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ABSTRACT

This work focuses on building a task planner for Embodied Instruction Following
(EIF) using Large Language Models (LLMs). Previous works typically train a
planner to imitate expert trajectories, treating this as a supervised task. While these
methods achieve competitive performance, they often lack sufficient robustness.
When encountering a suboptimal action, the planner may encounter an out-of-
distribution state, which can lead to task failure. In contrast, we frame the task as
a Partially Observable Markov Decision Process (POMDP) and aim to develop
a robust planner under a few-shot assumption. Thus, we propose a closed-loop
planner with an adaptation module and a novel hindsight method, aiming to use
as much information as possible to assist the planner. Our experiments on the
ALFRED dataset indicate that our planner achieves competitive performance under
a few-shot assumption. For the first time, our few-shot agent’s performance
approaches and even surpasses that of the full-shot supervised agent.

1 INTRODUCTION

With the development of AI and robotics, many previous works have combined them to handle Em-
bodied Instruction Following (EIF). Among them, the Action Learning From Realistic Environments
and Directives (ALFRED) benchmark (Shridhar et al., 2020) is particularly challenging because it
requires an agent to learn a long-horizon policy that maps egocentric images and language instructions
into a sequence of actions. In each task, the agent will be given a natural instruction (e.g. “Put a
heated mug down on a table”) and an egocentric visual observation at each step. The agent is required
to output low-level actions (e.g. MoveAhead, RotateRight, etc.) based on the observation to complete
the task. These tasks are usually challenging due to the sparse reward settings. For such a reason,
many works have adopted a hierarchical structure to deal with it (Song et al., 2023; Min et al., 2021;
Blukis et al., 2021; Kim et al., 2024). The high-level module decomposes the whole task into several
sub-tasks, the low-level module outputs actions to finish each sub-task. Previously, sub-goal planners
are trained on human-annotated dataset through supervised learning. However, they require large
amounts of data and often lack robustness (Min et al., 2021; Blukis et al., 2021; Kim et al., 2024).

With recent advancements in Large Language Models (LLMs), many studies have explored using
LLMs as sub-goal planners, utilizing their in-context learning abilities (Song et al., 2023; Shin et al.,
2024; Ahn et al., 2022). Although these methods have achieved competitive performance under
the few-shot assumption, a critical limitation is that these approaches all study the problem from a
supervised learning perspective. They merely attempt to imitate the ground truth trajectories, which
results in a lack of robustness within their agents. EIF benchmarks, on the other hand, require
long-horizon planning ability. For example, the task “Put a warmed apple in the fridge” requires
12-step planning. Assuming that after applying in-context learning, the distribution of the agent’s
output actions becomes closer to that of the Oracle, with an accuracy of 0.9, the overall accuracy of
the entire planning task decreases to 0.912 = 0.28. Traditionally, a large amount of data is required to
mitigate such an issue (Blukis et al., 2021; Kim et al., 2024). However, under the few-shot assumption,
in-context learning methods rely heavily on the reasoning ability of pretrained LLMs (Brown et al.,
2020; Dong et al., 2024). The hallucination problem of LLMs (Zhang et al., 2023) suggests that
supervised methods through in-context learning are limited.

To address this issue, we approach the ALFRED task (Shridhar et al., 2020) as a Partially Observable
Markov Decision Process (POMDP), where the planner makes decisions based on its current state.
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Each task begins with a natural language description. At each step, the planner receives an egocentric
RGB image and returns a high-level sub-goal. The planner can only receive reward signals (Success
or Fail) at the end of the task. There are three major challenges in building a robust planner: (1)
The sparse reward settings make it difficult for the planner to learn and make accurate decisions. (2)
The planner can only receive an egocentric picture and cannot detect the whole state. (3) Under the
few-shot assumption, the planner cannot obtain enough information from trajectories.

For the first problem, we adopt an actor-critic framework (Liu et al., 2024) which consists of two
actors, one critic, and one generator. At each step, the planner receives a new state and performs a
tree search with the actors and generator to plan future trajectories, rather than directly outputting a
sub-goal. The critic is then used to select the best rollout and return its initial action. Thus, the planner
can optimize the output over the long horizon to address the issue of sparse reward. For the second
difficulty, we design an adaptation module instantiated by LLMs. Upon receiving an egocentric
image, the adaptation module aims to predict the invisible latent PDDL variables of the task, which
could help the planner better understand the environment. For the third challenge, we propose a novel
hindsight method. It collects suboptimal trajectories from the agent in the training environment and
relabels them to complete the task. This approach provides the planner with additional information.
During the deployment phase, the relabeled trajectories can guide the planner in adjusting its policy
when incorrect actions are proposed and executed.

Figure 1: Left: The illustration of the Hindsight Planner: at each time step t, the planner receives a partial
observation yt from the environment. The adaptation module estimates the latent variable and concatenates
it with yt to produce the complete state. Actorhind and Actorgt are prompted with different samples and
make decisions. The Critic is utilized to evaluate the actions. The best rollout (xt, a∗t , x∗t+1, a

∗
t+1 . . .) is

selected, and a∗t is returned. Right: An example of the relabeling process for the Actorhind: after collecting a
suboptimal rollout, the LLM is prompted to generate a reflection on the previously taken actions. Following this
reflection, the LLM is then prompted to complete the suboptimal rollout.

In summary, our contributions are threefold:

(1) We study ALFRED (Shridhar et al., 2020) from a POMDP perspective for the first time and
propose a closed-loop actor-critic planner to solve it.

(2) We propose a novel hindsight prompting method and demonstrate that our method is theoretically
superior to previous approaches.

(3) Experiments on ALFRED (Shridhar et al., 2020) show that our method achieves state-of-the-art
performance under few-shot assumptions. Specifically, the success rates for the “Test Seen” and “Test
Unseen” splits are 25.51 and 18.77, respectively, representing a 60% and 39% improvement over the
previous baseline.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL (LLM) AND IN-CONTEXT LEARNING (ICL)

Large language models (LLMs) have shown incredible reasoning ability (Vaswani et al., 2023; Wei
et al., 2022; Touvron et al., 2023; OpenAI et al., 2024) across a wide range of tasks. A crucial way
to enhance this reasoning ability is through in-context learning (ICL) (Brown et al., 2020; Dong
et al., 2024), which allows LLMs to solve complex tasks with only a few samples. Furthermore,
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this approach removes the need for fine-tuning, which can be time-consuming and computationally
expensive. To utilize the ICL ability better, many studies propose certain frameworks aimed at
enhancing the reasoning capabilities of LLMs (Yao et al., 2023; Wei et al., 2023; Yao et al., 2024).
Among them, Liu et al. (2024) proposes a novel perspective by bridging RL and LLM, which inspires
us to study ICL from an RL aspect. Xie et al. (2022) interprets ICL as Implicit Bayesian Inference,
while Dai et al. (2023) believes that ICL is performing implicit Gradient Descent. All of these imply
the importance of the content in ICL, an area that remains relatively understudied. To this end, we
propose Hindsight Planner as an exploration.

2.2 ADAPTATION MODULE IN POMDP

In a Partially Observable Markov Decision Process (POMDP), planners are presented with observ-
able states, while the latent states are invisible to the planner. Making decisions with incomplete
information is challenging; therefore, a component to map the observable state into the latent space is
crucial (Lee et al., 2023). Adaptation modules have been proven effective in legged robots (Kumar
et al., 2021; Zhou et al., 2019; Peng et al., 2020). These modules aim to bridge the gap between
the simulator and the real world. They are often trained to predict crucial information that a robot
can sense in the simulator but not through its sensors in the actual world, such as surface friction or
payload of the robot. The base policy then makes decisions based on the observed information and
the invisible latent information predicted by adaptation modules. Inspired by this, we propose an
adaptation model that maps the visible object list to the latent, invisible Planning Domain Definition
Language (PDDL) (Chapman, 1987) of ALFRED (Shridhar et al., 2020).

Previous work such as Min et al. (2021), trains a BERT (Devlin et al., 2019) to predict the PDDL
arguments and decompose high-level instructions into templated sub-goals. However, our approach
differs from these in two aspects: (1) Previous works predict the arguments at the beginning of a
task, which is equivalent to predicting the latent variables based on the initial observed state. In
contrast, our method predicts the latent arguments at each time before reasoning, allowing predictions
to be adjusted through exploration, which makes our planner more robust. (2) We do not apply the
templated approach directly. The adaptation module is used to reveal the latent information for the
planner and assist the planner in making better decisions. Experiments show that our method achieves
competitive performance even without the assistance of the adaptation model, as demonstrated in
Table 4.

2.3 HINDSIGHT IN LLMS

Hindsight algorithms (Andrychowicz et al., 2018; Li et al., 2020; Pong et al., 2020) are widely
adopted in the reinforcement learning (RL) area. Generally, the hindsight method aims to reveal
future information after collecting a trajectory and relabel the trajectory to make it more informative
during training process (Furuta et al., 2022; Andrychowicz et al., 2018). Furuta et al. (2022) applies
the hindsight method in training a Transformer model and achieves competitive performance on
several baselines. However, training a model from scratch usually requires a large amount of
data. In contrast, in-context learning, leveraging the reasoning ability of LLMs, allows an agent to
complete complex tasks with only a few samples. Dai et al. (2023) has shown that ICL executes
an implicit parameter update. As a result, we utilize ICL in our proposed method. Intuitively, we
hope hindsight prompts can provide guidance when an out-of-distribution state is encountered. For
example, “Wash a pan and put it away” requires the agent to wash a Pan and put it on the DiningTable.
The trajectory from a planner could be: {(PickupObject, Pan), (PutObject, Sink), (ToggleObjectOn,
Faucet), (PickupObject, Pan), (PutObject, CoffeeMachine)}. Note that in this example, the agent
fails to place the pan in the correct location, does not turn off the faucet, and thus the trajectory
from the planner is suboptimal. Our hindsight method proposes a novel relabeling process that
appends actions to the suboptimal trajectory, aiming to complete the task. In the above example, the
corrected trajectory should be: {(PickupObject, Pan), (PutObject, Sink), (ToggleObjectOn, Faucet),
(PickupObject, Pan), (PutObject, CoffeeMachine), (ToggleObjectOff, Faucet), (PickupObject,Pan),
(PutObject, DiningTable)}. This approach enables us to guide the planner in addressing unknown
states resulting from incorrect actions. Consequently, during the deployment phase, when the planner
encounters a similar state, it can learn from suboptimal trajectories and subsequently take correct
actions to correct previous mistakes.
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We also analyze our method in comparison to previous hindsight methods (Andrychowicz et al.,
2018; Ghosh et al., 2019) following the framework proposed by Furuta et al. (2022). We demonstrate
that while previous methods are effective, they alter the distribution of a crucial variable in multi-task
RL problems. In contrast, our method optimize the same objective while maintaining the distribution.
The detailed discussion can be found in Section 4.3.

3 PRELIMINARIES

3.1 DEFINITION IN POMDP

In a POMDP M, consider an action space A, latent state space X , observation space Y , transition
probability function p(x′|x, a), emission function o(y|x), reward function r(x, a) and discount factor
γ ∈ [0, 1). The policy πθ(·|y) maps the latent state space to the action space, where θ represents its
parameter. The goal of RL is to train a policy such that

πθ = argmax
π

1

1− γ
Ex∼ρπ(x),y∼o(·|x),a∼π(·|y)[r(x, a)], (3.1)

where ρπ(x) = (1− γ)
∑∞

t=0 γ
tpπt (xt = x),

pπt (x) =

∫
x0:t,y0:t−1,a0:t−1

t∏
i=1

p(xi|xi−1, ai−1)o(yi−1|xi−1)π(ai−1|yi−1).

Given a parameterized reward function rz(x, a), z ∈ Z is a variable that indicates the goal for the
agent. A conditional policy π(a|y, z) is trained with different values of z where z ∼ p(z). The goal
in Equation (3.1) becomes

πθ = argmax
π

1

1− γ
Ez∼p(z),x∼ρπ

z (x),y∼oz(·|x),a∼π(·|y,z)[rz(x, a)]. (3.2)

Equation (3.2) can be considered as the multi-task RL objective to optimize, which is the core of EIF.

3.2 INFORMATION MATCHING

Following Furuta et al. (2022), we define the information matching (IM) problem as training a policy
πθ that satisfies

πθ = argmin
πθ

Ez∼p(z),τ∼ρπ
z (τ)

[D(I(τ), z)] , (3.3)

where I(τ) is information statistic that can be any function that captures the desired information from
a partially observed trajectory τt = {y0, a0, y1, y1, . . . , yt} and D is a divergence measure such as
Kullback-Leibler (KL) divergence or some f -divergences. Competitive results have been achieved
with this optimization objective (Lee et al., 2020; Hazan et al., 2019).

Furuta et al. (2022) demonstrates that previous hindsight methods (Andrychowicz et al., 2018;
Eysenbach et al., 2020; Guo et al., 2021) utilize various information statistics and minimize the
divergence D = 0 by setting ẑ = I(τ). This allows trajectories to be better used to train a
policy π(a|s, z). For instance, in HER (Andrychowicz et al., 2018), an MDP trajectory τst =
{s0, a0, s1, . . . , st} is collected. The information statistic is set as the final state of the agent, where
I(τst ) = st, and the relabeling process in HER is equivalent to setting ẑ = I(τst ).

4 HINDSIGHT PLANNER

4.1 OVERVIEW

The Hindsight Planner outputs a sub-goal based on the observed objects and natural language
instructions. During the collection phase, suboptimal trajectories are collected, and we apply our
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Algorithm 1 Hindsight Planner
1: Input: An LLM-planner LLM-PL, an adaptation module Adapter and the task instruction I .
2: Set: Observed Objects O ← ∅, the sub-goal history G← ∅, the current sub-goal S ← ∅, the time step
t← 0 and sub-goal index k ← 0.

3: Get sample pool D and initialize Actorθ , Critic, Adapter from D, for any θ ∈ {gt,hind} (e.g.
Algorithm 3 in Appendix A). (Hindsight process)

4: while Not Finished do
5: Get PDDL arguments P ← Adapter(I,O).
6: Plan and get sub-goal Sk ← LLM-PL(Actorgt,Actorhind,Critic, P, I, O,G)(e.g. Algorithm 2 in

Appendix A).
7: Set Sk as sub-goal for Low-PL.
8: while Sk not Finished and not Failed do
9: Invoke Low-PL to plan and execute at and update O.

10: Set t← t+ 1
11: if Sk Finished then
12: Append Sk to G.
13: Set k ← k + 1.
14: end if
15: end while
16: end while

hindsight method to generate Dhind. The complete dataset D = Dhind ∪Dgt, where Dgt is constructed
from training data. In the deployment phase, we initiate hindsight actor Actorhind, ground truth
actor Actorgt, and Critic from D.

Figure 2: A comparison of Hindsight Planner and previous supervised methods when taking a suboptimal
action. The agent initially picks up the incorrect object (“Basketball”). In the supervised method, the planner
fails to handle this situation, which leads to task failure. In contrast, the Hindsight Planner can adjust after the
incorrect action and successfully complete the task.

At time step t, the planner receives an observed object list yt from observation functions (Blukis
et al., 2021). We then apply the Adaptation module to predict the latent PDDL arguments P based on
yt. The whole state xt is constructed by yt and P . With xt, we invoke the actor-critic task planner
LLM-PL to generate a future trajectory over a long horizon and return the sub-goal Sk. To ensure
the output from the planner meets the requirements, a frozen BERT (Devlin et al., 2019) is used to
map the output to the legal space. The proposed sub-goal will be executed by a low-level controller
Low-PL (Blukis et al., 2021). When a sub-goal is completed or fails, the planner reinvokes the
reasoning process to replan another future trajectory from the new state. The complete algorithm is
presented in Algorithm 1, and Figure 3 provides an example of the entire process.
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Figure 3: The entire process of the Hindsight Planner is as follows: At the start of the task, which is to “Place
a plate with a ladle on it in a cabinet,” the Adapter mistakenly identifies the task as picking up a plate and
placing it into a cabinet. Actorhind and Actorgt make decisions separately. Critic then selects the best
action as its output. Upon further exploration, the agent detects more objects, and the Adapter adjusts its
output, recognizing the task as stacking a ladle onto a plate and then placing them into a cabinet. The Actors
and Critic subsequently make decisions based on the revised predictions.

4.2 PROMPT DESIGN

All components follow a similar design. The prompt begins with an intuitive explanation of the task
and a role description of the LLM. A frozen BERT is then used as a kNN retriever, encoding the
task description and selecting K examples with the closest Euclidean distance from the sample pool
as in-context samples (Song et al., 2023). Intuitively, the planner would make similar suboptimal
actions in similar tasks. For instance, if in an in-context sample “Place two spray bottles into the
cabinet,” the planner fails to open the cabinet when putting the second spray bottle into it. In the
current task “Putting two candles in a cabinet”, the planner would know to avoid a similar mistake.
The detailed prompts for each process can be viewed in Appendix B.

4.3 HINDSIGHT METHOD

In Section 3, we gain a coherent framework to describe previous hindsight methods. However, we find
that such methods can lead to the policy π being suboptimal, particularly when the number of samples
is insufficient. To illustrate this better, we consider the optimization objective in Equation (3.2). It
aims to learn a policy under different values of z where z ∼ p(z). During the collection phase, the
agent’s trajectory is usually suboptimal and random. Assume the distribution of I(τ) ∼ q. The
training objective after relabeling is to train a policy π̂ satisfies that

π̄ = argmax
π

1

1− γ
Ez∼q(z),x∼ρπ

z (x),y∼o(·|x),a∼π(·|y,z) [rz(x, a)] . (4.1)

Define the π∗ as the oracle. It is easy to see that

1

1− γ
Ez∼p(z),x∼ρπ̄

z (x),y∼o(·|x),a∼π̄(·|x,z) [rz(x, a)]

<
1

1− γ
Ez∼p(z),x∼ρπ∗

z (x),y∼o(·|x),a∼π∗(·|x,z) [rz(x, a)] ,

(4.2)

as the distribution of z is shifted from p to q.
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Based on such discovery, we propose a new method of hindsight. Assume that τ∗ is the ground truth
rollout from the oracle π∗, we can rewrite z = I(γ∗), Equation (3.3) then becomes

min
π

Ez∼p(z),τ∼ρπ
z (τ)

[D(I(τ), I(τ∗))] . (4.3)

Our method utilizes LLMs to relabel τ̂ = τT + {aT , yT+1, aT+2, . . .} in such a way that I(τ̂) =
I(τ∗) = z. Thus, we minimize the divergence in Equation (4.3) while keeping the distribution of z
unshifted. Intuitively, Equation (4.2) shows that relabeling z alters the distribution of tasks that are
truly relevant to our daily lives. This is especially crucial in the reasoning process of EIF.

In practice, our hindsight method consists of two main parts: the collection phase and the deployment
phase. During the collection phase, the planner executes tasks and retrieves K examples from a small
set of ground truth samples. At each task, the planner generates a possibly suboptimal trajectory τ and
relabels them. The algorithm is summarized in Algorithm 3 of Appendix A. During the deployment
phase, the Actorgt is prompted with ground truth samples while the Actorhind and the Critic
are prompted with relabeled samples. Intuitively, we hope that the Actorgt can provide the correct
action to complete the task along the shortest path. However, when an incorrect action—which is
often unavoidable—is executed, the Actorhind and the Critic should be able to correct it. The
relabeling process utilizes the reasoning ability of LLMs to fit suboptimal trajectories into correct
rollouts. The CoT (Wei et al., 2023) method is utilized in the relabeling process. We first prompt the
LLM to generate a Think about the suboptimal rollout and then prompt it to complete the suboptimal
rollout based on the Think. A comparison of the hindsight method with the supervised methods is
shown in Figure 2, while the right half of Figure 1 illustrates an example of the relabeling process.

4.4 ADAPTATION MODULE

In a POMDP, the adaptation module is used to predict the latent variables from the observed environ-
ment yt (Lee et al., 2023; Kumar et al., 2021) and construct the whole state xt = (Adapter(yt), yt).
In practice, we utilize an LLM as the adaptation module and set PDDL arguments as the prediction
target for it. The input prompt for the adaptation module begins with an intuitive explanation of
ALFRED, followed by several in-context samples. At the end of the prompt is the current task and
the object list. At each step, the object list is updated as the agent explores the environment.

The output from the adaptation module varies depending on the task description. Inspired by PDDL
(Chapman, 1987; Silver et al., 2023) of ALFRED, the adaptation module needs to predict the
following arguments at each step: (1) object target: The specific object to be interacted with during
the task. (2) parent target: The final place for the object in the task. (3) mrecep target: The container
or vessel necessary for the task. (4) toggle target: The device that needs to be toggled in the task.
(5) object state: Indicates whether the target object needs to be cleaned, heated, or cooled. (6)
object sliced: Determines if the object must be sliced. (7) two object: Specifies whether the task
involves handling and placing two objects. The adaptation module predicts these arguments at each
time before reasoning. Then, the arguments are processed into a specific format to assist the task
planner to sense the environment better.

4.5 TASK PLANNER

We adopt an actor-critic planner (Liu et al., 2024). At each time step t, the planner receives xt from
the environment and the adaptation module. We initiate two Actors: Actorgt and Actorhind, with
different samples from the sample pool D. For each state, we prompt each Actor to generate W

2
actions. The Critic then selects the top B actions. A generator ψ generates the next state based on
each action. In this way, we map Actors and Critic to B future trajectories and select the best
future trajectory (xt, a

∗
t , . . .) through Critic. a∗t is then returned as the sub-goal for Low-PL. The

left half of Figure 1 shows the reasoning process of the planner.

5 EXPERIMENT

5.1 SETUPS

We validate our framework using the ALFRED benchmark (Shridhar et al., 2020). This benchmark
assesses the agent’s capability to execute a series of actions for long-horizon household tasks based
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Model Test Seen Test Unseen

n-shot SR GC SR GC

HiTUT (Zhang & Chai, 2021) full 13.63 21.11 11.12 17.89
HLSM (Blukis et al., 2021) full 25.11 35.79 20.27 27.24
FILM (Min et al., 2021) full 28.83 39.55 27.80 38.52
MCR-Agent (Bhambri et al., 2024) full 30.13 - 17.04 -

FILM (low inst.) (Min et al., 2021) few 0.00 4.23 0.20 6.71
LLM-Planner (Song et al., 2023) few 15.33 24.57 13.41 22.8
LLM-Planner (low inst.) (Song et al., 2023) few 18.80 26.77 16.42 23.37
Socratic-Planner(Shin et al., 2024) few 13.24 21.51 10.66 19.53
Hindsight planner (ours) few 25.51 34.74 18.77 28.29

Table 1: Comparison with the state-of-the-art methods on SR and GC in the test set. Bold
symbols in numbers denote the highest accuracy, while underlined symbols indicate the runner-up for
each experiment setting. “low inst.” refers to the use of step-by-step instructions.

on natural language task descriptions and egocentric vision. The ALFRED dataset consists of 25k
annotations, 108 distinct objects, 7 types of tasks, and 120 scenes. The dataset is divided into training,
validation, and testing splits. The validation and test splits contain “seen” subsets, which are part of
the training fold, and “unseen” subsets, which are distinct from it. The evaluation is based on Success
Rate (SR) and Goal Condition (GC). Given the inherent noise in natural language instructions and the
complexities of long-horizon task planning, the ALFRED benchmark presents significant challenges
for embodied agents in formulating robust and precise plans.

Similar to previous work (Song et al., 2023; Shin et al., 2024), we only utilize a few examples from
the 21k training set annotations. For each of the 7 task types, we randomly select 20 trajectories as
the initial sample pool. At the collection phase, we run our planner on the 140 trajectories and collect
sub-optimal trajectories. During collection, the same task is not included as in-context samples.

We then give a detailed discussion of the relabeling process. Directly applying the task description
from ALFRED may lead to unsatisfactory results, as the task description is often vague. For example,
the task “Put a chilled potato on the small black table” requires the planner to put the potato on a
SideTable. If the task description is applied directly, LLMs might focus incorrectly on the Black
Table and return an incorrect action “PutObject BlackTable”. If the task description is not included
in the prompt, it could lead LLMs to imitate the ground truth trajectory. However, planners usually
have multiple ways to complete a certain task. For instance, in a task requiring the planner to slice
an apple, after slicing the apple, the planner could put the Knife on the DiningTable or CounterTop.
To address this issue, we relabel the task based on the latent PDDL arguments. The task description
“Put a chilled potato on the small black table” becomes “Pick up one cooled potato and put it on
the SideTable”. This approach helps clarify the task for the planner and reduces the ambiguity in
instructions.

For the kNN retriever, we use a frozen BERT from Wolf et al. (2020). We employ GPT-4 Turbo as
the target LLM and set temperature to 0. For the Adapter, 5 in-context examples are retrieved from
the sample pool through the kNN retriever. For the Actors and Critic modules, 2 in-context
examples are retrieved. The task planner uses beam search with a depth and width of 2. To preserve
the few-shot assumption and ensure a fair comparison, we directly adopt the pretrained modules for
navigation, perception, and low-level control from HLSM (Blukis et al., 2021).

5.2 MAIN RESULTS

We initially compare our method to other few-shot methods, as shown in Table 1. It is evident that our
method achieves a 10.18 and 5.36 higher success rate in “Test Seen” and “Test Unseen” categories,
respectively, compared to the previous state-of-the-art method (LLM-Planner) that uses high-level
instructions only. Moreover, even when compared to methods utilizing low-level, step-by-step
instructions, our method still demonstrates superior performance.

We also compare our method to the other approaches under the same low-level controller (Blukis
et al., 2021) in Table 2. The results indicate that our method not only significantly outperforms
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Model Valid Seen Valid Unseen Test Seen Test Unseen

n-shot SR GC SR GC SR GC SR GC

HLSM (Blukis et al., 2021) full 29.63 38.74 18.28 31.24 25.11 35.79 20.27 27.24
LLM-Planner (Song et al., 2023) few 13.53 28.28 12.92 25.35 15.33 24.57 13.41 22.8
Socratic-Planner (Shin et al., 2024) few 14.88 25.47 13.40 24.91 13.24 21.51 10.66 19.53
Hindsight planner (ours) few 25.61 34.95 19.00 29.90 25.51 34.74 18.77 28.29

Table 2: Comparison with the same lower-controller. Bold symbols in numbers denote the highest
accuracy, while underlined symbols indicate the runner-up for each experiment setting.

Task Type Examine Pick Clean Stack Pick Two Heat Cool

Base Method 40.42 50 15.18 9.56 30.65 7.48 21.43
w.o. hindsight prompt 39.36 49.29 16.96 7.82 29.84 7.47 10.31
w.o. adaptation module 35.1 47.1 8.93 6.09 32.25 9.34 18.26

Table 3: Ablation study on the success rate of different type of tasks in “Valid Seen” split.

previous few-shot LLM planners but also, for the first time, a few-shot LLM method (with around
100 examples) nearly matches and even surpasses (SR in “Valid Unseen”, “Test Seen”, and GC in
“Test Unseen”) fully supervised (around 21k samples) methods.

5.3 ABLATION STUDY

Model Valid Seen Valid Unseen

SR GC SR GC

W.O. Adaptation module 23.17 33.28 14.99 27.36
W.O. Hindsight Prompt 23.53 32.76 16.32 28.06
Base Method 25.61 34.95 19.00 29.90

Table 4: Ablation on “Valid Seen”, “Valid Unseen” splits.

We conduct ablation studies to under-
stand the effectiveness of the compo-
nents in our framework. First, we ab-
late the adaptation module Adapter,
which requires the planner to make de-
cisions based solely on the partially
observed information. The results
show that this causes a drop of −2.44
and −4.01 in the success rates for the
“Valid Seen” and “Valid Unseen” splits. Then, we remove the hindsight prompts. For a fair compar-
ison, the original planner requires both Actorgt and Actorhind to generate one action per state.
We also ablate by prompting Actorgt to output two actions for each state. Table 4 shows that the
success rates drop by −2.08 and −2.68 in the “Valid Seen” and “Valid Unseen” splits.

Task Type Avg. Sub-Goal Len.

Examine 2.07
Pick 2.48
Pick Two 5.70
Stack 5.63
Clean 7.25
Cool 10.36
Heat 12.78

For a more comprehensive analysis, we report the success rates for
each task type in the “Valid Seen” split, as shown in Table 3. Concur-
rently, we also present the average sub-goal lengths in the right table.
This analysis reveals that hindsight prompting is especially crucial
in relatively long-horizon tasks, such as “Cool Object” and “Heat
Object”. This is likely because, in long-horizon tasks, planners will
output suboptimal actions with a higher probability. On the other
hand, the adaptation module can assist the planner in better sensing
the environment, leading to a general improvement across nearly all
areas.

6 CONCLUSION

This paper explores an effective few-shot framework for Embodied Instruction Following. We
approach the task as a POMDP and design a closed-loop Hindsight Planner equipped with an
adaptation module to enhance the agent’s environmental sensing capabilities. Compared to previous
open-loop, supervised methods, our approach is more robust and performs better. Furthermore, the
planner incorporates a novel hindsight method that enables it to learn from suboptimal trajectories.
we hope our work inspires future research in this area.
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A MORE ALGORITHM

In algorithm 2, we present a beam search example of a hindsight planner. During the collection phase,
one Actor prompted from the ground truth sample pool is required to output W actions for each
state, and Critic is used to retain the best B actions for the next round of planning. When the
search depth U is reached, the best rollout is selected, and the first action from it is returned. At the
deployment phase, two Actors are prompted with hindsight prompts and ground truth samples.
Each Actor is required to generate W

2 actions.

algorithm 3 outlines the algorithm for the collection phase. To preserve the few-shot assumption,
the planner collects suboptimal trajectories from Dgt. During the execution of the current task, this
task is specifically excluded from being used as an ICL sample to the planner. We employ a prompt
generator ϕ to relabel tasks and mitigate ambiguity in the instructions.

Algorithm 2 LLM Planner: A Beam Search example
1: Input Actors, Critic, the initial state s,a generator ψ, search Breadth B, proposal width W and search

Depth U
2: State S0 ← {s}
3: Action array A0 ← ∅
4: Get numbers of Actors n← len(Actors)
5: for u = 0, . . . , U do
6: for Actori in Actors do
7: For each su in Su, invoke Actori to propose W

n
candidate actions.

8: end for
9: For each a(w)

u invoke ψ to generate next state s(w)
u+1

10: For each tuple (su, a
(w)
u , s

(w)
u+1), invoke Critic to evaluate the expected cumulative reward V (w)

u+1

11: select B best (su, a
(w)
u , s

(w)
u+1) with highest V and put them into Su ×Au × Su+1

12: end for
13: For B preserved rollouts in S0 ×A0 × . . .× SU+1, invoke Critic to evaluate the expected cumulative

reward V (b)
u+1

14: Select the best rollout (s∗0, a∗0, . . . , s∗U+1)
15: return a∗0

Algorithm 3 Hindsight Prompt
1: input: A ground truth sample pool Dgt, a prompt generator ϕ.
2: Initialize initiate Agent from Dgt, set Dhind ← ∅.
3: for sample s in Dgt do
4: Extract ground truth rollout R, task description I , PDDL arguments P from s.
5: Initialize environment E with s.
6: Collect suboptimal trajectories traj ← Agent(I, E,Dgt/{s}) (e.g. algorithm 2 of appendix A).
7: Rename task description Ĩ ← ϕ(P ).
8: Get reflection Think← LLM(Ĩ , traj, R).
9: Relabel trajectory promptactor ← LLM(Ĩ , traj, R,Think).

10: Generate critic from suboptimal trajectory promptcritic ← LLM(Ĩ , traj, R).
11: Append promptactor, promptcritic to Dhind.
12: end for
13: Build hindsight sample pool D = Dgt

⋃
Dhind.

14: Initial Actorgt, Adapter from Dgt, initial Critic, Actorhind from Dhind.
15: Return Actorθ , Critic, Adapter for any θ ∈ {gt,hind}.

B PROMPTS

B.1 PROMPTS FOR PLANNER

Here, we display prompts for various components here. The <base info> defines the role descrip-
tions while the <samples> provide in-context examples for Actors, Critic and Adapter.

We first show the role description for Actors, Critic and Adapter.
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<base info> of Actor
Interact with a household to solve a task.
At each step, you will be provided with the previous observations and
action pairs.

Important: You **are required** to return an action.

The answer should contain two parts, the action type and a target.

The allowed types of actions are:

OpenObject, CloseObject, PickupObject, PutObject, ToggleObjectOn,
ToggleObjectOff, SliceObject, Stop

The target of OpenObject, CloseObject, PickupObject, ToggleObjectOn,
ToggleObjectOff, SliceObject is the object agent interacts with, and
the target of PutObjectis the place to put the object.

Stop should end with NIL.Note if all requirements are satisfied, you
just need to output Stop

<base info> of Critic
You are a value critic of states in a household task. You would be
given a task description, some observations and actions, you need to
give a critic about them. **Note Your critic should end with format:
the value is a/b=...**

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Explore,Stop

The target of OpenObject,CloseObject,PickupObject,ToggleObjectOn,Toggl ⌋
eObjectOff,SliceObject is the object agent interacts with and the
target of PutObjectis the place to put the object.

Explore and Stop should be followed with NIL.Note if all requirements
are satisfied, you just need to output Stop. You might need to
OpenObject so you can see the object you need to interact with.

<base info> of Adapter

Predict the necessary components for the following household task:
-**Moveable Receptacle (mrecep_target)**: Identify any container or
vessel required for the task. Return `None` if not applicable.
-**Object Slicing (object_sliced)**: Determine if the object needs to
be sliced. Provide a boolean value (`True` for yes, `False` for no).
-**Object Target (object_target)**: Identify the specific object that
is the focus of the task and will be interacted with. This could be the
item that needs to be moved, cleaned, heated, cooled, sliced or
examined.
-**Parent Target (parent_target)**: Specify the final resting place for
the object or its parts. Return `None` if there is no designated
location.
-**Toggle Target (toggle_target)**: Indicate any appliance or device
that must be toggled during the task. Return `None` if no toggling is
required.
-**Object State (object_state)**: Indicate whether the target object
needs to be clean, heat, or cool. Return 'None' if no such action is
required.
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-**Two Objects (two_object)**: Specify whether the task requires the
agent to handle and place two *identical* objects into the parent
target location. Set to True if needed, otherwise False. Note that
this parameter should be True only when the task demands picking and
placing two of the *same* items.
-**Note that the objects you need to predict might not been seen yet.

We then present the <samples> to the Actors, the Critic, and the Adapter. Since there are
140 samples for each component, we select only 2 samples from each to demonstrate.

<samples> for Adapter

Task: Place a cup in the coffee maker.
The objects you seen are: Bread,ButterKnife,Cabinet,Chair,CoffeeMachin ⌋
e,CounterTop,Cup,DishSponge,Drawer,Fork,Fridge,GarbageCan,Lettuce,Micr ⌋
owave,Mirror,Mug,Pan,Plate,Pot,SaltShaker,Sink,SoapBottle,Spatula,Spoo ⌋
n,StoveBurner,StoveKnob,DiningTable,SideTable,Toaster,Window
Predict: mrecep_target: None
object_sliced: False
object_target: Mug
parent_target: CoffeeMachine
toggle_target: None
object_state: cool
two_object: False
Task: Warm a cup to make coffee
The objects you seen are: Apple,Bread,ButterKnife,Cabinet,CoffeeMachin ⌋
e,CounterTop,Cup,Drawer,Egg,Fork,Fridge,GarbageCan,HousePlant,Kettle,K ⌋
nife,Ladle,Lettuce,Microwave,Mirror,Pan,PepperShaker,Pot,Potato,SaltSh ⌋
aker,Sink,Spatula,StoveBurner,StoveKnob,Toaster,Tomato,Window
Predict: mrecep_target: None
object_sliced: False
object_target: Mug
parent_target: CoffeeMachine
toggle_target: None
object_state: heat
two_object: False

<samples> for Actorgt

Task:Place a cup in the coffee maker.
The objects you have seen are:Bread,ButterKnife,Cabinet,Chair,CoffeeMa ⌋
chine,CounterTop,Cup,DishSponge,Drawer,Fork,Fridge,GarbageCan,Lettuce, ⌋
Microwave,Mirror,Mug,Pan,Plate,Pot,SaltShaker,Sink,SoapBottle,Spatula, ⌋
Spoon,StoveBurner,StoveKnob,DiningTable,SideTable,Toaster,Window
Act: OpenObject : Cabinet
>OK
Act: PickupObject : Mug
>OK
Act: CloseObject : Cabinet
>OK
Act: OpenObject : Fridge
>OK
Act: PutObject : Fridge
>OK
Act: CloseObject : Fridge
>OK
Act: OpenObject : Fridge
>OK
Act: PickupObject : Mug
>OK
Act: CloseObject : Fridge
>OK
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Act: PutObject : CoffeeMachine
>OK
Act: Stop : NIL
>OK

Task:Pick up tissues, drop them in the tub.
The objects you have seen are:Bathtub,Cabinet,Candle,Cloth,CounterTop, ⌋
Mirror,Plunger,ScrubBrush,Sink,SoapBar,SoapBottle,Toilet,ToiletPaper,T ⌋
oiletPaperHanger,Towel,TowelHolder,Window
Act: PickupObject : Cloth
>OK
Act: PutObject : Bathtub
>OK
Act: Stop : NIL
>OK

<samples> for Actorhind
Task:Place a cup in the coffee maker.
The objects you have seen are:Bowl, Bread, ButterKnife, Cabinet, Chair,
CoffeeMachine, CounterTop, Cup, DishSponge, Drawer, Fridge, GarbageCan,
Lettuce, LightSwitch, Microwave, Mirror, Mug, Pan, PepperShaker, Plate,
SaltShaker, Sink, SoapBottle, Spatula, Spoon, StoveBurner, StoveKnob,
DiningTable, SideTable, Toaster, Window
Act: OpenObject : Cabinet
>OK
Act: PickupObject : Cup
>OK
Act: CloseObject : Cabinet
>OK
Act: PutObject : DiningTable
>OK
Act: OpenObject : Fridge
>OK
Act: PickupObject:Cup
>OK
Act: PutObject:Fridge
>OK
Act: CloseObject:Fridge
>OK
Act: OpenObject:Fridge
>OK
Act: PickupObject:Cup
>OK
Act: CloseObject:Fridge
>OK
Act: PutObject:CoffeeMachine
>OK
Act: Stop : NIL
>OK

Task:Pick up tissues, drop them in the tub.
The objects you have seen are:Bathtub, Cabinet, Candle, Cloth,
CounterTop, GarbageCan, HandTowel, HandTowelHolder, LightSwitch,
Mirror, Painting, ScrubBrush, Shelf, ShowerDoor, ShowerGlass, Sink,
SoapBottle, Television, Toilet, ToiletPaperHanger, Towel, TowelHolder,
Window
Act: PickupObject : TissueBox
>OK
Act: PutObject:CounterTop
>OK
Act: PickupObject:Cloth
>OK
Act: PutObject:Bathtub
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>OK
Act: Stop : NIL
>OK

Having demonstrated the <base info> and <samples>, we can now present the prompt template
for the Actors, Critic, and Adapter. Note that the prompt of Actorgt and Actorhind differs
in <samples>. The <object list> indicates the objects the agent has seen in the environment.
Meanwhile, the <PDDL predicted> refers to the output of the Adapter, and the <K> indicates
the number of samples in each component. To facilitate better comprehension by LLMs, we convert
the PDDL arguments into a natural language description. The <previous history> includes the
previous actions executed by the agent, enabling the planner to make better decisions based on this
information. Concurrently, we employ a prompt generator that reviews the <previous history>
and outputs <history information> exclusively to assist LLMs in identifying the objects being
held and the open/closed status of containers.

Prompt of Adapter

<Adapter_base_info>
Here are <K> examples:
<Adapter_samples>
Your task is: <task_inst>
The objects you have seen are: <object_list>

Prompt of Critic

<Critic_base_info>
Here are <K> examples:
<Critic_samples>
Your task is: <task_inst>
Your knowledge about this task is: <PDDL_predicted>
The objects you have seen are: <object_list>
previous_history
Based on the **actions** and **Your knowledge about this task** , write
a Critic.
Critic:

Prompt of Actor

<Actor_base_info>
Here are <K> examples:
<Actor_samples>
Your task is: <task_inst>
Your knowledge about this task is: <PDDL_predicted>
The objects you have seen are: <object_list>
Your knowledge about the current state is: <history_information>
<previous_history>
Act:

B.2 PROMPTS FOR HINDSIGHT

We now present the prompts used to query LLMs in our hindsight method. During the relabeling
process for Actor, we first prompt LLMs to generate a <Think> for the suboptimal trajectory, and
then we query the LLMs to complete the task based on it. For the relabeling process of the Critic,
we directly prompt the LLMs to generate a critic for the suboptimal trajectory. We first present the
hindsight samples.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

<samples> for Actor Think

Task: Put a fork on a table.
groundtruth rollout:
PickupObject:Fork
PutObject:Sink
ToggleObjectOn:Faucet
ToggleObjectOff:Fauce
PickupObject:Fork
PutObject:SideTable
Stop:NIL
the incomplete rollout:
PickupObject:Fork
PutObject:SideTable

Think: According to the groundtruth rollout, in this incomplete
rollout, I don't clean the fork and the fork is on the sidetable, I
need to pick up the fork and use faucet to clean the fork and put it
onto the sidetable.
Task: Put a warmed apple in the fridge.
groundtruth rollout:
PickupObject:Apple
OpenObject:Microwave
PutObject:Microwave
CloseObject:Microwave
ToggleObjectOn:Microwave
ToggleObjectOff:Microwave
OpenObject:Microwave
PickupObject:Apple
CloseObject:Microwave
OpenObject:Fridge
PutObject:Fridge
CloseObject:Fridge
Stop:NIL
the incomplete rollout:
PickupObject : Apple
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
OpenObject : Microwave
Think: According to the groundtruth rollout, in this incomplete
rollout, I don't heat the apple and the apple is in the fridge, I need
to open the fridge, pickup the apple and use microwave to heat the
apple, then I should put the apple back into the fridge.

<samples> for Actor Complete

task: Put a fork on a table.
groundtruth rollout:
PickupObject:Fork
PutObject:Sink
ToggleObjectOn:Faucet
ToggleObjectOff:Fauce
PickupObject:Fork
PutObject:SideTable
Stop:NIL
the incomplete rollout:
PickupObject:Fork
PutObject:SideTable
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Think: According to the groundtruth rollout, in this incomplete
rollout, I don't clean the fork and the fork is on the sidetable, I
need to pick up the fork and use faucet to clean the fork and put it
onto the sidetable.
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:
PickupObject : Fork
PutObject :Sink
ToggleObjectOn : Faucet
ToggleObjectOff : Faucet
PickupObject: Fork
PutObject:SideTable
Stop : NIL

task: Put a warmed apple in the fridge.
groundtruth rollout:
PickupObject : Apple
OpenObject : Microwave
PutObject : Microwave
CloseObject : Microwave
ToggleObjectOn : Microwave
ToggleObjectOff : Microwave
OpenObject : Microwave
PickupObject : Apple
CloseObject : Microwave
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
Stop:NIL
the incomplete rollout:
PickupObject : Apple
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
OpenObject : Microwave
Think: According to the groundtruth rollout, in this incomplete
rollout, I don't heat the apple and the apple is in the fridge, I need
to open the fridge, pickup the apple and use microwave to heat the
apple, then I should put the apple back into the fridge.
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:
OpenObject : Fridge
PickupObject : Apple
CloseObject : Fridge
PutObject: Microwave
CloseObject: Microwave
ToggleObjectOn: Microwave
ToggleObjectOff : Microwave
OpenObject : Microwave
PickupObject : Apple
CloseObject : Microwave
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge

<samples> for critic generation

Your task is: Put the cooked tomato on the round table
The rollout by agent is: OpenObject : Fridge
PickupObject : Tomato
CloseObject : Fridge
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OpenObject : Microwave
The **ground truth rollout** is:
PickupObject:Tomato OpenObject:Microwave
PutObject:Microwave
CloseObject:Microwave
ToggleObjectOn:Microwave
ToggleObjectOff:Microwave
OpenObject:Microwave
PickupObject:Tomato
CloseObject:Microwave
PutObject:DiningTable
Stop:NIL
Based on the **ground truth rollout** , write a critic
Critic:In this task, I need to do the following things in order: Pick
the tomato and put it into microwave, use microwave to heat it,pick the
tomato from microwave and put it onto the DiningTable.There are 5
subgoals in orde, I only achieved first of them, the value is 1/5=0.2.

Your task is: Put a chilled mug in the bottom cabinet closest to the
fridge.
The rollout by agent is:
PickupObject : Mug
OpenObject : Fridge
PutObject : Fridge
CloseObject : Fridge
OpenObject : Fridge
PickupObject : Mug
CloseObject : Fridge
PutObject : Cabinet
The **ground truth rollout** is:
PickupObject:Mug
OpenObject:Fridge
PutObject:Fridge
CloseObject:Fridge
OpenObject:Fridge
PickupObject:Mug
CloseObject:Fridge
OpenObject:Cabinet
PutObject:Cabinet
CloseObject:Cabinet
Stop:NIL
Based on the **ground truth rollout** , write a critic
Critic:In this task, I need to do the following things in order: pick
the mug and put it into the fridge, pick the mug from the fridge and
put the mug into the cabinet. There are 3 subgoals in all, I achieved 2
of them, this is because I don't open the cabinet, so I can't put the
mug into it, the value is 2/3=0.66

We provide the prompts used for querying Actors and Critic, respectively. The
<relabeled task> indicates the task rewritten based on its PDDL, as detailed in section 5.1.
The <gt rollout> represents the ground truth rollout, while the <suboptimal rollout>
denotes the rollout collected by our agent.

prompt of Actor Think

You are a housework agent, you will be given a task, a ground truth
rollout to complete this task, and an incomplete rollout.
Your goal is to consider what action you need to append to the
incomplete rollout to complete the task.
Important: You should use your knowledge to judge what actions need to
do based on the ground truth rollout and incomplete rollout. eg: if the
agent forget to open the fridge, then the action of put object into
fridge should be counted as failed, so you should open the fridge and
put the object into the fridge.
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Important: the openable object (fridge,mrcrowave...) are initially
closed, so you need to open them before put object in it.
Important: You can hold one object in your hand at once.

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Stop
The target of actions like OpenObject, CloseObject, PickupObject,
ToggleObjectOn, ToggleObjectOff, and SliceObject is the object the
agent interacts with, whereas the target of PutObject is the location
where the object is to be placed.
The 'Stop' action should be followed by 'NIL'. Note that if all
requirements are met, you only need to output 'Stop'. Remember that you
can only pick up one item at a time, so you must put down the object in
your hand before picking up a new one.

Here are k examples:
<Actor_Think_samples>
Task: <relabeled_task>
Ground truth rollout: <gt_rollout>
The incomplete rollout: <suboptimal_rollout>
Think:

prompt of Actor Complete

You are a housework agent, you will be given a task, a ground truth
rollout to complete this task, an incomplete rollout, and a think
about the incomplete rollout.
Your goal is to finish the incomplete rollout based on the groundtruth
rollout and your think.
Important: You can only output the needed actions,seperated by '
', you must not output other things

The allowed types of actions are: OpenObject,CloseObject,PickupObject, ⌋
PutObject,ToggleObjectOn,ToggleObjectOff,SliceObject,Stop
The target of actions like OpenObject, CloseObject, PickupObject,
ToggleObjectOn, ToggleObjectOff, and SliceObject is the object the
agent interacts with, whereas the target of PutObject is the location
where the object is to be placed.
The 'Stop' action should be followed by 'NIL'. Note that if all
requirements are met, you only need to output 'Stop'. Remember that you
can only pick up one item at a time, so you must put down the object in
your hand before picking up a new one.

Here is k examples:
<Actor_Complete_samples>
Task: <relabeled_task>
Ground truth rollout: <gt_rollout>
The incomplete rollout: <suboptimal_rollout>
Think: <Think>
Based on the Think and groundtruth rollout, the new actions append to
the incomplete rollout are:

critic generation prompt

You will be provided with a household task roll-out conducted by an
agent and a ground truth roll-out. Your task is to write a critic of
the agent's roll-out based on the **ground truth rollout** The critic
should follow the form:In this task, I need do the follwing things in
order:... There are ... subgoals I need to achieve,My current state
achieve ...
Important: You should use your knowledge to judge how many subgoals are
achieved. eg: if the agent forget to open the fridge, then the action
of put object into fridge should not counted.
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Important: Your critic should end with "the value is a/b=.." You can
round it into 2 decimal.
Important: You should write your critic based on given format, you
should't output other things.
Important: You shouldn't mention about ground truth rollout in your
critic.
Here are examples: <Critic_samples>
Your task is: <relabelled_task>
The rollout by agent is:: <suboptimal_rollout>
The **ground truth rollout** is: <gt_rollout>
Based on the **ground truth rollout** , write a critic
Critic:
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