
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HINDSIGHT PLANNER: A CLOSED-LOOP FEW-SHOT
PLANNER FOR EMBODIED INSTRUCTION FOLLOWING

Anonymous authors
Paper under double-blind review

ABSTRACT

This work focuses on building a task planner for Embodied Instruction Following
(EIF) using Large Language Models (LLMs). Previous works typically train a
planner to imitate expert trajectories, treating this as a supervised task. While these
methods achieve competitive performance, they often lack sufficient robustness.
When encountering a suboptimal action, the planner may encounter an out-of-
distribution state, which can lead to task failure. In contrast, we frame the task as
a Partially Observable Markov Decision Process (POMDP) and aim to develop
a robust planner under a few-shot assumption. Thus, we propose a closed-loop
planner with an adaptation module and a novel hindsight method, aiming to use
as much information as possible to assist the planner. Our experiments on the
ALFRED dataset indicate that our planner achieves competitive performance under
a few-shot assumption. For the first time, our few-shot agent’s performance
approaches and even surpasses that of the full-shot supervised agent.

1 INTRODUCTION

With the development of AI and robotics, many previous works have combined them to handle Em-
bodied Instruction Following (EIF). Among them, the Action Learning From Realistic Environments
and Directives (ALFRED) benchmark (Shridhar et al., 2020) is particularly challenging because it
requires an agent to learn a long-horizon policy that maps egocentric images and language instructions
into a sequence of actions. In each task, the agent will be given a natural instruction (e.g. “Put a
heated mug down on a table”) and an egocentric visual observation at each step. The agent is required
to output low-level actions (e.g. MoveAhead, RotateRight, etc.) based on the observation to complete
the task. These tasks are usually challenging due to the sparse reward settings. For such a reason,
many works have adopted a hierarchical structure to deal with it (Song et al., 2023; Min et al., 2021;
Blukis et al., 2021; Kim et al., 2024). The high-level module decomposes the whole task into several
sub-tasks, the low-level module outputs actions to finish each sub-task. Previously, sub-goal planners
are trained on human-annotated dataset through supervised learning. However, they require large
amounts of data and often lack robustness (Min et al., 2021; Blukis et al., 2021; Kim et al., 2024).

With recent advancements in Large Language Models (LLMs), many studies have explored using
LLMs as sub-goal planners, utilizing their in-context learning abilities (Song et al., 2023; Shin et al.,
2024; Ahn et al., 2022). Although these methods have achieved competitive performance under
the few-shot assumption, a critical limitation is that these approaches all study the problem from a
supervised learning perspective. They merely attempt to imitate the ground truth trajectories, which
results in a lack of robustness within their agents. EIF benchmarks, on the other hand, require
long-horizon planning ability. For example, the task “Put a warmed apple in the fridge” requires
12-step planning. Assuming that after applying in-context learning, the distribution of the agent’s
output actions becomes closer to that of the Oracle, with an accuracy of 0.9, the overall accuracy of
the entire planning task decreases to 0.912 = 0.28. Traditionally, a large amount of data is required to
mitigate such an issue (Blukis et al., 2021; Kim et al., 2024). However, under the few-shot assumption,
in-context learning methods rely heavily on the reasoning ability of pretrained LLMs (Brown et al.,
2020; Dong et al., 2024). The hallucination problem of LLMs (Zhang et al., 2023) suggests that
supervised methods through in-context learning are limited.

To address this issue, we approach the ALFRED task (Shridhar et al., 2020) as a Partially Observable
Markov Decision Process (POMDP), where the planner makes decisions based on its current state.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Each task begins with a natural language description. At each step, the planner receives an egocentric
RGB image and returns a high-level sub-goal. The planner can only receive reward signals (Success
or Fail) at the end of the task. There are three major challenges in building a robust planner: (1)
The sparse reward settings make it difficult for the planner to learn and make accurate decisions. (2)
The planner can only receive an egocentric picture and cannot detect the whole state. (3) Under the
few-shot assumption, the planner cannot obtain enough information from trajectories.

For the first problem, we adopt an actor-critic framework (Liu et al., 2024) which consists of two
actors, one critic, and one generator. At each step, the planner receives a new state and performs a
tree search with the actors and generator to plan future trajectories, rather than directly outputting a
sub-goal. The critic is then used to select the best rollout and return its initial action. Thus, the planner
can optimize the output over the long horizon to address the issue of sparse reward. For the second
difficulty, we design an adaptation module instantiated by LLMs. Upon receiving an egocentric
image, the adaptation module aims to predict the invisible latent PDDL variables of the task, which
could help the planner better understand the environment. For the third challenge, we propose a novel
hindsight method. It collects suboptimal trajectories from the agent in the training environment and
relabels them to complete the task. This approach provides the planner with additional information.
During the deployment phase, the relabeled trajectories can guide the planner in adjusting its policy
when incorrect actions are proposed and executed.

Figure 1: Left: The illustration of the Hindsight Planner: at each time step t, the planner receives a partial
observation yt from the environment. The adaptation module estimates the latent variable and concatenates
it with yt to produce the complete state. Actorhind and Actorgt are prompted with different samples and
make decisions. The Critic is utilized to evaluate the actions. The best rollout (xt, a∗t , x∗t+1, a

∗
t+1 . . .) is

selected, and a∗t is returned. Right: An example of the relabeling process for the Actorhind: after collecting a
suboptimal rollout, the LLM is prompted to generate a reflection on the previously taken actions. Following this
reflection, the LLM is then prompted to complete the suboptimal rollout.

In summary, our contributions are threefold:

(1) We study ALFRED (Shridhar et al., 2020) from a POMDP perspective for the first time and
propose a closed-loop actor-critic planner to solve it.

(2) We propose a novel hindsight prompting method and demonstrate that our method is theoretically
superior to previous approaches.

(3) Experiments on ALFRED (Shridhar et al., 2020) show that our method achieves state-of-the-art
performance under few-shot assumptions. Specifically, the success rates for the “Test Seen” and “Test
Unseen” splits are 25.51 and 18.77, respectively, representing a 60% and 39% improvement over the
previous baseline.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL (LLM) AND IN-CONTEXT LEARNING (ICL)

Large language models (LLMs) have shown incredible reasoning ability (Vaswani et al., 2023; Wei
et al., 2022; Touvron et al., 2023; OpenAI et al., 2024) across a wide range of tasks. A crucial way
to enhance this reasoning ability is through in-context learning (ICL) (Brown et al., 2020; Dong
et al., 2024), which allows LLMs to solve complex tasks with only a few samples. Furthermore,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

this approach removes the need for fine-tuning, which can be time-consuming and computationally
expensive. To utilize the ICL ability better, many studies propose certain frameworks aimed at
enhancing the reasoning capabilities of LLMs (Yao et al., 2023; Wei et al., 2023; Yao et al., 2024).
Among them, Liu et al. (2024) proposes a novel perspective by bridging RL and LLM, which inspires
us to study ICL from an RL aspect. Xie et al. (2022) interprets ICL as Implicit Bayesian Inference,
while Dai et al. (2023) believes that ICL is performing implicit Gradient Descent. All of these imply
the importance of the content in ICL, an area that remains relatively understudied. To this end, we
propose Hindsight Planner as an exploration.

2.2 ADAPTATION MODULE IN POMDP

In a Partially Observable Markov Decision Process (POMDP), planners are presented with observ-
able states, while the latent states are invisible to the planner. Making decisions with incomplete
information is challenging; therefore, a component to map the observable state into the latent space is
crucial (Lee et al., 2023). Adaptation modules have been proven effective in legged robots (Kumar
et al., 2021; Zhou et al., 2019; Peng et al., 2020). These modules aim to bridge the gap between
the simulator and the real world. They are often trained to predict crucial information that a robot
can sense in the simulator but not through its sensors in the actual world, such as surface friction or
payload of the robot. The base policy then makes decisions based on the observed information and
the invisible latent information predicted by adaptation modules. Inspired by this, we propose an
adaptation model that maps the visible object list to the latent, invisible Planning Domain Definition
Language (PDDL) (Chapman, 1987) of ALFRED (Shridhar et al., 2020).

Previous work such as Min et al. (2021), trains a BERT (Devlin et al., 2019) to predict the PDDL
arguments and decompose high-level instructions into templated sub-goals. However, our approach
differs from these in two aspects: (1) Previous works predict the arguments at the beginning of a
task, which is equivalent to predicting the latent variables based on the initial observed state. In
contrast, our method predicts the latent arguments at each time before reasoning, allowing predictions
to be adjusted through exploration, which makes our planner more robust. (2) We do not apply the
templated approach directly. The adaptation module is used to reveal the latent information for the
planner and assist the planner in making better decisions. Experiments show that our method achieves
competitive performance even without the assistance of the adaptation model, as demonstrated in
Table 4.

2.3 HINDSIGHT IN LLMS

Hindsight algorithms (Andrychowicz et al., 2018; Li et al., 2020; Pong et al., 2020) are widely
adopted in the reinforcement learning (RL) area. Generally, the hindsight method aims to reveal
future information after collecting a trajectory and relabel the trajectory to make it more informative
during training process (Furuta et al., 2022; Andrychowicz et al., 2018). Furuta et al. (2022) applies
the hindsight method in training a Transformer model and achieves competitive performance on
several baselines. However, training a model from scratch usually requires a large amount of
data. In contrast, in-context learning, leveraging the reasoning ability of LLMs, allows an agent to
complete complex tasks with only a few samples. Dai et al. (2023) has shown that ICL executes
an implicit parameter update. As a result, we utilize ICL in our proposed method. Intuitively, we
hope hindsight prompts can provide guidance when an out-of-distribution state is encountered. For
example, “Wash a pan and put it away” requires the agent to wash a Pan and put it on the DiningTable.
The trajectory from a planner could be: {(PickupObject, Pan), (PutObject, Sink), (ToggleObjectOn,
Faucet), (PickupObject, Pan), (PutObject, CoffeeMachine)}. Note that in this example, the agent
fails to place the pan in the correct location, does not turn off the faucet, and thus the trajectory
from the planner is suboptimal. Our hindsight method proposes a novel relabeling process that
appends actions to the suboptimal trajectory, aiming to complete the task. In the above example, the
corrected trajectory should be: {(PickupObject, Pan), (PutObject, Sink), (ToggleObjectOn, Faucet),
(PickupObject, Pan), (PutObject, CoffeeMachine), (ToggleObjectOff, Faucet), (PickupObject,Pan),
(PutObject, DiningTable)}. This approach enables us to guide the planner in addressing unknown
states resulting from incorrect actions. Consequently, during the deployment phase, when the planner
encounters a similar state, it can learn from suboptimal trajectories and subsequently take correct
actions to correct previous mistakes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We also analyze our method in comparison to previous hindsight methods (Andrychowicz et al.,
2018; Ghosh et al., 2019) following the framework proposed by Furuta et al. (2022). We demonstrate
that while previous methods are effective, they alter the distribution of a crucial variable in multi-task
RL problems. In contrast, our method optimize the same objective while maintaining the distribution.
The detailed discussion can be found in Section 4.3.

3 PRELIMINARIES

3.1 DEFINITION IN POMDP

In a POMDP M, consider an action space A, latent state space X , observation space Y , transition
probability function p(x′|x, a), emission function o(y|x), reward function r(x, a) and discount factor
γ ∈ [0, 1). The policy πθ(·|y) maps the latent state space to the action space, where θ represents its
parameter. The goal of RL is to train a policy such that

πθ = argmax
π

1

1− γ
Ex∼ρπ(x),y∼o(·|x),a∼π(·|y)[r(x, a)], (3.1)

where ρπ(x) = (1− γ)
∑∞

t=0 γ
tpπt (xt = x),

pπt (x) =

∫
x0:t,y0:t−1,a0:t−1

t∏
i=1

p(xi|xi−1, ai−1)o(yi−1|xi−1)π(ai−1|yi−1).

Given a parameterized reward function rz(x, a), z ∈ Z is a variable that indicates the goal for the
agent. A conditional policy π(a|y, z) is trained with different values of z where z ∼ p(z). The goal
in Equation (3.1) becomes

πθ = argmax
π

1

1− γ
Ez∼p(z),x∼ρπ

z (x),y∼oz(·|x),a∼π(·|y,z)[rz(x, a)]. (3.2)

Equation (3.2) can be considered as the multi-task RL objective to optimize, which is the core of EIF.

3.2 INFORMATION MATCHING

Following Furuta et al. (2022), we define the information matching (IM) problem as training a policy
πθ that satisfies

πθ = argmin
πθ

Ez∼p(z),τ∼ρπ
z (τ)

[D(I(τ), z)] , (3.3)

where I(τ) is information statistic that can be any function that captures the desired information from
a partially observed trajectory τt = {y0, a0, y1, y1, . . . , yt} and D is a divergence measure such as
Kullback-Leibler (KL) divergence or some f -divergences. Competitive results have been achieved
with this optimization objective (Lee et al., 2020; Hazan et al., 2019).

Furuta et al. (2022) demonstrates that previous hindsight methods (Andrychowicz et al., 2018;
Eysenbach et al., 2020; Guo et al., 2021) utilize various information statistics and minimize the
divergence D = 0 by setting ẑ = I(τ). This allows trajectories to be better used to train a
policy π(a|s, z). For instance, in HER (Andrychowicz et al., 2018), an MDP trajectory τst =
{s0, a0, s1, . . . , st} is collected. The information statistic is set as the final state of the agent, where
I(τst) = st, and the relabeling process in HER is equivalent to setting ẑ = I(τst).

4 HINDSIGHT PLANNER

4.1 OVERVIEW

The Hindsight Planner outputs a sub-goal based on the observed objects and natural language
instructions. During the collection phase, suboptimal trajectories are collected, and we apply our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Hindsight Planner
1: Input: An LLM-planner LLM-PL, an adaptation module Adapter and the task instruction I .
2: Set: Observed Objects O ← ∅, the sub-goal history G← ∅, the current sub-goal S ← ∅, the time step
t← 0 and sub-goal index k ← 0.

3: Get sample pool D and initialize Actorθ , Critic, Adapter from D, for any θ ∈ {gt,hind} (e.g.
Algorithm 3 in Appendix A). (Hindsight process)

4: while Not Finished do
5: Get PDDL arguments P ← Adapter(I,O).
6: Plan and get sub-goal Sk ← LLM-PL(Actorgt,Actorhind,Critic, P, I, O,G)(e.g. Algorithm 2 in

Appendix A).
7: Set Sk as sub-goal for Low-PL.
8: while Sk not Finished and not Failed do
9: Invoke Low-PL to plan and execute at and update O.

10: Set t← t+ 1
11: if Sk Finished then
12: Append Sk to G.
13: Set k ← k + 1.
14: end if
15: end while
16: end while

hindsight method to generate Dhind. The complete dataset D = Dhind ∪Dgt, where Dgt is constructed
from training data. In the deployment phase, we initiate hindsight actor Actorhind, ground truth
actor Actorgt, and Critic from D.

Figure 2: A comparison of Hindsight Planner and previous supervised methods when taking a suboptimal
action. The agent initially picks up the incorrect object (“Basketball”). In the supervised method, the planner
fails to handle this situation, which leads to task failure. In contrast, the Hindsight Planner can adjust after the
incorrect action and successfully complete the task.

At time step t, the planner receives an observed object list yt from observation functions (Blukis
et al., 2021). We then apply the Adaptation module to predict the latent PDDL arguments P based on
yt. The whole state xt is constructed by yt and P . With xt, we invoke the actor-critic task planner
LLM-PL to generate a future trajectory over a long horizon and return the sub-goal Sk. To ensure
the output from the planner meets the requirements, a frozen BERT (Devlin et al., 2019) is used to
map the output to the legal space. The proposed sub-goal will be executed by a low-level controller
Low-PL (Blukis et al., 2021). When a sub-goal is completed or fails, the planner reinvokes the
reasoning process to replan another future trajectory from the new state. The complete algorithm is
presented in Algorithm 1, and Figure 3 provides an example of the entire process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: The entire process of the Hindsight Planner is as follows: At the start of the task, which is to “Place
a plate with a ladle on it in a cabinet,” the Adapter mistakenly identifies the task as picking up a plate and
placing it into a cabinet. Actorhind and Actorgt make decisions separately. Critic then selects the best
action as its output. Upon further exploration, the agent detects more objects, and the Adapter adjusts its
output, recognizing the task as stacking a ladle onto a plate and then placing them into a cabinet. The Actors
and Critic subsequently make decisions based on the revised predictions.

4.2 PROMPT DESIGN

All components follow a similar design. The prompt begins with an intuitive explanation of the task
and a role description of the LLM. A frozen BERT is then used as a kNN retriever, encoding the
task description and selecting K examples with the closest Euclidean distance from the sample pool
as in-context samples (Song et al., 2023). Intuitively, the planner would make similar suboptimal
actions in similar tasks. For instance, if in an in-context sample “Place two spray bottles into the
cabinet,” the planner fails to open the cabinet when putting the second spray bottle into it. In the
current task “Putting two candles in a cabinet”, the planner would know to avoid a similar mistake.
The detailed prompts for each process can be viewed in Appendix B.

4.3 HINDSIGHT METHOD

In Section 3, we gain a coherent framework to describe previous hindsight methods. However, we find
that such methods can lead to the policy π being suboptimal, particularly when the number of samples
is insufficient. To illustrate this better, we consider the optimization objective in Equation (3.2). It
aims to learn a policy under different values of z where z ∼ p(z). During the collection phase, the
agent’s trajectory is usually suboptimal and random. Assume the distribution of I(τ) ∼ q. The
training objective after relabeling is to train a policy π̂ satisfies that

π̄ = argmax
π

1

1− γ
Ez∼q(z),x∼ρπ

z (x),y∼o(·|x),a∼π(·|y,z) [rz(x, a)] . (4.1)

Define the π∗ as the oracle. It is easy to see that

1

1− γ
Ez∼p(z),x∼ρπ̄

z (x),y∼o(·|x),a∼π̄(·|x,z) [rz(x, a)]

<
1

1− γ
Ez∼p(z),x∼ρπ∗

z (x),y∼o(·|x),a∼π∗(·|x,z) [rz(x, a)] ,

(4.2)

as the distribution of z is shifted from p to q.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Based on such discovery, we propose a new method of hindsight. Assume that τ∗ is the ground truth
rollout from the oracle π∗, we can rewrite z = I(γ∗), Equation (3.3) then becomes

min
π

Ez∼p(z),τ∼ρπ
z (τ)

[D(I(τ), I(τ∗))] . (4.3)

Our method utilizes LLMs to relabel τ̂ = τT + {aT , yT+1, aT+2, . . .} in such a way that I(τ̂) =
I(τ∗) = z. Thus, we minimize the divergence in Equation (4.3) while keeping the distribution of z
unshifted. Intuitively, Equation (4.2) shows that relabeling z alters the distribution of tasks that are
truly relevant to our daily lives. This is especially crucial in the reasoning process of EIF.

In practice, our hindsight method consists of two main parts: the collection phase and the deployment
phase. During the collection phase, the planner executes tasks and retrieves K examples from a small
set of ground truth samples. At each task, the planner generates a possibly suboptimal trajectory τ and
relabels them. The algorithm is summarized in Algorithm 3 of Appendix A. During the deployment
phase, the Actorgt is prompted with ground truth samples while the Actorhind and the Critic
are prompted with relabeled samples. Intuitively, we hope that the Actorgt can provide the correct
action to complete the task along the shortest path. However, when an incorrect action—which is
often unavoidable—is executed, the Actorhind and the Critic should be able to correct it. The
relabeling process utilizes the reasoning ability of LLMs to fit suboptimal trajectories into correct
rollouts. The CoT (Wei et al., 2023) method is utilized in the relabeling process. We first prompt the
LLM to generate a Think about the suboptimal rollout and then prompt it to complete the suboptimal
rollout based on the Think. A comparison of the hindsight method with the supervised methods is
shown in Figure 2, while the right half of Figure 1 illustrates an example of the relabeling process.

4.4 ADAPTATION MODULE

In a POMDP, the adaptation module is used to predict the latent variables from the observed environ-
ment yt (Lee et al., 2023; Kumar et al., 2021) and construct the whole state xt = (Adapter(yt), yt).
In practice, we utilize an LLM as the adaptation module and set PDDL arguments as the prediction
target for it. The input prompt for the adaptation module begins with an intuitive explanation of
ALFRED, followed by several in-context samples. At the end of the prompt is the current task and
the object list. At each step, the object list is updated as the agent explores the environment.

The output from the adaptation module varies depending on the task description. Inspired by PDDL
(Chapman, 1987; Silver et al., 2023) of ALFRED, the adaptation module needs to predict the
following arguments at each step: (1) object target: The specific object to be interacted with during
the task. (2) parent target: The final place for the object in the task. (3) mrecep target: The container
or vessel necessary for the task. (4) toggle target: The device that needs to be toggled in the task.
(5) object state: Indicates whether the target object needs to be cleaned, heated, or cooled. (6)
object sliced: Determines if the object must be sliced. (7) two object: Specifies whether the task
involves handling and placing two objects. The adaptation module predicts these arguments at each
time before reasoning. Then, the arguments are processed into a specific format to assist the task
planner to sense the environment better.

4.5 TASK PLANNER

We adopt an actor-critic planner (Liu et al., 2024). At each time step t, the planner receives xt from
the environment and the adaptation module. We initiate two Actors: Actorgt and Actorhind, with
different samples from the sample pool D. For each state, we prompt each Actor to generate W

2
actions. The Critic then selects the top B actions. A generator ψ generates the next state based on
each action. In this way, we map Actors and Critic to B future trajectories and select the best
future trajectory (xt, a

∗
t , . . .) through Critic. a∗t is then returned as the sub-goal for Low-PL. The

left half of Figure 1 shows the reasoning process of the planner.

5 EXPERIMENT

5.1 SETUPS

We validate our framework using the ALFRED benchmark (Shridhar et al., 2020). This benchmark
assesses the agent’s capability to execute a series of actions for long-horizon household tasks based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Test Seen Test Unseen

n-shot SR GC SR GC

HiTUT (Zhang & Chai, 2021) full 13.63 21.11 11.12 17.89
HLSM (Blukis et al., 2021) full 25.11 35.79 20.27 27.24
FILM (Min et al., 2021) full 28.83 39.55 27.80 38.52
MCR-Agent (Bhambri et al., 2024) full 30.13 - 17.04 -

FILM (low inst.) (Min et al., 2021) few 0.00 4.23 0.20 6.71
LLM-Planner (Song et al., 2023) few 15.33 24.57 13.41 22.8
LLM-Planner (low inst.) (Song et al., 2023) few 18.80 26.77 16.42 23.37
Socratic-Planner(Shin et al., 2024) few 13.24 21.51 10.66 19.53
Hindsight planner (ours) few 25.51 34.74 18.77 28.29

Table 1: Comparison with the state-of-the-art methods on SR and GC in the test set. Bold
symbols in numbers denote the highest accuracy, while underlined symbols indicate the runner-up for
each experiment setting. “low inst.” refers to the use of step-by-step instructions.

on natural language task descriptions and egocentric vision. The ALFRED dataset consists of 25k
annotations, 108 distinct objects, 7 types of tasks, and 120 scenes. The dataset is divided into training,
validation, and testing splits. The validation and test splits contain “seen” subsets, which are part of
the training fold, and “unseen” subsets, which are distinct from it. The evaluation is based on Success
Rate (SR) and Goal Condition (GC). Given the inherent noise in natural language instructions and the
complexities of long-horizon task planning, the ALFRED benchmark presents significant challenges
for embodied agents in formulating robust and precise plans.

Similar to previous work (Song et al., 2023; Shin et al., 2024), we only utilize a few examples from
the 21k training set annotations. For each of the 7 task types, we randomly select 20 trajectories as
the initial sample pool. At the collection phase, we run our planner on the 140 trajectories and collect
sub-optimal trajectories. During collection, the same task is not included as in-context samples.

We then give a detailed discussion of the relabeling process. Directly applying the task description
from ALFRED may lead to unsatisfactory results, as the task description is often vague. For example,
the task “Put a chilled potato on the small black table” requires the planner to put the potato on a
SideTable. If the task description is applied directly, LLMs might focus incorrectly on the Black
Table and return an incorrect action “PutObject BlackTable”. If the task description is not included
in the prompt, it could lead LLMs to imitate the ground truth trajectory. However, planners usually
have multiple ways to complete a certain task. For instance, in a task requiring the planner to slice
an apple, after slicing the apple, the planner could put the Knife on the DiningTable or CounterTop.
To address this issue, we relabel the task based on the latent PDDL arguments. The task description
“Put a chilled potato on the small black table” becomes “Pick up one cooled potato and put it on
the SideTable”. This approach helps clarify the task for the planner and reduces the ambiguity in
instructions.

For the kNN retriever, we use a frozen BERT from Wolf et al. (2020). We employ GPT-4 Turbo as
the target LLM and set temperature to 0. For the Adapter, 5 in-context examples are retrieved from
the sample pool through the kNN retriever. For the Actors and Critic modules, 2 in-context
examples are retrieved. The task planner uses beam search with a depth and width of 2. To preserve
the few-shot assumption and ensure a fair comparison, we directly adopt the pretrained modules for
navigation, perception, and low-level control from HLSM (Blukis et al., 2021).

5.2 MAIN RESULTS

We initially compare our method to other few-shot methods, as shown in Table 1. It is evident that our
method achieves a 10.18 and 5.36 higher success rate in “Test Seen” and “Test Unseen” categories,
respectively, compared to the previous state-of-the-art method (LLM-Planner) that uses high-level
instructions only. Moreover, even when compared to methods utilizing low-level, step-by-step
instructions, our method still demonstrates superior performance.

We also compare our method to the other approaches under the same low-level controller (Blukis
et al., 2021) in Table 2. The results indicate that our method not only significantly outperforms

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Valid Seen Valid Unseen Test Seen Test Unseen

n-shot SR GC SR GC SR GC SR GC

HLSM (Blukis et al., 2021) full 29.63 38.74 18.28 31.24 25.11 35.79 20.27 27.24
LLM-Planner (Song et al., 2023) few 13.53 28.28 12.92 25.35 15.33 24.57 13.41 22.8
Socratic-Planner (Shin et al., 2024) few 14.88 25.47 13.40 24.91 13.24 21.51 10.66 19.53
Hindsight planner (ours) few 25.61 34.95 19.00 29.90 25.51 34.74 18.77 28.29

Table 2: Comparison with the same lower-controller. Bold symbols in numbers denote the highest
accuracy, while underlined symbols indicate the runner-up for each experiment setting.

Task Type Examine Pick Clean Stack Pick Two Heat Cool

Base Method 40.42 50 15.18 9.56 30.65 7.48 21.43
w.o. hindsight prompt 39.36 49.29 16.96 7.82 29.84 7.47 10.31
w.o. adaptation module 35.1 47.1 8.93 6.09 32.25 9.34 18.26

Table 3: Ablation study on the success rate of different type of tasks in “Valid Seen” split.

previous few-shot LLM planners but also, for the first time, a few-shot LLM method (with around
100 examples) nearly matches and even surpasses (SR in “Valid Unseen”, “Test Seen”, and GC in
“Test Unseen”) fully supervised (around 21k samples) methods.

5.3 ABLATION STUDY

Model Valid Seen Valid Unseen

SR GC SR GC

W.O. Adaptation module 23.17 33.28 14.99 27.36
W.O. Hindsight Prompt 23.53 32.76 16.32 28.06
Base Method 25.61 34.95 19.00 29.90

Table 4: Ablation on “Valid Seen”, “Valid Unseen” splits.

We conduct ablation studies to under-
stand the effectiveness of the compo-
nents in our framework. First, we ab-
late the adaptation module Adapter,
which requires the planner to make de-
cisions based solely on the partially
observed information. The results
show that this causes a drop of −2.44
and −4.01 in the success rates for the
“Valid Seen” and “Valid Unseen” splits. Then, we remove the hindsight prompts. For a fair compar-
ison, the original planner requires both Actorgt and Actorhind to generate one action per state.
We also ablate by prompting Actorgt to output two actions for each state. Table 4 shows that the
success rates drop by −2.08 and −2.68 in the “Valid Seen” and “Valid Unseen” splits.

Task Type Avg. Sub-Goal Len.

Examine 2.07
Pick 2.48
Pick Two 5.70
Stack 5.63
Clean 7.25
Cool 10.36
Heat 12.78

For a more comprehensive analysis, we report the success rates for
each task type in the “Valid Seen” split, as shown in Table 3. Concur-
rently, we also present the average sub-goal lengths in the right table.
This analysis reveals that hindsight prompting is especially crucial
in relatively long-horizon tasks, such as “Cool Object” and “Heat
Object”. This is likely because, in long-horizon tasks, planners will
output suboptimal actions with a higher probability. On the other
hand, the adaptation module can assist the planner in better sensing
the environment, leading to a general improvement across nearly all
areas.

6 CONCLUSION

This paper explores an effective few-shot framework for Embodied Instruction Following. We
approach the task as a POMDP and design a closed-loop Hindsight Planner equipped with an
adaptation module to enhance the agent’s environmental sensing capabilities. Compared to previous
open-loop, supervised methods, our approach is more robust and performs better. Furthermore, the
planner incorporates a novel hindsight method that enables it to learn from suboptimal trajectories.
we hope our work inspires future research in this area.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and
Andy Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL
https://arxiv.org/abs/2204.01691.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay, 2018.
URL https://arxiv.org/abs/1707.01495.

Suvaansh Bhambri, Byeonghwi Kim, and Jonghyun Choi. Multi-level compositional reasoning for
interactive instruction following, 2024. URL https://arxiv.org/abs/2308.09387.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent spatial se-
mantic representation for high-level natural language instruction execution. Cornell University -
arXiv,Cornell University - arXiv, Jul 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

David Chapman. Planning for conjunctive goals. Artif. Intell., 32:333–377, 1987. URL https:
//api.semanticscholar.org/CorpusID:1525549.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers, 2023.
URL https://arxiv.org/abs/2212.10559.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning,
2024. URL https://arxiv.org/abs/2301.00234.

Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history
with inverse rl: Hindsight inference for policy improvement, 2020. URL https://arxiv.
org/abs/2002.11089.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching, 2022. URL https://arxiv.org/abs/2111.10364.

Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals without reinforcement learning. ArXiv, abs/1912.06088,
2019.

Jiaming Guo, Rui Zhang, Xishan Zhang, Shaohui Peng, Qi Yi, Zidong Du, Xing Hu, Qi Guo, and
Yunji Chen. Hindsight value function for variance reduction in stochastic dynamic environment,
2021. URL https://arxiv.org/abs/2107.12216.

Elad Hazan, Sham M. Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration, 2019. URL https://arxiv.org/abs/1812.02690.

10

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/2308.09387
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:1525549
https://api.semanticscholar.org/CorpusID:1525549
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2002.11089
https://arxiv.org/abs/2002.11089
https://arxiv.org/abs/2111.10364
https://arxiv.org/abs/2107.12216
https://arxiv.org/abs/1812.02690

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Byeonghwi Kim, Jinyeon Kim, Yuyeong Kim, Cheolhong Min, and Jonghyun Choi. Context-aware
planning and environment-aware memory for instruction following embodied agents, 2024. URL
https://arxiv.org/abs/2308.07241.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots, 2021. URL https://arxiv.org/abs/2107.04034.

Jonathan N. Lee, Alekh Agarwal, Christoph Dann, and Tong Zhang. Learning in pomdps is sample-
efficient with hindsight observability, 2023. URL https://arxiv.org/abs/2301.13857.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching, 2020. URL https://arxiv.org/abs/
1906.05274.

Alexander C. Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning,
2020. URL https://arxiv.org/abs/2002.11708.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency, 2024. URL https://arxiv.org/abs/2309.17382.

SoYeon Min, DevendraSingh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.
Film: Following instructions in language with modular methods. Learning,Learning, Oct 2021.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,

11

https://arxiv.org/abs/2308.07241
https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2301.13857
https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/2002.11708
https://arxiv.org/abs/2309.17382

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals, 2020. URL https://arxiv.
org/abs/2004.00784.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control, 2020. URL https://arxiv.org/abs/1802.09081.

Suyeon Shin, Sujin jeon, Junghyun Kim, Gi-Cheon Kang, and Byoung-Tak Zhang. Socratic planner:
Inquiry-based zero-shot planning for embodied instruction following, 2024. URL https://
arxiv.org/abs/2404.15190.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2020. doi: 10.1109/cvpr42600.2020.01075. URL http://dx.doi.org/10.
1109/cvpr42600.2020.01075.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models, 2023. URL
https://arxiv.org/abs/2305.11014.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models, 2023.
URL https://arxiv.org/abs/2212.04088.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022.
URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit bayesian inference, 2022. URL https://arxiv.org/abs/
2111.02080.

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2004.00784
https://arxiv.org/abs/2004.00784
https://arxiv.org/abs/1802.09081
https://arxiv.org/abs/2404.15190
https://arxiv.org/abs/2404.15190
http://dx.doi.org/10.1109/cvpr42600.2020.01075
http://dx.doi.org/10.1109/cvpr42600.2020.01075
https://arxiv.org/abs/2305.11014
https://arxiv.org/abs/2212.04088
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2111.02080

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
in language models, 2024. URL https://arxiv.org/abs/2305.16582.

Yichi Zhang and Joyce Chai. Hierarchical task learning from language instructions with unified
transformers and self-monitoring, 2021. URL https://arxiv.org/abs/2106.03427.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi.
Siren’s song in the ai ocean: A survey on hallucination in large language models, 2023. URL
https://arxiv.org/abs/2309.01219.

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies, 2019.
Publisher Copyright: © 7th International Conference on Learning Representations, ICLR 2019.
All Rights Reserved.; 7th International Conference on Learning Representations, ICLR 2019 ;
Conference date: 06-05-2019 Through 09-05-2019.

13

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.16582
https://arxiv.org/abs/2106.03427
https://arxiv.org/abs/2309.01219

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE ALGORITHM

In algorithm 2, we present a beam search example of a hindsight planner. During the collection phase,
one Actor prompted from the ground truth sample pool is required to output W actions for each
state, and Critic is used to retain the best B actions for the next round of planning. When the
search depth U is reached, the best rollout is selected, and the first action from it is returned. At the
deployment phase, two Actors are prompted with hindsight prompts and ground truth samples.
Each Actor is required to generate W

2 actions.

algorithm 3 outlines the algorithm for the collection phase. To preserve the few-shot assumption,
the planner collects suboptimal trajectories from Dgt. During the execution of the current task, this
task is specifically excluded from being used as an ICL sample to the planner. We employ a prompt
generator ϕ to relabel tasks and mitigate ambiguity in the instructions.

Algorithm 2 LLM Planner: A Beam Search example
1: Input Actors, Critic, the initial state s,a generator ψ, search Breadth B, proposal width W and search

Depth U
2: State S0 ← {s}
3: Action array A0 ← ∅
4: Get numbers of Actors n← len(Actors)
5: for u = 0, . . . , U do
6: for Actori in Actors do
7: For each su in Su, invoke Actori to propose W

n
candidate actions.

8: end for
9: For each a(w)

u invoke ψ to generate next state s(w)
u+1

10: For each tuple (su, a
(w)
u , s

(w)
u+1), invoke Critic to evaluate the expected cumulative reward V (w)

u+1

11: select B best (su, a
(w)
u , s

(w)
u+1) with highest V and put them into Su ×Au × Su+1

12: end for
13: For B preserved rollouts in S0 ×A0 × . . .× SU+1, invoke Critic to evaluate the expected cumulative

reward V (b)
u+1

14: Select the best rollout (s∗0, a∗0, . . . , s∗U+1)
15: return a∗0

Algorithm 3 Hindsight Prompt
1: input: A ground truth sample pool Dgt, a prompt generator ϕ.
2: Initialize initiate Agent from Dgt, set Dhind ← ∅.
3: for sample s in Dgt do
4: Extract ground truth rollout R, task description I , PDDL arguments P from s.
5: Initialize environment E with s.
6: Collect suboptimal trajectories traj ← Agent(I, E,Dgt/{s}) (e.g. algorithm 2 of appendix A).
7: Rename task description Ĩ ← ϕ(P).
8: Get reflection Think← LLM(Ĩ , traj, R).
9: Relabel trajectory promptactor ← LLM(Ĩ , traj, R,Think).

10: Generate critic from suboptimal trajectory promptcritic ← LLM(Ĩ , traj, R).
11: Append promptactor, promptcritic to Dhind.
12: end for
13: Build hindsight sample pool D = Dgt

⋃
Dhind.

14: Initial Actorgt, Adapter from Dgt, initial Critic, Actorhind from Dhind.
15: Return Actorθ , Critic, Adapter for any θ ∈ {gt,hind}.

B PROMPTS

B.1 PROMPTS FOR PLANNER

Here, we display prompts for various components here. The <base info> defines the role descrip-
tions while the <samples> provide in-context examples for Actors, Critic and Adapter.

We first show the role description for Actors, Critic and Adapter.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

<base info> of Actor
Interact with a household to solve a task.
At each step, you will be provided with the previous observations and
action pairs.

Important: You **are required** to return an action.

The answer should contain two parts, the action type and a target.

The allowed types of actions are:

OpenObject, CloseObject, PickupObject, PutObject, ToggleObjectOn,
ToggleObjectOff, SliceObject, Stop

The target of OpenObject, CloseObject, PickupObject, ToggleObjectOn,
ToggleObjectOff, SliceObject is the object agent interacts with, and
the target of PutObjectis the place to put the object.

Stop should end with NIL.Note if all requirements are satisfied, you
just need to output Stop

<base info> of Critic
You are a value critic of states in a household task. You would be
given a task description, some observations and actions, you need to
give a critic about them. **Note Your critic should end with format:
the value is a/b=...**

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Explore,Stop

The target of OpenObject,CloseObject,PickupObject,ToggleObjectOn,Toggl ⌋
eObjectOff,SliceObject is the object agent interacts with and the
target of PutObjectis the place to put the object.

Explore and Stop should be followed with NIL.Note if all requirements
are satisfied, you just need to output Stop. You might need to
OpenObject so you can see the object you need to interact with.

<base info> of Adapter

Predict the necessary components for the following household task:
-**Moveable Receptacle (mrecep_target)**: Identify any container or
vessel required for the task. Return `None` if not applicable.
-**Object Slicing (object_sliced)**: Determine if the object needs to
be sliced. Provide a boolean value (`True` for yes, `False` for no).
-**Object Target (object_target)**: Identify the specific object that
is the focus of the task and will be interacted with. This could be the
item that needs to be moved, cleaned, heated, cooled, sliced or
examined.
-**Parent Target (parent_target)**: Specify the final resting place for
the object or its parts. Return `None` if there is no designated
location.
-**Toggle Target (toggle_target)**: Indicate any appliance or device
that must be toggled during the task. Return `None` if no toggling is
required.
-**Object State (object_state)**: Indicate whether the target object
needs to be clean, heat, or cool. Return 'None' if no such action is
required.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

-**Two Objects (two_object)**: Specify whether the task requires the
agent to handle and place two *identical* objects into the parent
target location. Set to True if needed, otherwise False. Note that
this parameter should be True only when the task demands picking and
placing two of the *same* items.
-**Note that the objects you need to predict might not been seen yet.

We then present the <samples> to the Actors, the Critic, and the Adapter. Since there are
140 samples for each component, we select only 2 samples from each to demonstrate.

<samples> for Adapter

Task: Place a cup in the coffee maker.
The objects you seen are: Bread,ButterKnife,Cabinet,Chair,CoffeeMachin ⌋
e,CounterTop,Cup,DishSponge,Drawer,Fork,Fridge,GarbageCan,Lettuce,Micr ⌋
owave,Mirror,Mug,Pan,Plate,Pot,SaltShaker,Sink,SoapBottle,Spatula,Spoo ⌋
n,StoveBurner,StoveKnob,DiningTable,SideTable,Toaster,Window
Predict: mrecep_target: None
object_sliced: False
object_target: Mug
parent_target: CoffeeMachine
toggle_target: None
object_state: cool
two_object: False
Task: Warm a cup to make coffee
The objects you seen are: Apple,Bread,ButterKnife,Cabinet,CoffeeMachin ⌋
e,CounterTop,Cup,Drawer,Egg,Fork,Fridge,GarbageCan,HousePlant,Kettle,K ⌋
nife,Ladle,Lettuce,Microwave,Mirror,Pan,PepperShaker,Pot,Potato,SaltSh ⌋
aker,Sink,Spatula,StoveBurner,StoveKnob,Toaster,Tomato,Window
Predict: mrecep_target: None
object_sliced: False
object_target: Mug
parent_target: CoffeeMachine
toggle_target: None
object_state: heat
two_object: False

<samples> for Actorgt

Task:Place a cup in the coffee maker.
The objects you have seen are:Bread,ButterKnife,Cabinet,Chair,CoffeeMa ⌋
chine,CounterTop,Cup,DishSponge,Drawer,Fork,Fridge,GarbageCan,Lettuce, ⌋
Microwave,Mirror,Mug,Pan,Plate,Pot,SaltShaker,Sink,SoapBottle,Spatula, ⌋
Spoon,StoveBurner,StoveKnob,DiningTable,SideTable,Toaster,Window
Act: OpenObject : Cabinet
>OK
Act: PickupObject : Mug
>OK
Act: CloseObject : Cabinet
>OK
Act: OpenObject : Fridge
>OK
Act: PutObject : Fridge
>OK
Act: CloseObject : Fridge
>OK
Act: OpenObject : Fridge
>OK
Act: PickupObject : Mug
>OK
Act: CloseObject : Fridge
>OK

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Act: PutObject : CoffeeMachine
>OK
Act: Stop : NIL
>OK

Task:Pick up tissues, drop them in the tub.
The objects you have seen are:Bathtub,Cabinet,Candle,Cloth,CounterTop, ⌋
Mirror,Plunger,ScrubBrush,Sink,SoapBar,SoapBottle,Toilet,ToiletPaper,T ⌋
oiletPaperHanger,Towel,TowelHolder,Window
Act: PickupObject : Cloth
>OK
Act: PutObject : Bathtub
>OK
Act: Stop : NIL
>OK

<samples> for Actorhind
Task:Place a cup in the coffee maker.
The objects you have seen are:Bowl, Bread, ButterKnife, Cabinet, Chair,
CoffeeMachine, CounterTop, Cup, DishSponge, Drawer, Fridge, GarbageCan,
Lettuce, LightSwitch, Microwave, Mirror, Mug, Pan, PepperShaker, Plate,
SaltShaker, Sink, SoapBottle, Spatula, Spoon, StoveBurner, StoveKnob,
DiningTable, SideTable, Toaster, Window
Act: OpenObject : Cabinet
>OK
Act: PickupObject : Cup
>OK
Act: CloseObject : Cabinet
>OK
Act: PutObject : DiningTable
>OK
Act: OpenObject : Fridge
>OK
Act: PickupObject:Cup
>OK
Act: PutObject:Fridge
>OK
Act: CloseObject:Fridge
>OK
Act: OpenObject:Fridge
>OK
Act: PickupObject:Cup
>OK
Act: CloseObject:Fridge
>OK
Act: PutObject:CoffeeMachine
>OK
Act: Stop : NIL
>OK

Task:Pick up tissues, drop them in the tub.
The objects you have seen are:Bathtub, Cabinet, Candle, Cloth,
CounterTop, GarbageCan, HandTowel, HandTowelHolder, LightSwitch,
Mirror, Painting, ScrubBrush, Shelf, ShowerDoor, ShowerGlass, Sink,
SoapBottle, Television, Toilet, ToiletPaperHanger, Towel, TowelHolder,
Window
Act: PickupObject : TissueBox
>OK
Act: PutObject:CounterTop
>OK
Act: PickupObject:Cloth
>OK
Act: PutObject:Bathtub

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

>OK
Act: Stop : NIL
>OK

Having demonstrated the <base info> and <samples>, we can now present the prompt template
for the Actors, Critic, and Adapter. Note that the prompt of Actorgt and Actorhind differs
in <samples>. The <object list> indicates the objects the agent has seen in the environment.
Meanwhile, the <PDDL predicted> refers to the output of the Adapter, and the <K> indicates
the number of samples in each component. To facilitate better comprehension by LLMs, we convert
the PDDL arguments into a natural language description. The <previous history> includes the
previous actions executed by the agent, enabling the planner to make better decisions based on this
information. Concurrently, we employ a prompt generator that reviews the <previous history>
and outputs <history information> exclusively to assist LLMs in identifying the objects being
held and the open/closed status of containers.

Prompt of Adapter

<Adapter_base_info>
Here are <K> examples:
<Adapter_samples>
Your task is: <task_inst>
The objects you have seen are: <object_list>

Prompt of Critic

<Critic_base_info>
Here are <K> examples:
<Critic_samples>
Your task is: <task_inst>
Your knowledge about this task is: <PDDL_predicted>
The objects you have seen are: <object_list>
previous_history
Based on the **actions** and **Your knowledge about this task** , write
a Critic.
Critic:

Prompt of Actor

<Actor_base_info>
Here are <K> examples:
<Actor_samples>
Your task is: <task_inst>
Your knowledge about this task is: <PDDL_predicted>
The objects you have seen are: <object_list>
Your knowledge about the current state is: <history_information>
<previous_history>
Act:

B.2 PROMPTS FOR HINDSIGHT

We now present the prompts used to query LLMs in our hindsight method. During the relabeling
process for Actor, we first prompt LLMs to generate a <Think> for the suboptimal trajectory, and
then we query the LLMs to complete the task based on it. For the relabeling process of the Critic,
we directly prompt the LLMs to generate a critic for the suboptimal trajectory. We first present the
hindsight samples.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

<samples> for Actor Think

Task: Put a fork on a table.
groundtruth rollout:
PickupObject:Fork
PutObject:Sink
ToggleObjectOn:Faucet
ToggleObjectOff:Fauce
PickupObject:Fork
PutObject:SideTable
Stop:NIL
the incomplete rollout:
PickupObject:Fork
PutObject:SideTable

Think: According to the groundtruth rollout, in this incomplete
rollout, I don't clean the fork and the fork is on the sidetable, I
need to pick up the fork and use faucet to clean the fork and put it
onto the sidetable.
Task: Put a warmed apple in the fridge.
groundtruth rollout:
PickupObject:Apple
OpenObject:Microwave
PutObject:Microwave
CloseObject:Microwave
ToggleObjectOn:Microwave
ToggleObjectOff:Microwave
OpenObject:Microwave
PickupObject:Apple
CloseObject:Microwave
OpenObject:Fridge
PutObject:Fridge
CloseObject:Fridge
Stop:NIL
the incomplete rollout:
PickupObject : Apple
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
OpenObject : Microwave
Think: According to the groundtruth rollout, in this incomplete
rollout, I don't heat the apple and the apple is in the fridge, I need
to open the fridge, pickup the apple and use microwave to heat the
apple, then I should put the apple back into the fridge.

<samples> for Actor Complete

task: Put a fork on a table.
groundtruth rollout:
PickupObject:Fork
PutObject:Sink
ToggleObjectOn:Faucet
ToggleObjectOff:Fauce
PickupObject:Fork
PutObject:SideTable
Stop:NIL
the incomplete rollout:
PickupObject:Fork
PutObject:SideTable

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Think: According to the groundtruth rollout, in this incomplete
rollout, I don't clean the fork and the fork is on the sidetable, I
need to pick up the fork and use faucet to clean the fork and put it
onto the sidetable.
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:
PickupObject : Fork
PutObject :Sink
ToggleObjectOn : Faucet
ToggleObjectOff : Faucet
PickupObject: Fork
PutObject:SideTable
Stop : NIL

task: Put a warmed apple in the fridge.
groundtruth rollout:
PickupObject : Apple
OpenObject : Microwave
PutObject : Microwave
CloseObject : Microwave
ToggleObjectOn : Microwave
ToggleObjectOff : Microwave
OpenObject : Microwave
PickupObject : Apple
CloseObject : Microwave
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
Stop:NIL
the incomplete rollout:
PickupObject : Apple
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
OpenObject : Microwave
Think: According to the groundtruth rollout, in this incomplete
rollout, I don't heat the apple and the apple is in the fridge, I need
to open the fridge, pickup the apple and use microwave to heat the
apple, then I should put the apple back into the fridge.
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
PutObject: Microwave
CloseObject: Microwave
ToggleObjectOn: Microwave
ToggleObjectOff : Microwave
OpenObject : Microwave
PickupObject : Apple
CloseObject : Microwave
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge

<samples> for critic generation

Your task is: Put the cooked tomato on the round table
The rollout by agent is: OpenObject : Fridge
PickupObject : Tomato
CloseObject : Fridge

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

OpenObject : Microwave
The **ground truth rollout** is:
PickupObject:Tomato OpenObject:Microwave
PutObject:Microwave
CloseObject:Microwave
ToggleObjectOn:Microwave
ToggleObjectOff:Microwave
OpenObject:Microwave
PickupObject:Tomato
CloseObject:Microwave
PutObject:DiningTable
Stop:NIL
Based on the **ground truth rollout** , write a critic
Critic:In this task, I need to do the following things in order: Pick
the tomato and put it into microwave, use microwave to heat it,pick the
tomato from microwave and put it onto the DiningTable.There are 5
subgoals in orde, I only achieved first of them, the value is 1/5=0.2.

Your task is: Put a chilled mug in the bottom cabinet closest to the
fridge.
The rollout by agent is:
PickupObject : Mug
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Mug
CloseObject : Fridge
PutObject : Cabinet
The **ground truth rollout** is:
PickupObject:Mug
OpenObject:Fridge
PutObject:Fridge
CloseObject:Fridge
OpenObject:Fridge
PickupObject:Mug
CloseObject:Fridge
OpenObject:Cabinet
PutObject:Cabinet
CloseObject:Cabinet
Stop:NIL
Based on the **ground truth rollout** , write a critic
Critic:In this task, I need to do the following things in order: pick
the mug and put it into the fridge, pick the mug from the fridge and
put the mug into the cabinet. There are 3 subgoals in all, I achieved 2
of them, this is because I don't open the cabinet, so I can't put the
mug into it, the value is 2/3=0.66

We provide the prompts used for querying Actors and Critic, respectively. The
<relabeled task> indicates the task rewritten based on its PDDL, as detailed in section 5.1.
The <gt rollout> represents the ground truth rollout, while the <suboptimal rollout>
denotes the rollout collected by our agent.

prompt of Actor Think

You are a housework agent, you will be given a task, a ground truth
rollout to complete this task, and an incomplete rollout.
Your goal is to consider what action you need to append to the
incomplete rollout to complete the task.
Important: You should use your knowledge to judge what actions need to
do based on the ground truth rollout and incomplete rollout. eg: if the
agent forget to open the fridge, then the action of put object into
fridge should be counted as failed, so you should open the fridge and
put the object into the fridge.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Important: the openable object (fridge,mrcrowave...) are initially
closed, so you need to open them before put object in it.
Important: You can hold one object in your hand at once.

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Stop
The target of actions like OpenObject, CloseObject, PickupObject,
ToggleObjectOn, ToggleObjectOff, and SliceObject is the object the
agent interacts with, whereas the target of PutObject is the location
where the object is to be placed.
The 'Stop' action should be followed by 'NIL'. Note that if all
requirements are met, you only need to output 'Stop'. Remember that you
can only pick up one item at a time, so you must put down the object in
your hand before picking up a new one.

Here are k examples:
<Actor_Think_samples>
Task: <relabeled_task>
Ground truth rollout: <gt_rollout>
The incomplete rollout: <suboptimal_rollout>
Think:

prompt of Actor Complete

You are a housework agent, you will be given a task, a ground truth
rollout to complete this task, an incomplete rollout, and a think
about the incomplete rollout.
Your goal is to finish the incomplete rollout based on the groundtruth
rollout and your think.
Important: You can only output the needed actions,seperated by '
', you must not output other things

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Stop
The target of actions like OpenObject, CloseObject, PickupObject,
ToggleObjectOn, ToggleObjectOff, and SliceObject is the object the
agent interacts with, whereas the target of PutObject is the location
where the object is to be placed.
The 'Stop' action should be followed by 'NIL'. Note that if all
requirements are met, you only need to output 'Stop'. Remember that you
can only pick up one item at a time, so you must put down the object in
your hand before picking up a new one.

Here is k examples:
<Actor_Complete_samples>
Task: <relabeled_task>
Ground truth rollout: <gt_rollout>
The incomplete rollout: <suboptimal_rollout>
Think: <Think>
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:

critic generation prompt

You will be provided with a household task roll-out conducted by an
agent and a ground truth roll-out. Your task is to write a critic of
the agent's roll-out based on the **ground truth rollout** The critic
should follow the form:In this task, I need do the follwing things in
order:... There are ... subgoals I need to achieve,My current state
achieve ...
Important: You should use your knowledge to judge how many subgoals are
achieved. eg: if the agent forget to open the fridge, then the action
of put object into fridge should not counted.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Important: Your critic should end with "the value is a/b=.." You can
round it into 2 decimal.
Important: You should write your critic based on given format, you
should't output other things.
Important: You shouldn't mention about ground truth rollout in your
critic.
Here are examples: <Critic_samples>
Your task is: <relabelled_task>
The rollout by agent is:: <suboptimal_rollout>
The **ground truth rollout** is: <gt_rollout>
Based on the **ground truth rollout** , write a critic
Critic:

23

	Introduction
	Related Work
	Large Language Model (LLM) and In-Context Learning (ICL)
	Adaptation Module in POMDP
	Hindsight in LLMs

	Preliminaries
	Definition in POMDP
	Information Matching

	Hindsight Planner
	Overview
	Prompt Design
	Hindsight Method
	Adaptation Module
	Task Planner

	Experiment
	Setups
	Main Results
	Ablation Study

	Conclusion
	More Algorithm
	Prompts
	Prompts for Planner
	Prompts for hindsight

