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ABSTRACT

Conformal prediction (CP) is a distribution-free method for uncertainty quantifica-
tion that transforms any point estimator into a set predictor. While there are many
ways to enhance the efficiency of CP, an important yet underexplored way is to
incorporate domain prior knowledge into the algorithm. In this paper, we focus on
leveraging a sparsity prior into CP algorithm for classification tasks. Specifically,
the probability simplex often exhibits a sparsity structure in large-scale classifi-
cation tasks. However, existing classifiers typically include a softmax layer that
diminishes this sparsity prior. To address this issue, we propose a truncation-
normalization operator that uses a sparsity prior in CP, thereby improving effi-
ciency. Both theoretical and empirical results reveal the following insights: (i) the
U-shaped relation between set size and truncation level ensures the existence of a
nonzero optimal truncation level; (ii) the oracle set could be recovered by choos-
ing the optimal truncation level, which is unattainable without truncation; and (iii)
optimal truncation level correlates positively with model quality.

1 INTRODUCTION

As a methodology aiming at identifying and characterizing uncertainty in machine learning models,
uncertainty quantification plays a vital role in high-stake decision-making scenarios, such as drug
development in medicine (Laghuvarapu et al., 2023; Nolte et al., 2024), risk analysis in finance
(Bogani et al., 2024; Kato, 2024), and may even enhance the trustworthiness of AI systems by
estimating the confidence of predictions and addressing issues like hallucinations in large language
models (Yadkori et al., 2024; Li et al., 2023).

Among various methods for uncertainty quantification, conformal prediction (CP) has gained pop-
ularity due to its ease of implementation and finite-sample coverage guarantees (Vovk et al., 2005;
Shafer & Vovk, 2008; Lei et al., 2015). Its core principle is to transform any machine learning
model’s point estimator into a reliable set predictor. Notably, the efficiency of a CP algorithm is
typically measured by the size of the resulting prediction set, which is related to the quality of the
first-stage point estimator. Consequently, numerous methods have been proposed to improve effi-
ciency by enhancing the accuracy of the point estimator (Noorani et al., 2024; Stutz et al., 2021b).

In this paper, we introduce an alternative yet underexplored way for improving efficiency in classifi-
cation tasks: incorporating domain prior knowledge into the CP algorithm. An important prior for
the classification task is the sparsity structure (Definition 1) in the probability vector, which is preva-
lent in practice. For example, if a sample is a cat, which belongs to the broader class of animals, it
hardly belongs to unrelated classes such as fruits or tools. Consequently, the probabilities assigned
to these unrelated classes should be zero. But in practice, to ensure that the estimated probability
π̂(x) produces values within the probability simplex, a softmax operator is typically applied. This
operation tends to diminish the sparsity prior inherent in the true probability vector p(y | x).
Unfortunately, the efficiency of CP is sensitive to the entire distribution of the estimated probabil-
ities. Therefore, a sparsity-aware estimator that recovers the sparsity structure in the distribution
potentially improves efficiency. In comparison, without incorporating this sparsity structure, small
noise1 values within the estimated probability vector may inflate the prediction set size, as meeting
the same threshold may require including more classes with low probabilities, illustrated in fig. 1.
Thus, this paper seeks to address the following question:
When and how can the efficiency of CP algorithm be improved by incorporating a sparsity prior?
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Figure 1: Framework of truncated CP (Algorithm 1). To mitigate the impact of small noise in the
estimated probability vector, predicted probabilities below a threshold are truncated to zero, and the
remaining values are renormalized to ensure they lie within the probability simplex.

To address this question, we propose a truncation framework (fig. 1) to incorporate the sparsity prior
structure into the CP algorithm. This approach operates on the estimated probability vector π̂(·),
by setting values below a threshold to zero and then normalizing to ensure the result lies within
the probability simplex. This framework offers two key advantages: First, it is simple yet effective
and preserves the post-hoc nature of CP. Second, it imposes no restrictions on the choice of score
functions, making it broadly compatible with existing classification CP algorithms. Despite these
advantages, several questions remain, both in practice and theory: (i) how to determine a valid
truncation level, (ii) whether the optimal prediction set size could be achieved, and (iii) how the
optimal truncation level relates to first-stage model quality.

To address these considerations, we conduct both theoretical analyses (Section 4) and empirical
experiments (Section 5), yielding the following insights: Firstly, we establish a U-shaped relation
between the prediction set size and truncation level (Theorem 4). Specifically, as the truncation
level increases, the size of the prediction set initially decreases and then increases. This finding
provides practical guidance for selecting the truncation level at the “elbow” position (Corollary 5),
which effectively separates signal from noise1 in the estimated probability vector, balancing compact
prediction sets with group coverage. Secondly, by incorporating the sparsity prior, our proposed
truncation method asymptotically recovers the oracle set predictor under a consistent first-stage
classifier with APS score function (Theorem 7). As a comparison, we further demonstrate that
this asymptotic property is unattainable without truncation, providing two examples in Section 4.4.
Finally, the results in fig. 3 further reveal how first-stage model quality relates to the efficiency
improvements from truncation. Specifically, the “elbow” position shifts upward with training epochs
as improved model quality widens the gap between signal and noise, enabling better truncation
quality and an effective prediction set. Our contributions are further summarized in Appendix A.1.

2 RELATED WORK

Conformal prediction is a statistical framework for uncertainty quantification, ensuring finite-sample
coverage guarantees with a post-hoc approach (Vovk et al., 2005; Shafer & Vovk, 2008; Lei et al.,
2018; Angelopoulos & Bates, 2021). Its flexibility has facilitated applications in diverse fields,
including classification (Romano et al., 2020b; Angelopoulos et al., 2020), regression (Lei et al.,
2018; Romano et al., 2019), graph neural networks (Huang et al., 2023b; Zargarbashi et al., 2023),
large language models (Quach et al., 2023; Yadkori et al., 2024), time series analysis (Xu & Xie,
2021; Zaffran et al., 2022), and survival analysis (Candès et al., 2023; Teng et al., 2021).

A central research direction of CP in classification tasks is the development of effective score func-
tions to enhance efficiency and adaptiveness. For example, LAC (Sadinle et al., 2019) achieves small
prediction set sizes but offers limited conditional coverage. To address this, APS (Romano et al.,
2020a) introduces input-adaptive score adjustments to improve conditional coverage, though at the
expense of efficiency. RAPS (Angelopoulos et al., 2020) further advances this by penalizing hard
examples, thereby reducing their impact on the score and striking a balance between efficiency and

1In this paper, signal refers to the minimum estimated probability in π̂(x) among the non-zero entries of
p(y | x), noise refers to entries with true probability zero that are estimated as non-zero in π̂(x).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

conditional coverage. Additionally, rank-based score functions such as SAPS (Huang et al., 2023a)
and RANK (Luo & Zhou, 2024) have emerged as notable contributions in this domain.

Beyond the design of score functions, another avenue for improving efficiency involves modifying
the model obtained in the first stage. This is achieved through two main strategies: altering the
training process or employing fine-tuning methods. The first strategy optimizes the first-stage model
using uncertainty-aware conformal loss functions (Stutz et al., 2021a; Einbinder et al., 2022; Correia
et al., 2024), although this compromises the post-hoc nature of CP. To address this limitation, the
second strategy introduces fine-tuning methods that leverage a calibration process on the first-stage
model’s output, while keeping the original model unchanged (van der Laan & Alaa, 2024).

Incorporating prior information into machine learning algorithms may improve model generaliza-
tion and align outcomes with domain-specific knowledge in various scenarios. For example, known
spurious correlations between labels are exploited to steer the learner toward truly invariant fea-
tures (Arjovsky et al., 2019). Equivariance is enforced on rotations, translations, reflections, and
permutations within graph neural networks to boost molecular-property prediction (Satorras et al.,
2021). Classifier gradients are injected into the reverse diffusion process to condition image gen-
eration on class information (Dhariwal & Nichol, 2021). However, incorporating prior information
into machine learning methods remains underexplored in the context of CP algorithms.

3 SPARSITY PRIOR AND CONFORMAL PREDICTION IN CLASSIFICATION

In this section, we introduce two prevalent sparsity structures and several baseline conformal pre-
diction algorithms commonly employed in classification tasks.

Notations. Let x[i] denote the i-th element in the vector x, and I{·} represent the indicator function.
Consider a classification task with K classes, where each data point (x, y) ∈ X × Y , with X = Rp

and Y = {1, . . . ,K}. For any x ∈ X , the conditional distribution of (x, y) is denoted by πy(x) =
P[Y = y | X = x] for each y ∈ Y , and the vector π(x) = [π1(x), . . . , πK(x)] ∈ ∆K−1, where
∆K−1 := {π ∈ RK : π[i] ≥ 0, i = 1, . . .K;π[1] + . . . + π[K] = 1}. The order statistics of
{π1(x), . . . , πK(x)} are denoted as π(1)(x) ≥ π(2)(x) ≥ . . . ≥ π(K)(x). There are two prevalent
structures in classification tasks: sparsity and group sparsity.

Definition 1 (Sparsity Structure). A conditional probability vector π(x) ∈ ∆K−1 exhibits sparsity
if at least one of its entries is zero, and the sparsity ratio is defined as 1

K

∑K
k=1 I{πk(x)=0}.

Sparsity serves as prior information by reducing the candidate label set. It restricts the space in which
π(x) lies, thereby simplifying the classification task. This property is prevalent in high-dimensional
problems, where K is large but only a small subset is relevant for any given sample.

Definition 2 (Group Sparsity Structure). A conditional distribution P(Y |X) is group sparse if there
exists a partition {L1, . . . ,LG} of the label set Y such that, for any x in group g ∈ {1, . . . , G}, we
have supp

(
P(Y | X = x)

)
⊆ Lg , where supp(·) denotes the support set of a distribution.

Group sparsity is a stronger assumption than sparsity. Intuitively, it introduces a hierarchical struc-
ture into the classification task. For example, suppose K = 6 labels represent different categories:
{1 = dog, 2 = cat, 3 = horse, 4 = car, 5 = truck, 6 = bus}. We can partition them into two groups:
L1 = {1, 2, 3} (animals),L2 = {4, 5, 6} (vehicles).

Let π̂(x) = σ(z(x)) represent the estimated probability simplex produced by a base model for a
feature x, where z(x) ∈ RK is the logit vector (i.e., the pre-softmax output) and σ(·) denotes the
softmax operator, defined as σi(z) = exp(z[i])/

∑K
j=1 exp(z[j]), i = 1, . . . ,K. For simplicity, we

assume that the non-zero entries of the probability simplices π̂(·) and π(·) contain no ties. If ties
occur in the label ordering, they could be resolved by introducing randomness.

Conformal Prediction in Classification Tasks. Conformal prediction is a distribution-free tech-
nique that constructs a prediction set of classes Cα(x) for a given sample x ∈ X in a classifi-
cation task, ensuring the true class y ∈ Cα(x) with a probability of 1 − α, where α ∈ (0, 1)
is a predefined significance level (Vovk et al., 1999; Papadopoulos et al., 2002). To achieve this
statistical guarantee, CP exploits the exchangeability of a holdout calibration set {(xi, yi)}ni=1
to create a decision rule based on a user-specified score function. Specifically, CP introduces a
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Algorithm 1 Truncation Framework for Classification CP

1: Input: Score function s(·, ·; ·), estimated probability π̂(·), truncation level λ, calibration set
{(xi, yi)}ni=1, confidence level α, a new input xn+1.

2: Sparsify the estimated conditional probability simplex π̂(·) to obtain π̂λ(·) by applying the
transformation in equation 2 with the truncation level λ;

3: Compute the score on calibration set {s(xi, yi; π̂
λ)}ni=1 based on π̂λ(·);

4: Compute the ⌈(1− α)(1 + n)⌉-largest value in {s(xi, yi; π̂
λ)}ni=1 as q̂λ;

5: Output: The prediction set C(xn+1; π̂
λ, q̂λ) = {y : s(xn+1, y; π̂

λ) ≤ q̂λ}.

heuristic score function s(x, y; f) ∈ R based on f : X → ∆K−1, where a higher score indi-
cates a lower level of agreement between x and y, and the ⌈(1−α)(1+n)⌉

n -quantile q̂ of the scores
{s(x1, y1; f), . . . , s(xn, yn; f)} is subsequently computed. Then for a new input xn+1, the predic-
tion set is defined as C(x = xn+1; f, τ = q̂) = {y : s(xn+1, y; f) ≤ q̂}. 2

The design of the score function is crucial in CP, with many prominent designs proposed to enhance
the adaptiveness and efficiency of CP. In this paper, we focus on the following methods, with a more
detailed discussion provided in Appendix A.2. In APS, (Romano et al., 2020a), score function

s(x, y; π̂) =

K∑
y′=1

π̂y′(x)I{π̂y′ (x)≥π̂y(x)} (1)

is designed to improve the conditional coverage. To improve efficiency, RAPS (Angelopoulos et al.,
2020) defines the score as s(x, y; π̂) =

∑K
y′=1 π̂y′(x)I{π̂y′ (x)≥π̂y(x)} + γ(ox(y) − kreg)+, where

ox(y) is the index to which label y is mapped after the scores are sorted, and (·)+ := max{·, 0}.

4 TRUNCATED CONFORMAL PREDICTION AND THEORETICAL GUARANTEES

In this section, we introduce a truncation framework to incorporate a sparsity prior into CP algorithm
for classification. We first present the truncated CP algorithm in Section 4.1, which removes small
noise from the estimated probability vector for any given truncation level. As the truncation level
directly governs the balance between signal and noise, a theoretical analysis based on the APS score
function in Section 4.2 is provided to explain why the prediction set size initially decreases and then
increases as the truncation level grows. Subsequently, we demonstrate that truncated CP achieves
valid finite sample coverage and asymptotically recovers the oracle set predictor under a consistent
first-stage classifier (Section 4.3), which is unattainable without truncation. Finally, two examples
in Section 4.4 further illustrate the differences between using and not using truncation.

4.1 TRUNCATION FRAMEWORK

In this section, we propose the truncated CP algorithm to incorporate the sparsity prior into the
uncertainty set. In large-scale classification tasks, the probability simplex p(y|x) often exhibits
sparsity structures, and it is challenging to incorporate this prior information via score function
design (see Section 4.4). A more effective alternative is to address sparsity in the first stage by
constructing the estimator π̂(·) with an explicit sparsity guarantee. To this end, we propose to
recover the sparsity prior in π̂(·) by the following truncation-normalization operator.

Truncation-Normalization Operator. We truncate predicted probabilities below a threshold to
zero and subsequently normalize the result to ensure that they lie within the probability simplex.
Specifically, for a given truncation level λ, the sparsified estimated probability simplex is defined
via a truncation-normalization operator Tλ(·) as:

π̂λ
y (x) = Tλ(π̂(x))y :=

{
π̂y(x)/ρ

λ(x), if π̂y(x) > min
(
λ, π̂(2)(x)

)
,

0, otherwise,
(2)

2To ensure valid coverage in classification tasks, a random variable U ∼ Unif(0, 1) is often incorporated
into C. Without loss of generality, we omit it in this paper for simplicity.
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where ρλ(x) =
∑K

y′=1 π̂y′(x) I{π̂y′ (x)>min(λ,π̂(2)(x))} is a normalizing factor that ensures that the
result remains a probability simplex. The proposed truncation-normalization operator offers two
benefits: (i) it reduces the impact from small noises and (ii) amplifies the variance among signals
with a normalizing factor smaller than 1. Both of these potentially improve efficiency. This operator
forms the core of our Truncated CP algorithm, which is introduced below.

Truncated Conformal Prediction Algorithm. Once the sparsity prior is incorporated into the
base classifier model π̂(·) through the truncation-normalization operator Tλ(·), the prediction set is
established using the CP procedure based on a user-specified score function, and the entire process
is summarized in Algorithm 1. Notably, the truncation framework preserves the post-hoc nature of
CP since the operator Tλ(·) only applies to the output of the base classifier π̂(·).
Choice of the Truncation Level. One key challenge in our truncation framework lies in the selec-
tion of the truncation level λ. To address this, we empirically examine how λ influences both the
size of the prediction set and the group coverage using a holdout validation set. As illustrated in
fig. 2, the size of the prediction set decreases initially with an increasing λ, but starts to grow after
reaching a certain point. This empirical observation provides practical guidance: λ is recommended
to be selected near the “elbow” point using a holdout set in calibration data, which achieves a bal-
ance between compact prediction sets and preserving conditional coverage (see Appendix C.1 for
details). In Section 4.2, we provide a theoretical explanation for this phenomenon (Corollary 5).
Remark 3. From another perspective, truncated CP implicitly modifies the score function from
s(x, y; π̂) to s(x, y; π̂λ). It incorporates the sparsity prior into the CP algorithm by adjusting the
estimated probability vector π̂(·), without explicitly designing a new score function.

4.2 IMPACT OF TRUNCATION LEVEL ON SIZE

In this section, we provide a theoretical explanation (Theorem 4) for the phenomenon empirically
observed in fig. 2: the size of the prediction set initially decreases as the truncation level λ increases,
but begins to grow once λ surpasses a certain threshold. This behavior could be explained by the
relationship between the signal and noise in the estimated probability vector π̂(y | x). Moreover,
when the truncation level is chosen to balance these components for a given test point, the size of
the prediction set could be effectively reduced, with practical guidance provided in Corollary 5.

Theorem 4 (Impact of Truncation Level on Size). For any x ∈ X , let π̂(x) = σ(z(x)) ∈ ∆K−1

represent the estimated probability, where z is the logit vector output by a base model. For a trun-
cation level λ > 0, the sparsified probability vector for x is defined as π̂λ(x) = Tλ(π̂(x)), as given
in eq. (2). Let q̂λ denote the quantile of the score computed on the calibration set. The size of the
prediction set for x is given by Lλ = L(x; π̂λ, q̂λ) = min

{
c ∈ {1, . . . ,K} :

∑c
i=1 π̂

λ
(i)(x) ≥ q̂λ

}
.

The number of non-zero elements in π̂λ(x) is Sλ(x) = maxi{i : π̂y(x) > min(λ, π̂(2)(x))}. The
gap function is defined as g(z;λ,M) =

∑M
i=1[σi(z)− Tλ(σ(z))i]. Let z[−1] = (z[2], . . . ,z[K])

and ∆z = z[1]− z[2]. Under the following assumptions:
(C1) There exists δ such that π̂y(x) > δ for any sample (x, y).
(C2) q̂0 and q̂λ are derived from the same sample xq in the calibration set.
(C3)

∑K
i=Sλ(xq)+1 π̂(i)(x

q) = o(γ).
(C4) zq[1] > z[1], where zq is the logit vector of xq . For any z′ = θzq[1]+ (1− θ)z[1] (θ ∈ [0, 1])
and M ≤ Lλ, |∇gz[1](z′;λ,M)(zq[1]− z[1])| > |∇gz[−1](z

′;λ;λ,M)⊤(zq[−1]− z[−1])|.
(C5) The quantity ∆z increases monotonically with the score s(x, y; π̂).
Then, for any truncation level λ ≤ δ, it holds that:{

If λ < 1
K
, exp(∆z) > (K − 1)(1−Kλ) =⇒ L0 ≥ Lλ,

If λ ≥ 1
K

=⇒ L0 ≥ Lλ.

Theorem 4 provides insight into when truncation may reduce the size. Specifically, the truncation
level should not exceed the signal in π̂(x). This implicitly requires a separation between the signal
and noise in π̂(x). Such a separation becomes more evident as the quality of the first-stage estimator
improves (see fig. 3). Consequently, as the truncation level increases, it initially restores sparsity and
reduces the size. However, once the truncation level reaches the signal value, it starts to disrupt the
signal, leading to an increasing size. For example, when λ = 1, the truncation nullifies all but the
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(a) Group Size: [10,20,30] 1-1-13 (b) Group Size: [10,20,30] 2-2-2 (c) Group Size: [10,20,30] 3-3-3

Figure 2: Line plots of group coverage and size versus truncation level, with coverage fixed at 1−α.
As the truncation level increases, the set size under the coverage constraint initially decreases
and then increases, forming an “elbow” region. The optimal truncation level (red star) can be
selected via a holdout validation set (Corollary 5), while a sub-optimal level (horizontal dashed line)
can be chosen without validation (using ψ = 2/5α in Remark 6), as detailed in Appendix C.2.

top component in π̂(·), causing the prediction set to degenerate into the full label set Y to maintain
coverage. This analysis provides practical guidance for selecting a valid λ in practice.

Corollary 5 (Optimal Truncation Level). Under conditions (C1-C5) in Theorem 4, the prediction set
size first decreases and then increases as the truncation level increases. Thus, the optimal truncation
level λ∗ could be selected using a holdout validation set to minimize the prediction set size.

Remark 6 (Sub-optimal Truncation Level). To determine the optimal truncation level, a holdout
validation set is typically required. A more data-efficient but sub-optimal alternative is to exploit
the fact that the optimal truncation level lies between the signal and noise, as demonstrated in Theo-
rem 4. Specifically, for any given significance level α, a sub-optimal truncation level could be chosen
as the ⌈(1 − α + ψ)(1 + n)⌉-largest value in {π̂yi

(xi)}ni=1 using the calibration set, where ψ < α
controls the implicit assumption that (α − ψ)% of the samples predicted by the base model belong
to the noise set (see Appendix C.2 for details). In practice, the default value of ψ is recommended
to lie within the range [2/5α, 4/5α], with larger values preferred for higher-quality models.

Explanations of Conditions. (C1) specifies that the truncation level should not exceed the signal,
ensuring that only noise is truncated. (C2) assumes that both q̂0 and q̂λ correspond to the same
sample in the calibration set, which is reasonable as the truncation operation preserves the rank of
label probabilities, causing minimal changes to the resulting score ranks within the calibration set,
empirically demonstrated in fig. 4. (C3) ensures that the cumulative noise being truncated is small
compared to the signal. This condition is achievable when the model includes a softmax layer,
which amplifies the gap between signal and noise when the model is well-trained. (C4) and (C5) are
technical conditions that are similarly employed in Dabah & Tirer (2024). These conditions assume
that the gap function g is dominated by the difference between the largest logit, with such dominance
becoming more pronounced as the score increases, validated in fig. 5.

4.3 SIZE AND COVERAGE GUARANTEE

In this section, we establish a theoretical guarantee (Theorem 7) that the oracle set predictor could be
asymptotically recovered after truncation, assuming the first-stage estimator is consistent. Moreover,
the finite sample coverage remains valid for the truncated CP algorithm (Theorem 8).

Theorem 7 (Asymptotic Oracle Recovery). For any x ∈ X , let π(x) and π̂(x) denote the true and
estimated probability simplex, where π(x) has sparsity structure. Let the score function be the APS
score defined in eq. (1). Denote the prediction set obtained by π̂(·) after truncation with the level
λ as CTCAPS(x; π̂

λ, q̂λ) = {y : s(x, y; π̂λ) ≤ q̂λ}, and the oracle prediction set based on π(·) as
Coracle(x;π, q) = {y : s(x, y;π) ≤ q}, where q̂λ and q are the ⌈(1 − α)(1 + n)⌉-largest value of
scores computed on the calibration set {(xi, yi)}ni=1 using π̂λ and π. Let Sx = {i : πi(x) > 0} be
the support of π(x), and SC

x = {i : πi(x) = 0}. Assume there exists δ such that mini∈Sx π̂i(x) >
δ > maxi∈Sc

x
π̂i(x) for all x, and ∥π̂(x)− π(x)∥2 → 0 as n→ ∞. Choosing λ = δ yields

CTCAPS(x; π̂
λ, q̂λ) → Coracle(x;π, q) as n→ ∞.

In contrast, the prediction set C(x; π̂, q̂) constructed without truncation is larger than the oracle set,
i.e., |C(x; π̂, q̂)| > |Coracle(x;π, q)| for any sample size n.
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Theorem 7 addresses the efficiency limitations of conformal prediction when the sparsity prior is not
incorporated, even with a consistent first-stage estimator (see examples in Section 4.4). Specifically,
when the truncation level is properly chosen to separate signal from noise, the sparsity prior is
restored by the truncation method, eliminating the impact of small noise on Sc

x that affects the size,
thereby asymptotically recovering the oracle set predictor. Besides the asymptotic oracle recovery
property, the finite-sample coverage property remains valid after truncation, as shown in Theorem 8.
Theorem 8 (Coverage Guarantee for Truncated CP). Suppose {(xi, yi)}ni=1 and (xn+1, yn+1) are
i.i.d. and let C(xn+1; π̂

λ, q̂λ) be the prediction set of xn+1 obtained from Algorithm 1 by given
confidence level α. The following coverage guarantee holds: P

(
yn+1 ∈ C

(
xn+1; π̂

λ, q̂λ
))

≥ 1−α.

4.4 COMPARISON OF EXAMPLES WITH AND WITHOUT TRUNCATION

In this section, we present two examples to compare the performance of CP with and without trunca-
tion. Compared to approaches that solely modify the score function without truncation, our frame-
work improves the efficiency of CP. Specifically, (i) under the sparsity structure (Definition 1), small
values in the estimated probability vector inflate the prediction set size under APS, even when the
classifier achieves perfect accuracy. (ii) Under the stronger group sparsity structure (Definition 2),
when the sparsity ratio depends on the input, RAPS fails to capture this relationship, resulting in
reduced efficiency. We begin with a general conjecture on efficiency improvement.
Conjecture 9 (Efficiency is Improved after Truncation under Sparsity Prior). The truncation oper-
ation improves the efficiency of CP under both sparsity and group sparsity structures.

To provide a clearer intuition of Conjecture 9, we focus on two simple yet representative special
cases in Example 10, 11, leaving the general but more involved derivation for future work.
Example 10 (APS is Inefficient Under Sparsity Structure). Let x ∈ R2, Y = {1, 2, 3, 4}, and
{(xi, yi)}ni=1 be a calibration set, with the underlying true probability defined as: π(1)(x) = 1,
π(2)(x) = π(3)(x) = π(4)(x) = 0. Suppose the estimated probability of the input x provided by
the model is given as follows: π̂(1)(x) = 1 − 3ξ · ε, π̂(2)(x) = π̂(3)(x) = π̂(4)(x) = ξ · ε, where
ε ∼ Bernoulli(p) and ξ < 0.25.

Then the average prediction set size produced by truncated CP is 1, which is smaller than 1 + 3p ·
P(B < ⌈(1− α)(1 + n)⌉) without truncation, where B =

∑n
i=1 ϵi ∼ Binomial(n, p).

To simulate sparsity, we assign zero values to 75% of the indices in π(·) as zero, and set K = 4
for simplicity. Notably, the point estimator based on π̂(·) has 100% classification accuracy. Without
truncation, the APS score is computed as s(x, y; π̂) =

∑K
y′=1 π̂y′(x)I{π̂y′ (x)≥π̂y(x)} = π̂(1)(x) =

1− 3ξ · ε. Then, the quantile of score computed on the calibration set {s(xi, yi; π̂)}ni=1 is given by:

q̂ =

{
1− 3ξ, if B ≥ ⌈(1− α)(1 + n)⌉,
1, if B < ⌈(1− α)(1 + n)⌉.

(3)

When the quantile q̂ = 1, the prediction set of new input x by APS is {1, 2, 3, 4} with probability
p. This result highlights that APS may produce a large prediction set when sparsity is not accounted
for. More details are presented in the Appendix B.4. This issue could be addressed by incorporating
the sparsity prior into π̂(·) through truncation, i.e., imposing these small noise terms ξϵ into 0.
Example 11 (RAPS is Inefficient Under Group Sparsity Structure). Let x ∈ R2, Y = {1, 2, 3, 4},
and {(xi, yi)}ni=1 be a calibration set, with the underlying true probability defined as:{

π(1)(x) = 1, π(2)(x) = π(3)(x) = π(4)(x) = 0, if x[1] > 0,

π(1)(x) =
2
3
, π(2)(x) =

1
3
, π(3)(x) = π(4)(x) = 0, if x[1] < 0,

and P(x[1] > 0) = p1. Suppose the estimated probability of x provided by the model is:{
π̂(1)(x) = 1− 3ξ · ε, π̂(2)(x) = π̂(3)(x) = π̂(4)(x) = ξ · ε, if x[1] > 0,

π̂(1)(x) =
2
3
− ξ · ε, π̂(2)(x) =

1
3
− ξ · ε, π̂(3)(x) = π̂(4)(x) = ξ · ε, if x[1] < 0,

where ε ∼ Bernoulli(p2) and ξ < 1
9 .

Then the average prediction set size given by truncated CP is (q′1+q
′
2)+(q′3+q

′
4+q

′
5)[2−p1], which

is smaller than q′1+ q
′
2[1+ p2(1− p1)]+ q′3[2− p1]+ q′4[2− p1+ p1p2]+ q′5× [2− p1+ p2+ p1p2]

7
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(a) Size vs. Truncation across Epochs (b) Best Size & Truncation Dynamic

Figure 3: Relation between first-stage model quality (training epochs), truncation level, and pre-
diction set size. As first-stage model quality improves, the model better separates signal from
noise (higher best truncation level), enabling truncation to achieve greater efficiency (reduced
prediction set size), with more details in Appendix C.3.

without truncation when kreg = 2, where q′1, . . . , q
′
5 ∈ (0, 1) are probabilities, with their values and

more details given in Appendix B.4

To simulate group sparsity, we create two groups based on features with sparsity ratios of 25% and
75%, respectively. Intuitively, the ideal kreg should correspond to the number of non-zero elements
in the probability vector, effectively penalizing positions with small noises that should be estimated
as zero. However, as the hyperparameter kreg is fixed, it fails to adapt to the varying sparsity.
Consequently, the prediction set becomes larger than the size of the oracle set predictor.

5 EXPERIMENTS

In this section, we aim to empirically demonstrate how incorporating a sparsity prior into the model
using a truncation framework enhances the efficiency of the CP classification task. To achieve this,
we conduct ablation studies on the truncation level, sparsity ratio, and the first-stage estimator using
both synthetic (Section 5.1) and real-world datasets (Section 5.2).

5.1 SIMULATION DATA

Data Generating Procedure. To simulate group sparsity structure (Definition 2), we design a clas-
sification dataset with a hierarchical structure. Specifically, we denote the label classes as {y(j)i : j ∈
{1, . . . , C}, i ∈ {1, . . . , Nj}}, where the superscript j represents the j-th large group, the subscript
i indicates the i-th small class within the j-th large group, C denotes the number of large groups, and
Nj represents the number of classes in the j-th group. Given a data instance x = (x1,x2), where
x1 ∈ Rp1 and x2 ∈ Rp2 are the covariates which decide the label of large group and small class.
The large group label of x is given by yj = argmaxyj

exp[w⊤
j x

1 + bj ]/
∑C

t=1 exp[w
⊤
t x

1 + bt],
where (w⊤

j , bj) are the parameters associated with label yj for j ∈ {1, . . . , C}. Furthermore, the
probability distribution of x within the group yj is given by:

P (Y = y
(j)
i | X = x2, Y (j) = yj) =

exp[w⊤
(i,j)x

2 + b(i,j)]∑Nj

t=1 exp[w
⊤
(i,t)x

2 + b(i,t)]
,

where (w⊤
(i,j), b(i,j)) are the parameters of class i within the j-th group, with i ∈ {1, . . . , Nj}.

Setup. We generate 200 samples per small class, yielding a total sample size of 200× (
∑C

j=1Nj),
and set p1 = 20 and p2 = 30. To simulate different sparsity ratios, the group size C ∈ {3, 6, 9}
and small classes Nj ∈ {10, 20, 30, 40, 50, 70}. Specific settings are denoted by GroupSize and
Num.3 The analysis focuses on three methods: APS (APS), APS with truncation (TCAPS), and
RAPS (RAPS). Additional ablation studies on various CP methods are presented in Appendix D.2.

3GroupSize = [10,20,30] and Num=2-2-2 mean C = 6, with 2 groups for each class size Nj = 10, 20, 30.
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Table 1: Coverage and prediction set size for APS, RAPS, and TCAPS on simulation data under
varying sparsity ratios. The detailed results and the group coverage comparison are in Table 8, 9.

GROUP APS RAPS TCAPS

GSIZE GNUM COVERAGE SIZE COVERAGE SIZE COVERAGE SIZE

[10,20,30]
1-1-1 90.71±0.01 5.43±0.10 90.42±0.01 4.76±0.32 90.54±0.01 4.70±0.05

2-2-2 91.46±0.01 6.42±0.05 90.46±0.01 4.41±0.09 90.47±0.01 4.34±0.06

3-3-3 91.57±0.01 5.49±0.05 90.37±0.03 3.51±0.07 90.50±0.01 3.45±0.04

Table 2: Coverage and prediction set size for APS, RAPS, and TCAPS on Imagenet-Val. The group
coverage comparison is provided in Table 10.

METHOD APS RAPS TCAPS

MODEL COVERAGE SIZE COVERAGE SIZE COVERAGE SIZE

RESNEXT101 93.81±0.01 20.16±1.03 90.76±0.01 2.06±0.04 90.99±0.01 2.03±0.03

RESNET152 93.66±0.01 10.45±0.55 90.69±0.01 2.19±0.10 90.67±0.01 2.13±0.05

RESNET101 93.60±0.01 10.98±0.43 90.56±0.01 2.42±0.12 90.86±0.01 2.23±0.03

RESNET50 93.42±0.01 12.56±0.73 90.52±0.01 2.62±0.01 90.56±0.01 2.41±0.03

RESNET18 92.35±0.01 16.15±1.02 90.14±0.01 4.85±0.65 90.56±0.01 4.63±0.10

DENSENET161 93.57±0.01 12.65±0.24 90.71±0.01 2.41±0.04 90.40±0.01 2.22±0.03

VGG16 92.88±0.01 14.32±0.87 90.35±0.01 3.72±0.15 90.39±0.01 3.41±0.05

INCEPTION 92.57±0.01 89.85±2.98 90.28±0.01 5.47±0.25 90.35±0.01 5.16±0.13

SHUFFLENET 92.89±0.01 32.35±1.10 90.23±0.01 5.52±0.78 90.34±0.01 4.77±0.08

Ablation Study on the Truncation Level. As shown in fig. 2, both size and coverage curves
exhibit elbow points as the truncation level increases. Specifically, in the descending region, a higher
truncation level leads to a sharp reduction in the output size, with a slight decrease in group coverage.
This behavior highlights an optimal balance between two factors under the coverage constraint.

Ablation Study on the Sparsity Ratio. We also analyze how the sparsity ratio influences the size
of prediction sets in Table 1. As the Num increases from 1 to 3, the setting becomes more sparse,
leading to a greater increase in size compared to the vanilla APS. This demonstrates that higher
sparsity ratios contribute to a larger gain in the prediction set size.

Ablation Study on the First-Stage Estimator. As shown in fig. 3, the elbow truncation position
increases as the number of training epochs grows, while the corresponding size gradually decreases.
Specifically, as the training epochs increase, the first-stage estimator becomes more accurate, making
the gap between noise and signal more pronounced, thereby providing more room for truncation.

5.2 REAL DATA

In this section, we present experiments on real data to evaluate the effect of the truncation frame-
work. Specifically, we assessed the performance of different CP methods (APS, TCAPS, RAPS)
on various pre-trained models using the ImageNet-Val dataset (Deng et al., 2009). To further demon-
strate the general applicability of the truncation framework, we apply it to the medical image data
on PathMNIST (Kather et al., 2019), OrganAMNIST (Bilic et al., 2023), TissueMNIST (Woloshuk
et al., 2021), BloodMNIST (Acevedo et al., 2020), DermaMNIST (Tschandl et al., 2018) and
ChestXray (Wang et al., 2017), with details in Appendix D.3.

As illustrated in Table 2, 10, compared to APS, TCAPS truncates labels with low estimated prob-
ability values, fully leveraging the sparse prior to significantly shorten prediction set size without
significantly compromising group coverage. Therefore, compared to RAPS, TCAPS further en-
hances efficiency. Additional ablation studies on base classifier quality (Appendix D.4) demonstrate
that the benefits of truncation are robust to variations in classifier quality.

6 CONCLUSION

This paper proposes a truncation framework to incorporate the sparsity prior into the CP algorithm
for classifiers. Intuitively, the estimated probability vector consists of two components: the signal
and small noise, shaped by the model’s softmax layer. By selecting the truncation level to separate
signal from noise, the method suppresses small noise and amplifies the variance among signals.
The truncation is post-hoc and orthogonal to score function design, ensuring compatibility with
existing approaches, including RAPS. For further exploration, while classification tasks are widely
applicable, incorporating prior information into regression models or other data structures might
enhance the efficiency of CP algorithms in broader contexts.

9
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ETHICS STATEMENT

This research is methodological, focusing on the development of a truncation–normalization frame-
work that integrates sparsity priors into conformal prediction for classification tasks to enhance
efficiency. The study does not involve human subjects and therefore did not require Institutional
Review Board (IRB) approval. All experiments were performed on standard, publicly available
benchmarks widely used in the machine learning community. No new data were collected, and no
personally identifiable or sensitive information was processed, thereby avoiding concerns related to
data privacy and security.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive descriptions of both our theoretical results and
experimental setup. The theoretical contributions in Section 4 are supported by complete mathemat-
ical proofs in Appendix B. Details of the experimental setup are provided in Section 5, along with
additional implementation information, including data splitting protocols, the choice of truncation
level, and computing devices, which are presented in Appendix C and Appendix D. The source code
will be released publicly upon publication.
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Appendix
In this section, we first summarize the main contributions of this paper and discuss related work
in Appendix A. Theoretical justifications and computational details are provided in Appendix B.
Practical guidance on selecting the truncation level, along with key factors influencing this choice,
is presented in Appendix C. Additional experiments on both simulation and real data are detailed
in Appendix D. Finally, the discussion regarding the use of large language models in this paper is
provided in Appendix E.

A SUMMARIZED MAIN CONTRIBUTIONS AND RELATED WORKS

In this section, we first summarize the main contributions of this paper in Appendix A.1. Further-
more, the detailed descriptions of three baseline conformal prediction methods for classification
tasks are provided in Appendix A.2. Finally, we present an additional review on the use of sparsity
priors in statistics and machine learning in Appendix A.3.

A.1 SUMMARIZED MAIN CONTRIBUTIONS

Our contributions are mainly three-fold:

• We propose a truncation framework (Algorithm 1) that incorporates sparsity prior informa-
tion into the CP algorithm. It is simple yet effective, and preserves the post-hoc nature of
CP. Moreover, it is applicable across various classification CP methods.

• We theoretically demonstrate a U-shaped relationship between the truncation level and
the prediction set size in Theorem 4. As the truncation level increases, the prediction
set size first decreases and then increases. This finding provides a crucial practical guide
(Corollary 5): by selecting the truncation level at the “elbow” of this curve, the method
effectively separates signal from noise. This proper selection ensures improved efficiency
and more compact prediction sets.

• Extensive experiments on both synthetic and real-world datasets (Section 5) demonstrate
that, incorporating the sparsity prior could enhance the efficiency of the CP algorithm by
choosing a truncation level near the “elbow” position. The results (fig. 3) further reveal
that the “elbow” position shifts upward with training epochs as the improved model quality
widens the gap between signal and noise, enabling more effective truncation.

A.2 DETAILS OF CONFORMAL PREDICTION IN CLASSIFICATION

In this section, we provide the details of three baseline methods of conformal predictions in classi-
fication tasks. The core of these methods is the score function, a critical element that significantly
influences how well the CP procedure adapts and its overall efficiency.

Least Ambiguous Set-valued Classifier (LAC, Sadinle et al. (2019)). In LAC, the score function
is defined as s(x, y; π̂) = 1− π̂y(x), aiming to approximate the oracle solution of the optimization
problem that minimizes the size of the set predictor while maintaining marginal coverage guarantees:
minH:X→2Y E|H(X)| subject to P(Y /∈ H(X)) ≤ α. LAC achieves the smallest possible average
set size under the strong assumption that π̂(x) perfectly represents the true conditional probability.
But this assumption is unrealistic in practical scenarios, especially when data are limited. Moreover,
LAC’s conditional coverage guarantees are also restricted.

Adaptive Prediction Sets (APS, Romano et al. (2020a)). The conditional coverage is improved by
APS with the score

s(x, y; π̂) =

K∑
y′=1

π̂y′(x)I{π̂y′ (x)≥π̂y(x)}. (4)

It is an approximation to the objective of minimizing efficiency while ensuring conditional coverage:

min
H:X→2Y

E|H(X)| subject to P(Y /∈ H(X) | X = x) ≤ α for all x ∈ X . (5)
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The oracle set predictor is defined as the solution to equation 5 when the

Coracle(x; f = π, τ = 1− α) = {‘y’ indices of the L(x;π, 1− α) largest πy(x)} , (6)

where L(x;π, τ) = min
{
c ∈ {1, . . . ,K} :

∑c
i=1 π(i)(x) ≥ τ

}
.

However, the efficiency of APS is often affected by small values in the estimated probability vec-
tor. Achieving optimal performance requires knowledge of the joint distribution, which might be
unavailable in practice.

Regularized Adaptive Prediction Sets (RAPS, Angelopoulos et al. (2020)). To improve the effi-
ciency of APS, RAPS defines the score as s(x, y; π̂) =

∑K
y′=1 π̂y′(x)I{π̂y′ (x)≥π̂y(x)} + γ(ox(y)−

kreg)+, where ox(y) is the index to which label y is mapped after the scores are sorted, and
(·)+ := max{·, 0}. The hyperparameters γ and kreg control the intensity of the penalty. RAPS
addresses the issue introduced by small noises in the estimated probability vector by penalizing dif-
ficult examples, however, it is less adaptive to the feature, which may reduce efficiency when data
exhibit group sparsity (Example 11).

A.3 RELATED WORKS ON SPARSITY PRIOR

Sparsity priors play a central role in high-dimensional statistics by imposing low-dimensional struc-
tures that render otherwise intractable problems more manageable. For high-dimensional vector es-
timation, a representative example is the Lasso (Tibshirani, 1996), which introduces an L1 penalty to
simultaneously perform variable selection and regularization by shrinking unimportant coefficients
to zero, thereby producing sparse and interpretable models. In the context of high-dimensional co-
variance estimation, sparsity assumptions are often imposed on the precision matrix (the inverse
covariance matrix), which is crucial in graphical modeling. The Graphical Lasso (Friedman et al.,
2008; Meinshausen & Bühlmann, 2006) extends the L1-regularization framework to this setting,
allowing one to estimate sparse precision matrices and uncover conditional dependencies between
variables in Gaussian graphical models.

Beyond estimation problems, sparsity priors have also been explored in classification tasks. The
standard Softmax function assigns strictly positive probabilities to all classes, which may reduce
interpretability in high-dimensional settings with many classes. To mitigate this limitation, alter-
native activation functions such as Sparsemax (Martins & Astudillo, 2016) and its variants (Peters
et al., 2019; Blondel et al., 2020) have been developed. These methods yield sparse probability dis-
tributions with exact zeros, enabling models to produce more decisive, interpretable predictions and
improving scalability when dealing with a large number of output categories. However, incorporat-
ing such sparsity-aware activation functions into conformal prediction typically requires retraining
the base model, thereby undermining the post-hoc nature that is central to CP.

B THEORETICAL JUSTIFICATIONS AND COMPUTATIONAL DETAILS

In this section, we present theoretical justifications and computational details that support our main
results in Section 4. We start with the proof of Theorem 4 in Appendix B.1, which explains why the
size of the resulting prediction set first decreases and then increases as the truncation level grows.
Appendix B.2 establishes the oracle property of the truncated conformal method by proving Theo-
rem 7, showing that under a consistent first-stage classifier, the truncated conformal set asymptoti-
cally recovers the oracle predictor. Besides the asymptotic oracle recovery, the proof of the standard
marginal coverage guarantee of truncated CP (Theorem 8) is provided in Appendix B.3. Finally, the
detailed computations of the prediction set size in Appendix B.4 are provided in Section 4.4.

B.1 PROOF OF THEOREM 4

The proof of Theorem 4 relies on two auxiliary lemmas. The first characterizes a key property of
the gradient of the gap function, and the second provides an upper bound on the difference between
two gap function values computed on the same sample but with different summation indices.

Lemma 12. For any x ∈ X , let π̂(x) = σ(z(x)) ∈ ∆K−1 represent the estimated probability,
where z is the logit vector output by a base model and σ(·) denotes the softmax operator. Denote
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∆z = z[1] − z[2] as the difference between the top 1 and top 2 logits. Assume that there exists γ
such that π̂y(x) > γ for any sample (x, y). If choose λ ≤ γ, for M ≤ Lλ, it holds that:{

If λ < 1
K , exp (∆z) > (K − 1)(1−Kλ) =⇒ ∇z[1]g(z;λ,M) > 0,

If λ ≥ 1
K =⇒ ∇z[1]g(z;λ,M) > 0.

Proof. For λ ≤ γ, since π̂y(x) > γ, it holds that Sλ(x) ≥ 1 and Lλ ≤ Sλ(x). Consider the
derivative of the following exponential term with respect to z[1]:

∂
(
exp(z[j])I{exp(z[j])>λ

∑K
i=1 exp(z[i])}

)
∂z[1]

=
∂ (exp(z[j]))

∂z[1]
I{exp(z[j])>λ

∑K
i=1 exp(z[i])} +

∂
(
I{exp(z[j])>λ

∑K
i=1 exp(z[i])}

)
∂z[1]

exp(z[j])

=

{
exp(z[1]), if j = 1,

0, others .

For any M ≤ Lλ ≤ Sλ(x), the gap function is defined as:

g(z;λ,M) =

M∑
i=1

π̂(i)(x)− π̂λ
(i)(x)

=

M∑
i=1

π̂(i)(x)−
∑M

i=1 π̂(i)(x)∑Sλ(x)
i=1 π̂(i)(x)

=

∑M
i=1 exp(z[i])∑K
i=1 exp(z[i])

−
∑M

i=1 exp(z[i])∑Sλ(x)
i=1 exp(z[i])

.

Then compute the differentiate with respect to z[1] as:

∇z[1]g(z;λ,M) = exp(z[1])

[∑K
i=M+1 exp(z[i])

(
∑K

i=1 exp(z[i]))
2
−
∑Sλ(x)

i=M+1 exp(z[i])

(
∑Sλ(x)

i=1 exp(z[i]))2

]

=
exp(z[1])

∑K
i=Sλ(x)+1 exp(z[i])

(
∑K

i=1 exp(z[i]))
2(
∑Sλ(x)

i=1 exp(z[i]))2
×( M∑

i=1

exp(z[i])

)2

−

 Sλ(x)∑
i=M+1

exp(z[i])

 K∑
i=Sλ(x)+1

exp(z[i])

−

 Sλ(x)∑
i=M+1

exp(z[i])

2 ,

note that if M = Sλ(x) then
∑Sλ(x)

i=M+1 exp(z[i]) = 0 .

Therefore, ∇z[1]g(z;λ,M) > 0 holds if and only if the following inequality holds:(
M∑
i=1

π̂(i)(x)

)2

−

 Sλ(x)∑
i=M+1

π̂(i)(x)

 K∑
i=Sλ(x)+1

π̂(i)(x)

−

 Sλ(x)∑
i=M+1

π̂(i)(x)

2

> 0. (7)

Since
∑K

i=Sλ(x)+1 π̂(i)(x) < Kλ and
∑K

i=1 π̂(i)(x) = 1, the upper bound of the right-hand side of
(7) is given by:  Sλ(x)∑

i=M+1

π̂(i)(x)

 K∑
i=Sλ(x)+1

π̂(i)(x)

+

 Sλ(x)∑
i=M+1

π̂(i)(x)

2

<

(
1−

M∑
i=1

π̂(i)(x)

)(
1−

M∑
i=1

π̂(i)(x)−Kλ

)
.

(8)
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Combining (7) and equation 8 yields a sufficient condition for the positivity of the gradient:(
M∑
i=1

π̂(i)(x)

)2

≥

(
1−

M∑
i=1

π̂(i)(x)

)(
1−

M∑
i=1

π̂(i)(x)−Kλ

)
=⇒ ∇z[1]g(z;λ,M) > 0. (9)

Solving the inequality in equation 9, it holds that:{
If λ < 1

K ,
∑M

i=1 π̂(i)(x) > 1 + 1
Kλ−2 =⇒ ∇z[1]g(z;λ,M) > 0,

If λ ≥ 1
K =⇒ ∇z[1]g(z;λ,M) > 0.

(10)

Finally, note that
∑K

i=1 exp(z[i]) ≤ exp(z[1]) + (K − 1) exp(z[2]), so we obtain the following
lower bound:

M∑
i=1

π̂(i)(x) ≥ π̂(1)(x) ≥
1

1 + (K − 2) exp(−∆z)
. (11)

Combine equation 10 and equation 11, the conclusion holds.

Lemma 13. Define the probability difference before and after truncation as d(x;λ, i) = π̂(i)(x)−
π̂λ
(i)(x). The gap function is then defined by g(z;λ,M) =

∑M
i=1[σi(z) − Tλ(σ(z))i] =∑M

i=1 d(x;λ, i). Then, it holds that:

∀M,Lq ∈ {1, · · · ,K}, |g(z;λ,M)− g(z;λ, Lq)| ≤

∣∣∣∣∣∣
Sλ(x)∑
i=1

d(x;λ, i)

∣∣∣∣∣∣ . (12)

Proof. Without loss of generality, assume M > Lq . Then, the absolute difference in equation 12
can be computed as:

|g(z;λ,M)− g(z;λ, Lq)| =

∣∣∣∣∣
M∑
i=1

d(x;λ, i)−
Lq∑
i=1

d(x;λ, i)

∣∣∣∣∣ =
∣∣∣∣∣

M∑
i=Lq+1

d(x;λ, i)

∣∣∣∣∣ .
Recall that for all i ≤ Sλ(x), d(x;λ, i) ≤ 0; while for all i > Sλ(x), d(x;λ, i) ≥ 0. Based on the
position of Lq + 1 and M relative to Sλ(x), we consider the following three cases:

• Case 1: Lq + 1 ≥ Sλ(x). In this case, the summation includes only non-negative differ-
ences. Hence, the maximum is achieved by summing all positive differences:∣∣∣∣∣

M∑
i=Lq+1

d(x;λ, i)

∣∣∣∣∣ ≤
∣∣∣∣∣∣

K∑
i=Sλ(x)+1

d(x;λ, i)

∣∣∣∣∣∣ .
• Case 2: M ≤ Sλ(x). The summation includes only non-positive differences. Since
Lq + 1 ≥ 2, the following inequality holds:∣∣∣∣∣

M∑
i=Lq+1

d(x;λ, i)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
Sλ(x)∑
i=2

d(x;λ, i)

∣∣∣∣∣∣ .
• Case 3: Lq + 1 < Sλ(x) < M . The summation includes both positive and negative

differences. In this case, the absolute sum can be bounded by the maximum of the previous
two cases:∣∣∣∣∣

M∑
i=Lq+1

d(x;λ, i)

∣∣∣∣∣ ≤ max


∣∣∣∣∣∣

K∑
i=Sλ(x)+1

d(x;λ, i)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
Sλ(x)∑
i=2

d(x;λ, i)

∣∣∣∣∣∣
 .
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Note that by construction, the total sum of differences is zero, i.e.,
∑K

i=1 d(x;λ, i) = 0, which
implies

Sλ(x)∑
i=1

d(x;λ, i) = −
K∑

i=Sλ(x)+1

d(x;λ, i),

and hence ∣∣∣∣∣∣
Sλ(x)∑
i=1

d(x;λ, i)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

K∑
i=Sλ(x)+1

d(x;λ, i)

∣∣∣∣∣∣ .
Since both partial sums are composed of terms with the same sign, removing any term strictly
reduces the total magnitude. Therefore,∣∣∣∣∣∣

Sλ(x)∑
i=2

d(x;λ, i)

∣∣∣∣∣∣ <
∣∣∣∣∣∣

K∑
i=Sλ(x)+1

d(x;λ, i)

∣∣∣∣∣∣ ,
which implies

max


∣∣∣∣∣∣

K∑
i=Sλ(x)+1

d(x;λ, i)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
Sλ(x)∑
i=2

d(x;λ, i)

∣∣∣∣∣∣
 =

∣∣∣∣∣∣
Sλ(x)∑
i=1

d(x;λ, i)

∣∣∣∣∣∣ .
Combining all cases together, it concludes that:

∀M,Lq ∈ {1, . . . ,K}, |g(z;λ,M)− g(z;λ, Lq)| ≤

∣∣∣∣∣∣
Sλ(x)∑
i=1

d(x;λ, i)

∣∣∣∣∣∣ .

Theorem 4 (Impact of Truncation Level on Size). For any x ∈ X , let π̂(x) = σ(z(x)) ∈ ∆K−1

represent the estimated probability, where z is the logit vector output by a base model. For a trun-
cation level λ > 0, the sparsified probability vector for x is defined as π̂λ(x) = Tλ(π̂(x)), as given
in eq. (2). Let q̂λ denote the quantile of the score computed on the calibration set. The size of the
prediction set for x is given by Lλ = L(x; π̂λ, q̂λ) = min

{
c ∈ {1, . . . ,K} :

∑c
i=1 π̂

λ
(i)(x) ≥ q̂λ

}
.

The number of non-zero elements in π̂λ(x) is Sλ(x) = maxi{i : π̂y(x) > min(λ, π̂(2)(x))}. The
gap function is defined as g(z;λ,M) =

∑M
i=1[σi(z)− Tλ(σ(z))i]. Let z[−1] = (z[2], . . . ,z[K])

and ∆z = z[1]− z[2]. Under the following assumptions:
(C1) There exists δ such that π̂y(x) > δ for any sample (x, y).
(C2) q̂0 and q̂λ are derived from the same sample xq in the calibration set.
(C3)

∑K
i=Sλ(xq)+1 π̂(i)(x

q) = o(γ).
(C4) zq[1] > z[1], where zq is the logit vector of xq . For any z′ = θzq[1]+ (1− θ)z[1] (θ ∈ [0, 1])
and M ≤ Lλ, |∇gz[1](z′;λ,M)(zq[1]− z[1])| > |∇gz[−1](z

′;λ;λ,M)⊤(zq[−1]− z[−1])|.
(C5) The quantity ∆z increases monotonically with the score s(x, y; π̂).
Then, for any truncation level λ ≤ δ, it holds that:{

If λ < 1
K
, exp(∆z) > (K − 1)(1−Kλ) =⇒ L0 ≥ Lλ,

If λ ≥ 1
K

=⇒ L0 ≥ Lλ.

Proof. Let λ ≤ γ, then Sλ(x) ≥ 1 and Lλ ≤ Sλ(x). By Lemma 12, the following holds:{
If λ < 1

K , exp(∆z) > (K − 1)(1−Kλ) =⇒ ∇z[1]g(z;λ,M) > 0,

If λ ≥ 1
K =⇒ ∇z[1]g(z;λ,M) > 0.

From condition (C5), for any x′ such that s(x, y) ≤ s(x′, y) ≤ s(xq, y), the inequality
∇z[1]g(z;λ,M) > 0 can be obtained via Lemma 12. Therefore, by condition (C4), it holds that:

g(zq, λ,M)− g(z, λ,M) = ∇z[1]g(z
′;λ,M)(zq[1]− z[1]) +∇z[−1]g(z

′;λ,M)⊤(zq[−1]− z[−1])

> 0, for M ≤ Lλ.
(13)
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Furthermore, by Lemma 13, the following inequality holds:

∀M,Lq ∈ {1, . . . ,K}, |g(z;λ,M)− g(z;λ, Lq)| ≤

∣∣∣∣∣∣
Sλ(x)∑
i=1

d(x;λ, i)

∣∣∣∣∣∣ , (14)

where

d(x;λ, i) = π̂(i)(x)−
π̂(i)(x)∑Sλ(x)

j=1 π̂(j)(x)
, i ≤ Sλ(x).

Since
∑Sλ(x)

i=1 d(x;λ; i) =
∑K

i=Sλ(x)+1 π̂(i)(x) = o(γ), it follows from equation 13 and equa-
tion 14 that:

g(z, λ,M) < g(zq, λ, Lq) + o(γ).

Moreover, from the definition of the gap function g(·; ·, ·) and condition (C2), the following inequal-
ity holds for all M ∈ {1, . . . , Lλ}:

M∑
i=1

π̂(i)(x)− π̂λ
(i)(x) < q̂0 − q̂λ + o(γ).

Now observe that for any 0 < t ≤ q̂λ, define

Mt := min

{
l ∈ {1, . . . ,K} :

l∑
i=1

π̂λ
(i)(x) ≥ t

}
.

Then Mt ≤ Lλ. If Mt > 1, it holds that

q̂λ − q̂0 +

Mt−1∑
i=1

π̂(i)(x)− o(γ) ≤
Mt−1∑
i=1

π̂λ
(i)(x) < t.

This implies that

min

{
l ∈ {1, . . . ,K} : q̂λ − q̂ +

l∑
i=1

π̂(i)(x)− o(γ) ≥ t

}
≥Mt.

That is,

∀ 0 < t ≤ q̂λ : min

{
l :

l∑
i=1

π̂λ
(i)(x) ≥ t

}
≤ min

{
l : q̂λ − q̂0 +

l∑
i=1

π̂(i)(x)− o(γ) ≥ t

}
.

In particular, choosing t = q̂λ, it holds that:

min

{
l :

l∑
i=1

π̂λ
(i)(x) ≥ q̂λ

}
≤ min

{
l : q̂λ − q̂0 +

l∑
i=1

π̂(i)(x)− o(γ) ≥ q̂λ

}

⇐⇒min

{
l :

l∑
i=1

π̂λ
(i)(x) ≥ q̂λ

}
≤ min

{
l :

l∑
i=1

π̂(i)(x) ≥ q̂0 + o(γ)

}
.

This completes the proof and establishes the inequality Lλ ≤ L0.

We further provide empirical validation to support the technical conditions in Theorem 4. To verify
condition (C2), we compare the distributions of conformal scores before and after applying trunca-
tion, as shown in fig. 4. The analysis is conducted on simulated data with a group size configuration
of 1-1-1, and the truncation level is set to 0.03. The results indicate that truncation preserves the
relative ranking of class probabilities for most samples, resulting in minimal changes to the order
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Figure 4: Conformal score with trunca-
tion probability sorted by conform score
without truncation (low to high). This
figure corresponds to assumption (C2).

Figure 5: Logit gap ∆z for each sample
sorted by conformal score (low to high).
This figure corresponds to assumptions
(C4) and (C5).

of scores within the calibration set. This justifies condition (C2), which asserts that the quantiles q̂0
and q̂λ are both derived from the same calibration sample xq .

Next, we investigate conditions (C4) and (C5). In fig. 5, we illustrate the relationship between the
conformal score and the logit gap ∆z using the same simulated setup. The figure clearly supports
condition (C5), as ∆z tends to increase with the score, reflecting a growing dominance of the largest
logit z1 over z2, and, by extension, over z3, . . . , zK . This supports the intuition behind condition
(C4): namely, that the variation in the gap function g(x;λ,M) across different inputs is primarily
driven by the magnitude of the first entry in their respective softmax vectors.

Finally, we emphasize that even if these assumptions are not strictly satisfied in practice, the macro-
level U-shaped relationship between the prediction set size and truncation level given by Theorem 4
still emerges, as confirmed by the extensive experiments in Section 5. Future work will aim to
establish theoretical guarantees under more relaxed conditions.

B.2 PROOF OF THEOREM 7

In this section, we prove that the oracle set predictor could be asymptotically recovered after trun-
cation, assuming the first-stage estimator is consistent based on the APS score function.

Theorem 7 (Asymptotic Oracle Recovery). For any x ∈ X , let π(x) and π̂(x) denote the true and
estimated probability simplex, where π(x) has sparsity structure. Let the score function be the APS
score defined in eq. (1). Denote the prediction set obtained by π̂(·) after truncation with the level
λ as CTCAPS(x; π̂

λ, q̂λ) = {y : s(x, y; π̂λ) ≤ q̂λ}, and the oracle prediction set based on π(·) as
Coracle(x;π, q) = {y : s(x, y;π) ≤ q}, where q̂λ and q are the ⌈(1 − α)(1 + n)⌉-largest value of
scores computed on the calibration set {(xi, yi)}ni=1 using π̂λ and π. Let Sx = {i : πi(x) > 0} be
the support of π(x), and SC

x = {i : πi(x) = 0}. Assume there exists δ such that mini∈Sx π̂i(x) >
δ > maxi∈Sc

x
π̂i(x) for all x, and ∥π̂(x)− π(x)∥2 → 0 as n→ ∞. Choosing λ = δ yields

CTCAPS(x; π̂
λ, q̂λ) → Coracle(x;π, q) as n→ ∞.

In contrast, the prediction set C(x; π̂, q̂) constructed without truncation is larger than the oracle set,
i.e., |C(x; π̂, q̂)| > |Coracle(x;π, q)| for any sample size n.
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Proof. Since ∥π̂(x)− π(x)∥2 ≤ ∥π̂(x)− π(x)∥1 ≤
√
K∥π̂(x)− π(x)∥2, it holds that

s(x, y; π̂) =

K∑
y′=1

π̂λ
(i)(x)I{π̂(y′)(x)≥π̂y(x)}

=

∑K
y′=1 π̂y′(x)I{π̂y′ (x)>π̂y(x)} + π̂(y)(x)

1−
∑

i∈Sc
x
π̂i(x)

=

∑K
y′=1 π̂y′(x)I{π̂y′ (x)>π̂y(x)} + π̂(y)(x)

1− |π̂Sc
x
(x)− πSc

x(x)
|

≤
2∥π̂(x)− π(x)∥1 +

∑K
y′=1 πy′(x)I{π̂y′ (x)>π̂y(x)} + π(y)(x)

1− |π̂(x)− π(x)|

≤
2
√
K∥π̂(x)− π(x)∥2 +

∑K
y′=1 πy′(x)I{π̂y′ (x)>π̂y(x)} + π(y)(x)

1−
√
K∥π̂(x)− π(x)∥2

→
K∑

y′=1

πy′(x)I{πy′ (x)>πy(x)} + π(y)(x),

and

s(x, y; π̂) =

K∑
y′=1

π̂λ
(i)(x)I{π̂(y′)(x)≥π̂y(x)}

≥
−2∥π̂(x)− π(x)∥2 +

∑K
y′=1 πy′(x)I{π̂y′ (x)>π̂y(x)} + π(y)(x)

1 + ∥π̂Sc
x
(x)− πSc

x(x)
∥1

=

∑K
y′=1 π̂y′(x)I{π̂y′ (x)>π̂y(x)} + π̂(y)(x)

1−
∑

i∈Sc
x
π̂i(x)

≥
−2∥π̂(x)− π(x)∥22 +

∑K
y′=1 πy′(x)I{π̂y′ (x)>π̂y(x)} + π(y)(x)

1 +
√
K∥π̂(x)− π(x)∥2

→
K∑

y′=1

πy′(x)I{πy′ (x)>πy(x)} + π(y)(x).

Combining the inequalities above, the following result holds:

s(x, y; π̂λ) → s(x, y;π) as n→ ∞.

Furthermore, since q̂λ and q̂ are obtained from the same procedure by applying scores s(x, y; π̂λ)
and s(x, y;π), respectively, it follows that q̂λ → q̂ as n→ ∞. Consequently, it concludes that

CTCAPS(x; π̂
λ, q̂λ) → Coracle(x;π, q) as n→ ∞.

B.3 PROOF OF THEOREM 8

In this section, we present the proof of marginal coverage for the proposed truncated CP. We begin
with the following lemma, which establishes the coverage guarantee for classification tasks in CP.
Lemma 14 (Coverage Gurantee Angelopoulos & Bates (2021)). Suppose {(xi, yi)}ni=1 and
(xn+1, yn+1) are i.i.d. and let C(x; π̂, τ) be a set-valued function with estimated probability π̂
satisfying the nesting property: for any τ1 ≤ τ2, we have

C (x; π̂, τ1) ⊆ C (x; π̂, τ2) . (15)

Suppose further that the sets C(x; π̂, τ) grow to include all labels for large enough τ : for all x ∈
Rd, C(x; π̂, τ) = Y for some τ . Then for τ̂ defined as the ⌈(1 − α)(1 + n)⌉-largest value of the
calibration scores {s(xi, yi; π̂)}ni=1, we have the following coverage guarantee:

P (yn+1 ∈ C (xn+1; π̂, τ̂)) ≥ 1− α.
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Theorem 8 (Coverage Guarantee for Truncated CP). Suppose {(xi, yi)}ni=1 and (xn+1, yn+1) are
i.i.d. and let C(xn+1; π̂

λ, q̂λ) be the prediction set of xn+1 obtained from Algorithm 1 by given
confidence level α. The following coverage guarantee holds: P

(
yn+1 ∈ C

(
xn+1; π̂

λ, q̂λ
))

≥ 1−α.

Proof. To prove Theorem 8, it suffices to verify the conditions in Lemma 14.

First, note that π̂λ(·) is a valid probability distribution over the simplex. The conformal prediction
set constructed using the truncated probability estimate π̂λ is defined as

C
(
x; π̂λ, q̂λ

)
=
{
y ∈ Y : s(x, y; π̂λ) ≤ q̂λ

}
.

For any τ1 ≤ τ2, it follows directly that{
y : s(x, y; π̂λ) ≤ τ1

}
⊆
{
y : s(x, y; π̂λ) ≤ τ2

}
,

which verifies the nesting condition required by Lemma 14.

Moreover, setting τ = 1 yields C(x; π̂λ, 1) = Y , thereby satisfying the second condition in
Lemma 14. Therefore, the coverage guarantee holds for the truncated conformal prediction method.

B.4 COMPUTATIONAL DETAILS FOR THE EXAMPLES IN SECTION 4.4

In this section, we provide additional computational details for Example 10 and Example 11, in-
cluding the prediction sets obtained at various quantile levels for different test instances. Before
presenting these results, we first present a lemma on the distribution of discrete order statistics.
Lemma 15 (Distribution of Discrete Order Statistics Casella & Berger (2002)). Let X1, . . . , Xn be
i.i.d. random variables drawn from a discrete distribution supported on the ordered set {x1 < x2 <
· · · < xr}, where P(X = xj) = p(j) and

∑r
j=1 p(j) = 1. Let X(k) denote the k-th order statistic

of the sample, i.e., the value occupying the k-th position after sorting {X1, . . . , Xn} in increasing
order. Then for any j ∈ {1, . . . , r}, the probability that xj appears at the k-th position in the sorted
sample is given by

P(X(k) = xj) =

k−1∑
s=0

n−s∑
t=k−s

(
n

s, t, n− s− t

)
· as · bt · cn−s−t, (16)

where

a =

j−1∑
i=1

p(i) = P(X < xj), b = p(j) = P(X = xj), c =

r∑
i=j+1

p(i) = P(X > xj),

and
(

n
s,t,n−s−t

)
= n!

s! t! (n−s−t)! denotes the multinomial coefficient.

B.4.1 COMPUTATIONAL DETAILS FOR EXAMPLE 10

Example 10 (APS is Inefficient Under Sparsity Structure). Let x ∈ R2, Y = {1, 2, 3, 4}, and
{(xi, yi)}ni=1 be a calibration set, with the underlying true probability defined as: π(1)(x) = 1,
π(2)(x) = π(3)(x) = π(4)(x) = 0. Suppose the estimated probability of the input x provided by
the model is given as follows: π̂(1)(x) = 1 − 3ξ · ε, π̂(2)(x) = π̂(3)(x) = π̂(4)(x) = ξ · ε, where
ε ∼ Bernoulli(p) and ξ < 0.25.

Then the average prediction set size produced by truncated CP is 1, which is smaller than 1 + 3p ·
P(B < ⌈(1− α)(1 + n)⌉) without truncation, where B =

∑n
i=1 ϵi ∼ Binomial(n, p).

Detailed Analysis for the Prediction Set Size: The APS score is computed as s(x, y; π̂) =∑K
y′=1 π̂y′(x) · I{π̂y′ (x)≥π̂y(x)} = π̂(1)(x) = 1 − 3ξ · ε. The corresponding quantile q̂ used for

constructing prediction set based on the calibration scores {s(xi, yi; π̂)}ni=1 is given by

q̂ =

{
1− 3ξ, if B ≥ ⌈(1− α)(1 + n)⌉,
1, otherwise,
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where B =
∑n

i=1 εi ∼ Binomial(n, p). Therefore, the quantile used by APS is either 1 or 1 − 3ξ.
Assume α < ξ, and let (i)x denote the index of the i-th largest estimated class probability for
input x. To ensure the prediction set is non-empty, we define it as the minimal set of labels whose
cumulative estimated probabilities exceed or equal q̂. When q̂ = 1, the resulting prediction set is
{1, 2, 3, 4} with probability p, and {(1)x} with probability 1− p. When q̂ = 1− 3ξ, the prediction
set simplifies to {(1)x}. Therefore, the average size of the APS prediction set is 1 + 3p · P(B <
⌈(1− α)(1 + n)⌉).

The oracle score is computed as s(x, y;π) =
∑K

y′=1 πy′(x) · I{πy′ (x)≥πy(x)} = π(1)(x) = 1. As
a result, the score for all calibration samples is constant, and the corresponding quantile value is
1. Thus, the oracle prediction set is Coracle(x;π, q) = {(1)x}, and the average prediction set size
under the oracle is exactly 1.

B.4.2 COMPUTATIONAL DETAILS FOR EXAMPLE 11

Example 11 (RAPS is Inefficient Under Group Sparsity Structure). Let x ∈ R2, Y = {1, 2, 3, 4},
and {(xi, yi)}ni=1 be a calibration set, with the underlying true probability defined as:{

π(1)(x) = 1, π(2)(x) = π(3)(x) = π(4)(x) = 0, if x[1] > 0,

π(1)(x) =
2
3
, π(2)(x) =

1
3
, π(3)(x) = π(4)(x) = 0, if x[1] < 0,

and P(x[1] > 0) = p1. Suppose the estimated probability of x provided by the model is:{
π̂(1)(x) = 1− 3ξ · ε, π̂(2)(x) = π̂(3)(x) = π̂(4)(x) = ξ · ε, if x[1] > 0,

π̂(1)(x) =
2
3
− ξ · ε, π̂(2)(x) =

1
3
− ξ · ε, π̂(3)(x) = π̂(4)(x) = ξ · ε, if x[1] < 0,

where ε ∼ Bernoulli(p2) and ξ < 1
9 .

Then the average prediction set size given by truncated CP is (q′1+q
′
2)+(q′3+q

′
4+q

′
5)[2−p1], which

is smaller than q′1+ q
′
2[1+ p2(1− p1)]+ q′3[2− p1]+ q′4[2− p1+ p1p2]+ q′5× [2− p1+ p2+ p1p2]

without truncation when kreg = 2, where q′1, . . . , q
′
5 ∈ (0, 1) are probabilities, with their values and

more details given in Appendix B.4

Detailed Analysis for the Prediction Set Size: Consider the RAPS setting where kreg = 2 and the
hyperparameter γ is optimally chosen such that γ > ξ, in order to minimize the prediction set size.
Under this configuration, the possible RAPS scores for a test input x are 2

3 − ξ, 2
3 , 1 − 3ξ, 1 − 2ξ,

and 1. The corresponding oracle scores are 2
3 ,

2
3 , 1, 1, 1, respectively. These scores align uniquely

between the RAPS and oracle procedures. For instance, a RAPS score of 1 − 3ξ corresponds to
an oracle score of 1, and similarly for the remaining cases. There are five possible configurations
determined by the quantile q̂ selected by RAPS:

• Case 1: q̂ = 2
3 − ξ. The RAPS prediction set for x is {(1)x}. The corresponding oracle

quantile is 2
3 , yielding the same prediction set {(1)x}.

• Case 2: q̂ = 2
3 .

– If x[1] > 0, the RAPS prediction set is {(1)x}, which coincides with the oracle set.
– If x[1] < 0, the RAPS prediction set is {(1)x, (2)x} with probability p2, and {(1)x}

with probability 1− p2. In both cases, the oracle set remains {(1)x}.

• Case 3: q̂ = 1− 3ξ.

– If x[1] > 0, both the RAPS and oracle sets are {(1)x}.
– If x[1] < 0, the RAPS set is {(1)x, (2)x}, which matches the oracle set under quantile
q = 1.

• Case 4: q̂ = 1− 2ξ.

– If x[1] > 0, the RAPS prediction set is {(1)x, (2)x} with probability p2, and {(1)x}
with probability 1− p2, whereas the oracle set is always {(1)x}.

– If x[1] < 0, both the RAPS and oracle sets are {(1)x, (2)x}.

• Case 5: q̂ = 1.
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– If x[1] > 0, the RAPS prediction set is {(1)x, (2)x, (3)x} with probability p2, and
{(1)x} with probability 1− p2, while the oracle set remains {(1)x}.

– If x[1] < 0, the RAPS prediction set is {(1)x, (2)x, (3)x} with probability p2, or
{(1)x, (2)x} with probability 1− p2, matching the oracle set {(1)x, (2)x}.

We proceed to compute the corresponding average prediction set size. Based on the above case-
wise analysis, it suffices to determine the distribution of the quantile q̂. By applying Lemma 15 with
k = ⌈(1− α)(1 + n)⌉, it suffices to evaluate the parameters a, b and c in equation 16. The resulting
distribution over quantile levels is summarized in Table 4. Consequently, the average prediction set
size under RAPS is

q′1 + q′2[1 + p2(1− p1)] + q′3[2− p1] + q′4[2− p1 + p1p2] + q′5[2− p1 + p2 + p1p2],

which strictly exceeds the corresponding size under APS with oracle access to π(·), given by
(q′1 + q′2) + (q′3 + q′4 + q′5)[2− p1].

We further consider the case when kreg = 1. Note that the hyperparameter γ is optimally selected
such that γ > 2ξ, minimizing the prediction set size. Under this setting, the possible RAPS scores
assigned to input x are

2

3
− ξ <

2

3
< 1− 3ξ < 1 < 1− 2ξ + λ < 1 + λ,

while the corresponding oracle scores are
2

3
,

2

3
, 1, 1, 1, and 1.

Each RAPS score is uniquely aligned with an oracle score. Based on these values, there are six
distinct cases depending on the quantile q̂ selected by RAPS:

• Case 1: q̂ = 2
3 − ξ. The RAPS prediction set is {(1)x}, which matches the oracle set

obtained at quantile q = 2
3 .

• Case 2: q̂ = 2
3 .

– If x[1] > 0, both RAPS and oracle sets equal {(1)x}.
– If x[1] < 0, the RAPS set is {(1)x, (2)x} with probability p2, and {(1)x} with prob-

ability 1− p2; the oracle set remains {(1)x}.
• Case 3: q̂ = 1− 3ξ.

– If x[1] > 0, both methods return {(1)x}.
– If x[1] < 0, the RAPS set is {(1)x, (2)x}, aligning with the oracle set at quantile 1.

• Case 4: q̂ = 1.
– If x[1] > 0, the RAPS set is {(1)x, (2)x} with probability p2, and {(1)x} with prob-

ability 1− p2; the oracle set remains {(1)x}.
– If x[1] < 0, both methods yield {(1)x, (2)x}.

• Case 5: q̂ = 1− 2ξ + λ.
– If x[1] > 0, the RAPS set is deterministically {(1)x, (2)x}, while the oracle set re-

mains {(1)x}.
– If x[1] < 0, both methods produce {(1)x, (2)x}.

• Case 6: q̂ = 1 + λ.
– If x[1] > 0, the RAPS set is {(1)x, (2)x, (3)x} with probability p2, or {(1)x, (2)x}

with probability 1− p2; the oracle set remains {(1)x}.
– If x[1] < 0, the RAPS set is the same as above, while the oracle set is consistently
{(1)x, (2)x}.

Similarly, the computation of the average prediction set size under RAPS reduces to evaluating the
parameters a, b, and c in equation 16. The resulting distribution over quantile levels is summarized
in Table 3. Consequently, the average prediction set size under RAPS is

q1 + q2[1 + p2(1− p1)] + q3[2− p1] + q4[2− p1 + p1p2] + q5 · 2 + q6[2 + p2],

which strictly exceeds the corresponding size under APS with oracle access to π(·), given by
(q1 + q2) + (q3 + q4 + q5 + q6)[2− p1].
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Table 3: Computation Details for kreg = 1

a b c

q1 = P(q̂ = 2
3
− ξ) 0 2

3
(1− p1)p2

1
3
(1− p1)(3− 2p2) + p1

q2 = P(q̂ = 2
3
) 2

3
(1− p1)p2

2
3
(1− p1)(1− p2)

1
3
(1− p1) + p1

q3 = P(q̂ = 1− 3ξ) 2
3
(1− p1) p2p1

1
3
(1− p1) + p1(1− p2)

q4 = P(q̂ = 1) 2
3
(1− p1) + p2p1 p1(1− p2)

1
3
(1− p1)

q5 = P(q̂ = 1− 2ξ + γ) 2
3
(1− p1) + p1

1
3
p2(1− p1)

1
3
(1− p2)(1− p1)

q6 = P(q̂ = 1 + γ) ( 2
3
+ 1

3
p2)(1− p1) + p1

1
3
(1− p1)(1− p2) 0

Table 4: Computation Details for kreg = 2

a b c

q′1 = P(q̂ = 2
3
− ξ) 0 2

3
(1− p1)p2 1− 2

3
(1− p1)p2

q′2 = P(q̂ = 2
3
) 2

3
(1− p1)p2

2
3
(1− p1)(1− p2)

1
3
(1 + 2p1)

q′3 = P(q̂ = 1− 3ξ) 2
3
(1− p1) p2p1

1
3
(1 + 2p1)− p2p1

q′4 = P(q̂ = 1− 2ξ) 2
3
(1− p1) + p2p1

1
3
p2(1− p1)

1
3
(1− p2)(1 + 2p1)

q′3 = P(q̂ = 1) 1
3
(1− p1)(2 + p2) + p2p1

1
3
(1− p2)(1 + 2p1) 0

C PRACTICE DETAILS ON TRUNCATION FRAMEWORK

In this section, we present two practical methods for selecting the truncation level. The first relies
on a holdout validation split within the calibration set to obtain the optimal truncation level (Ap-
pendix C.1), while the second is a sub-optimal yet more data-efficient approach (Appendix C.2).
We then examine in detail the relationship between the first-stage model quality and the optimal
truncation level in Appendix C.3. Finally, Appendix C.4 visualizes the score distributions and pre-
diction set sizes before and after truncation, thereby illustrating its effect more clearly.

C.1 DETAILED INTERPRETATION OF OPTIMAL TRUNCATION LEVELS SELECTION

In this section, we detail the procedure for selecting the optimal truncation level introduced in corol-
lary 5. Specifically, we determine the optimal λ via a grid search, using 30% of the calibration set
for cross-validation. For each candidate λ, we compute the average prediction set size and select
the largest value that achieves the minimum size, thereby balancing efficiency and coverage. The
resulting truncation levels for both simulation (Section 5.1) and real data (Section 5.2) across differ-
ent models are presented in Table 5. The corresponding “elbow” point, which indicates the optimal
truncation level, is illustrated in fig. 6 and Table 6.

Table 5: Truncation levels selection for simulation (left table) and real data experiments (right table).

GROUP SIZE GROUP NUM TRUNCATION

[10,20,30]
1-1-1 0.0130
2-2-2 0.0180
3-3-3 0.0175

[10,30,50]
1-1-1 0.0250
2-2-2 0.0250
3-3-3 0.0350

[10,40,70]
1-1-1 0.0250
2-2-2 0.0300
3-3-3 0.0250

MODEL TRUNCATION

RESNEXT101 0.03
RESNET152 0.04
RESNET101 0.03
RESNET50 0.03
RESNET18 0.01
DENSENET161 0.04
VGG16 0.02
INCEPTION 0.005
SHUFFLENET 0.01
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(a) [10,30,50] 1-1-1 (b) [10,30,50] 2-2-2 (c) [10,30,50] 3-3-3

(d) [10,40,70] 1-1-1 (e) [10,40,70] 2-2-2 (f) [10,40,70] 3-3-3

Figure 6: Line plots of group coverage and set size versus sub-optimal truncation level, with overall
coverage fixed at 1−α, across sparsity ratios defined by Group Size and Group Num. The dashed line
indicates a sub-optimal truncation level. Gray stars mark the set size at this sub-optimal truncation,
while red stars highlight the set size at the optimal truncation. Across varying sparsity ratios, both
set size and group coverage exhibit an elbow region.

Table 6: Real data elbow on pretrained ResNet50

TRUNCATION 0.00 0.02 0.04 0.06 0.08

COVERAGE 93.36± 0.01 90.89± 0.01 90.37± 0.01 93.84± 0.05 100.00± 0.00
SIZE 12.29± 0.72 2.58± 0.07 20.76± 36.75 443.48± 454.40 1000.00± 0.00
GROUP COVERAGE 80.37± 0.02 80.00± 0.03 78.30± 0.02 87.29± 0.10 100.00± 0.00

C.2 DETAILED INTERPRETATION OF SUB-OPTIMAL TRUNCATION LEVELS SELECTION

In this section, we provide details on the sub-optimal yet data-efficient truncation level selection
method described in remark 6. To avoid allocating additional validation data from the calibration set,
we instead exploit the information in the calibration set. The key idea is that the optimal truncation
level lies between the signal and the noise, so we aim to estimate this gap directly.

For each calibration sample (xi, yi) with i = 1, . . . , n, the true class probability πyi
(xi) represents

the largest signal. However, because the first-stage classifier π̂(·) is not perfectly accurate, the
estimated probability π̂yi

(xi) may sometimes fall within the noise. Consequently, the empirical
distribution of π̂yi

(xi)
n
i=1 carries information about the separation between signal and noise. Since

conformal prediction allows for an α-level miscoverage, the truncation level should be chosen from
an upper quantile of this distribution, i.e., within the range (1− α, 1).

To formalize this, we introduce the parameter ψ as in Remark 6, with a default choice of ψ = α/2.
The truncation level is then set to the (1 − α + ψ)-quantile of set {π̂yi

(xi)}ni=1, which serves as
an estimate of the signal–noise boundary. The choice of ψ reflects the quality of the first-stage
model: for higher-quality models, a larger ψ is preferred since a greater proportion of {π̂yi

(xi)}ni=1
corresponds to signals, whereas for less accurate models, a smaller ψ is advisable due to the higher
prevalence of noise. As shown in Figure 6, this sub-optimal selection remains close to the optimal
truncation level in practice.
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Table 7: Sparse ratio of figure 3

EPOCH TRUNCATION SPARSE RATIO

2 0.02 0.8801± 0.004
4 0.03 0.9235± 0.003
8 0.05 0.9479± 0.002

12 0.06 0.9529± 0.002
16 0.07 0.9580± 0.001
30 0.08 0.9617± 0.001

Figure 7: The left figure illustrates the distribution of estimated probabilities before and after trun-
cation, with the dashed line indicating the truncation level, highlighting a gap between high-
probability signals (low proportion) and low-probability noise (high proportion). The right
figure presents the estimated probability scores of the prediction sets obtained by three CP methods.
APS and RAPS yield larger set sizes compared to the truncation method (TCAPS), as they do not
incorporate sparsity prior information into their algorithms

C.3 OPTIMAL TRUNCATION LEVEL CORRELATES POSITIVELY WITH MODEL QUALITY

Model quality is critical in CP methods, but the efficiency gains of our truncation framework are
relatively insensitive to it. Specifically, high-quality models produce more concentrated probability
distributions, whereas poorer models produce noise that forces CP to include extra labels to maintain
coverage. Without truncation, such noise prevents the recovery of sparsity. Our truncation approach
mitigates this issue by suppressing noise and restoring sparsity. In extreme cases, when the classifier
is unreliable and the true label probability is very small, the theoretical guarantees in Appendix B.3
ensure that coverage is preserved, and TCAPS naturally reduces to standard APS as λ→ 0.

Regarding sparsity, the underlying data distribution determines the true sparsity, while model qual-
ity affects how well this sparsity is reflected in predicted probability vector. To quantify this, we
calculated the sparsity ratio, i.e., the proportion of zeroed-out labels after truncation for different
training epochs. Results are shown in Table 7.

To further quantify the relationship between model quality (training progress) and truncation be-
havior, we fit scaling curves describing how the optimal truncation threshold and the resulting set
size evolve with epochs (see fig. 3). The fitted parameters are as follows: For the truncation value
curve: a1 = 10.6113, b1 = 1.1719, and c1 = 2.0745; For the sequence size curve: a2 = 0.0796,
b2 = 0.1039, and c2 = 0.0839.

C.4 DETAILED INTERPRETATION OF THE EFFECT OF TRUNCATION

In this section, we present the distribution of the estimated probability before and after truncation. In
the left panel of fig. 7, we show a histogram of the model’s softmax-normalized label probabilities.
Blue bars correspond to the pre-truncation case (APS), and orange bars to the post-truncation case
(TCAPS). The horizontal axis displays estimated probabilities in ascending order, and the vertical
axis indicates the frequency within each probability bin. Prior to truncation, a large number of la-
bels yield extremely low probabilities. Moreover, a clear gap emerges between the low-probability
“noise” region and the high-probability “signal” region, corresponding to the signal–noise gap de-
scribed earlier.
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In the right panel of fig. 7, we plot the estimated probabilities for each label in the final prediction
set output by APS, RAPS, and TCAPS. For APS, these probabilities are simply the model’s logits
passed through softmax. In RAPS, we see a rise in probabilities starting at index 4, which reflects
the penalty added by RAPS at those positions. TCAPS, by contrast, assigns higher probabilities to
the first four labels than both APS and RAPS: it truncates the low-probability “noise” in the softmax
tail and then renormalizes the remaining values. This comparison shows that adding penalties alone
cannot fully eliminate the inefficiency caused by noise, whereas truncation directly reduces the
prediction-set size.

From the comparison before and after truncation in Figure 7, it is evident that the improvement from
truncation is related to the presence of a sparsity structure. If such a structure is absent in the data,
e.g., when the number of classes is not too large, truncation may yield little or no efficiency gain.

D SUPPLEMENTARY EXPERIMENTAL DETAILS

In this section, we provide detailed explanations of the previously shown figures and supplement our
experiments as follows: Appendix D.1 describes the datasets, model architectures, and experimental
environment used throughout our study. Appendix D.2 presents additional results for TCAPS on
simulation datasets. Appendix D.3 supplements the omitted results from Table 2 and extends the
method to medical imaging data. Appendix D.4 evaluates the TCAPS on not well trained models.
Appendix D.5 apply our truncation technique to RAPS, and present the empirical results.

The results in this section demonstrate that the improvement consistently holds across different
model qualities and score functions whenever a sparsity structure is present, highlighting the broad
applicability of our method. Therefore, for applications targeting efficiency limits—such as deploy-
ment on resource-constrained devices—any stable, cost-free performance gain carries substantial
practical significance.

D.1 EXPERIMENTAL DETAILS

Dataset. For simulation experiments, we generate data as described in Section 5.1. For real-data
experiments, we compare our method with APS and RAPS on the ImageNet-Val dataset Deng et al.
(2009). We follow the RAPS protocol and use the ImageNet-Val dataset (50000 images), reserving
10000 images for calibration and the remainder for validation.

Model Structure. For the simulation study, we use a simple two-layer feedforward network with
a ReLU activation between the layers. For the real-data experiments on ImageNet-Val (Sections
5.2, D.5), we adopt the pretrained architectures from RAPS. For both APS and RAPS methods,
temperature scaling (Dabah & Tirer, 2024) is applied by default.

All experiments, including model training and validation, were carried out on a server equipped with
a single NVIDIA GeForce RTX 4090 GPU.

D.2 ADDITIONAL EXPERIMENTS ON SIMULATION DATA

In this section, we present additional results on simulation data, covering different data-generating
settings and a broader range of evaluation metrics. As detailed in Section 5.1, the differing rates of
change in set size and group coverage across truncation levels reveal an optimal trade-off between
these two metrics. Table 8 (coverage and size) and Table 9 (first-stage classifier quality and group
coverage) present the full simulation results, demonstrating that TCAPS achieves higher efficiency
than RAPS, attaining superior group coverage under the same coverage constraint.

D.3 ADDITIONAL EXPERIMENTS ON REAL DATA

In this section, we provide additional details on the real-data experiments reported in Table 2 and
further extend our study to medical imaging data, a domain where uncertainty plays a critical role.

For the real-data experiments, we extended the evaluation beyond coverage and set size by assessing
group coverage, with the results reported in Table 10. For group coverage evaluation, we categorized
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Table 8: Full results comparing coverage and prediction-set size for APS, RAPS, and TCAPS on the
simulation dataset-across varying sparsity ratios defined by group Size and group Num.

GROUP APS RAPS TCAPS

SIZE NUM COVERAGE SIZE COVERAGE SIZE COVERAGE SIZE

[10,20,30]
1-1-1 90.71±0.01 5.43±0.10 90.42±0.01 4.76±0.32 90.54±0.01 4.70±0.05

2-2-2 91.46±0.01 6.42±0.05 90.46±0.01 4.41±0.09 90.47±0.01 4.34±0.06

3-3-3 91.57±0.01 5.49±0.05 90.37±0.03 3.51±0.07 90.50±0.01 3.45±0.04

[10,30,50]
1-1-1 90.73±0.01 5.99±0.13 90.31±0.01 4.71±0.13 90.77±0.01 4.51±0.02

2-2-2 91.41±0.01 5.69±0.07 90.29±0.01 4.03±0.09 90.42±0.01 3.86±0.05

3-3-3 91.51±0.01 4.69±0.02 90.33±0.01 3.02±0.03 90.34±0.01 2.99±0.03

[10,40,70]
1-1-1 91.75±0.01 5.88±0.08 90.23±0.01 3.84±0.06 90.22±0.01 3.70±0.05

2-2-2 91.33±0.01 5.00±0.06 90.30±0.01 3.19±0.03 90.37±0.01 3.14±0.03

3-3-3 91.02±0.01 5.72±0.08 90.31±0.01 3.85±0.04 90.20±0.01 3.71±0.04

Table 9: Comparing group coverage for APS, RAPS, and TCAPS on the simulation dataset—across
varying sparsity ratios defined by group size and group count. Truncation CP not only improves
efficiency but also achieves higher group coverage than RAPS.

GROUP SIZE NUM TOP1 TOP5 APS RAPS TCAPS

[10,20,30]
1-1-1 58.41±0.01 89.80±0.01 75.22±0.01 72.82±0.01 73.05±0.01

2-2-2 60.67±0.01 89.21±0.01 81.43±0.01 76.34±0.01 76.34±0.01

3-3-3 64.14±0.01 91.42±0.01 52.36±0.01 39.79±0.01 40.19±0.01

[10,30,50]
1-1-1 55.46±0.01 89.13±0.01 86.63±0.01 85.38±0.01 85.31±0.01

2-2-2 60.23±0.01 90.52±0.01 77.25±0.01 61.02±0.02 64.98±0.01

3-3-3 66.17±0.01 92.79±0.01 57.40±0.01 44.61±0.01 45.61±0.01

[10,40,70]
1-1-1 63.32±0.01 90.17±0.01 77.92±0.01 73.98±0.01 72.83±0.01

2-2-2 64.81±0.01 92.64±0.01 75.14±0.01 63.67±0.01 64.48±0.01

3-3-3 61.62±0.01 90.81±0.01 71.95±0.01 59.28±0.01 59.44±0.01

the 1,000 ImageNet classes into 13 broad categories using WordNet Miller (1994) and calculated
the coverage of these categories within each prediction set.

Medical imaging is inherently uncertain and a crucial domain for uncertainty quantification. To
better demonstrate the practicality of our method, we first applied our truncation strategy to diverse
medical imaging datasets: PathMNIST (colon pathology), OrganAMNIST (abdominal CT), Tis-
sueMNIST (kidney cortex microscopy), BloodMNIST (blood cell microscopy), and DermaMNIST
(dermoscopy). For all experiments, we adopted a unified architecture of five convolutional layers
followed by a three-layer MLP (Table 11).

To further validate scalability on a larger dataset, we conducted experiments on a random subset
of the NIH Chest X-ray Dataset (released by the National Institutes of Health and Chris Crawford

Table 10: Comparison of Group Coverage for APS, RAPS, and TCAPS on Imagenet-Val.

METHOD TOP-1 TOP-5 APS RAPS TCAPS

RESNEXT101 79.01±0.01 94.42±0.01 79.42±0.02 82.69±0.01 81.42±0.02

RESNET152 77.96±0.01 93.90±0.01 84.11±0.04 82.95±0.01 81.74±0.02

RESNET101 77.01±0.01 93.42±0.01 82.98±0.04 80.55±0.01 79.12±0.02

RESNET50 75.71±0.01 92.71±0.01 81.50±0.04 80.36±0.02 78.85±0.02

RESNET18 69.29±0.01 88.84±0.01 86.08±0.01 79.09±0.01 82.58±0.01

DENSENET161 76.79±0.01 93.40±0.01 78.85±0.02 81.04±0.02 78.31±0.02

VGG16 71.14±0.01 90.18±0.01 87.09±0.03 79.19±0.01 80.22±0.01

INCEPTION 69.17±0.01 88.43±0.01 79.42±0.05 80.13±0.01 80.81±0.02

SHUFFLENET 68.86±0.01 88.10±0.01 77.32±0.03 79.73±0.01 80.73±0.02
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Table 11: Performance comparison of APS, RAPS, and TCAPS on five medical imaging datasets.

METHOD APS RAPS TCAPS

DATASET COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

PATHMNIST 92.91± 0.01 2.05± 0.16 91.63± 0.01 1.97± 0.09 92.17± 0.01 1.83± 0.09
ORGANAMNIST 92.48± 0.01 2.52± 0.04 90.25± 0.01 2.32± 0.13 89.67± 0.01 1.98± 0.04
TISSUEMNIST 90.41± 0.01 3.10± 0.03 90.38± 0.01 3.11± 0.05 90.06± 0.01 2.95± 0.04
BLOODMNIST 92.93± 0.01 3.22± 0.07 91.56± 0.02 3.22± 0.28 92.28± 0.02 3.19± 0.16
DERMAMNIST 91.95± 0.01 2.54± 0.09 92.22± 0.01 2.62± 0.04 91.45± 0.02 2.50± 0.18

Table 12: Performance comparison of APS, RAPS, and TCAPS on ChestXray

METHOD APS RAPS TCAPS

MODEL COVERAGE LENGTH COVERAGE LENGTH COVERAGE LENGTH

RESNET101 90.93± 0.01 6.71± 0.24 90.93± 0.01 6.71± 0.17 90.84± 0.01 6.65± 0.17
RESNET50 90.26± 0.01 5.92± 0.26 90.54± 0.01 6.03± 0.21 90.04± 0.01 5.81± 0.32
RESNET18 90.15± 0.02 5.64± 0.50 90.15± 0.01 5.67± 0.55 89.94± 0.02 5.58± 0.64

on Kaggle), which contains 5,606 images with corresponding labels across 15 disease categories
(Table 12). To simplify the experimental setup, we excluded multi-label samples, retained 4,626
single-label cases, and split them into 50% training, 25% calibration, and 25% testing. We use
ResNet18, ResNet50, and ResNet101 as our models, all of which are trained from scratch.

D.4 ADDITIONAL EXPERIMENTS ON NOT WELL TRAINED MODEL

In this section, we present experiments demonstrating that our truncation framework remains effec-
tive even with a moderately trained first-stage classifier. While our framework can benefit from a
high-quality base classifier, it can still provide meaningful efficiency gains when applied to moder-
ately trained models, making it broadly applicable in practice. In particular, even when the classifier
is not well trained (Top 1 Accuracy is not so high), applying truncation can still help reduce the
prediction set length, as demonstrated in Table 13 and Table 14.

D.5 EXTENDING TRUNCATION TECHNIQUES TO RAPS

In this section, we further extend our framework by applying truncation to RAPS (see Table 15).
Since the truncation framework already removes the majority of noise, applying RAPS to the trun-
cated scores yields no significant additional improvement.

Table 13: Coverage and prediction-set size for a not well trained model on simulation data

GROUP APS RAPS TCAPS

SIZE NUM COVERAGE SIZE COVERAGE SIZE COVERAGE SIZE

[10–20–30]
1–1–1 90.39± 0.01 13.51± 0.15 90.51± 0.01 13.65± 0.23 90.50± 0.01 13.44± 0.18
2–2–2 90.46± 0.01 16.22± 0.21 90.19± 0.01 13.80± 0.44 89.91± 0.01 12.60± 0.35
3–3–3 90.52± 0.01 11.21± 0.12 89.93± 0.01 8.05± 0.13 89.96± 0.01 7.64± 0.22

[10–30–50]
1–1–1 90.09± 0.01 15.45± 0.31 90.17± 0.01 14.56± 0.33 89.97± 0.01 14.17± 0.21
2–2–2 90.53± 0.01 11.73± 0.07 90.15± 0.01 8.70± 0.01 90.19± 0.01 8.21± 0.11
3–3–3 90.48± 0.01 9.88± 0.13 90.10± 0.01 6.75± 0.10 89.94± 0.01 6.19± 0.05

[10–40–70]
1–1–1 90.20± 0.01 12.11± 0.21 90.02± 0.01 10.25± 0.39 90.38± 0.01 12.04± 2.85
2–2–2 90.44± 0.01 9.91± 0.05 90.16± 0.01 6.63± 0.10 90.14± 0.01 8.05± 3.86
3–3–3 90.33± 0.01 15.36± 0.14 90.12± 0.01 10.05± 0.09 90.11± 0.01 9.31± 0.08
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Table 14: Comparing group coverage for a not well trained model on simulation data

GROUP SIZE NUM TOP1 TOP5 APS RAPS TCAPS

[10–20–30]
1–1–1 41.07± 0.01 72.84± 0.01 71.32± 0.01 71.42± 0.01 71.74± 0.01
2–2–2 46.44± 0.01 76.09± 0.01 79.39± 0.01 74.47± 0.05 73.39± 0.01
3–3–3 54.27± 0.01 83.01± 0.01 55.04± 0.02 31.93± 0.02 33.38± 0.01

[10–30–50]
1–1–1 38.63± 0.01 72.26± 0.01 85.50± 0.01 84.44± 0.01 84.77± 0.01
2–2–2 49.46± 0.01 81.03± 0.01 67.02± 0.01 52.99± 0.01 55.27± 0.01
3–3–3 55.06± 0.01 85.34± 3.03 47.13± 0.01 34.77± 0.01 36.29± 0.01

[10–40–70]
1–1–1 50.67± 0.01 79.65± 0.01 62.06± 0.01 64.37± 0.03 61.93± 0.02
2–2–2 54.67± 0.01 85.07± 0.01 68.47± 0.01 57.82± 0.01 58.77± 0.02
3–3–3 50.46± 0.01 81.55± 0.01 70.30± 0.01 56.97± 0.01 58.53± 0.01

Table 15: Comparison of coverage, set size, and group coverage for TCAPS and TCRAPS, which
applying truncation technique within the RAPS framework. Since truncation already effectively
removes noise, adding the RAPS penalty does not yield significant efficiency improvement.

GROUP TCAPS TCRAPS GROUP COVERAGE

SIZE NUM COVERAGE SIZE COVERAGE SIZE TCAPS TCRAPS

[10,20,30]
1-1-1 90.54±0.01 4.70±0.05 90.53±0.01 4.69±0.28 73.05±0.01 72.88±0.01

2-2-2 90.47±0.01 4.37±0.06 90.49±0.01 4.39±0.06 76.34±0.01 76.45±0.01

3-3-3 90.34±0.01 2.99±0.03 90.33±0.01 3.33±0.03 40.19±0.01 36.10±0.01

[10,30,50]
1-1-1 90.34±0.01 3.00±0.10 90.00±0.01 4.41±0.10 85.31±0.01 85.11±0.01

2-2-2 90.42±0.01 3.86±0.05 90.22±0.01 4.04±0.57 64.98±0.01 62.69±0.02

3-3-3 90.16±0.01 4.46±0.12 90.01±0.01 3.07±0.47 45.61±0.01 42.65±0.01

[10,40,70]
1-1-1 90.22±0.01 3.70±0.05 90.15±0.01 3.62±0.09 72.83±0.01 72.81±0.01

2-2-2 90.37±0.01 3.14±0.03 90.05±0.01 2.98±0.02 64.48±0.01 62.01±0.01

3-3-3 90.20±0.01 3.71±0.04 90.14±0.01 3.95±0.55 59.44±0.01 57.61±0.01

E THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) are employed under our supervision to support lan-
guage polishing and grammar correction. Suggestions provided by the models are carefully reviewed
and selectively adopted, ensuring accuracy, consistency, and academic integrity.
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