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Abstract

In this work, we introduce a method to fine-tune a Transformer-based generative model for
molecular de novo design. Leveraging the superior sequence learning capacity of Transform-
ers over Recurrent Neural Networks (RNNs), our model can generate molecular structures
with desired properties effectively. In contrast to the traditional RNN-based models, our
proposed method exhibits superior performance in generating compounds predicted to be
active against various biological targets, capturing long-term dependencies in the molecular
structure sequence. The model’s efficacy is demonstrated across numerous tasks, including
generating analogues to a query structure and producing compounds with particular at-
tributes, outperforming the baseline RNN-based methods. Our approach can be used for
scaffold hopping, library expansion starting from a single molecule, and generating com-
pounds with high predicted activity against biological targets.

Introduction

The vast expanse of chemical space, encompassing an order of magnitude from 1060 − 10100 possible syn-
thetically feasible molecules (Engelmore & Morgan, 1986), presents formidable obstacles to drug discovery
endeavors. In this colossal landscape, the task of pinpointing a molecule that simultaneously meets the
prerequisites for bioactivity, drug metabolism and pharmacokinetic (DMPK) profile, and synthetic acces-
sibility becomes an undertaking similar to the proverbial search for a needle in a haystack. Pioneering de
novo design algorithms (Clancey, 1983) have attempted to address this by employing virtual strategies to
design and evaluate molecules, thereby condensing the vast chemical space into a more navigable realm for
exploration.

Traditional de novo design models, based on Recurrent Neural Networks (RNNs), have proven effective in
molecule generation tasks (Clancey, 1984; Robinson, 1980a). However, RNNs possess inherent architectural
limitations, notably in their capability to capture long-term dependencies in sequential data, which can be
particularly detrimental when modeling complex molecular structures. Recently, the Transformer architec-
ture has emerged as a powerful alternative to RNNs in sequence modeling tasks across various domains.
Some of the key advantages of Transformers over RNNs include:

1. Parallelization: Unlike RNNs which process sequences step-by-step, Transformers process all to-
kens in the sequence simultaneously, allowing for better computational efficiency.

2. Long-term Dependency Handling: Transformers utilize multi-head self-attention mechanisms
which can capture long-range interactions in the data, making them particularly well-suited for
modeling intricate molecular structures.

3. Scalability: Transformers are inherently more scalable, allowing for the processing of longer se-
quences which is a considerable advantage in molecular design.

In light of these advantages, our work introduces a novel approach by integrating the Transformer archi-
tecture, specifically the Decision Transformer, for molecular de novo design. By leveraging the inherent
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strengths of Transformers, our model exhibits enhanced performance in generating molecular structures
with desired attributes.

Furthermore, we emphasize the incorporation of the "oracle feedback reinforcement learning" method. Pre-
training models on large datasets is beneficial, but downstream tasks often require fine-tuning on specific
objectives. By integrating feedback from an oracle during the reinforcement learning phase, our approach
can efficiently navigate the solution space, optimizing towards molecules with high predicted activity. Such
oracle-guided optimization provides an added layer of precision, facilitating the generation of molecules that
not only conform to structural constraints but also exhibit high bioactivity, thereby increasing the potential
success rate in drug discovery endeavors.

Drawing inspiration from previous work that employed RNNs and reinforcement learning for molecular
optimization (Clancey, 1983), our approach distinguishes itself by the adoption and fine-tuning of the Trans-
former architecture, ensuring superior handling of long-sequence data and paving the way for innovative
breakthroughs in the realm of molecular design.

In summary, this work presents a fresh perspective on molecular de novo design, underscoring the potential of
Transformer-based architectures, complemented by oracle feedback reinforcement learning, to revolutionize
drug discovery methodologies. We envision that our approach will not only set a new benchmark in molecular
generation tasks but will also inspire future research in leveraging advanced machine learning architectures
for complex scientific challenges.

Related Works

Early de novo design algorithms were structure-based, aiming to grow ligands to fit the binding pocket of
the target (Robinson, 1980b; Hasling et al., 1984). However, these methods often generated molecules with
poor DMPK properties and could be synthetically intractable. Ligand-based approaches were introduced to
create a vast virtual library of chemical structures and then searched with a scoring function (Hasling et al.,
1983; Rice, 1986).

Recently, generative models such as RNN-based methods have been used for de novo design of molecules
(Clancey, 1979; 2021). They have shown success in tasks like learning the underlying probability distribution
over a large set of chemical structures, reducing the search over chemical space to only molecules seen as
reasonable. Further fine-tuning of the models was done using reinforcement learning (RL) (Bouville, 2008),
which showed considerable improvement over the initial model.

Despite these advancements, challenges such as capturing long-term dependencies in the sequence data
persist. The Transformer architecture (NASA, 2015), known for its self-attention mechanism and ability
to handle long sequences, has been highly successful in several sequence prediction tasks across domains.
Motivated by these successes, we propose the use of Transformer-based architectures in place of RNNs for
molecular de novo design.

Molecular assembly strategies, such as string-based approaches like SMILES and SELFIES (Weininger,
1988; Krenn et al., 2020), provide an efficient representation of molecules. Graph-based methods offer an
intuitive two-dimensional representation of molecular structures, with nodes and edges representing atoms
and bonds, respectively (Zhou et al., 2019; Jin et al., 2018). Synthesis-based strategies, on the other hand,
aim to generate only synthesizable molecules, ensuring that the design aligns with real-world applications
(Bradshaw et al., 2020; Gao et al., 2022).

Various optimization algorithms have been utilized for molecular design. Genetic Algorithms (GAs) mimic
natural evolutionary processes and have been applied in the context of molecule generation using both
SMILES and SELFIES representations (Brown et al., 2019; Nigam et al., 2021). Bayesian optimization (BO)
is another class of method that builds a surrogate for the objective function, with applications such as BOSS
and ChemBO in the molecular domain (Moss et al., 2020; Korovina et al., 2020). Variational autoencoders
(VAEs) offer a generative approach, mapping molecules to and from a latent space, with notable methods
including SMILES-VAE and JT-VAE (Gómez-Bombarelli et al., 2018; Jin et al., 2018). Reinforcement
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Figure 1: The framework of our method.

Learning (RL) techniques, like REINVENT, have also been applied to tune models for molecule generation
Olivecrona et al. (2017).

Furthermore, recent advancements in gradient ascent methods, such as Pasithea and Differentiable scaffolding
tree (DST), have leveraged gradient-based optimization for molecular design (Shen et al., 2021; Fu et al.,
2022).

In light of these developments, our approach integrates the benefits of the Transformer architecture with
advanced reinforcement learning techniques, aiming to address the challenges present in current molecular
de novo design methodologies.

Methodology

Our method first pre-trains the real 2D molecule dataset based on the transformer. Then, based on the RL
paradigm, fine-tuning is performed on the molecular attributes to be optimized.

Transformer-based Molecular Pre-training

The transformer is used for pre-training on real 2D molecules. Specifically, it treats the prediction of a 2D
molecule as a sequence prediction and lets the transformer predict the next atom based on the molecular
sequence history. The pre-training of the transformer is based on maximum likelihood.

Transformers Overview Transformers are a neural network architecture designed to process sequential
data, while also accounting for the importance of each input in relation to the others, despite their position
in the sequence (Goodfellow et al., 2016). They manage to do this by the introduction of an attention
mechanism that assesses the significance of each input in the sequence (Figure 1). At any given step t,
the transformer state at t is influenced by all previous inputs x1, . . . , xt−1 and the current input xt. The
transformer’s ability to selectively focus on the parts of the input sequence that are most relevant for each
step makes them especially well suited for tasks in the field of natural language processing. Sequences of
words can be encoded into one-hot vectors with a length equivalent to our vocabulary size X. We may add
two extra tokens, GO and EOS, to signify the beginning and end of a sequence, respectively.

Learning the data Training a Transformer for sequence modeling typically involves using maximum
likelihood estimation to predict the next token xt in the target sequence, given tokens from the previous
steps (Figure 1). The model generates a probability distribution at every step, representing the likely next
character, and the objective is to maximize the likelihood assigned to the correct token:

J(Θ) = −
T∑

t=1
log P

(
xt | xt−1, . . . , x1)

(1)

The cost function J(Θ), often applied to a subset of all training examples known as a batch, is minimized
with respect to the network parameters Θ. Given a predicted log likelihood log P of the target at step t, the
gradient
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of the prediction with respect to Θ is used to update Θ. This method of fitting a neural network is called
back-propagation. Changing the network parameters affects not only the immediate output at time t, but
also influences the information flow into subsequent transformer states. This effect does not lead to problems
of exploding or vanishing gradients due to the lack of recurrent connections in Transformers.

Generating new samples Once a Transformer has been trained on target sequences, it can be used to
generate new sequences that adhere to the conditional probability distributions learned from the training
set. The first input is the GO token, and at every timestep following, we sample an output token xt from
the predicted probability distribution P (Xt) over our vocabulary X. The sampled xt is then used as our
next input. The sequence is considered finished once the EOS token is sampled .

Segmentation and Binary Coding of SMILES

A Simplified Molecular Input Line Entry System (SMILES) (Weininger, 2017) defines a molecule as a char-
acter sequence reflecting atoms as well as special symbols that illustrate ring opening and closure along with
branching. In the majority of scenarios, SMILES are tokenized

on a single-character basis, with the exception of two-character atom types such as " Cl " and "Br", and
unique environments indicated by square brackets (e.g., [nH]), where they are processed as a single token.
This approach to tokenization led to the identification of 86 tokens in the training data. Figure 3 illustrates
how a chemical structure is converted to SMILES and binary-coded representations.

A single molecule can be represented in multiple ways using SMILES. Algorithms that consistently represent
a particular molecule with the same SMILES are termed canonicalization algorithms (Weininger, 1988).
Nevertheless, different algorithm implementations may still yield diverse SMILES.

Molecular Attribute Fine-tuning through Reinforcement Learning

In this part, we load the pre-trained transformer network and fine-tune it based on RL. Here, our task is
to generate some specific molecules with good attributes. Therefore, we use the generated molecules to
measure the properties of the corresponding molecules through Oracle, and use them as rewards to finetune
the neural network.

Assume an Agent that must decide on an action a ∈ A(s) to take given a particular state s ∈ S, where
S denotes the set of possible states and A(s) represents the set of potential actions for that state. The
policy π(a | s) of an Agent associates a state to the likelihood of each action executed within. Reinforcement
learning challenges are often depicted as Markov decision processes, indicating that the current state provides
all essential information to inform our action choice, and no additional benefit is gained from knowing past
states’ history. While this is more of an approximation than a fact for most real-life challenges, we can
extend this concept to a partially observable Markov decision process where the Agent interacts with a
partial environment representation. Let r(a | s) be the reward serving as an indicator of the effectiveness of
an action taken at a certain state, and the long-term return G (at, St) =

∑T
t rt. represents the cumulative

rewards collected from time t to time T . As molecular desirability is only meaningful for a completed
SMILES, we will only consider a complete sequence’s return.

The main objective of reinforcement learning is to enhance the Agent’s policy to increase the expected
return E[G] based on a set of actions taken from some states and the obtained rewards. A task with a
definitive endpoint at step T is known as an episodic task (Sutton & Barto, 1999), where T corresponds to
the episode’s length. SMILES generation is an example of an episodic task, which concludes once the EOS
token is sampled.

The states and actions used for Agent training can be produced by the agent itself or through other means.
If the agent generates them, the learning is called on-policy, and if generated by other means, it is off-policy
learning (Sutton & Barto, 1999).

Reinforcement learning commonly employs two different strategies to determine a policy: value-based RL
and policy-based RL (Sutton & Barto, 1999). In value-based RL, the aim is to learn a value function
that describes a given state’s expected return. Once this function is learned, a policy can be established
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to maximize a certain action’s expected state value. In contrast, policy-based RL aims to learn a policy
directly. For the problem we are addressing, we believe policy-based methods are the most suitable for the
following reasons:

• Policy-based methods can explicitly learn an optimal stochastic policy (Sutton & Barto, 1999), which
aligns with our objective.

• The used method starts with a prior sequence model. The goal is to fine-tune this model based on a
specific scoring function. Since the prior model already embodies a policy, fine-tuning might require
only minimal changes to the prior model. The short and fast-sampling episodes in this case decrease
the gradient estimate’s variance impact.

Experiment

Dataset

For any method that necessitates a database, we exclusively use the ZINC 250K dataset 1. This dataset
comprises approximately 250K molecules, selected from the ZINC database due to their pharmaceutical
significance, manageable size, and widespread recognition. Both Screening and MolPAL conduct searches
within this database. Additionally, generative models like VAEs and LSTMs are pretrained on it. Any
fragments essential for JT-VAE (Jin et al., 2018), MIMOSA (Fu et al., 2021), and DST (Fu et al., 2022) are
also derived from this very database.

Baseline

To make a comprehensive comparison, eight baseline methods are adopted in performance evaluation.

First, we compare two rule-based baselines, including:

• REINVENT (Olivecrona et al., 2017).

– Overview: A method that employs a policy-based reinforcement learning approach to instruct
RNNs to produce SMILES strings.

– Technical Details: It formulates the molecular design as a Markov decision process (MDP),
where states represent partially generated molecules, and actions correspond to string-based
manipulations. The rewards arise from properties of interest in the generated molecules.

– Advantage: Adaptable and can be modified to generate other string representations, such as
SELFIES.

– Disadvantage: Relies heavily on the definition and design of rewards.

• Graph-GA (Jensen, 2019).

– Overview: A genetic algorithm that manipulates molecular representations using graphs. It
integrates crossover operations derived from graph matching and comprises both atom- and
fragment-level mutations.

– Technical Details: Unlike string-based genetic algorithms, which primarily involve mutation
steps, Graph-GA introduces crossover operations based on graph representations.

– Advantage: Offers a richer set of operations due to its graph-based nature, potentially exploring
more diverse chemical spaces.

– Disadvantage: Increased complexity due to the need for graph-based operations.

• SELFIES-REINVENT.

– Overview: An extension of REINVENT to generate SELF-referencing Embedded Strings
(SELFIES).

1https://www.kaggle.com/datasets/basu369victor/zinc250k
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– Technical Details: Like REINVENT, it utilizes a policy-based RL approach but specifically for
the SELFIES representation, ensuring syntactical validity.

– Advantage: Can produce molecules with fewer syntactical errors due to the nature of SELFIES.
– Disadvantage: Still dependent on the definition of the reward system.

• GP BO (Tripp et al., 2021).

– Overview: Incorporates Gaussian process Bayesian optimization, combining surrogate GP mod-
els with Graph-GA methods in inner loops.

– Technical Details: While BO traditionally employs non-parametric models, GP BO leverages
the GP acquisition function and integrates Graph-GA techniques for sampling.

– Advantage: Balances exploration and exploitation by combining Bayesian optimization with
genetic algorithms.

– Disadvantage: The interplay between GP and GA might lead to higher computational costs.

• STONED (Nigam et al., 2021).

– Overview: A modified genetic algorithm that manipulates tokens within the SELFIES strings
representation.

– Technical Details: Unlike traditional string-based GAs, STONED directly interacts with the
tokens in the SELFIES strings.

– Advantage: A more direct approach that can potentially reduce invalid chemical representations.
– Disadvantage: Limited to SELFIES, may not generalize to other representations.

• SMILES-LSTM HC (Brown et al., 2019).

– Overview: An iterative learning method leveraging LSTM to comprehend the molecular distri-
bution represented in SMILES strings.

– Technical Details: Uses a variant of the cross-entropy method and integrates generated high-
scoring molecules into training data, subsequently fine-tuning the model.

– Advantage: The iterative approach refines the generative process at each step.
– Disadvantage: Convergence might be slow if the initial model is far from optimal.

• SMILES-GA (Brown et al., 2019).

– Overview: Genetic algorithm that defines actions based on SMILES context-free grammar.
– Technical Details: Works on SMILES strings and implements genetic mutations and crossovers

based on their grammar.
– Advantage: Exploits the inherent structure of SMILES for effective exploration.
– Disadvantage: Limited to the nuances of SMILES grammar, possibly missing out on novel

structures.

• SynNet (Gao et al., 2022).

– Overview: A synthesis-based genetic algorithm that operates on binary fingerprints and decodes
to synthetic pathways.

– Technical Details: Focuses on the synthesis pathway, ensuring the synthesizability of generated
molecules.

– Advantage: Prioritizes synthesizability, ensuring generated molecules can be created in the lab.
– Disadvantage: The emphasis on synthesis may limit the diversity of the molecular space ex-

plored.

• DoG-Gen (Bradshaw et al., 2020).

– Overview: This method is tailored to learn the distribution of synthetic pathways.
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– Technical Details: DoG-Gen represents synthetic pathways as Directed Acyclic Graphs (DAGs)
and employs an RNN generator to model the distribution. By focusing on synthetic pathways,
the method inherently emphasizes the synthesizability of molecules.

– Advantages: Provides a structured approach to learning synthetic pathways.
– Disadvantages: Reliance on RNNs might lead to issues in capturing very long sequences if not

designed effectively.

• DST (Fu et al., 2022).

– Overview: DST stands for Differentiable Scaffolding Tree, a gradient ascent method designed
for molecular optimization.

– Technical Details: DST abstracts molecular graphs into scaffolding trees and makes use of a
graph neural network for gradient estimation. This gradient-focused approach enables fine-
tuned molecular modifications based on property landscapes in the chemical space.

– Advantages: Offers a more direct way to optimize molecular structures by computing gradients.
– Disadvantages: The abstraction to scaffolding trees may result in loss of information.

Metric

In order to evaluate both optimization capability and sample efficiency, we utilize the area under the curve
(AUC) of the top-K average property value in relation to the number of oracle calls. This metric, which we
refer to as AUC top-K, serves as our primary measure of performance. Distinct from the straightforward
top-K average property, the AUC provides greater reward to methods that achieve high values with a reduced
number of oracle calls. In this paper, we set K at 1, 10, and 100. This choice is motivated by the importance
of pinpointing a limited set of unique molecular candidates for subsequent phases of development. We cap
the number of oracle calls at 10,000, though we anticipate that effective methods should ideally optimize
with just hundreds of calls during experimental evaluations. All AUC values reported have been min-max
scaled to fit within the range [0, 1].

Evaluation Results

Our result is shown in Table. 1. From the table, we can observe that our method is better than the baseline
method on multiple Oracles, which proves the effectiveness of the transformer in our problem.

Overall Molecular Generation Result

The evaluation results depict a thorough comparison between the REINVENT-Transformer (referred to as
REINVENT-Trans) and other prominent models across multiple oracles. Overall Molecular Generation
Result Performance Overview

REINVENT-Trans demonstrates its strength in molecular generation, consistently achieving top results in
several oracles. For instance, the model achieved the highest performance for ‘Albuterol_Similarity’, ‘Mes-
tranol_Similarity’, ‘QED’, ‘Scaffold_Hop’, and ‘Sitagliptin_MPO’. This suggests that the transformer’s
architecture potentially excels in capturing intricate molecular patterns and relations, and effectively opti-
mizing towards desired properties.

Comparative Insight

1. Versus REINVENT (SMILES and SELFIES): REINVENT-Trans has outperformed the REIN-
VENT model (using SMILES) in multiple instances. However, it’s worth noting that in some oracles like
‘Osimertinib_MPO’, REINVENT achieves a marginally better score. It’s also evident that SELFIES repre-
sentation in REINVENT doesn’t always improve the performance as compared to its SMILES counterpart.
This underscores the importance of the underlying model’s architecture and how different representations
can influence its performance.

2. Graph-based Models: Both ‘Graph GA’ and ‘GP BO’ exhibit competitive performance in certain
oracles like ‘Amlodipine_MPO’ and ‘Celecoxib_Rediscovery’ respectively. However, their performance isn’t
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Method REINVENT-Trans REINVENT Graph GA REINVENT GP BO STONED
Assembly SMILES SMILES Fragments SELFIES Fragments SELFIES

Albuterol_Similarity 0.910± 0.008 0.882± 0.006 0.838± 0.016 0.826± 0.030 0.898± 0.014 0.745± 0.076
Amlodipine_MPO 0.653± 0.029 0.635± 0.035 0.661± 0.020 0.607± 0.014 0.583± 0.044 0.608± 0.046

Celecoxib_Rediscovery 0.457± 0.071 0.713± 0.067 0.630± 0.097 0.573± 0.043 0.723± 0.053 0.382± 0.041
DRD2 0.931± 0.006 0.945± 0.007 0.964± 0.012 0.943± 0.005 0.923± 0.017 0.913± 0.020

Deco_Hop 0.645± 0.038 0.666± 0.044 0.619± 0.004 0.631± 0.012 0.629± 0.018 0.611± 0.008
Fexofenadine_MPO 0.796± 0.007 0.784± 0.006 0.760± 0.011 0.741± 0.002 0.722± 0.005 0.797± 0.016

Isomers_C9H10N2O2PF2Cl 0.809± 0.040 0.642± 0.054 0.719± 0.047 0.733± 0.029 0.469± 0.180 0.805± 0.031
Median 1 0.354± 0.008 0.356± 0.009 0.294± 0.021 0.355± 0.011 0.301± 0.014 0.266± 0.016
Median 2 0.263± 0.006 0.276± 0.008 0.273± 0.009 0.255± 0.005 0.297± 0.009 0.245± 0.032

Mestranol_Similarity 0.685± 0.032 0.618± 0.048 0.579± 0.022 0.620± 0.029 0.627± 0.089 0.609± 0.101
Osimertinib_MPO 0.813± 0.010 0.837± 0.009 0.831± 0.005 0.820± 0.003 0.787± 0.006 0.822± 0.012
Perindopril_MPO 0.525± 0.011 0.537± 0.016 0.538± 0.009 0.517± 0.021 0.493± 0.011 0.488± 0.011

QED 0.942± 0.000 0.941± 0.000 0.940± 0.000 0.940± 0.000 0.937± 0.000 0.941± 0.000
Ranolazine_MPO 0.761± 0.012 0.742± 0.009 0.728± 0.012 0.748± 0.018 0.735± 0.013 0.765± 0.029

Scaffold_Hop 0.560± 0.013 0.536± 0.019 0.517± 0.007 0.525± 0.013 0.548± 0.019 0.521± 0.034
Sitagliptin_MPO 0.563± 0.025 0.451± 0.003 0.433± 0.075 0.194± 0.121 0.186± 0.055 0.393± 0.083

Thiothixene_Rediscovery 0.556± 0.016 0.534± 0.013 0.479± 0.025 0.495± 0.040 0.559± 0.027 0.367± 0.027
Troglitazone_Rediscovery 0.451± 0.015 0.441± 0.032 0.390± 0.016 0.348± 0.012 0.410± 0.015 0.320± 0.018

Valsartan_Smarts 0.165± 0.278 0.165± 0.358 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
Zaleplon_MPO 0.544 ± 0.041 0.358± 0.062 0.346± 0.032 0.333± 0.026 0.221± 0.072 0.325± 0.027

sum 12.197 12.047 11.526 11.092 11.152 10.598
rank 1 2 3 5 4 6

Method LSTM HC SMILES GA SynNet DoG-Gen DST
Assembly SMILES SMILES Synthesis Synthesis Fragments

Albuterol_similarity 0.719± 0.018 0.661± 0.066 0.584± 0.039 0.676± 0.013 0.619± 0.020
Amlodipine_MPO 0.593± 0.016 0.549± 0.009 0.565± 0.007 0.536± 0.003 0.516± 0.007

Celecoxib_Rediscovery 0.539± 0.018 0.344± 0.027 0.441± 0.027 0.464± 0.009 0.380± 0.006
DRD2 0.919± 0.015 0.908± 0.019 0.969± 0.004 0.948± 0.001 0.820± 0.014

Deco_Hop 0.826± 0.017 0.611± 0.006 0.613± 0.009 0.800± 0.007 0.608± 0.008
Fexofenadine_MPO 0.725± 0.003 0.721± 0.015 0.761± 0.015 0.695± 0.003 0.725± 0.005

Isomers_C9H10N2O2PF2Cl 0.342± 0.027 0.860± 0.065 0.241± 0.064 0.199± 0.016 0.458± 0.063
Median 1 0.255± 0.010 0.192± 0.012 0.218± 0.008 0.217± 0.001 0.232± 0.009
Median 2 0.248± 0.008 0.198± 0.005 0.235± 0.006 0.212± 0.000 0.185± 0.020

Mestranol_Similarity 0.526± 0.032 0.469± 0.029 0.399± 0.021 0.437± 0.007 0.450± 0.027
Osimertinib_MPO 0.796± 0.002 0.817± 0.011 0.796± 0.003 0.774± 0.002 0.785± 0.004
Perindopril_MPO 0.489± 0.007 0.447± 0.013 0.557± 0.011 0.474± 0.002 0.462± 0.008

QED 0.939± 0.000 0.940± 0.000 0.941± 0.000 0.934± 0.000 0.938± 0.000
Ranolazine_MPO 0.714± 0.008 0.699± 0.026 0.741± 0.010 0.711± 0.006 0.632± 0.054

Scaffold_Hop 0.533± 0.012 0.494± 0.011 0.502± 0.012 0.515± 0.005 0.497± 0.004
Sitagliptin_MPO 0.066± 0.019 0.363± 0.057 0.025± 0.014 0.048± 0.008 0.075± 0.032

Thiothixene_Rediscovery 0.438± 0.008 0.315± 0.017 0.401± 0.019 0.375± 0.004 0.366± 0.006
Troglitazone_Rediscovery 0.354± 0.016 0.263± 0.024 0.283± 0.008 0.416± 0.019 0.279± 0.019

Valsartan_Smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
Zaleplon_MPO 0.206± 0.006 0.334± 0.041 0.341± 0.011 0.123± 0.016 0.176± 0.045

sum 10.227 10.185 9.613 9.554 9.203
rank 7 8 9 10 11

Table 1: Performance comparison between Reinvent-Trans, REINVENT, and other methods over all oracles
for AUC Top-10

consistently at the top across all oracles. This implies that while graph-based models can be effective in
certain scenarios, they may not always generalize well across diverse tasks.

3. Genetic Algorithms: STONED (using SELFIES representation) achieves the highest score in the
‘Fexofenadine_MPO’ oracle. Genetic algorithms, despite their inherent stochasticity, have potential in some
specific optimization tasks.

Sample Efficiency

The primary metric, AUC top-K, emphasizes not just optimization capability but also sample efficiency.
High values in this metric would imply fewer oracle calls, thereby maximizing performance with limited data
evaluations. REINVENT-Trans, achieving high scores in several oracles, suggests its effectiveness in rapidly
optimizing toward desirable molecular properties without exhaustive database searches.

Future Implications
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Oracle Model Avg SA↓ Diversity Top100 ↑
Albuterol Similarity reinvent 3.177 0.394

reinvent trans 3.173 0.408
Amlodipine MPO reinvent 3.478 0.391

reinvent trans 3.888 0.311
Celecoxib Rediscovery reinvent 3.458 0.551

reinvent trans 3.245 0.357
DRD2 reinvent 2.788 0.868

reinvent trans 2.914 0.464
Deco Hop reinvent 3.458 0.551

reinvent trans 3.240 0.457
Fexofenadine MPO reinvent 4.163 0.325

reinvent trans 4.113 0.411
GSK3B reinvent 3.146 0.884

reinvent trans 3.146 0.884
Isomers C7H8N2O2 reinvent 4.273 0.712

reinvent trans 2.589 0.796
Isomers C9H10N2O2PF2Cl reinvent 3.261 0.585

reinvent trans 3.245 0.686
Median 1 reinvent 4.571 0.408

reinvent trans 3.532 0.371
Median 2 reinvent 2.772 0.411

reinvent trans 2.877 0.389
Mestranol Similarity reinvent 3.799 0.267

reinvent trans 4.394 0.434
Osimertinib MPO reinvent 3.174 0.504

reinvent trans 3.799 0.447
Perindopril MPO reinvent 3.819 0.479

reinvent trans 3.766 0.357
QED reinvent 1.883 0.573

reinvent trans 3.422 0.540
Ranolazine MPO reinvent 3.468 0.421

reinvent trans 2.727 0.434
Scaffold Hop reinvent 2.857 0.555

reinvent trans 4.355 0.382
Sitagliptin MPO reinvent 2.639 0.692

reinvent trans 5.279 0.391
Thiothixene Rediscovery reinvent 2.899 0.373

reinvent trans 3.275 0.441
Troglitazone Rediscovery reinvent 3.275 0.441

reinvent trans 4.435 0.204
Valsartan Smarts reinvent 3.421 0.874

reinvent trans 3.421 0.874
Zaleplon MPO reinvent 1.991 0.614

reinvent trans 2.465 0.486

Table 2: Avg SA and Diversity Top100

These results showcase the potential of transformers in the domain of molecular generation. Given the
success of transformer models in natural language processing tasks, it’s no surprise that their capabilities
translate effectively into molecular representations as well.
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Figure 2: Evaluation score vs molecular length for comparison of Reinvent_Transformer and Reinvent on
oracle Mestranol_Similarity

However, it’s essential to consider the versatility of the tasks presented. Some models might specialize in
particular tasks but may not be universally applicable. Hence, it’s beneficial to have an ensemble or a
selection mechanism based on the specific task at hand.

Ablation Study: Long Sequence Molecule Generation Comparison with REINVENT SMILES

The box plot visualizes the distribution of evaluation scores across different molecular lengths for both the
reinvent_transformer method and the baseline reinvent method.

Based on the visual representation, we can derive the following observations:

1. For shorter molecular lengths, both methods exhibit similar distributions of scores.
2. As the molecular length increases, the reinvent_transformer method consistently achieves higher averge
scores.
3. For longer molecular sequences, the difference in scores between the two methods becomes more
pronounced. This suggests that the reinvent_transformer method is better suited for longer sequences,
maintaining high evaluation scores.
4. The spread (interquartile range) of scores for the reinvent_transformer method remains relatively
consistent across molecular lengths, indicating stable performance.

For shorter molecular lengths, both methods exhibit similar distributions of scores. As the molecular length
increases, the reinvent_transformer method consistently achieves higher median scores. For longer molecular
sequences, the difference in scores between the two methods becomes more pronounced. This suggests that
the reinvent_transformer method is better suited for longer sequences, maintaining high evaluation scores.
The spread (interquartile range) of scores for the reinvent_transformer method remains relatively consistent
across molecular lengths, indicating stable performance.

In conclusion, the reinvent_transformer method outperforms the baseline reinvent method, particularly in
the context of longer molecular sequences.

We set a threshold=50 for the length of generated molecular string. If the generated string is longer than
the threshold, it will be considered as "long", other it’s considered as "short" . From the Figure 3, we can
see the our method Reinvent-Transformer has better average score when generating long sequences.

10
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Figure 3: Evaluation score vs short and long sequence for comparison of Reinvent_Transformer and Reinvent
on oracle Mestranol_Similarity

Figure 4: Mean and Standard Deviation of avg_top100 over Epochs for Reinvent and Reinvent-Transformer
on oracle Mestranol_Similarity

Case Study: Convergence rate Comparison between Reinvent-Transformer and Reinvent

We plotted the auc_topk curve and number of epoches is the x-axis. From the figure as follows, we can see
that our method Reinvent-Transformer converges faster than Reinvent method.

From Fig. 4, the evolution of the average accuracy for the top 100 predictions is evident. Upon examination,
across equivalent epochs, the mean accuracy of Reinvent-Transformer consistently surpasses that of Reinvent.
This indicates a more expedient convergence rate for the Reinvent-Transformer compared to Reinvent. The
avg_top100 curve initially displays a steep incline, eventually plateauing post approximately 6000 epochs.
Notably, beginning from the 2500th epoch, the performance differential between Reinvent-Transformer and
Reinvent significantly widens.

It is also observed that the Reinvent-Transformer possesses a higher standard deviation relative to Reinvent,
suggesting potential variability in its performance. Despite this, the difference between the average top100
accuracy and the standard deviation for Reinvent-Transformer remains superior to the mean accuracy of
Reinvent, reaffirming the enhanced efficacy of the Reinvent-Transformer method.

Furthermore, the AUC top100 curve for Albuterol Similarity is illustrated in Fig. 5. In this context, the
differential in performance between REINVENT-Transformer and REINVENT is more nuanced. It isn’t
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Figure 5: Mean and Standard Deviation of auc_top100 over Epochs for REINVENT and REINVENT-
Transformer on oracle Albuterol_Similarity

Figure 6: Mean and Standard Deviation of auc_top10 over Epochs for Reinvent and Reinvent-Transformer
on oracle Mestranol_Similarity

until the 8000th epoch that a discernible gap emerges. Ultimately, the REINVENT-Transformer exhibits
marginally superior performance relative to Reinvent in this scenario.

In Fig. 6, the AUC top10 curve for Mestranol Similarity is presented. Contrasted with the average accuracy
curve, this AUC curve demonstrates a milder inclination initially, followed by a pronounced rise. Specifically,
for the Reinvent-Transformer, the mean AUC top10 consistently surpasses that of Reinvent. Although the
disparity is subtle during the initial epochs, it becomes more pronounced post the 5000th epoch and remains
so thereafter.

Conclusion

Navigating the vast chemical space in molecular design remains a challenge. The introduction of the
REINVENT-Transformer marks a significant advancement, harnessing the Transformer architecture’s
strengths such as parallelization and long-term dependency handling. Our experimental findings reinforce
the REINVENT-Transformer’s superior performance across multiple oracles, especially in tasks requiring
longer sequence data. By integrating oracle feedback reinforcement learning, our approach achieves height-
ened precision, favorably impacting drug discovery efforts. In essence, the REINVENT-Transformer not only

12
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sets a benchmark in molecular de novo design but also illuminates the path for future research, highlighting
the promise of Transformer-based architectures in drug discovery.
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