B decisions. These findings validate that our Figure 1: Visualizations of our latent debate
latent debate can imitate the thinking process of for two claims (We use the last few tokens of
LLM true/false tasks. Llama-8B). Red cells represent attacking argu-
ments, while blue cells represent supporting ar-

To address the second question, we extract fea- .2
d guments. More controversy leads to hallucination.

tures from the latent debate graph, e.g., the num-
ber of internal debates and argument strengths,
and train a simple MLP classifier to distinguish
hallucinated from non-hallucinated outputs. We then use SHAP attribution scores |Lundberg & Lee
(2017a) to identify which features most strongly drive hallucination predictions. Our analyses indicate
that a high degree of latent debate, particularly in the middle layers, is the strongest predictor of
hallucination.

In summary, our contributions are threefold. (1) We propose latent debate, a novel, model-agnostic
framework that leverages internal arguments to interpret a model’s thinking process. (2) we present a
symbolic instantiation of latent debate that serves as a faithful surrogate for LLM True/False tasks.
(3) We identify distinct debate patterns, especially intense internal debates in middle layers, that
correlate strongly with hallucination in LLMs.

2 RELATED WORK

2.1 MULTIPLE AGENT DEBATE

Multiple-agent debate (MAD) has emerged as a powerful approach for improving factuality and
reasoning. Pioneering work on Al safety via debate (Irving et al.|[2018) models debate as a self-play
game with a (human) judge and provides core theoretical motivation. Recent work adopts multiple
language model agents to debate over individual responses jointly, with the final decision made
either through consensus (Du et al.| [2024; [Chen et al.| |2024b) or by a judge (Liang et al.| 2024a).
This debate strategy can outperform single model baselines on a wide variety of reasoning tasks.
Subsequent research proposes refined debate approaches (Li et al., 2024} Liu et al., 2024) using MAD
as an evaluator (Chan et al;[2024). In this work, we focus on debates operating implicitly within a
model or agent rather than externally visible debates among multiple agents.
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Figure 2: The overall framework of latent debate

2.2 INTERNAL CONSISTENCY

Another line of work focuses on how to use the consistency of internal model states, such as logits
and activations, to improve model outputs (Liang et al.,|2024b)). For example, DoLa (Chuang et al.,
2023)) proposes a decoding strategy that contrasts logits between later layers and earlier layers for
improving LLM truthfulness. Xie et al.| (2024) adopts internal consistency, i.e., how middle layers’
predictions (dis)agree with the final layer, to guide LLM decoding. In this work, we aim to use latent
(dis)agreements to build a surrogate framework for interpreting the thinking process of a model rather
than enhancing model outputs.

2.3 COMPUTATIONAL ARGUMENTATION IN EXPLAINABLE Al

Argumentation Frameworks (AFs), e.g., as pioneered by (Dungl|[1995)), are a fundamental formalism
in computational argumentation |Atkinson et al.| (2017); Cyras et al. (2021)), a well-established
research area in Al. According to (Dung}|1995), an AF consists of a set of arguments and a binary
attack relation among them. Arguments are seen as abstract entities, while the attack relation captures
conflicts between arguments. Despite their simplicity, AFs are highly effective for representing and
reasoning about conflicting information (Dung [1995).

AFs and their extensions, such as incorporating weights for arguments and a support relation between
arguments, collectively referred to as Quantitative Bipolar Argumentation Frameworks (QBAFs)Rago
et al.| (2016)); Baroni et al.|(2019), have been widely adopted in Explainable Al (XAI) due to their
transparent topology and interpretable reasoning process Cyras et al.|(2021). AFs of various kinds
can serve as surrogate models to approximate the inner structure and decision-making process of
Al systems (Cyras et al., 2021} Potyka, 2021} [Potyka et al., 2023} |Ayoobi et al., 2023)). Beyond
serving as surrogates, AFs can also be explicitly integrated into Al or LLM systems to enhance
explainability(Freedman et al.| 2025; Cyras et al., |2021; |Vassiliades et al.,[2021; [Engelmann et al.,
2022; |Guo et al.l 2023). In this work, we are the first to introduce the model-agnostic concept of
latent debate and adopt an AF as the thinking module of a model.

3 METHODOLOGY

We first outline the conceptual framework of latent debate, which is model-agnostic. Then, we
instantiate the framework for the special case of decoder-based LLMs on True/False prediction tasks.

3.1 CONCEPTUAL FRAMEWORK

Latent Debate A latent debate is an internal, implicit form of argumentation that happens within a
single model (or agent). Instead of having multiple explicit agents participating in a debate, latent
debate refers to the hidden inconsistency inside the model that simultaneously carries supporting and
attacking arguments toward a claim. These arguments are not directly expressed in natural language
but shape the model’s thinking process beneath the surface. The strength between supporters and
attackers may be imbalanced. Overwhelming supporters can lead to a very certain positive decision,
and vice versa. This uncertainty reflects how the model arrives at a final decision. The latent debate
consists of three key components: latent arguments, argument interpreter, and thinking module, as
shown in Figure
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Latent Arguments. A latent argument refers to an internal signal within a model that implicitly
conveys supporting or attacking opinions toward a claim. Such signals can derive from different
sources, like activations or attention patterns. Because they live in the model’s latent space, these
arguments are not directly visible or human-readable, but they still express how intermediate steps
“think” about the claim.

Argument Interpreter. The argument interpreter is the tool that makes these latent arguments
interpretable. It translates latent arguments into a form we can understand, such as a binary label. At
the same time, it tells us how strongly each argument supports or attacks the claim, turning vague
internal signals into measurable opinions.

Thinking Module. The thinking module combines all the decoded arguments to reach a final
decision. It looks at how the arguments interact — some supporting, some attacking — and weighs
them against each other. By aggregating these arguments and how they interact, the module produces
a final outcome that reflects the overall internal debate of the model.

It is important to note that this framework is not tied to any specific model architecture. The notions
of latent arguments, argument interpreter, and thinking module are abstract components that can
be realized in many different ways. For example, latent arguments may be instantiated through
hidden states, attention patterns, or other internal signals; argument interpreters can be designed using
projection, probing, or alternative interpretability tools; and thinking modules may adopt symbolic
argumentation frameworks, probabilistic aggregation, machine-learning methods, including artificial
neural networks. This flexibility ensures that the latent debate framework can be adapted to a wide
range of models and tasks beyond the particular instantiation we study in this work.

3.2 SYMBOLIC INSTANTIATION FOR LATENT DEBATE IN LLM TRUE-FALSE PREDICTION

3.2.1 INSTANTIATION

We now describe how the abstract concepts of latent debate can be instantiated in the context of
transformer-based LLM true/false prediction tasks Vaswani et al.| (2017). We adopt a symbolic
argumentation framework to perform the decision making process, which is trasparent and efficient.

Formally, given a query x = (x1,...,xy) with a binary label ¢ € {True, False}, a decoder-based
LLM generates an answer y = (y1, . .., yr). Both the query and answer tokens are drawn from the
same vocabulary, i.e., x,,, y; € V. Each token y; in the answer is generated conditionally based on
the preceding tokens and the input query, following the distribution: y; ~ P(y; | y<¢—1,%). Ina
MAD setting (Du et al.l 2024; [Liang et al., 2024a), the process involves generating multiple answers
Y= {y(l)7 . ,y(K)}, which may support (y ™) or attack (y ™) the claim. A final decision is then
derived by aggregating these arguments, often through some form of consensus or voting strategies.
In contrast, we define that a latent debate takes place inside the model processing claim x before
generating answer y.

Latent Arguments in LLMs. An LLM consists of L layers. Let fy denote the transformation
function for computing hidden states, parameterized by 6. The hidden state for the token z,, of the
claim at layer [ is computed as:

h{) = fo(a{™",... h{7Y) )

where h € R? and d is the dimensionality of the hidden representations. We treat each hidden state

th ) as a latent argument, a representation that implicitly encodes supportive or attacking views with
respect to the claim, though not directly observable in natural language. Given a claim comprising N
tokens and an LLM with L layers, we thus obtain N x (L — 1) latent arguments over the LLM’s
internal computation. We exclude the final (output) layer because it directly produces the probability
distribution over next tokens. Instead, our goal is to depict the intermediate thinking dynamics
encoded in the hidden layers prior to that final mapping.
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Figure 3: An overview of our QBAF and the instantiated graph for LLM architectures.

Argument Interpreter in LLMs. To make latent arguments interpretable, the instantiated argument
interpreter projects a hidden state into the vocabulary space using the unembedding matrix Wunem ¢
RIVI*?_ This produces a probability distribution over vocabulary tokens, which has been widely used
in mechanistic studies (nostalgebraist, 2020; [Belrose et al.,|2023)). By examining the probabilities
assigned to specific tokens True and False, we can quantify the opinion of each latent argument,
i.e., how much it supports or attacks the claim.

interpret(hgf ) )= Softmax(W‘f}‘fu“e‘}’False] (h(l) ) 2)

n

This output of the function interpret(-) enables interpretation of the latent argument through the lens
of token-level semantics.

Thinking Module in LLLMs. Finally, a thinking module is applied to the set of interpretable
arguments in order to produce a final judgement ¢ € {True,False}. This process is formalized as:

cls(x) = think(#H), H = {interpret(h!) | 1 <n < N, 1 <1< L -1} 3)

where cls(x) is capable of outputting a label associated with the final decision c¢. To perform
the thinking step, we adopt a symbolic approach, Quantitative Bipolar Argumentation Framework
(QBAF) (Baroni et al., [2019), as the think(-) function, which accounts for both supporting and
attacking relationships among arguments to yield a coherent, weighted judgment.

Definition 1 (QBAF) A QBAF is a quadruple Q = (A, R~,R",7) where A is a finite set of
arguments; R~ C A x A is a binary attack relation; R* C A x A is a binary support relation; T is
an initial strength function (7 : A — [—1,1]).

Given a set of arguments A, QBAF is capable of considering the overall debate situation and
outputting a final strength (as shown in Figure[3a)), which can be used to obtain the binary (true/false)
predictions. In the figure, each node n; corresponds to an argument, and the 7(-) function assigns
the initial strength, indicating its polarity and strength magnitude before propagation. The directed
edges between nodes represent the relationships among arguments: edges labeled with — are attacks,
indicating that one argument undermines another (two arguments with different polarities), while
edges labeled with + are supports, meaning that one argument reinforces another. The o (-) beneath
the nodes is a function resulting final strengths after applying a chosen gradual semantics e.g. (Baroni
et al.| 2015} Rago et al., 2016} [Potyka, [2018;|/Amgoud & Ben-Naim, [2018)), which reflects how the
collective influence of attackers and supporters modifies the outcome. See Example [I]in the appendix
for a detailed computation process.

Formally, gradual semantics provide the rules that control how initial strengths are updated and result
in the computation of final strengths. For this goal, we start from arguments with no attackers or
supporters, whose final strength is the same as their initial strength. For the remaining arguments, the
final strength is updated along the edges by considering the influence of both attackers and supporters.
This process involves two components: aggregation and influence. For an argument o € A, the
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aggregation step computes its energy E,, by summing the strengths of its attackers and supporters (3):

Eo = > o () )

{BeA|(B,a)eR-URT}
The influence step then updates the initial strength 7(«) by combining it with the computed energy:
o(a) = tanh (E,) + wr(a) - (1 — tanh (| Ey])) - Q)

This equation updates the final strength of an argument by combining the aggregated influence from
its attackers and supporters (tanh(E,,)) with its own initial strength 7(c). w is the token-wise weight
that measures the semantic contribution of this current token to the entire sentence (see details in
Section[B.2)). In other words, the weight scales how strongly the initial strength since each token
contributes in a different way to the semantic meaning. The strength function o : A — [—1,1]
assigns each argument a value where the sign indicates polarity (supportive or attacking) and the
absolute value indicates magnitude. The values in [-1,0) correspond to negative labels, while values
in [0,1] correspond to positive labels.

Creating QBAFs for LLMs Figure [3b|illustrates how we construct a QBAF for LLM architectures.
Each row corresponds to a transformer layer, and each circle represents an argument associated
with a think step (a token) at that layer. Arguments are first connected within a layer from left to
right, following the natural order of tokens in the input sequence. The right-most node in each layer
summarizes the thinking results for that layer. We then connect these right-most nodes across layers,
from lower to higher, since upper layers are closer to the final decision. The node in the top-right
corner thus considers the overall information to make decisions, and we use its output as this binary
classifier.

The initial strength of each argument is determined by its probability defined in Equation[2] which is
then normalized to a value in [—1, 1]. The sign of the initial strength reflects its polarity (positive or
negative), while the magnitude encodes the confidence. Relations between arguments are determined
by comparing polarities: if two connected arguments share the same polarity, the edge is a support.
Otherwise, it is an attack. Because polarity depends on evolving strengths during computation, edge
types may be updated dynamically.

This topology is intentionally simple to enhance explainability. In particular, we avoid connecting
arguments of the same token across layers as this way does not bring clear benefits (see results of
quadratic connections in Table [4a)).

3.2.2 BENEFITS

Transparent and Interpretable. Our framework makes the internal thinking process of LLMs
human-readable via a symbolic argumentation framework. Each latent signal is translated to a clear
supporting or attacking argument, and the QBAF decision path can be visualized and explained rather
than remaining a black box.

Training-Free and Fast. Our framework works imitate the LLM thinking process without any tun-
ing and training samples. Every component is lightweight, which makes the method computationally
efficient and easy to use.

Property-Satisfying. Because the reasoning process is formalized with a symbolic argumentation
framework, the method inherits desirable theoretical properties such as monotonicity in|Baroni et al.
(2018)). In practice, these guarantees the framework behaves in an intuitively consistent way when
adding new arguments or changing the initial strength of arguments (see the proof and details in the

appendix [B.3).

4 LATENT DEBATE AS A SURROGATE FOR IMITATING LLM TRUE/FALSE
PREDICTION

A core motivation of our latent debate is to approximate the thinking process of LLM, which allows
us to interpret the internal mechanisms. We hope this transparent framework is faithful to the original
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cities common_claim counterfact company Avg

500 500 500 500 500
Liama-8B (%)
Random 62.6 76.8 64.2 67.4 67.75
Average 49.0 92.4 67.0 80.4 72.20
Majority Voting 90.8 92.2 67.4 80.4 82.70
Latent Debate 100.0 92.4 78.2 89.2 89.95
Mistral-7B (%)
Random 78.0 64.0 65.4 74.0 70.35
Average 100.0 89.8 90.6 98.6 94.75
Majority Voting 100.0 86.8 89.0 98.8 93.65
Latent Debate 100.0 90.0 91.0 97.8 94.70
Llama-13B (%)
Random 75.2 65.2 65.0 78.8 71.05
Average 96.6 85.4 88.0 98.2 92.05
Majority Voting 96.8 90.0 90.0 98.8 93.90
Latent Debate 100.0 98.4 95.2 99.6 98.30

Table 1: Consistency scores across datasets. Each entry shows the proportion of consistent
predictions (out of 500).

100 = latentDebate [ No Token Weight [ Quadratic Connection 0.0200
— 0.0175
95 .
g ] 3
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] e
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[ e
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g 70 L 0.0050
g
65 0.0025
60 0.0000 . " . .
Llama-8B Mistral-7B Llama-13B NumAtk VarFin AvgFin Varlnit Avglnit
Models Feature Name
(a) Ablation study. (b) Average feature importance across four datasets.

Figure 4: (a) Ablation study showing the contribution of different components of our framework. (b)
Average feature importance highlights which debate features most strongly influence hallucinated
outputs.

model’s predictions (Prediction Fidelity), i.e., the surrogate model should match outputs of the
target black-box model |Papenmeier et al.| (2019); |[Laugel et al.|(2018]). To validate this, we conduct
experiments on four balanced true/false prediction tasks: cities, common claims, counterfact and
company (see details in section [C.T).

We apply the symbolic instantiation in section [3.2]to the four datasets. To benchmark the faithfulness
of our latent debate approach, we compare it against several intuitive baselines: (1) Random. The
model randomly select an argument from the N x (L — 1) argument set, and uses its true/fasle
prediction as the output. (2) Average. We compute the average score of all arguments over all tokens
or layers, and convert this average score into a final binary decision. (3) Majority Voting. The final
decision is made by majority vote over all arguments. We report the consistency score, the proportion
of instances on which the decision derived via the latent debate exactly matches the original LLM’s
true/false prediction.

Table [T] reports the consistency scores of different methods over 500 examples per dataset and
three model sizes (Llama-8B, Llama-13B, Mistral-7B). The latent debate approach achieves perfect
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consistency (100%) with all models on the cities, and substantially higher consistency than baseline
methods (Random, Average, Majority Voting) across all datasets and models. For instance, with
Llama-13B the latent debate method reaches 98.30% average consistency, while the best non-
debate baseline (majority voting) is around 93.9%. This demonstrates that latent debate is a strong
surrogate for the true/falsity decisions made by the model. More importantly, our approach remains
interpretability by displaying internal supporting vs. attacking arguments that can be visualized and
understood.

Additionally, we conduct an ablation study to isolate the contributions of the key component in our
latent debate framework. Specifically, we compare latent debate to (1) No Token Weight. It uses the
same debate structure but without token-level weights. (2) Quadratic Connection. This baseline uses
more complex quadratic edges to model LL.Ms instead of our defined simple structure in Figure
Figure [d]illustrates that the full Latent Debate model consistently outperforms the ablated versions
across all tested LLMs, indicating the effectiveness of using token weights and simple connections in
QBAF.

5 WHAT DEBATE PATTERNS CAUSE HALLUCINATIONS

Given that our latent debate surrogate aligns closely with the LLM’s internal decision behavior, we
now turn to an interesting and more diagnostic question: which internal debate patterns are highly
correlated with hallucinations? In other words, we use our transparent and faithful surrogate model
to analyze how the model think and why it hallucinates.

5.1 MORE LATENT DEBATES, MORE HALLUCINATIONS

In order to learn which debate patterns are most related to hallucinations from statistical levels, we
train a small two-layer MLP classifier to distinguish hallucinated from non-hallucinated outputs using
features extracted from latent debate. Following that, we apply SHAP attribution (Lundberg & Lee,
2017a) to determine which features most strongly contribute to hallucination. Using MLPs with
SHAP attribution is a broadly adopted approach for feature analysis and interpretability (Lundberg &
Lee, |2017b}; |[Ponce-Bobadilla et al.,2024)). This pipeline allows us to both detect hallucination and
interpret why they happen in terms of internal debate patterns. It is worth noting that we can also use
other types of classifiers, but logistic regression is unfeasible in this experiment since it assumes a
linear relationship between features, which makes it unfeasible to capture nonlinear and U-shaped
interaction effects among our defined features (Ranganathan et al.| 2017).

Concretely, we extract the following five features related to debate patterns from each QBAF in Lllam-
8B:

(1) number of attacks (NumAtk): the total num-
ber of attack edges in the QBAF, capturing how
many conflicting arguments are present. (2) av-

cities common_claim counterfact company Avg

e . . . Avglnit 0.84 0.83 0.58 0.79 0.76

erage of initial strength (Avglnit): the arithmetic AvgFin 100 0.80 0.72 075 082
_ Varlnit 0.32 0.79 0.76 0.83 0.68

mean pf the raw strengths of all latent argu Vo Py o P
ments in the QBAF. (3) average of final strength NumAtk 0.9 0.42 0.67 069  0.69
MLP 1.00 0.79 0.80 0.85 0.86

(AvgFin): the arithmetic mean of strength val-
ues after propagation under the chosen grad-
ual semantics. (4) variance of initial strength
(VarlInit): the statistical variance of the raw
strengths of all latent arguments in the QBAF.
(5) variance of final strength (VarFin): the statistical variance of strength values after propagation
under the chosen gradual semantics. Our trained two-layer MLP can achieve a high AUC com-
pared to baselines only using individual features (Table2), suggesting a strong ability to distinguish
hallucinations from non-hallucinations.

Table 2: AUC scores for the MLP in halluci-
nation detection.

Figure @b reports the average SHAP importance of our extracted features across the four datasets. The
number of attacks emerges as the most influential predictor of hallucination, supporting our hypothesis
that a higher degree of latent debate correlates with increased hallucination risk. The features related
to the final strengths rank consistently better than features derived from the initial strength, which
shows that raw token scores carry limited predictive power compared to structured features derived
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from the QBAF framework. Additionally, Figure[A2|presents the detailed SHAP analysis of features
associated with hallucination. The results confirm that that the number of attacks has the strongest
positive contribution to hallucinations detection. These findings indicate that more internal conflicts
increase the likelihood of erroneous outputs, which is consistent with prior findings (Chen et al.|
2024al; Xie et al., 2024).

5.2 WHERE DEBATES TRIGGER HALLUCINATIONS?

The next question in our analysis is to understand where in
the thinking process latent debates are most likely to trigger

hallucinations. To this end, we divide latent arguments into 0.025

three regions by layers: upper, middle, and lower. We extract 0.020
the same features in Section [5.I] We then compute SHAP 0015
feature importances separately for each region. As Figure [3] 0.010

shows, the middle region consistently shows the strongest influ-
ence, especially for the number of attacks and variance of final
strengths, which suggests that debates arising in middle layers ~ NumAtk VarFin AvgFin Varlnit Avginit
play an important role in detecting hallucinations. In contrast,

the lower and upper regions show relatively weaker importance, Figure 5: Feature importance
indicating that early-stage or late-stage internal debates are less across layer regions and feature
predictive of hallucinations. This aligns with the notion that types.

LLMs build knowledge hierarchically (Geva et al.| [2022): early

layers capture low-level features, middle layers synthesize and build semantic abstractions, and top
layers focus on the final output or next-token prediction. In this view, the middle layers store rich
factual information that is most relevant for constructing answers (Chen et al., [2025), whereas the top
layers primarily translate those representations into surface output. Additionally, Figure[AZ]in the
appendix confirms that debates from the middle layers are important for hallucination detection.

0.005

Lower

0.000

6 DISCUSSION AND CONCLUSION

In this work, we introduce a new concept, Latent Debate, which focuses on implicit agreements and
disagreements that happens within a single model. We first propose the conceptual framework of
latent debate that is capable of providing a theoretical support to understand the connection between
internal inconsistency and model thinking process. This conceptual framework is not tied to any
specific model architectures and tasks. Following that, we use a symbolic instantiation of latent debate
to demonstrate how this proposed method can imitate LLM’s thinking in the true/false predictions.
Empirical studies across three models and four datasets validate that latent debate as a surrogate
model can have highly consistent prediction behaviors with the original LLM. Furthermore, the
surrogate model is used to learn debate patterns associated with hallucinations. Our findings suggest
that the high debates within a model tend to generated hallucinated answers and hallucinations are
correlated with particular regions of debates, such as the middle layers. We hope our work can
stimulate future studies to use the internal debate (or disagreements) to understand the thinking
mechanism of black-box models.

As for future work, we are interested in these directions: (1) Internal vs external knowledge conflicts
in LLMs. It can happen that LLM’s parametric knowledge contradicts the contextual retrieved
knowledge (Xu et al.| [2024a). It is valuable to use our latent debate to understand how LLMs make
decision under this condition. (2) Model Intervention. Since our latent debate can learn patterns
and regions highly associated with hallucinations, we can intervene at the inference stage by finding
decoding paths with lower debates in the key regions, steering the model away from hallucinatory
behavior (Chuang et al.| 2023} Xie et al.,|2024). (3) Uncertainty Calibration. LLMs tend to generate
hallucinated texts in a very confident tone. Since our findings suggest that the features derived from
a post-debate step are more predictive than the original LLM features in hallucination detection
(Section [5.1), internal debate approaches might be a potential solution to mitigate the overconfidence
of LLMs (Xiong et al.| 2024; Chen et al., 2024c).
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Figure Al: 3D surface plot of the semantics function o.
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B DETAILS OF QBAF

B.1 GRADUAL SEMANTICS

In order to suit our probability setting, we propose a new probabilistic semantics for acyclic QBAFs.
Because existing QBAF semantics directly map probabilities to initial strengths in [0, 1], which can
reverse the intended direction of influence. For instance, if 0.5 is neutral, a value like 0.3 supporting
0.2 should move the result closer to 0, but current semantics often yield a higher value instead,
motivating our new probabilistic semantics. Basically, QBAFs with this semantics compute .. in
which way. in one sentence. Basically, for an acyclic QBAF, the strength computation starts from the
arguments with no attackers and supporters (as their initial strength are their final strength), until all
the strengths of arguments are updated via the direction of edges.

B.2 TOKEN-WISE WEIGHTS

The overall idea of this method is to assign an importance score to each token (or thinking step) by
measuring how much removing that token changes the semantic similarity of the entire text. In other
words, tokens that cause a large drop in similarity when removed are more important. Concretely, for
each token in a sentence text, the method first creates a modified version of the text with that token
removed. After, the original text and the modified text into a cross-encoder similarity model. The
token-wise weight can be denoted as:

Welght(t) =1- sim(Torig, Torig \t) (A])

For example, if the original sentence is Tokyo is not in Japan, and you remove the token “no”, the
resulting text Tokyo is in Japan may receive a much lower similarity score, so “not” gets a high
importance. On the other hand, removing a less critical token like “is” might yield only a small drop

[T3P8 1]

in similarity, so “is” has low importance.

B.3 PROPERTIES

Next, we study the properties of our proposed semantics. The aim is to show that our semantics
behaves as what we expected (as shown in the previous example.) For an argument, monotonicity
states that its attackers will weaken the its strength, while its supporters will strengthen its strength.

Property 1 (Monotonicity) o is monotone non-decreasing w.r.t. F,.

Proof 1 Since o(B) € [-1,1] for any 8 € A such that (8,a) € RT UR™, we have E, €
(—00,400). We next consider the function o(o)) = tanh(Eq,) + () (1 — tanh(|Eql)), where
7(a) € [-1,1] and E,, € (—00,+00). Taking the derivative of o(a) w.r.t. E,, we obtain
0o
OF,

= (1 — tanh®(E,)) — 7() - (1 — tanh®(|E,|)) - sign(Ey).

Since |E, | equals E,, when E,, > 0 and —E,, when E,, < 0, we have

do {(1 — tanh?(E,))(1 — 7(a)), Eq >0,
0o | (1 - tanh?(Ey))(1 + 7(a)), Ea <O0.

As 1 —tanh?(E,) > 0 and 1+ 7(a) > 0 for 7(a) € [—1,1], it follows that ;TU > 0 for all E,.
Hence, o(«) is monotone non-decreasing w.r.t. E,,.

B.4 EXAMPLES
We show an example about how the QBAF is built and how the final strengths are computed.

Example 1 Consider the QBAF in Figure where the initial strengths are given as T(a) = 0.5,
7(B8) = —0.5, 7(v) = 0.1, and 7(§) = 0.6. The content of arguments are given as follows:
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a: “We should go play football this afternoon.”

B: “We’d better not because it may rain this afternoon.”
~: “The weather forecast says there is no rain today."
d: “Playing football will be fun and refreshing"

We first check the relationships between arguments. Since -y has different sign of the initial strength
with B, thus ~y attacks 3, similarly, 5 attacks o Since § has the same sign of the initial strength as «,
thus § supports a.

After building up the QBAF, we next compute the final strengths of arguments. Since v and 6 have no
parents, we have E,, = Es = 0 and thus o(v) = 7(y) = 0.1, and 0(8) = 7(6) = 0.6. For 3, we
have Eg = o(vy) = 0.1. Hence, o(8) = tanh (Eg) + 7(8) - (1 — tanh (|Eg|)) = —0.35. For o, we
have E,, = o(B) + 0(§) = 0.25. Hence, o(«) = tanh (E,) + 7(a) - (1 — tanh (| E,|)) = 0.62.

Intuitively, we can observe that v and 6 have the same final strength as their initial strength because
they have no attackers and supporters. For [, since it is attacked by -y, the absolute value of its final
strength is less than its initial one (|7(5)| > |o(B)|), meaning that the strength is weakened after
being attacked. For «, it has an attacker 8 and a supporter § at the same time, but § is stronger than
B, so the strength of o become stronger (o(a) > 7(a)).

Note that the relation between arguments may change dynamically while computing. For example, if
7(7) is strong enough to obtain a positive o (), then the relation from (3 to o becomes support.

C EXPERIMENTAL SETTINGS

C.1 DATASETS
Specifically, we use the following datasets, and each dataset has 500 samples with balanced labels:

* cities|Marks & Tegmark|(2023). Example: The city of Krasnodar is in Russia. True

e common_claim (Casper et al.,[2023). Example: Spiders can use surface tension to walk
on water. True

* counterfact (Meng et al.,[2022). Example: Apple A5 was created by Google. False

* company (Azaria & Mitchelll 2023). Example: Generali Group has headquarters in
Switzerland. False
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