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Abstract
The hyperbolic space is widely used for repre-
senting hierarchical datasets due to its ability to
embed trees with small distortion. However, this
property comes at a price of numerical instability
such that training hyperbolic learning models will
sometimes lead to catastrophic NaN problems,
encountering unrepresentable values in floating
point arithmetic. In this work, we analyze the lim-
itations of two popular models for the hyperbolic
space, namely, the Poincaré ball and the Lorentz
model. We find that, under the 64 bit arithmetic
system, the Poincaré ball has a relatively larger
capacity than the Lorentz model for correctly rep-
resenting points. However, the Lorentz model is
superior to the Poincaré ball from the perspective
of optimization, which we theoretically validate.
To address these limitations, we identify one Eu-
clidean parametrization of the hyperbolic space
which can alleviate these issues. We further ex-
tend this Euclidean parametrization to hyperbolic
hyperplanes and demonstrate its effectiveness in
improving the performance of hyperbolic SVM.

1. Introduction
The n-dimensional hyperbolic space Hn is the unique
simply-connected Riemannian manifold with a constant sec-
tional curvature −1. A remarkable property of Hn against
the Euclidean space Rn is that the volume of a ball in Hn
grows exponentially with respect to the radius. One can thus
embed finite trees into Hn with arbitrarily small distortion
(Sarkar, 2011). This motivates the study of representation
learning of hierarchical data into hyperbolic space (Nickel
& Kiela, 2017) and, moreover, the design of deep neural
networks in hyperbolic spaces (Ganea et al., 2018; Chen
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et al., 2022), with applications in various domains where
hierarchical data is abundant, such as NLP (Zhu et al., 2020;
López et al., 2019; López & Strube, 2020), recommendation
systems (Chamberlain et al., 2019) and neuroscience (Gao
et al., 2020).

However, the exponential volume growth property leads to
numerical instability in training hyperbolic learning mod-
els. As shown by (Sala et al., 2018), in order to represent
points in the popular Poincaré model (Nickel & Kiela, 2017;
Ganea et al., 2018), one requires a large number of bits to
avoid undesirable rounding errors when dealing with small
numbers. The Lorentz model, a popular alternative for rep-
resenting the hyperbolic space (Nickel & Kiela, 2018; Law
et al., 2019), suffers an opposite numerical issue in dealing
with large numbers. (Yu & De Sa, 2019) proved that rep-
resenting Lorentz points using floating number arithmetic
could lead to a huge representation error when the points
are far from the origin. Besides, in terms of optimization
and training, the empirical superiority of the Lorentz model
over the Poincaré model has been often observed in tasks
such as word embeddings (Law et al., 2019; Nickel & Kiela,
2018), however, the reason behind is yet unclear.

It is thus important to theoretically clarify the practical lim-
itations of current hyperbolic models and to explain why
certain models have better empirical performance than oth-
ers. The goal of this paper is to address these issues and to
provide a new model with better numerical performance.

Our Contributions (1) We are the first to clearly identify
the representation capacity of two popular hyperbolic mod-
els, the Lorentz and the Poincaré models, in a geometric
lens under the setting of 64-bit system1. (2) We provide
a theoretical study of optimization on hyperbolic spaces
from the perspective of the gradient vanishing issue inherent
to hyperbolic models. We confirm theoretically that the
Lorentz model is better than the Poincaré model from this
aspect, which was previously only an empirical observation.
(3) We study a simple yet effective Euclidean parameteri-
zation of the hyperbolic space which turns out to alleviate
the numerical issues present in the Lorentz and Poincaré
models. Although this Euclidean parametrization has been

1Standard CPU/GPU processors have a max precision of 64
bits, and surpassing this limit requires ticklish custom implementa-
tions.
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utilized in the literature (see for example (Mathieu et al.,
2019)), we provide new insights into this construction by
theoretically showing that the Euclidean parameterization is
as good as the Lorentz model in terms of optimization; but it
has no limitation in representation capacity. We also empiri-
cally validate that the Euclidean parameterization improves
the performance in tree embedding tasks compared to both
the Lorentz and Poincaré models. Moreover, we apply our
Euclidean parametrization to hyperbolic SVM and propose
the method LSVMPP, which has superior performance in
comparison to other methods in our experiments.

2. Preliminary
In this section, we provide the necessary background for
the n-dimensional hyperbolic space Hn. There are multiple
isometric models for describing Hn (see (Peng et al., 2021)
for a detailed survey). In this paper, we mainly focus on the
Poincaré ball and the Lorentz model.

Poincaré Ball The Poincaré ball is the unit open ball
Dn ⊆ Rn with a Riemannian metric conformal to the un-
derlying Euclidean one: at each point x ∈ Dn, the metric
gx = λ2xhx, where hx stands for the Euclidean metric at
x and λx := 2

(1−∥x∥2) . For any x, y ∈ Dn, the geodesic
distance between them is expressed as

dDn(x, y) = arccosh

(
1 +

2 ∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
(1)

Lorentz Model The Lorentz model interprets Hn as a
submanifold of the so-called Minkowski space Rn,1. This is
the linear space Rn+1 equipped with the Minkowski product
[x, y] := −x0y0 +

∑n
i=1 xiyi. The Lorentz model (also

called the hyperboloid) is then the n-dim “unit sphere” in
the Minkowski space:

Ln := {x ∈ Rn,1 : x0 > 0, [x, x] = −1}.

For any x, y ∈ Ln, the geodesic distance between them is

dLn(x, y) = arccosh(−[x, y]) (2)

Notation for Norms and Gradients Let ∥·∥ and ⟨·, ·⟩
denote Euclidean l2 norm and inner product. We use ∥·∥Dn

and ∥·∥Ln to denote norms of Poincaré and Lorentz vectors.
More precisely, for any v ∈ TxDn and w ∈ TyLn,

∥v∥Dn = λx ∥v∥ and ∥w∥Ln =
√
[w,w].

Similarly, we use ∇ to denote Euclidean gradient and
∇Dn ,∇Ln for Poincaré and Lorentz gradient.

Transition Between the Two Models The isometry be-
tween the two models can be written explicitly as φ :
Dn → Ln which sends x = (x1, . . . , xn) to y :=( ∥x∥2+1
1−∥x∥2 ,

2x1

1−∥x∥2 , . . . ,
2xn

1−∥x∥2

)
. Its inverse is ψ : Ln → Dn

which sends y = (y0, . . . , yn) to x := ( y1
1+y0

, . . . , yn
1+y0

).
The origin 0 in Dn corresponds to the point 0̄ = (1, 0, . . . , 0)
in Ln under these isometries and we call 0̄ the origin of the
Lorentz model.

Operations on Hn In Riemannian geometry, there are
several important operations relating tangent vectors and
points on manifolds, such as the exponential map, the log-
arithm map, and parallel transport, which can be written
explicitly when considering either model of Hn.

For example, in the Poincaré ball, the exponential map for
any x ∈ Dn and any v ∈ TxDn is given by

expx(v) = x⊕ tanh

(
λx
2

∥v∥
)

v

∥v∥
, (3)

where ⊕ denotes the so-called Möbius addition (Ungar,
2001). In the Lorentz model, the exponential map for any
x ∈ Ln and any v ∈ TxLn is given by

expx(v) = cosh(∥v∥Ln)x+ sinh(∥v∥Ln)
v

∥v∥Ln

. (4)

3. Comparing Lorentz and Poincaré Models
As mentioned in the introduction, the volume of a ball in
Hn grows exponentially w.r.t. the radius. This results in
that finite trees can be embedded into Hn with arbitrarily
small distortion (Sarkar, 2011). However, in order to reach
desired small distortion, one needs to scale the embedded
tree by a large factor by pushing embedded points towards
infinity in Hn as much as possible, and this comes at a price
of numerical representation.

Poincaré Ball To embed a combinatorial tree T with di-
ameter l and maximal degree D up to distortion (1 + ε),
one needs Ω( l log(D)

ε ) bits to correctly represent embed-
ded points in the Poincaré ball to avoid these points being
rounded off to the boundary (Sala et al., 2018).

We first interpret the number of bits in representing Poincaré
points through a more geometrical lens.

Proposition 3.1 (Poincaré radius). For any point x ∈ Dn,
if ∥x∥ = 1− 10−k for some positive number k, then in fact,

dDn(0, x) = ln(10)k + ln(2) +O(10−k).

See Appendix A.1 for proof. Here k is the number of bits
required to avoid x being rounded to the boundary. Under
the Float64 arithmetic system, the rounding error for the
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subtraction 1−10−k is 2−53, i.e., 1−10−k will be rounded
to 1 when 10−k ≤ 2−53 ≈ 10−16. Hence, the maximum k
is around 16. This corresponds to a distance dDn(0, x) ≈ 38.
Thus, we can only represent points correctly within a ball
of radius r0 ≈ 38 in the Poincaré ball.

Lorentz Model Interestingly, it turns out that the Lorentz
model has an even smaller representation capacity: it can
only represent points correctly within a ball of radius
r0/2 ≈ 19. Recall the fundamental equation [x, x] =
−1 in defining the Lorentz model. Given a point x =
(x0, . . . , xn) ∈ Ln, if x0 = 108, then x20 = 1016. Then, the
floating number representation of x20 − 1 is the same as the
one for x20 (roughly speaking, in the Float64 system, the
sum/difference of two numbers differ in orders of magni-
tude over 16 would be rounded to the larger number itself),
causing the computation of [x, x] to return 0 instead of the
desired −1. Moreover, due to the following result, we know
that the condition x0 = 108 corresponds to the radius r0/2.
Proposition 3.2 (Lorentz radius). For any point x ∈ Ln, if
x0 = 10k for some positive number k, then,

dLn(0̄, x) = ln(10)k + ln(2) +O(10−2k).

See Appendix A.2 for proof. This difference in the radii
between the two models can be clearly seen from the per-
spective of the exponential maps. We postpone this interpre-
tation to later Remark 4.1.

The limitation of the Lorentz model is different from the
Poincaré ball. In the Poincaré ball, the radius r0 ≈ 38 is a
“hard” constraint: any point r0 distant from the origin will
collapse to the boundary and there is no way to consider
any operations on the hyperbolic space such as computing
the distance thereafter. However, in the Lorentz model,
the radius r0/2 ≈ 19 is a “soft” constraint: when a point
x = (x0, x1, . . . , xn) is further than r0/2 away from the
origin, although there is no viable method to check whether
the point is on the Lorentz model, we still have the coordi-
nates to work with: if we let xr := (x1, . . . , xn), although

x0 =

√
∥xr∥2 + 1 will be rounded off to ∥xr∥, there is

no numerical constraint for the vector xr. In this way, one
can still cope with xr and perform some operations on the
Lorentz model. Together with the optimization superior-
ity of the Lorentz model we mention in the next section,
this may account for some empirical observations that the
Lorentz model is more stable than the Poincaré ball.

We comment that many works either explicitly or implicitly
impose different thresholds in their implementations to re-
strict all points within a certain radius ((Skopek et al., 2019),
(Nickel & Kiela, 2017), and the popular manifold research
toolbox package by (Kochurov et al., 2020), with limited
discussion on the impact of the choice of these thresholds
on the representation capacity and other performance. The

discussion in this section fills the gap and provides a guide
for the choice of thresholds.

Finally, while the concepts of representation capacity for
the Poincaré ball and the Lorentz model initially appear
to be distinct, they can be unified through the examination
of exponential maps. Although the representation capac-
ity is traditionally defined for points on a manifold within
these two models, it can be equivalently specified in the
tangent space. This is facilitated by the exponential map
expx : TxHn → Hn, which preserves distance in the radial
direction, i.e., ∥v∥ = dHn(x, expx(v)) for any v ∈ TxHn.

We then further introduce the concept of numerical repre-
sentation capacity for a hyperbolic model. This is formally
defined as the radius of the largest ball, centered at the origin
in the tangent space, with the property that all points within
this ball can be accurately represented within the hyperbolic
model via the exponential map. Now, under the exponential
map formula Equation (3) for the Poincaré ball, if we take
our reference point x to be the origin, then vectors with
length larger than 38 will be mapped to the boundary of
Dn which is outside of the manifold. Similarly, in the case
of the Lorentz model, under the exponential map formula
Equation (4), if we choose x = 0̄ = (1, 0, . . . , 0), then vec-
tors with length larger than 19 will be mapped outside of the
Lorentz model. Specifically, these vectors will be mapped
to the cone x20 =

∑n
i=1 x

2
i . See also later Remark 4.1 for

more details. This way of viewing things allows us to see
how the concept of numerical representation capacity serves
to unite our previous discussions on representation capacity
for both the Poincaré and Lorentz models.

3.1. Optimization

Although we see that the Poincaré ball has a larger capacity
in representing points than the Lorentz model, we show
in this section that this advantage will be wiped out when
considering optimization processes on hyperbolic space.

Generally speaking, for any manifold M and a smooth
function f : M → R, in order to solve a Riemannian
optimization problem:

x∗ = argminx∈Mf(x),

one can apply Riemannian (stochastic) gradient descent
(Bonnabel, 2013) with learning rate η > 0:

xt+1 = expxt
(−η∇f(xt)). (5)

Theoretically speaking, due to the isometry between Dn and
Ln, solving optimization problems in Dn and Ln via Rie-
mannian gradient descent should return the “same” result.
To describe this result properly, throughout this section, we
will consider a fixed differentiable function f : Dn → R.
We consider its corresponding function g : Ln → R on
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the Lorentz model, i.e., g = f ◦ ψ where ψ : Ln → Dn is
the isometry specified in Section 2. The functions f and
g should be regarded as the same function defined on the
hyperbolic space Hn under two different chart systems. We
also illustrate the relationship between f and g through the
following commutative diagram.

Ln Dn

R

ψ

g

φ

f

In the analysis below, we use x to represent points in Dn and
let y = φ(x) ∈ Ln denote its corresponding point in the
Lorentz model. Since φ and ψ are isometries, the following
result holds trivially.

Proposition 3.3 (Gradient descent is the “same” for both
models). For any learning rate η > 0, we have that

ψ(expy(−η∇Lng(y))) = expx(−η∇Dnf(x)).

Despite this theoretical equivalence, when implementing the
Riemannian gradient descent algorithm, the Poincaré model
is more prone to incur the gradient vanishing problem than
the Lorentz model. We first see this through the following
computation of the Euclidean norm of Riemannian gradi-
ents2. Such norm indicates the magnitude of the coordinates
involved in representing the tangent vectors.

Lemma 3.4. For any x ∈ Dn, assume that ∥x∥ = 1− δ for
some small positive δ. Then, we have that

∥∇Dnf(x)∥ = Ω
(
δ2 ∥∇f(x)∥

)
,

∥∇Lng(y)∥ = O (∥∇f(x)∥) .

See proof from Appendix A.4 and note that in a special
case where the vectors x and ∇f(x) are parallel, the big
O for ∥∇Lng(y)∥ can be replaced by Ω. Notice that δ is
small when x is close to the boundary of the Poincaré ball.
As a consequence, optimizing through the Poincaré model
results in dealing with numbers smaller in order of magni-
tude than through the Lorentz model. This suggests a more
pronounced gradient vanishing problem for the Poincaré
model when points are near the boundary and a potential
accumulation of rounding error, e.g., when points are on
their way to the boundary to achieve a lower distortion for
the task of tree embedding.

To clearly derive the limitation of the Poincaré model in
optimization, we consider Taylor expansions of one step of
the Riemannian gradient descent (Equation (5)) for Poincaré
ball and the Lorentz model as follows.

2Tangent vectors can be represented using the coordinates pro-
vided in either the Poincaré or the Lorentz model.

Theorem 3.5. Let δ = 10−k be a small positive num-
ber. Without loss of generality, consider the point
x = (1 − δ, 0, . . . , 0) ∈ Dn. Assume that ∇f(x) =
(∂1f(x), 0, . . . , 0)

3 and ∂1f(x) < 0. Let y := φ(x) ∈ Ln.
If we let E := ∥∇f(x)∥, then

expx(−η∇Dnf(x))=(1− 10−k +O(ηE10−2k), 0, . . . , 0),

expy(−η∇Lng(y))=

10k
(
1− 1

2
· 10−k + ηE10−k +O(ηE10−2k),

1− 1

2
· 10−k + ηE10−k +O(ηE10−2k), 0, . . . , 0

)
.

See Appendix A.5 for proof. To interpret the results, as-
sume for simplicity that η = 1 and E = ∥∇f∥ = O(1)
is bounded. Then, at each step of Riemannian gradient de-
scent, the Poincaré ball needs to compute the sum of two
numbers (i.e., 1 − 10−k and O(ηE10−2k) = O(10−2k))
that differ by 2k in orders of magnitude whereas in the
Lorentz case only differ by k (i.e., 1 − 1

2 · 10−k and
ηE10−k +O(ηE10−2k) = O(10−k)). We emphasize that
the terms O(10−2k) and O(10−k) do not represent error
terms, but instead indicate the update in one step of Rie-
mannian gradient descent. As a result, the Poincaré model
has a smaller update term, which causes it to suffer from a
more severe gradient vanishing issue. In particular, when k
is chosen to be 8, the gradient term O(10−2k) = O(10−16)
which is around the same order as the rounding error. Hence
this term will be neglected and the Poincaré gradient de-
scent will be stuck. However, for the Lorentz model, if
one ignores the numerical representation issue, then from
the optimization perspective, Lorentz model allows δ to be
as small as 10−16 without encountering the severe gradi-
ent vanishing problem the Poincaré ball suffers from. Of
course one could use a large learning rate η = 108 so that
the Poincaré gradient numerical representation is similar to
the one for the Lorentz. But such a large learning rate will
induce instability in the training process. Note by Proposi-
tion 3.1, δ = 10−8 corresponds to a point 19 away from the
origin. Hence, even though the Poincaré ball can represent
points up to 38 away from the origin, a large part of the
region cannot be utilized in optimization.

4. Euclidean Parametrization of Hyperbolic
Space

In the previous section, we see that the Poincaré model and
the Lorentz model have different pros/cons from two dif-
ferent perspectives: point-representation and optimization.
It is thus natural to ask whether there is a way to represent

3We only consider this direction as it is the most relevant direc-
tion in understanding the phenomenon of pushing points towards
the boundary of Dn.

4



The Numerical Stability of Hyperbolic Representation Learning

hyperbolic space that could prevail in both perspectives: al-
lowing to represent points within a relatively big region like
the Poincaré ball (i.e., of radius 38) or even larger, while in
terms of optimization behaves like the Lorentz model.

In this section, we argue in Section 4.1 that using a Eu-
clidean parametrization for the hyperbolic space can help
address these limitations. Such Euclidean parameterization
for hyperbolic space has previously been utilized in (Math-
ieu et al., 2019) for training hyperbolic features involved
in hyperbolic VAE. However, here we present a new per-
spective that can provide a numerically more robust proxy
for optimization on hyperbolic space. In Section 4.2, we
consider a polar coordinate form of this parameterization
and extend it to parametrize hyperbolic hyperplanes through
a more succinct derivation than the one given in (Shimizu
et al., 2020) and we also correct a mistake in their derivation
(see Remark 4.1 and Remark 4.4). Finally, we observe that
the hyperplane parametrization resolves the nonconvexity
condition for the Lorentz hyperplane. In this way, we further
apply this parametrization to and show a performance boost
of the Lorentz SVM (Cho et al., 2019).

4.1. Feature Parametrization

One property inherent to the negative curvature of the hy-
perbolic space is that the exponential map at any point is a
diffeomorphism (see the Cartan–Hadamard theorem in Rie-
mannian geometry). This gives rise to a natural Euclidean
parametrization of features in the hyperbolic space via the
tangent space and the exponential map: pick a point p ∈ Hn
and then consider the exponential map expp : TpHn → Hn;
as TpHn can be identified (see the section below) as Rn, we
then have a Euclidean parametrization of Hn.

In either the Poincaré ball or the Lorentz model, there exists
a canonical choice of point p: the origin 0 in Poincaré
ball and the origin 0̄ := (1, 0, . . . , 0) in the Lorentz model.
Consider the map Rn → T0Dn sending z to z

2 and the map
Rn → T0̄Ln sending z to (0, z). These two maps are both
isometries, i.e., ∥z∥ agrees with the Riemannian norms of
the images of z in T0Dn and T0̄Ln.

Now, we specify how hyperbolic features are recovered
through respective exponential maps: let z ∈ Rn, then z
parametrizes Poincaré features

x = exp0

(z
2

)
= tanh

(
∥z∥
2

)
z

∥z∥
(6)

and Lorentz features

y = exp0̄((0, z)) =

(
cosh(∥z∥), sinh(∥z∥) z

∥z∥

)
. (7)

We denote these maps by FD : Rn → Dn and FL : Rn →
Ln, respectively. They are, of course, sending a point z ∈

Rn to the “same” point in the two models under the isometry
φ : Dn → Ln, i.e., the following diagram commutes.

Rn Dn

Ln

FD

FL φ

Furthermore, these two maps preserve distances between
a point and the origin, i.e.,

dDn(0, x) = dLn(0̄, y) = ∥z∥ .

Remark 4.1 (The mysterious “2”). Note that the division by
2 in the Poincaré case (see Equation (6)) is crucial to make
the above equation hold. The missing of this division by 2
is prevalent in the literature (Shimizu et al., 2020) and may
raise an unfair comparison between Poincaré and Lorentz
models (see more details in later Remark 4.4). We also
remark that under the 64 bit arithmetic system, tanh(t) will
be rounded to 1 as long as t > 19. Hence, one can compute
exp0 correctly up to radius r0 ≈ 2 ∗ 19. As for the Lorentz
model, since the float representations of cosh(t) and sinh(t)

will be the same as t > 19 (note that tanh(t) = sinh(t)
cosh(t) ),

the Lorentz exp0̄ can only represent points correctly within
a ball with radius up to r0/2 ≈ 19.

This Euclidean parametrization of course allows represent-
ing any point in the hyperbolic space without concern
regarding numerical limitations found in the case of the
Poincaré ball or the Lorentz model. However, it is impor-
tant to note that the Euclidean parametrization does not
preserve the Riemannian structure of the hyperbolic space.
Nonetheless, we consider this parametrization a viable way
to train functions defined on hyperbolic spaces. Next we
will provide a more precise analysis of the behavior of this
parametrization in optimization.

Optimization Given this Euclidean parametrization, one
can translate hyperbolic optimization problems into a Eu-
clidean one: Given any differentiable function f : Dn → R,
we define h : Rn → R by letting h := f ◦ FD. Of course,
if we consider the function g := f ◦ ψ : Ln → R defined
on the Lorentz model, the composition g ◦ FL agrees with
h; see the commutative diagram below.

Rn Dn

Ln R

FD

FL

g

f

h

ψ

Hence, in the discussion below, for simplicity, we start with
a function defined on the Poincaré ball.

Consider the optimization problem on the hyperbolic space
Dn given by:

x∗ = argminx∈Dn f(x). (8)
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This problem can be transformed into an optimization prob-
lem on the Euclidean space Rn through the Euclidean
parametrization FD, resulting in the following optimiza-
tion problem:

z∗ = argminz∈Rn h(z) = argminz∈Rn f(FD(z)). (9)

Since FD is a bijective diffeomorphism, any optimizer z∗ of
Equation (9) corresponds to an optimizer FD(z∗) of Equa-
tion (8), and vice versa.

The newly obtained optimization problem will suffer less
from the gradient vanishing problem than the Poincaré
model and has a similar performance to the Lorentz gradi-
ent descent. We analyze the one step gradient descent w.r.t.
h in a manner similar to Theorem 3.5 below.

Theorem 4.2. Under the same assumptions and notation
as in Theorem 3.5, if we let z := F−1

D (x) = (2arctanh(1−
δ), 0, . . . , 0) ∈ Rn, then ∥∇h(z)∥ = Ω(δ ∥∇f(x)∥) and

z − η∇h(z)
= ln(10)k + ln(2) + (η ∥∇f(x)∥ − 1/2)10−k +O(10−2k).

See Appendix A.6 for proof. Similarly, as in the discussion
below Theorem 3.5, we assume η = 1 and ∥∇f(x)∥ =
O(1). In this case, we see the gradient update step involves
the sum of two terms whose orders of magnitude differ
roughly by log10(k) + k. This difference in orders of mag-
nitude sits between the Poincaré case and the Lorentz case.
In particular, when k is smaller than 8 (recall in Section 3
the Lorentz model can only correctly represent points when
k ≤ 8), then the difference in orders of magnitude for the Eu-
clidean gradient descent is almost the same as the one for the
Lorentz gradient descent. Hence, the Euclidean parametriza-
tion has similar performance to the Lorentz model in opti-
mization when points are within a reasonable range. We
empirically validate this point in tree embeddings experi-
ments in Section 5.1.
Remark 4.3. (Guo et al., 2022) claimed that maps of the

form Rn exp0−−−→ Dn f−→ R will incur gradient vanishing
problem due to the fact that the Riemannian gradient of f
will be small when the point is near the boundary of the
Poincaré ball (see Lemma 3.4). However, this is only half
of the story. In fact, the Jacobian of the map exp0 will
reduce the power of δ from 2 to 1 and thus help alleviate the
gradient vanishing problem (see Lemma 3.4, Theorem 4.2
and Appendix A.6 for more details).

4.2. Hyperplane Parametrization

The notion of hyperplanes in the hyperbolic space is a nat-
ural analogue of the notion of subspaces in the Euclidean
spaces. This analogy results in that hyperbolic hyperplanes
have been used for hyperbolic multinomial logistic regres-
sion (MLR) in (Ganea et al., 2018), in designing hyperbolic

neural networks in (Shimizu et al., 2020), and of course, in
designing hyperbolic SVM (Cho et al., 2019).

Consider p ∈ Ln, w ∈ TpLn, the Lorentz hyperplane pass-
ing through p and perpendicular to w is denoted by

Hw,p = {x ∈ Ln| [w, x] = 0}. (10)

Notice that p is implicit in the condition since w is on the
tangent space of p. In hyperbolic MLR or hyperbolic neural
networks, one needs to optimize over the choice of hyper-
planes. Equation (10) gives us the opportunity to only use
w for optimization. However, in order for w to be a feasible
tangent vector, we need to impose the nonconvex restriction
that [w,w] > 0 which is undesirable.

Instead, we derive a Euclidean parametrization of Hw,p to
get rid of the nonconvex constraint. This parametrization
follows closely the Euclidean parametrization of hyperbolic
features. We first parametrize p as in the previous section
via exp0̄ but with a flavour of polar coordinates. We then
parametrize w as the parallel transport of a vector from
T0̄Ln to TpLn. Now, more precisely, let a ∈ R, z ∈ Rn,
and set z̄ := (0, z) ∈ T0̄Ln. We set

p := exp0̄

(
a
z̄

∥z̄∥

)
=

(
cosh(a), sinh(a)

z

∥z∥

)
. (11)

Note that this equation is just the polar coordinate version
of Equation (7). Then, we let

w := PT0̄7→p(z̄) = (sinh(a) ∥z∥ , cosh(a)z) (12)

Here PTx 7→y denotes the parallel transport map along the
unique geodesic from x to y and see a succinct derivation
of the above formula in Appendix A.7.

Hence, the parametrized hyperplane becomes

H̃z,a = {x ∈ Ln| cosh(a)⟨z, xr⟩ = sinh(a) ∥z∥x0},

where xr = (x1, . . . , xn) denotes the latter n components
of x = (x0, x1, . . . , xn). The geometric meaning of this
parametrization is as follows: the hyperplane is passing
through a point p which is |a| far away from the origin and
along the direction z, and is perpendicular to a vector w
which has length ∥z∥.
Remark 4.4. (Shimizu et al., 2020) parametrized hyper-
planes in the Poincaré ball for the purpose of reducing
the number of training parameters from 2n to n + 1
for hyperplanes in Dn. Our derivation starts from the
Lorentz model and is more succinct from the approach
via the Poincaré ball. Eventually, we obtain essentially
the formulas up to a small difference: The terms cosh(a)
and sinh(a) in the formula above are replaced by cosh(2a)
and sinh(2a) in (Shimizu et al., 2020). This difference is
due to the mistake that they did not take into account the
conformal factor λ20 = 4 of T0Dn. See also Remark 4.1.
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Remark 4.5 (What if z = 0?). The careful reader may notice
that Equation (11) does not work for the case when z =
0. We note that however, the final formula Equation (12)
works for the case when z = 0. When z = 0, the tangent
vector w becomes the zero vector at p and thus the notion
of hyperplane degraded to the whole space.

Now, we see there is no restriction on z and a and thus
we get rid of the nonconvex condition [w,w] > 0 for
parametrizing hyperplanes. This substantially simplifies
the optimization process. Next we demonstrate how this
parametrization can be used for hyperbolic SVM.

4.2.1. A NEW FORMULATION OF HYPERBOLIC SVM

Support Vector Machine (SVM) is a classic machine learn-
ing model for both classification and regression by training
a separating hyperplane. (Cho et al., 2019) first general-
ized SVM to datasets in the hyperbolic space for learning
a separating hyperbolic hyperplane through the Lorentz
model. Consider a training set {((xi), (yi))}ni=1 where
xi ∈ Ln, yi ∈ {1,−1},∀i ∈ {1, ..., n}. Then, the (soft-
margin) Lorentz SVM (LSVM) can be formulated as

min
w∈Rn+1,[w,w]>0

1

2
∥w∥2Ln + C

n∑
i=1

lLn(−yi[w, xi])

where lLn(z) = max(0, arcsinh(1)− arcsinh(z)) is a vari-
ant of the hinge function that respects the Lorentz distance
and C is a scalar controlling the tolerance of misclassifi-
cation. This problem has both nonconvex constraint and
nonconvex objective function and the authors propose using
a projected gradient descent optimization.

As the vector w in the above formulation serves as the
tangent vector determining a Lorentz hyperplane (cf. Equa-
tion (10)), we can then parametrize w via Equation (12).
As w is the parallel transport of z̄, we have that ∥w∥Ln =
∥z̄∥Ln = ∥z∥ . In this way, we obtain the following min-
imization problem over parameters z ∈ Rn and a ∈ R
without any nonconvex constraints.

min
z∈Rn,a∈R

1

2
∥z∥2 +

C

n∑
i=1

lLn(yi(sinh(a) ∥z∥x0 − cosh(a)⟨z, xr⟩))

Empirical evaluation in Section 5.2 shows that this new
SVM framework (LSVMPP) outperforms LSVM, possibly
by escaping the local minima.

5. Experiments
5.1. Hyperbolic Embeddings

This subsection aims to empirically validate our theoretical
results (Theorem 3.5 and Theorem 4.2) by demonstrating

Figure 1. Simulated Tree 1 and Tree 2 in R2. The 2D coordinates
of each node are features and pairwise distances are computed
through shortest path distance on the connected graph.

that both the Lorentz and the Euclidean (parametrized) mod-
els better leverage the hyperbolic structure than the Poincaré
ball. To do so we embed trees in hyperbolic spaces. The
embedding performance is measured by distortion, max dis-
tortion, and diameter. Distortion quantifies the fidelity of
embedding w.r.t. the tree structure by simultaneously con-
sidering the expansion and contraction of the embedding.
In a general setting, let f : (MR, dR) → (ME , dE) be an
embedding map between two metric spaces, the distortion
of the map is given by δ = δcontraction · δexpansion where

δcontraction = mean
x̸=y

dR(x, y)

dE(x, y)
; δexpansion = mean

x ̸=y

dE(x, y)

dR(x, y)

Max distortion δmax is defined similarly by replacing the
mean with the supremum.

Datasets We simulated tree datasets S in R2 with varying
degrees of complexity whose distances are equally weighted
graph distances. Figure 1 lists two example trees with more
in Figure 5. A detailed discussion on the impact of perfor-
mance by its shape can be found in the Appendix B.1.

Experiments We optimize the following loss function to
minimize embedding distortion:

L(θ) = 1

|S|(|S| − 1)

∑
x ̸=y∈S

(
dE(x, y)

zE
− dR(x, y)

zR

)2

where θ collects the parameters in the network, dE denotes
the embedding distance and dR denotes the original tree
distance, and zE , zR are averages of dE and dR, respectively.
For L2 and D2, the features to update are the results of
the respective exponential maps FL, FD of each dataset
(treating Euclidean data points as in the tangent space of
the origin). For the Euclidean model E2, the features to
update are the raw R2 dataset, but the pairwise distances are
computed after FL or equivalently FD. We use Riemannian
SGD (Becigneul & Ganea, 2018) for hyperbolic models and
SGD for the Euclidean model, fixing a learning rate of 1
and train for 30000 epochs.
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Results We report the metrics after the final epoch in Ta-
ble 3. Here raw manifold refers to using Euclidean distances
as embedding distances against tree distances to measure
distortions (i.e. original distortions). In both cases, the ben-
efit of Euclidean parametrization to train hyperbolic models
is clear: the Euclidean model achieves the lowest average
distortions and max distortion, although the performances
of Lorentz and Euclidean are comparable as expected. Fur-
thermore, the diameters of the resulting embeddings for
the Lorentz and Euclidean models are much larger than the
Poincaré embeddings. This validates that Poincaré tends to
get stuck using Riemannian optimization methods.

Table 1. Average distortion δ, max distortion δmax, and diameter
d by Dataset created in Figure 1 and Manifold

tree manifold δ δmax d

1

raw 1.1954 10.6062 2.8284
D2 1.0462 4.0546 4.8740
L2 1.0176 2.4511 10.1827
E2 1.0157 2.3158 10.9019

2

raw 1.1186 14.1421 2.2361
D2 1.0589 7.1435 4.9757
L2 1.0180 3.2803 10.6719
E2 1.0134 2.7408 11.4504

Figure 2 visualizes the embeddings of Tree 1 and Tree
2 in Figure 1 (see also Figure 6 and Figure 7 in Ap-
pendix B for visualizations of embeddings for all simulated
trees). Lorentz features are stereographically projected to
the Poincaré ball for comparisons. Dimmer points are closer
to the edge of the input space while darker points are more
at the center. The red point is the root or center of the
tree. Poincaré results are seemingly not as spread out as the
other two methods, and resembling the early stage in the
optimization process of Euclidean and Lorentz models.

Figure 2. Embedding of Tree 1 (top row) and Tree 2 (bottom row)
at the final epoch with Poincaré (left), Lorentz (mid), and Euclidean
parametrization (right).

Finally, in Figure 3, we directly compare the median norms
of Riemannian gradient from respective manifolds along
different training epochs, whose median is taken across
different embedding points. We visualize two ratios, one
between gradient norms of L2 and E2 (blue) and the other
between D2 and E2 (red). In both cases, Poincaré graidents
have much smaller a norm than its competitors. This further
confirms its optimization disadvantage.
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Figure 3. Median Riemannian Gradient Norm Ratios by epoch for
Tree 1 (left) and Tree 2 (right): Poincaré gradients have signifi-
cantly smaller norms than others

5.2. Hyperbolic SVM Models

We tested the performances of all models in multi-class clas-
sification tasks using the following six simulated datasets
and six real datasets.

Synthetic Datasets We simulated two sets of data: Gaus-
sian mixtures and explicit trees. For Gaussian mixtures, we
simulate each dataset using 1200 points on the Poincaré
disk D2 following the settings in (Cho et al., 2019). Specifi-
cally, we first generate a Gaussian mixture on R2, whose k
centroids follow N(0, 1.5I2) equipped with N(0, I2) noise.
Each of the k clusters is given a unique label and has the
same number of points. We then use the map FD to map
Euclidean features to Poincare features. We tested perfor-
mances on k ∈ {3, 5, 10}. For each data set of explicit
trees, we initialize a tree in R2 and then embed the tree into
the hyperbolic space using Euclidean parametrization as
described in Section 5.1. Then we randomly select a node
and treat all of its descendants as positive class and negative
class otherwise (i.e. k = 2). This subtree-classification also
resembles the WordNet subtree classification presented in
(Cho et al., 2019). See Appendix C.4 for more details.

Real Datasets We tested the performances on three datasets:
CIFAR-10 (Krizhevsky et al., 2009), fashion-MNIST (Xiao
et al., 2017), Paul Myeloid Progenitors developmental
dataset (Paul et al., 2015), Olsson Single-Cell RNA se-
quencing dataset (Olsson et al., 2016), Krumsiek Simulated
Myeloid Progenitors (Krumsiek et al., 2011), and Moignard
blood cell developmental trace from single-cell gene ex-
pression (Moignard et al., 2015). CIFAR-10 and Fashion-
MNIST each contain images of 10 different types of objects.
Other datasets are rooted in biological applications: Paul
has 19 cell types developed from the myeloid progenitors;
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Krumsiek likewise but with a different latent structure and
11 classes; Olsson is a smaller dataset with RNA-seq data of
8 types; Moignard has 7 classes for different blood cell de-
velopmental stages. Each dataset is embedded into D2 with
the default curvature 1 using the technique introduced in
(Khrulkov et al., 2020; Nickel & Kiela, 2017). We visualize
three of the tested datasets in Figure 4.

Figure 4. CIFAR, Fashion-MNIST, and Paul datasets Poincaré vi-
sualization. Each color correspond to one label class.

Results For each dataset, we fix a train-test split and run 5
times. In each run, we use a one-vs-all approach to train and
use Platt scaling (Platt et al., 1999) to give final predictions
based on output probabilities. The average multiclass clas-
sification accuracy and macro F1 scores are reported. We
compare our model (LSVMPP) against the Lorentz SVM
(LSVM), the Euclidean SVM (ESVM) and a SVM with
precomputed reference points based on the Poincaré ball
(PSVM) (Chien et al., 2021). See Appendix C.3 for and a
detailed discussion on implementation and respective op-
timal hyperparameters, Table 2 for average accuracy and
F1 for selected datasets in Figure 4, and Appendix C.5 for
experiment results on more datasets.

Although small fluctuations exist, our model outperforms
other available methods in most of the simulated and real
datasets. Note that in all cases, Euclidean SVM already
has decent performances, unlike the unsatisfactory perfor-
mances reported in (Chien et al., 2021) where ESVM models
are mistakenly set to not have intercepts. The good perfor-
mance by ESVM may be attributed to the powerful scaling
method that universally applies to datasets well character-
ized by the log odds of positive samples, and this assumption
may still hold on datasets with a latent hierarchical structure.
It is also worth pointing out that the previous formulation
of Lorentz SVM (Cho et al., 2019) also uses Platt scaling
on Lorentz SVM output but did not scale it using arcsinh
to morph it into a proxy of hyperbolic distance, which is
more aligned with the Euclidean SVM output. Empirically
we witness a marginal increase in average accuracy using
Platt scaling with the output of arcsinh instead of the raw
alternatives (see Appendix C.2.1 for more details).

Lastly, notice that the previously leading model, PSVM,
does not outperform ESVM in simple simulated cases. This
matches our expectations in that the reference points in
PSVM are separately learned using an unsupervised method
(Hyperbolic Graham Search) to locate the midpoint between

two convex hulls, independent of the hyperplane training
process. This step is sensitive to the train test split and does
not guarantee that PSVM could identify the max-margin
separating hyperplane even in the training set. All other
methods, if they converge, could indeed find the max-margin
separating hyperplane in respective manifolds.

Table 2. Mean accuracy and macro F1 score of datasets in Figure 4.

algorithm accuracy (%) F1

CIFAR-10

ESVM 91.88 ± 0.00 0.9191 ± 0.00
LSVM 91.88 ± 0.00 0.9189 ± 0.00
PSVM 91.81 ± 0.00 0.9182 ± 0.00

LSVMPP 91.96 ± 0.00 0.9197 ± 0.00

fashion-MNIST

ESVM 86.37 ± 0.00 0.8665 ± 0.00
LSVM 71.59 ± 0.07 0.6588 ± 0.08
PSVM 86.57 ± 0.00 0.8665 ± 0.00

LSVMPP 89.49 ± 0.00 0.8955 ± 0.00

paul

ESVM 55.05 ± 0.00 0.4073 ± 0.00
LSVM 58.36 ± 0.07 0.4517 ± 0.00
PSVM 55.25 ± 0.00 0.3802 ± 0.00

LSVMPP 62.64 ± 0.05 0.5024 ± 0.00

6. Discussions
In this paper, we have analyzed the representation limita-
tions and numerical stability of optimization for two popular
models and a Euclidean parametrization of the hyperbolic
space under a 64-bit arithmetic system. We note that how-
ever, while the Euclidean parameterization has no limitation
for point representation, computation of certain functions
induced from hyperbolic spaces, such as the hyperbolic dis-
tance between points, may still lead to numerical problems
and we leave this for future study. Another potential future
direction is to investigate the use of different accelerated
gradient descent methods on these models. A recent study
(Hamilton & Moitra, 2021) has shown that the negative
curvature inherent to the hyperbolic space can impede the
acceleration of the gradient descent process in a Nestorov-
like way, citing the exponential volume growth property as
a cause for the loss of information from past gradients. It
would be interesting to explore in the future whether the
Euclidean parametrization proposed in our paper could over-
come this obstruction and improve the convergence rate of
optimization problems in hyperbolic spaces.

Code for reproducing our experiments is available at
https://github.com/yangshengaa/stable-hyperbolic.
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A. Proofs
A.1. Proof of Proposition 3.1

Note that arccosh(x) = ln(x+
√
x2 − 1). This implies that

arccosh

(
1 +

2∥x∥2

1− ∥x∥2

)
= arccosh

(
1 + ∥x∥2

1− ∥x∥2

)
= ln

(
1 + ∥x∥2

1− ∥x∥2
+

√
(1 + ∥x∥2)2
(1− ∥x∥2)2

− 1

)
= ln

(
1 + ∥x∥2 + 2∥x∥

1− ∥x∥2

)
,

and then ln
(

1+∥x∥2+2∥x∥
1−∥x∥2

)
= ln

(
1+∥x∥
1−∥x∥

)
= ln(1 + ∥x∥)− ln(1− ∥x∥).

By using the formula for the Poincaré distance between 0 and x, we have that

dDn(0, x) = arccosh

(
1 +

2 ∥x∥2

1− ∥x∥2

)
= ln (1 + ∥x∥)− ln (1− ∥x∥)
= ln(2− 10−k)− ln(10−k)

= ln(10)k + ln(2) + ln(1− (2 ∗ 10k)−1)

= ln(10)k + ln(2) +O(10−k).

A.2. Proof of Proposition 3.2

By using the formula for the Lorentz distance between 0̄ and x, we have that

dLn(0̄, x) = arccosh(−[0̄, x])

= arccosh(x0) = ln

(
x0 +

√
x20 − 1

)
= ln(x0) + ln

(
1 +

√
1− 1/x20

)
= ln(x0) + ln

(
2 +

1

2x20
+O(x−4

0 )

)
= ln(10)k + ln(2) +O(10−2k).

A.3. Proof of Proposition 3.3

Given a Riemannian isometry ι :M → N between two manifolds, for any p ∈M , one has that

ι ◦ expp = expι(p) ◦Dιp,

where Dιp : TpM → TpN denotes the differential at p.

Now, by the Riemannian chain rule for gradient, one has that

∇Dnf(x) = ∇Dn(g ◦ φ)(x) = (Dφx)
∗ ◦ ∇Lng(y),

where y = φ(x). Since φ is an isometry, one has that (Dφx)∗ = Dψy : TyLn → TxDn, where ψ := φ−1. In this way,
Dψy(−η∇Lng(y)) = −η∇Dnf(x) and thus

ψ(expy(−η∇Lng(y)) = expψ(y)(Dψy(−η∇Lng(y))) = expx(−η∇Dnf(x)).

A.4. Proof of Lemma 3.4

The Poincaré gradient ∇Dnf at y can be computed explicitly as follows:

∇Dnf(x) = λ−2
x ∇f(x) = (1− ∥x∥2)2

4
(∂1f(x), . . . , ∂nf(y))

T.
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Hence,

∥∇Dnf(x)∥ = Ω

(
(1− ∥x∥2)2

4
∥∇f(x)∥

)
.

As for the Lorentz gradient, we apply the following lemma

Lemma A.1. For any x ∈ Dn and any v = (v1, . . . , vn) ∈ TxDn, by letting y := φ(x) ∈ Ln, we can write down the image
of v under the differential Dφ explicitly as follows:

Dφ(v) =

(
n∑
i=1

yivi(1 + y0), v1(1 + y0) +
∑
i

yivi · y1, . . . , vn(1 + y0) +
∑
i

yivi · yn

)
. (13)

Proof of Lemma A.1. The differential of ψ : Ln → Dn, the inverse of φ, was already derived in Equation (9) of (Wilson &
Leimeister, 2018): for w = (w0, . . . , wn) ∈ TyLn, and for any 1 ≤ i ≤ n

(Dψ(w))i =
1

1 + y0

(
wi −

yiw0

y0 + 1

)
.

We then simply verify that the map defined in Equation (13) is the inverse of Dψ. Let w be the right hand side of
Equation (13). Then, for any 1 ≤ i ≤ n

(Dψ(w))i =
1

1 + y0

(
wi −

yiw0

y0 + 1

)

=
1

1 + y0

vi(1 + y0) +
∑
j

yjvj · yi −
yi

y0 + 1

n∑
j=1

yjvj(1 + y0)


= vi.

Hence, Equation (13) holds.

As the map φ : Dn → Ln is an isometry, by the lemma above, the Lorentz gradient at y can be written down explicitly:

∇Lng(y) = Dφ(∇Dnf(x)) = Dφ

(
(1− ∥x∥2)2

4
∇f(x)

)
= Dφ

(
1

(1 + y0)2
∇f(x)

)

=

(∑n
i=1 yi∂if(x)

1 + y0
,
∂1f(x)(1 + y0) +

∑
i yi∂if(x) · y1

(1 + y0)2
, . . . ,

∂nf(x)(1 + y0) +
∑
i yi∂if(x) · yn

(1 + y0)2

)T

.

Note that we use column vector representation in the above equation to indicate that the vector denotes a gradient. In the
third equation, we used the fact that 1 + y0 = 1 + 1+∥x∥2

1−∥x∥2 = 2
1−∥x∥2 . Then,

∥∇Lng(y)∥ =

√
2(
∑
yi∂if(x))2 +

∑
(∂if(x))2)

1 + y0
≤
√

2y20 − 1

1 + y0
∥∇f(x)∥ = O(∥∇f(x)∥).

A.5. Proof of Theorem 3.5

Recall that in the Poincaré ball, the exponential map can be expressed as follows:

expx(v) = x⊕ tanh

(
λx
2

∥v∥
)

v

∥v∥
,

where λx = 2
1−∥x∥2 and

x⊕ y =
(1 + 2⟨x, y⟩+ ∥y∥2)x+ (1− ∥x∥2)y

1 + 2⟨x, y⟩+ ∥x∥2 ∥y∥2
. (14)

13
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When x = (1− δ, 0, . . . , 0), λx = 2
δ(2−δ) . We let E := ∥∇f(x)∥. Then,

expx(−η∇Dnf(x)) = x⊕ tanh

(
λxη

2
∥∇Dnf(x)∥

)
−∇Dnf(x)

∥∇Dnf(x)∥

= x⊕ tanh

(
λxη

2
∥∇Dnf(x)∥

)
−∇Dnf(x)

∥∇Dnf(x)∥

= x⊕ tanh

(
η

2λx
∥∇f(x)∥

)
−∇f(x)
∥∇f(x)∥

= x⊕ tanh

(
ηEδ(2− δ)

4

)
−∇f(x)
∥∇f(x)∥

= x⊕
(
2− δ

4
ηEδ +O((ηEδ)3)

)
−∇f(x)
∥∇f(x)∥

.

We use the Taylor expansion of tanh at 0 in the last equation. Now, using Equation (14), we have that

x⊕
(
2− δ

4
ηEδ +O((ηEδ)3)

)
−∇f(x)
∥∇f(x)∥

=
(1− 2(1− δ)( 2−δ4 ηEδ +O((ηEδ)3)) +O((ηEδ)2))(1− δ, 0, . . . , 0) + δ(2− δ)( 2−δ4 ηEδ +O((ηEδ)2))(1, 0, . . . , 0)

1− 2(1− δ)( 2−δ4 ηEδ +O((ηEδ)3)) + (1− δ)2O((ηEδ)2)

=

(
1− 2(1− δ) 2−δ4 ηEδ +O((ηEδ)2))(1− δ) +O(ηEδ2), 0, . . . , 0

)
1− 2(1− δ) 2−δ4 ηEδ +O((ηEδ)2)

=(1− δ +O(ηEδ2), 0, . . . , 0).

As for the Lorentz model, we have that

expy(−η∇Lng(y)) = cosh(η ∥∇Lng(y)∥Ln)y + sinh(η ∥∇Lng(y)∥Ln)
−∇Lng(y)

∥∇Lng(y)∥Ln

=cosh(η ∥∇Dnf(x)∥Dn)y + sinh(η ∥∇Dnf(x)∥Dn)
−∇Lng(y)

∥∇Dnf(x)∥Dn

=cosh(
(2− δ)

2
ηEδ)

(2− 2δ + δ2

δ(2− δ)
,
2− 2δ

δ(2− δ)
, 0, . . . , 0

)
−
sinh( (2−δ)2 ηEδ)

(2−δ)
2 Eδ

(
(1− δ)∂1f(x),

2− 2δ + δ2

2
∂1f(x), 0, . . . , 0

)
=(1 +O((ηEδ)2))

(2− 2δ + δ2

δ(2− δ)
,
2− 2δ

δ(2− δ)
, 0, . . . , 0

)
+ (η +O(η2(Eδ)3))

(
(1− δ)E,

2− 2δ + δ2

2
E, 0, . . . , 0

)
=
(1
δ
− 1

2
+ ηE +O(ηEδ),

1

δ
− 1

2
+ ηE +O(ηEδ), 0, . . . , 0

)
Finally, we substitute δ with 10−k to obtain

expx(−η∇Dnf(x)) = (1− 10−k +O(ηE10−2k), 0, . . . , 0),

expy(−η∇Lng(y)) = (10k − 1

2
+ ηE +O(ηE10−k), 10k − 1

2
+ ηE +O(ηE10−k), 0, . . . , 0).

A.6. Proof of Theorem 4.2

Similarly as in the proof of Appendix A.5, we denote E := ∥∇f(x)∥. We first calculate the gradient ∇h. We let JFD
denote

the Jacobian of FD. Then, the differential of h can be computed via the chain rule

Dh(z) = Df(x) · JFD
(z)

14
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Therefore, as for the gradient, we have that

∇h(z) = (Dh(z))T = (JFD
(z))T∇f(x), (15)

where we use the fact that ∇f(x) = (Df(x))T.
Remark A.2. Of course, one also can apply the chain rule formula for Riemannian gradient directly as follows

∇h(z) = (DFD(z))
∗ · ∇Dnf(x),

where (DFD(z))
∗ denotes the adjoint of the differential map DFD(z) : TzRn → TxDn, which is represented by a matrix.

Given that the metric on TxDn is λ2xhx where hx denotes the Euclidean metric, we have that the matrix representation of
(DFD(z))

∗ is (JFD
(z))Tλ2x. Hence

∇h(z) = (JFD
(z))Tλ2x · λ−2

x ∇f(x)︸ ︷︷ ︸
A

= (JFD
(z))T∇f(x).

This agrees with Equation (15). (Guo et al., 2022) claimed that functions of the form of h, i.e., the form Rn exp0−−−→ Dn → R,
will suffer severe vanishing gradient issue since the term A has a coefficient λ−2

x = (1−∥x∥2)2

4 vanishing as x is close to the

boundary of Dn. However, as one can see clearly from the above formula, the coefficient (1−∥x∥2)2

4 will be canceled when
considering the map FD (or equivalently speaking, the exponential map exp0). Hence, in order to correctly analyze the
magnitude of ∇h, one needs to compute the Jacobian matrix which is what we do next in a special case.

Let w := arctanh(1− δ). Then, z = (2w, 0, . . . , 0) and the Jacobian of FD : Rn → Dn at z = (2w, 0, . . . , 0) is

JFD
(z) =

tanh(w)

2w
∗ In×n +


1
2 (1− tanh2(w)− tanh(w)

w ) 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .
Hence,

∇h(z) = (JFD
(z))T∇f(x) =

 tanh(w)

2w
∗ In×n +


1
2 (1− tanh2(w)− tanh(w)

w ) 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




∂1f(x)

0
...
0


=

[
∂1f(x)

2
(1− tanh2(w)), 0, . . . , 0

]T
.

Therefore, the first component of z − η∇h(z) is such that

2w +
ηE

2
(1− tanh2(w))

=2w +
ηE

2
(1− (1− δ)2)

= ln

(
2

δ

)
− δ

2
+O(δ2) +

ηE

2
(2δ − δ2)

= ln

(
2

δ

)
+ (ηE − 1/2)δ +O(δ2).

Note that in the second equation we use the expansion that

arctanh(1− δ) =
1

2
ln

(
2

δ

)
− δ

4
+O(δ2).

Finally, we substitute δ with 10−k to obtain

z − η∇h(z) = ln(10)k + ln(2) + (η ∥∇f(x)∥ − 1/2)10−k +O(10−2k).
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A.7. Derivation of Equation (12)

In the hyperbolic space Hn, any two points can be connected by a unique geodesic. Using the Lorentz model, for any
x, y ∈ Ln, the parallel transport map along the geodesic connecting x and y can be written down explicitly as follows: for
v ∈ TxLn, one has that

PTx 7→y(v) = v +
[y, v]

1− [x, y]
(x+ y).

As usual we define 0̄ := [1, 0, ..., 0] ∈ Rn+1 to be the origin of the Lorentz model. Then

w = PT0̄7→p(z̄) = z̄ +
[p, z̄]

1− [0̄, p]
(0̄ + p)

= (0, z) +
sinh(a) ∥z∥
1 + cosh(a)

(
1 + cosh(a), sinh(a)

z

∥z∥

)
=

(
sinh(a) ∥z∥ , z + sinh2(a)

1 + cosh(a)
z

)
=

(
sinh(a) ∥z∥ , z + cosh2(a)− 1

1 + cosh(a)
z

)
= (sinh(a) ∥z∥ , cosh(a)z) .

B. Tree Optimization
In this section, we provide more details on the tree optimization experiments.

B.1. Synthetic Data Generating Processing

We prefer to initialize, center, and normalize trees with Euclidean coordinates in a prescribed bounded region, serving as a
data preprocessing procedure. Here we fit every simulated tree to be within a unit square. This ensures numerical stability in
the initial exponential map into either Dn or Ln, and empirically has lower embedding distortion than the same ones with
larger scales. The reason is that if the data is not centered or of a large scale, the subsequent exponential map brings features
to much more distorted positions and poses challenges in the training steps.

B.2. Full Results

The Euclidean initialization of all tested trees are visualized in Figure 5. In Table 3, we present all embedding results in
distortion δ, max distortion δmax, and embedding diameters d.

The hierarchy that the Euclidean parametrization is comparable with and slightly better than the Lorentz model and that the
Lorentz model is better than the Poincaré ball persists in all tested datasets. We also visualize all embeddings at their final
training stage in Figure 6 and Figure 7. Note that Poincaré embeddings in general are more contracted than their alternatives,
further demonstrating its optimization disadvantage.

C. More on SVM
In this section, we provide more details of our experiments on SVM.

C.1. Overview of SVM in Binary Classification

Support Vector Machine (SVM) is a machine learning task for both classification and regression by training a separating
hyperplane. We first provide a brief overview of the Euclidean SVM and then introduce its variants in the hyperbolic
space (Cho et al., 2019; Chien et al., 2021) using l2 loss and a hinge-loss penalty. Readers may consider using l1 loss or
squared-hinge penalty, and other combinations as well.

ESVM In the classification setting, let {((xi), (yi))}ni=1 be the training set and xi ∈ Rn, yi ∈ {1,−1},∀i ∈ {1, ..., n}.
To obtain the separating hyperplane, in the soft-margin Euclidean SVM (ESVM), we minimize the margin between the
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Figure 5. Simulated Trees in R2. We label figures by Tree 1 - 4 (top row) and Tree 5 - 8 (bottom row). The 2D coordinates of each node
are features and pairwise distances computed through shortest path distance on the connected graph.

Table 3. Average distortion δ, max distortion δmax, and diameter d by Dataset created in Figure 5 and Manifold

tree manifold δ δmax d tree manifold δ δmax d

1

raw 1.1954 10.6062 2.8284

5

raw 1.3349 12.7279 1.4142
D2 1.0462 4.0546 4.8740 D2 1.0176 2.0321 4.2523
L2 1.0176 2.4511 10.1827 L2 1.0029 1.2829 7.3850
E2 1.0157 2.3158 10.9019 E2 1.0019 1.1997 8.8504

2

raw 1.1186 14.1421 2.2361

6

raw 1.5080 88.8552 1.4142
D2 1.0589 7.1435 4.9757 D2 1.1243 50.4524 4.3168
L2 1.0180 3.2803 10.6719 L2 1.0392 21.9948 8.9204
E2 1.0134 2.7408 11.4504 E2 1.0269 22.3743 9.8190

3

raw 1.0511 3.0000 2.0396

7

raw 1.2108 17.7132 0.8321
D2 1.0321 3.3830 6.3564 D2 1.2145 8.6454 5.0657
L2 1.0190 2.5506 9.6830 L2 1.0166 3.7655 19.1703
E2 1.0174 2.4350 10.2328 E2 1.0100 1.7825 19.8481

4

raw 1.1539 19.0000 2.8284

8

raw 1.1421 10.7807 0.9220
D2 1.0754 14.1074 5.0453 D2 1.0324 9.7552 4.5670
L2 1.0421 8.2933 10.4028 L2 1.0157 9.2790 8.8324
E2 1.0292 6.8504 12.7596 E2 1.0148 8.4500 9.1712
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Figure 6. Visualized Embeddings (Tree 1 - 4, from top to bottom row) at the final training epoch (3000). Each column from left to right
correspond to Poincaré, Lorentz, and Euclidean parametrization.
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Figure 7. Visualized Embeddings (Tree 5 - 8, from top to bottom row) at the final training epoch (3000). Each column from left to right
correspond to Poincaré, Lorentz, and Euclidean parametrization.
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hyperplane and the support vectors

min
w∈Rn

1

2
∥w∥22 + C

n∑
i=1

l(yi⟨w, xi⟩)

where l is a hinge loss l(z) = max(0, 1− z), and C controls the tolerance of misclassification.

LSVM Given a hyperbolic classification dataset, i.e., the dataset {((xi, yi))}ni=1 satisfies that xi ∈ Ln, yi ∈ {1,−1},∀i ∈
{1, ..., n}, (Cho et al., 2019) first formulated the soft-margin Lorentz SVM as follows:

min
w∈Rn+1

1

2
∥w∥2Ln + C

n∑
i=1

lLn(−yi[w, xi])

s.t. [w,w] > 0

where lLn(z) = max(0, arcsinh(1)− arcsinh(z)). Unfortunately, this problem has a nonconvex constraint and nonconvex
objective function.

PSVM Projected gradient descent is slow and may not converge to the global minimum. (Chien et al., 2021) removes the
optimization constraints by first precomputing a reference point p on the Poincaré ball and then projecting features via the
logarithm map logp onto the tangent space TpDn, thereby casting hyperbolic SVM back into an ESVM. We call this method
PSVM. x However, precomputing a reference point is not part of the SVM heuristics and may not find the maximum margin
separating hyperplanes following this approach. The authors use a modified Graham Search (Graham, 1972) to identify
convex hulls on the Poincaré ball and use the midpoint of the two convex hulls as the reference point p. This does not have a
valid justification when the two convex hulls overlap and may risk introducing a strong bias in the estimated hyperplane.

LSVMPP We build upon the framework of LSVM using our Euclidean parametrization of hyperplanes. Our reformulation
lifts the nonconvex constraint [w,w] > 0 and does not precompute any reference point. Using our parametrization described
in the previous section, we have the following loss:

min
z∈Rn,a∈R

1

2
∥z∥2 + C

n∑
i=1

lLn

(
yi(sinh(a) ∥z∥x0 − cosh(a)zxTr )

)
.

This lifts the constraint for optimization, but the objective still remains nonconvex. However, the empirical evaluation shows
that this new SVM framework (LSVMPP) still outperforms the previous formulation LSVM, possibly by escaping the local
minimums.

C.2. Multiclass Classification Using SVM: Platt Scaling

Suppose now that yi ∈ {0, 1, ..., k} for all i ∈ {1, ..., n}. A common way to train a multiclass classifier is by using the
one-vs-all method, in which we train k binary classifiers, using the k-th class as positive samples and negative samples
otherwise.

This method only gives us binary predictions if particular samples belong to a certain class, without weighting on the most
and least probable class, which ultimately renders the predictions non-interpretable. To solve this issue, Platt scaling (Platt
et al., 1999) is a common method to transform binary values in the one-vs-all scheme in multiclass classification to the
probabilities of each class. It itself is another machine learning optimization problem. We use ESVM as a demonstration in
the following discussion.

In the k-th binary classifier, suppose w(k) is the trained vector determining a hyperplane (intercept included), the decision
values are given by

f (k)(xi) = ⟨w(k), xi⟩.

This serves as a proxy of the distance between a sample to the separating hyperplane. Intuitively, if f (k)(xi) > 0 and if the
sample is far away from the hyperplane, we should assign higher confidence, or probability, to the event that xi belong to
the k-th class and lower probability for points closer to the hyperplane. (Platt et al., 1999) argues that a logistic fit works
well empirically to measure the associated probability, given by

P (yi = 1|f (k)) = 1

1 + eAf(k)(xi)+B
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where A,B are parameters trained by minimizing the negative log-likelihood of the training data through some optimization
methods, typically through Newton’s method.

This procedure repeats for every f (k). That is, we need k (possibly) different sets of (A,B) to transform all binary values
into probabilities.

C.2.1. ADAPTATION OF PLATT SCALING ON HYPERBOLIC SPACES

Poincaré SVM (PSVM) (Chien et al., 2021) easily adapts to Platt scaling since the hyperplane is trained on the tangent
space of a reference point, which is Euclidean, and the decision values are similarly proxies for Euclidean distances (normed
distance).

This may become a problem for the other two hyperbolic models on the Lorentz manifold. In (Cho et al., 2019), the authors
replace f (k) with

f (k),LSVM(x) = [w(k), x]

where [·, ·] denotes the Minkowski product. We argue that this loses its distance proxy functionality, and could be made
more of a certain distance metric by

f (k),LSVMPP(x) = arcsinh

(
− [w(k), x]∥∥w(k)

∥∥
Ln

)∥∥∥w(k)
∥∥∥
Ln

and the last formulation is the input for the hyperbolic Platt scaling. Note that
∣∣∣∣arcsinh

(
− [w(k),x]

∥w(k)∥Ln

)∣∣∣∣ corresponds to the

distance between the point x and the hyperplane determined by w(k) (see (Cho et al., 2019, Lemma 4.1)4). So the above
formula denotes a normed signed distance between the point x and the hyperplane determined by w(k). We report that
empirically there is an edge in accuracy using this formulation instead of the previous one (see Table 5). However, it remains
to show whether the logistic fit is still a valid assumption, particularly for datasets with a latent hierarchical structure on
hyperbolic spaces.

C.3. Hyperbolic SVM Implementation and Hyperparameters

We rely on scikit-learn (Pedregosa et al., 2011) for the realization of Euclidean and Poincaré SVM. The relevance of Poincaré
SVM training is that after identifying a reference point and projecting Poincaré features onto its tangent space, features
are Euclidean and hence Euclidean SVM training applies, although its intercept should be set to 0, since the precomputed
reference point already encodes the intercept information. For Lorentz SVM, we inherit from the code provided in (Cho
et al., 2019; Chien et al., 2021) and modify it for better run-time performances; and for our model LSVMPP, we use PyTorch
(Paszke et al., 2017) to help to compute the gradient automatically.

Hyperparameters for four different SVM models should be different since they have different magnitudes in both loss and
penalty terms. Margins, in particular, in the Euclidean, Poincaré, and Lorentz spaces for the same set of data are different.
Therefore, hyperparameter search should be made separate for each model.

The best performances of the Euclidean and Poincaré SVM are both using C = 5, with a learning rate of 0.001 and 3000
epochs. An early stop mechanism is built in the scikit-learn implementation (Pedregosa et al., 2011) of Euclidean SVM, so
not all 3000 epochs are utilized, and empirically 500 epochs suffice the respective optimality for all tested data; the best
performance of LSVM and LSVMPP are in general brought by C = 0.5, with a learning rate around 10−10 (depending on
the initial scale of the dataset) with 500 epochs. We note that the abnormally small learning rate is explained by the necessity
of escaping the local minimum of a complex non-convex objective function.

C.4. Details of Synthetic Data Generation

This section provides more detail on generation of synthetic datasets. As noted previously, we have two types of synthetic
datasets: Gaussian mixtures and explicit trees. Gaussian mixture datasets are named sim data 1, sim data 2, and sim data 3
and explicit trees are named sim data 4, sim data 5, sim data 6. All synthetic datasets are visualized in Figure 8.

In particular, to generate an explicit tree dataset, we simulate a birth-and-death process. In this process, the distribution of

4There is a slight imprecision in (Cho et al., 2019, Lemma 4.1) that the absolute value sign was missing.
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offspring follows a Poisson distribution with a parameter value of λ = 3, with an additional 1 added (resulting in a Poisson
random variable starting with 1). The three plotted explicit trees represent three different realizations of this process. Once
the tree structure is established, we initialize Euclidean embeddings that closely resemble the final embeddings in Figure 8.
We then apply the tree embedding method, as described in Section 5.1, utilizing Euclidean parametrization to optimize the
embedding. We train with SGD using a learning rate of 10 for 50000 epochs.

C.5. Full Results

We visualize all datasets on the Poincaré ball in Figure 8.

The average accuracy and F1 scores of five different runs on the same train-test split of each dataset are reported below in
Table 4 and Table 5.

To maintain consistency in the evaluation, we adopt the train-test split provided in the GitHub referenced in (Chien et al.,
2021) for the olsson, CIFAR, and fashion-MNIST datasets. For all other datasets, we utilize a 75%/25% train-test split
stratified based on the class assignments.

In addition, we also compare to a model using Platt scaling on raw output, named “LSVMPP (raw)” in the table below.
“LSVMPP (arcsinh)” is the version with adapted input for Platt scaling. The two versions share the same learning rate. See
Appendix C.2.1 for more details. Notice that LSVMPP (raw) performs better than the adapted version when Euclidean
SVM is at the top-notch; otherwise, it is worse and less stable in performance than the adapted version, indicating a lesser fit
of the Platt training step with respect to the raw decision values.
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Figure 8. Simulated (first two rows, with k = 3, k = 5, k = 10 from left to right for the first row respectively and k = 2 for the second
row) and real (last two rows) datasets: CIFAR (k = 10), fashion-MNIST (k = 10), paul (k = 19), olsson (k = 8), krumsiek (k = 11),
and moignard k = 7. In each plot, different colors represent different classes. For the explicit tree datasets we also include the tree edges.
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Table 4. Mean accuracy and macro F1 score of synthetic Dataset in Figure 8.

algorithm accuracy (%) F1

sim 1

ESVM 94.67 ± 0.00 0.9465 ± 0.00
LSVM 94.67 ± 0.00 0.9465 ± 0.00
PSVM 91.66 ± 0.00 0.9151 ± 0.00

LSVMPP (raw) 94.67 ± 0.00 0.9464 ± 0.00
LSVMPP (arcsinh) 94.67 ± 0.00 0.9464 ± 0.00

sim 2

ESVM 68.67 ± 0.00 0.6656 ± 0.00
LSVM 66.66 ± 0.00 0.6336 ± 0.00
PSVM 64.66 ± 0.00 0.6143 ± 0.00

LSVMPP (raw) 70.33 ± 0.00 0.6920 ± 0.00
LSVMPP (arcsinh) 69.00 ± 0.00 0.6840 ± 0.00

sim 3

ESVM 61.67 ± 0.00 0.5908 ± 0.00
LSVM 39.00 ± 0.00 0.3236 ± 0.00
PSVM 61.00 ± 0.00 0.5606 ± 0.00

LSVMPP (raw) 60.67 ± 0.00 0.5468 ± 0.00
LSVMPP (arcsinh) 61.93 ± 0.01 0.5881 ± 0.01

sim 4

ESVM 93.40 ± 0.00 0.0000 ± 0.00
LSVM 96.04 ± 3.24 0.4000 ± 0.49
PSVM 99.53 ± 0.00 0.9630 ± 0.00

LSVMPP (raw) 100.00 ± 0.00 1.0000 ± 0.00
LSVMPP (arcsinh) 100.00 ± 0.00 1.0000 ± 0.00

sim 5

ESVM 96.25 ± 0.00 0.0000 ± 0.00
LSVM 96.25 ± 0.00 0.0000 ± 0.00
PSVM 99.63 ± 0.00 0.9474 ± 0.00

LSVMPP (raw) 99.63 ± 0.00 0.9474 ± 0.00
LSVMPP (arcsinh) 99.63 ± 0.00 0.9474 ± 0.00

sim 6

ESVM 97.64 ± 0.00 0.7805 ± 0.00
LSVM 99.63 ± 0.13 0.9711 ± 0.01
PSVM 97.91 ± 0.00 0.8095 ± 0.00

LSVMPP (raw) 99.53 ± 0.42 0.9648 ± 0.03
LSVMPP (arcsinh) 99.63 ± 0.13 0.9714 ± 0.01
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Table 5. Mean accuracy and macro F1 score of real Dataset in Figure 8.

algorithm accuracy (%) F1

CIFAR-10

ESVM 91.88 ± 0.00 0.9191 ± 0.00
LSVM 91.88 ± 0.00 0.9189 ± 0.00
PSVM 91.81 ± 0.00 0.9182 ± 0.00

LSVMPP (raw) 91.94 ± 0.00 0.9195 ± 0.00
LSVMPP (arcsinh) 91.96 ± 0.00 0.9197 ± 0.00

fashion-MNIST

ESVM 86.37 ± 0.00 0.8665 ± 0.00
LSVM 71.59 ± 0.07 0.6588 ± 0.08
PSVM 86.57 ± 0.00 0.8665 ± 0.00

LSVMPP (raw) 89.35 ± 0.00 0.8939 ± 0.00
LSVMPP (arcsinh) 89.49 ± 0.00 0.8955 ± 0.00

paul

ESVM 55.05 ± 0.00 0.4073 ± 0.00
LSVM 58.36 ± 0.07 0.4517 ± 0.00
PSVM 55.25 ± 0.00 0.3802 ± 0.00

LSVMPP (raw) 62.55 ± 0.14 0.4579 ± 0.01
LSVMPP (arcsinh) 62.64 ± 0.05 0.5024 ± 0.00

olsson

ESVM 72.72 ± 0.00 0.4922 ± 0.00
LSVM 81.82 ± 0.00 0.7542 ± 0.00
PSVM 88.63 ± 0.00 0.8793 ± 0.00

LSVMPP (raw) 80.91 ± 0.45 0.7142 ± 0.03
LSVMPP (arcsinh) 84.09 ± 0.00 0.8429 ± 0.00

krumsiek

ESVM 82.19 ± 0.00 0.6770 ± 0.00
LSVM 85.62 ± 0.39 0.6933 ± 0.92
PSVM 84.06 ± 0.00 0.6908 ± 0.00

LSVMPP (raw) 83.75 ± 0.28 0.6403 ± 0.01
LSVMPP (arcsinh) 86.25 ± 0.00 0.7079 ± 0.00

moignard

ESVM 67.78 ± 0.00 0.5934 ± 0.00
LSVM 64.88 ± 0.38 0.5502 ± 0.22
PSVM 60.77 ± 0.00 0.5167 ± 0.00

LSVMPP (raw) 65.77 ± 0.13 0.5671 ± 0.00
LSVMPP (arcsinh) 65.22 ± 0.63 0.5719 ± 0.02
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