
ELEMENTAL: Interactive Learning from Demonstrations and Vision-Language
Models for Reward Design in Robotics

Letian Chen 1 Nina Moorman 1 Matthew Gombolay 1

Abstract
Reinforcement learning (RL) has demonstrated
compelling performance in robotic tasks, but its
success often hinges on the design of complex, ad
hoc reward functions. Researchers have explored
how Large Language Models (LLMs) could en-
able non-expert users to specify reward functions
more easily. However, LLMs struggle to balance
the importance of different features, generalize
poorly to out-of-distribution robotic tasks, and
cannot represent the problem properly with only
text-based descriptions. To address these chal-
lenges, we propose ELEMENTAL (intEractive
LEarning froM dEmoNstraTion And Language),
a novel framework that combines natural language
guidance with visual user demonstrations to align
robot behavior with user intentions better. By
incorporating visual inputs, ELEMENTAL over-
comes the limitations of text-only task specifi-
cations, while leveraging inverse reinforcement
learning (IRL) to balance feature weights and
match the demonstrated behaviors optimally. EL-
EMENTAL also introduces an iterative feedback-
loop through self-reflection to improve feature,
reward, and policy learning. Our experiment re-
sults demonstrate that ELEMENTAL outperforms
prior work by 42.3% on task success, and achieves
41.3% better generalization in out-of-distribution
tasks, highlighting its robustness in LfD.

1. Introduction
Reinforcement Learning (RL) has been shown to be a power-
ful tool for enabling robots to perform complex tasks across
a wide range of domains, from manipulation (Kober et al.,
2013; Levine et al., 2016) to navigation (Tai et al., 2017;

1School of Interactive Computing, Georgia Institute of Tech-
nology, Atlanta, United States. Correspondence to: Letian Chen
<letian.chen@gatech.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Zhu et al., 2017). However, the effectiveness of RL hinges
on the availability of a carefully designed reward function
that accurately encapsulates the desired behavior. Without
sophisticated reward functions, RL agents often struggle to
learn competent policies (Matignon et al., 2006); worse yet,
poorly designed reward functions can lead RL agents to un-
desirable outcomes (Gupta et al., 2024). Booth et al. (2023)
shows reward specification is non-trivial even for experts,
and designing reward functions that align with end-users’
expectations is particularly challenging due to the varied
and latent user preferences (Abouelazm et al., 2024).

Considering recent advancements in language models (e.g.,
large language models (LLMs) and vision-language models
(VLMs)) on text understanding (Bommasani et al., 2021;
Touvron et al., 2023) and emergent abilities (Kojima et al.,
2022; Wei et al., 2022), researchers have explored utiliz-
ing LLMs for reward engineering. For instance, the EU-
REKA framework takes as input a text description of the
task, queries language models for a draft of the reward
function, and trains a policy with the reward function (Ma
et al., 2023b). This paradigm, while promising, presents
several limitations. First, describing complex robotic tasks
purely through language is imprecise: humans often have
latent, unspoken preferences that are difficult to articulate
fully, leading to incomplete or ambiguous descriptions of
their objectives (Nisbett & Wilson, 1977; Ericsson & Simon,
1980; Hoffman et al., 1995; Feldon, 2007). Second, even if
all objective function components are accurately conveyed,
determining the relative importance or weights of these com-
ponents poses another significant challenge: assigning these
weights involves subtle mathematical trade-offs, something
that LLMs are not particularly equipped to handle. As a
result of these limitations, methods like EUREKA struggle
to generalize well to out-of-distribution tasks.

Given these limitations, a more natural and effective ap-
proach is for users to provide demonstrations of the desired
behavior to supplement a general task description. Demon-
strations offer rich, illustrative information that can capture
not only the task objectives but also the nuanced, latent
preferences that may be difficult to express verbally. Learn-
ing from Demonstration (LfD) approaches seek to leverage
human-provided demonstrations to reverse-engineer the un-

1

ELEMENTAL

derlying objective and optimize a policy accordingly (Chen
et al., 2020; 2022; Suay et al., 2016; Ravichandar et al.,
2020). However, a key challenge in LfD is the ambiguity
in interpreting demonstrations – there can be an infinite
number of possible reward functions that could explain the
same set of demonstrations, a problem commonly referred
to as the reward ambiguity problem in Inverse Reinforce-
ment Learning (IRL) (Abbeel & Ng, 2004). Prior methods
have sought to address this ambiguity by pre-designing fea-
tures to constrain the space of possible reward functions,
but this often limits the flexibility and generalizability of
the learned rewards and policies (Zhu & Hu, 2018; Arora &
Doshi, 2021). Our key insight is that language models are
well-suited to contextualize demonstrations and infer task
features, narrowing down the possible interpretations and
enabling robots to learn more robustly.

We propose to integrate the strengths of language mod-
els and LfD methods, leveraging (1) the emergent rea-
soning capabilities of language models to identify robust
and relevant objective function components, and (2) the
demonstration-matching capabilities of LfD to determine
the optimal weighing of these components. Crucially, we
incorporate visual demonstrations into Vision-Language
Models (VLMs), facilitating a more comprehensive under-
standing of human objectives. Additionally, we introduce
a self-reflection mechanism that enables VLMs and LfD
to iteratively improve both feature extraction and reward &
policy learning. This fusion of LfD and VLMs offers a novel
pathway for more effective robotic learning from demon-
strations. This paradigm also mirrors how humans naturally
learn from others. When observing a demonstration, hu-
mans typically (1) identify the key aspects of the task, (2)
formulate a policy to match the demonstration based on
those salient features, and (3) reflect on the discrepancies
between their own behavior and the demonstration to refine
their understanding and execution (Locke, 1987; Di Stefano
et al., 2014). By iterating through these steps, humans pro-
gressively improve their performance. This iterative cycle of
observation, reflection, and refinement is not only fundamen-
tal to human learning but also serves as an ideal framework
for robotic learning (Chernova & Thomaz, 2014).

To develop this novel integration between VLM and LfD,
we introduce ELEMENTAL (intEractive LEarning froM
dEmoNstraTion And Language). ELEMENTAL enables
robots to identify key task features from human demonstra-
tions, learn rewards and policies that align on these features,
and iteratively reflect on their performance to improve over
time. Our key contributions are three-folds:

1. We propose a novel, general framework that integrates
VLMs and LfD and introduces an iterative self-reflecting
mechanism for autonomous performance improvement.
ELEMENTAL is the first to incorporate visual demon-
stration inputs into language models to accomplish LfD,

which facilitates more accurate behavior understanding.
2. We evaluate ELEMENTAL on a set of challenging, stan-

dard robotic benchmarks in IsaacGym, demonstrating
its superior performance over previous state-of-the-art
(SOTA) reward design and LfD methods by 42.3%, show-
casing its effectiveness.

3. We further assess ELEMENTAL’s generalization capa-
bilities by designing novel variants of the standard bench-
marks. Our results show that ELEMENTAL achieves
41.3% better generalization than existing methods, under-
scoring the importance of combining VLMs with LfD.

2. Related Work
Learning from Demonstration (LfD) – LfD approaches,
such as Behavior Cloning (BC) and IRL, have long been
used to enable robots to learn from human-provided demon-
strations. BC (Ross et al., 2011), a supervised learning ap-
proach, is effective for relatively simple tasks, but is prone
to compounding errors (known as covariate shift). IRL (Ng
& Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2008;
Ziebart, 2010) seeks to infer the underlying reward function
that explains the demonstrated behavior. However, reward
ambiguity poses a significant challenge – an infinite number
of reward functions could explain the same behavior. This
challenge becomes exacerbated in complex domains with
limited, hetergeneous demonstrations (Chen et al., 2020;
Peng et al., 2024a). ELEMENTAL addresses this key lim-
itation by integrating VLMs to inject emergent reasoning
capabilities into the learning process. VLMs reduce ambi-
guity by providing semantic context that allows robots to
better understand relevant task features.

Language Models as Reward Engineers – Recent works,
such as EUREKA (Ma et al., 2023b) and L2R (Yu et al.,
2023), leverage LLMs to convert language descriptions into
reward functions, offering a promising alternative to man-
ual reward engineering. However, these methods are lim-
ited by their reliance solely on concise task descriptions,
restricting their ability to capture the full complexity of
robotic tasks and the subtle preferences of users. Addi-
tionally, determining the appropriate weighting of different
objective function components is particularly challenging,
as the reward design process is disconnected from policy
training, resulting in poor out-of-distribution generalization.
ELEMENTAL addresses these limitations by integrating
IRL with VLMs and supplementing task descriptions with
demonstrations. In ELEMENTAL, the responsibility of
assigning reward component weights is shifted from the
VLM to IRL, which matches the reward components to
the demonstrated behaviors. This allows the VLM to fo-
cus on its strength—semantic understanding and task fea-
ture identification. ELEMENTAL differs from prior work
that uses language as a semantic prior or task modeling

2

ELEMENTAL

Figure 1. This figure illustrates the overall pipeline of ELEMENTAL. The process begins with an initial prompt to the VLM, which
generates a draft of the feature function based on both textual descriptions and visual demonstrations. In the learning phase, ELEMENTAL
infers the reward and policy from the drafted feature function and the demonstration. In the final phase, ELEMENTAL performs
self-reflection by comparing the feature counts from the generated trajectory and the demonstration, again utilizing the drafted feature
function. This self-reflection loop updates the feature function by feeding the results back to the VLM for iterative refinement.

aid (Lin et al., 2023; Ma et al., 2023a; Fan et al., 2022;
Nair et al., 2022; Myers et al., 2024; Adeniji et al., 2023).
These methods often employ language to pretrain representa-
tions (Nair et al., 2022), construct modular task plans (Myers
et al., 2024), or inject commonsense priors into embodied
agents (Fan et al., 2022; Lin et al., 2023). In contrast, ELE-
MENTAL leverages VLMs to directly generate structured,
executable feature functions from multimodal input, which
are then used for downstream IRL-based reward inference.
This unique pipeline grounds reward learning in both lan-
guage and demonstrations and supports iterative refinement
through feedback.

A closely related line of research is that by Peng et al.
(2024b), which also integrates feature design using LLMs
with IRL. While this prior work is promising, it operates
under several limiting assumptions. First, it assumes that
demonstrations can be provided as input exclusively as text-
based state-vector sequences. Due to this constraint, their
approach is only applied to simpler tasks (e.g., problem hori-
zons of fewer than five steps) with all but one or two features
of the ground-truth features already specified. Additionally,
as seen in other works (Yu et al., 2023; Kwon et al., 2023),
this method relies on specially designed prompts tailored to
each experimental domain. These limitations hinder its scal-
ability to more complex, high-dimensional tasks typically
encountered in real-world robotic applications. In contrast,
ELEMENTAL leverages visual modality for demonstration
inputs, making it well-suited for more complex tasks where

textual descriptions alone are insufficient. In addition, to
account for the complex domains, we introduce an upgraded
MaxEnt-IRL approach, detailed in Sec. 4.2. By incorporat-
ing visual modality, using a general prompt across domains,
and developing enhanced IRL, ELEMENTAL provides a
more scalable solution, as demonstrated in our results on
standard robotic benchmarks without requiring any prior
knowledge of task features.

LM-Assisted Robot Learning – Several recent works
have sought to leverage LMs to assist in robotic learning,
such as RL-VLM-F (Wang et al., 2024), RoboCLIP (Son-
takke et al., 2024), and (Du et al., 2023). While promising,
these methods depend on a surrogate reward derived from
the LM’s understanding of the task-state alignment, which
can introduce inaccuracies. Furthermore, these approaches
lack interactivity with users, a key component shown to be
helpful in gaining human trust (Chi & Malle, 2024). In
contrast, ELEMENTAL potentially allows engineers and
users to interactively refine the robot’s behavior, ensuring
that the robot is user-aligned.

Other works, such as Wang et al. (2023) and Mahadevan
et al. (2024), directly query LMs to output robot actions or
primitives. These approaches rely heavily on the LLM’s
ability to plan and optimize actions, but LLMs are not in-
herently designed for mathematical optimization required
for robot control. ELEMENTAL addresses these limitations
by using VLMs to understand task features and deferring

3

ELEMENTAL

the demonstration-to-policy alignment to IRL algorithms,
which are better suited to optimize behavior.

3. Preliminary
In this section, we introduce Markov Decision Processes,
Inverse RL, and Maximum-Entropy IRL.

Markov Decision Process: We formulate the robot learning
problem as a Markov Decision Process (MDP), defined by
the tuple (S,A, T,R, γ). S is the set of states the agent can
occupy. A is the set of actions the agent can take. T : S ×
A×S → [0, 1] represents the transition probability function,
where T (s, a, s′) gives the probability of transitioning from
state s to state s′ after taking action a. R : S → R is the
reward function that assigns a scalar reward to each state.
γ ∈ [0, 1) is the temporal discount factor. The goal of
Reinforcement Learning (RL) is to learn a policy π : S →
A that maximizes the expected cumulative reward, given
by: J(π) = Eτ∼π [

∑∞
t=0 γ

tR(st)].

Inverse Reinforcement Learning: In IRL, instead of ex-
plicitly programming a robot’s behavior, we aim to learn
the underlying objective or reward function, R(s), which
explains the behavior demonstrated by a human expert.
A set of demonstrations are given, D = {τi}Ni=1, where
each trajectory τi = (si1, a

i
1, s

i
2, a

i
2, . . .) consists of a se-

quence of states and actions. We assume that the true re-
ward function, R(s), is a linear combination of features:
R(s) = θTϕ(s), where ϕ(s) ∈ Rd is a feature vector
representing the task-relevant or user-preference-relevant
properties of the state, and θ ∈ Rd is a weight vector
that specifies the relative importance of each feature. The
goal of IRL is to recover θ based on the provided demon-
strations, D. MaxEnt-IRL (Ziebart et al., 2008) models
the likelihood of a trajectory under the assumption that
the expert’s behavior is stochastically optimal, as shown
in Eq. 1. In this equation, Z(θ) is the partition function,
Z(θ) =

∑
τ exp

(∑
st∈τ R(st)

)
.

P (τ |θ) = 1

Z(θ)
e
∑
st∈τ

R(st) =
1

Z(θ)
e
∑
st∈τ

θTϕ(s) (1)

MaxEnt IRL seeks to infer the reward weights θ that maxi-
mize the likelihood of the expert demonstrations (Eq. 2).

θ̂ = argmax
θ

∑
τ∈D

logP (τ |θ) (2)

In ELEMENTAL, we upgrade MaxEnt-IRL for high-
dimensional robotic tasks, allowing us to link features from
VLMs to demonstrations via the weight vector θ.

4. Method
In this section, we present ELEMENTAL, which consists
of three interconnected phases (Figure 1). The first phase

involves constructing an initial feature function through a
VLM based on visual human demonstrations and environ-
ment specifications (Sec. 4.1). In the second phase, this fea-
ture function is integrated with IRL to learn a reward func-
tion and policy that best align with the demonstrated behav-
iors (Sec. 4.2). The final phase introduces a self-reflection
mechanism that automatically compares the learned behav-
ior with the demonstrations, enabling iterative refinement of
the feature function, reward function, and policy (Sec. 4.3).

4.1. Phase 1: Initial Prompt

The first phase begins with an initial prompt of three inputs:
(1) the MDP environment code specifying the environment’s
state space S, (2) a text description of the task, and (3) a
visual human demonstration of the desired task. The form
of the visual demonstration depends on the task domain
(Figure 2): for tasks where superimposition is meaningful
(e.g., locomotion tasks such as the moving-forward ant or
humanoid), we compose a superimposed image that displays
the sequences of demonstrated motion (shading indicates
temporal progression). For manipulation tasks, where super-
imposition can result in cluttered robot poses (e.g., Franka-
Panda Cabinet), four keyframes picked by robotic experts
are provided to the VLM to illustrate stages of the task exe-
cution. By incorporating visual demonstrations alongside
language-based task descriptions, ELEMENTAL allows the
VLM to generate feature functions that more accurately
reflect the user’s latent goals.

These inputs are then processed by the VLM, which lever-
ages its emergent capabilities to infer task-relevant features.
The goal is not just to describe the state but also to cap-
ture important factors that align with the user’s intentions
for the task. The output of this phase is a feature function
ϕ : S → Rn, where ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s)) is
an n-dimensional vector of features describing the key as-
pects of the task. Given VLM coding capabilities (Piccolo
et al., 2023), we ask the VLM to output feature functions
as Python code, providing a structured representation. If
the returned code is not executable (e.g., wrong function
signature), we re-prompt the VLM up to three times with the
trackback information. A successfully executable feature
function serves as the foundation for reward learning and
policy optimization in the subsequent phase.

4.2. Phase 2: Learning

After the feature function has been drafted in Phase 1, we
next optimize the reward function, Rθ(s) = θTϕ(s), to
match the demonstrations using the feature function, ϕ(s).
As in Sec. 3, we modify the MaxEnt-IRL algorithm to ac-
complish reward and policy learning in more complex tasks.
We name it Approximate MaxEnt-IRL (Algorithm 1).

Directly computing the partition function Z(θ) is intractable

4

ELEMENTAL

(a) Superimposing ant demonstration.

(b) start of the trajectory. (c) reaching the cabinet handle.

(d) opening the cabinet. (e) the cabinet is opened.

Figure 2. This figure illustrates the visual demonstrations for both locomotion and manipulation tasks. (a) shows an example from the Ant
locomotion task, where superimposed images are used. For manipulation tasks, superimposed images can result in cluttered robot poses,
so we use key frames as visual demonstration inputs instead. (b-e) present four key frames from the FrankaCabinet manipulation task.

Algorithm 1: Approximate MaxEnt-IRL
Input :feature function ϕ : S → Rn,

demonstration D, number of IRL
iterations m, learning rate α, policy
learning steps k

1 Initilize reward function feature weights
θ = {1/n}ni=1 and policy weights ψ.

2 for i← 1 to m do
3 for j ← 1 to k do
4 Optimize πψ based on J(πψ) with

Rθ(s) = θTϕ(s) via PPO
5 Obtain∇θ by Eq. 4 and normalize to get∇′

θ by
Eq. 5

6 Update θ by θ ← θ + α∇′
θ

7 Normalize θ by Eq. 6
Output :Rθ, πψ

due to the summation over all possible trajectories. We
circumvent the need for explicit computation of Z(θ) with
the key insight (Ziebart et al., 2008) that the gradient of the
MaxEnt IRL objective is given by the feature expectation
difference between the demonstrated trajectories and the
stochastically optimal trajectory under θ, as shown in Eq. 3.

∇θ = Eτ∼D

[∑
s∈τ

ϕ(s)

]
− Eτ∼P (τ |θ)

[∑
s∈τ

ϕ(s)

]
(3)

We approximate P (τ |θ) by a parameterized policy, πψ , that

optimizes the estimated reward, Rθ(s) = θTϕ(s), in Eq. 4.

∇θ ≈ Eτ∼D

[∑
s∈τ

ϕ(s)

]
− Eτ∼πψ

[∑
s∈τ

ϕ(s)

]
(4)

In particular, we optimize the policy πψ interleaved with
Rθ, following a paradigm similar to that of AIRL (Fu et al.,
2018), as shown in Algorithm 1 lines 3-4 and line 6. In-
tuitively, by applying this gradient, we refine θ to ensure
that the reward function Rθ(s) more accurately reflects the
features emphasized in the demonstration and guide πψ to
align the policy’s behavior closer to the demonstrated behav-
ior. The learned policy, πψ, is also a natural byproduct of
this process, serving as the ultimate goal of LfD and laying
the foundation for the reflection phase in Phase 3.

As the feature’s numerical magnitude varies, we apply a
normalization procedure to the reward gradient to ensure
stable learning. First, we normalize the L1-norm of the
gradient vector as in Eq. 5.

∇′
θ =

∇θ
||∇θ||1

(5)

Next, we apply gradient ascent on the reward weight vector,
θ, using a learning rate α: θ ← θ+α∇′

θ. After each update,
we normalize θ (Eq. 6) to stabilize the training of the policy,
πψ , as the semantics of a reward function do not change by
scaling (Fu et al., 2018).

θ ← θ

||θ||1
(6)

5

ELEMENTAL

4.3. Phase 3: Self-Reflecting on Features

The third phase introduces a self-reflection mechanism, de-
signed to close the loop and iteratively refine the feature
function drafted in Phase 1. After Phase 2, the learned pol-
icy, πψ(s), is executed in the environment, and its behavior
is compared to the demonstration, D, based on the drafted
feature function ϕ(s). Specifically, we calculate the ex-
pected feature counts of the generated trajectories under the
current policy and for the demonstration trajectories (Eq. 7).

Φ⃗πψ = Eτ∼πψ

[∑
s∈τ

ϕ(s)

]
, Φ⃗D = Eτ∼D

[∑
s∈τ

ϕ(s)

]
(7)

Discrepancies between the two feature counts indicate that
the current feature function may not fully capture the rele-
vant aspects of the task as demonstrated.

The two feature count vectors are then fed back to the VLM,
which uses the feature count differences to revise the feature
function ϕ(s). By accounting for previously overlooked or
misinterpreted features, the VLM’s understanding of the
task becomes progressively more aligned with the demon-
strated behavior. This process of self-reflection continues
iteratively, alternating between Phase 2 (reward function
and policy optimization) and Phase 3 (feature refinement),
allowing the robot to improve its behavior over time.

The reflecting phase is fully automatic, leveraging the policy,
πψ(s), and the feature function, ϕ(s), generated in previ-
ous phases. As both the policy and the feature function are
available, ELEMENTAL can continuously refine its under-
standing of the task without additional human input. How-
ever, should the user wish to intervene and provide further
feedback or corrections, ELEMENTAL could accommodate
interaction in future work through prompting.

5. Results
In this section, we evaluate the performance of ELEMEN-
TAL on challenging robotic tasks from IsaacGym (Makoviy-
chuk et al., 2021) against SOTA baselines (Sec. 5.1) and
show generalization to task variants (Sec. 5.2).

Environments and Tasks – In benchmark experiments, we
test ELEMENTAL and baseline algorithms on nine chal-
lenging IsaacGym Robotics tasks, using GPU-accelerated
training to enable efficient experiments. These tasks span
various domains, including locomotion and manipulation,
and are recognized for their complexity in the robot learning
community (Makoviychuk et al., 2021). For all methods
that utilize a LLM/VLM, we use the OpenAI GPT-4o model
unless otherwise noted. We use five demonstrations for each
task collected with RL-trained policies.

To the best of our knowledge, this is the first successful ap-
plication of IRL to IsaacGym – with or without large models

– due to its high-dimensional state and action spaces. The
performance of ELEMENTAL in these tasks demonstrates
its robustness and scalability, making it a suitable framework
for real-world robotics problems using IRL.

Baselines – We compare ELEMENTAL against key LfD
and LLM-powered reward engineering approaches:

1. LfD methods – We include standard LfD techniques,
i.e. Behavior Cloning (BC) and IRL. These baselines
learn from demonstration but do not incorporate the VLM
feature-extraction or visual input.

2. EUREKA – This is the previous SOTA method for reward
design with RL in IsaacGym. EUREKA relies on LLMs
to infer task features from textual inputs but does not
utilize demonstrations, visual inputs, or IRL.

3. Random Policy – A random policy establishes an approx-
imate lower bound for competent task performance.

4. Ground-Truth (GT) Reward – The performance of a pol-
icy trained with GT reward predefined in IsaacGym pro-
vides an upper bound of the task performance. Note that
although we call it “upper bound”, it is not necessarily
the maximum performance one can achieve, as the RL is
given the same budget of environment steps to train, and
the GT reward may not be the best.

5. Ablations of ELEMENTAL – To better understand the
contribution of each component in ELEMENTAL, we
conduct ablation studies across six variants: 1) With-
out (w/o) Self-Reflection: This variant removes the self-
reflection mechanism introduced in Phase 3, keeping only
the VLM-guided feature inference and policy learning
phases; 2) w/o Gradient Normalization: This ablation
removes the gradient normalization in Eq. 5; 3) w/o
Weight Normalization: This ablation removes the weight
normalization step in Eq. 6; 4) w/o Visual Input: This
variant removes the visual demonstration input to the
VLM, leaving only language-based task descriptions for
feature inference; 5) w/ Text Demo: Instead of visual
demonstrations, this ablation provides textual input by
listing observation vectors from a subsampled sequence
of ten states from the demonstration, same as (Peng et al.,
2024b); 6) w/ Random Visual Demo: To test whether the
VLM effectively extracts task-relevant information, we
replace the high-quality visual demonstration input with
random visual demonstrations (e.g., a falling Cartpole or
Humanoid). The IRL phase, however, still utilizes the
original high-quality demonstrations.

Performance is evaluated using an average task success
rate of the final-100 steps during training, which is a more
reliable metric versus only using the max success during
training reported by Eureka. In all experiments, we report

6

ELEMENTAL

Table 1. This table shows benchmarking results on IsaacGym tasks. Bold denotes the best performance except the GT Reward.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

Random (LB) 25.42 87.39 -1.63 0.00 0.00 -0.04 -2.45 0.00 0.02

BC 149.85 344.55 -1.19 0.01 -0.05 -0.43 -2.14 0.04 0.03
IRL 28.15 162.06 -1.87 0.00 0.88 2.13 -2.22 0.01 0.01

EUREKA 215.91 454.18 -0.22 0.21 6.88 3.78 -4.24 11.12 0.001

ELEMENTAL (Ours) 233.92 464.40 -0.30 0.36 8.49 4.70 -0.83 22.97 2.71
w/o Self-Reflection 114.66 153.52 -0.93 0.00 5.05 3.65 -1.71 0.02 0.03
w/o Gradient Normalization 186.52 423.78 -1.20 0.02 7.29 2.73 -0.95 13.39 2.32
w/o Weight Normalization 192.51 459.33 -0.54 0.02 3.23 4.87 -1.15 0.04 1.57
w/o Visual Input 178.68 304.58 -1.01 0.00 8.16 4.49 -1.41 18.52 0.03
w/ Text Demo2 207.51 412.17 -0.92 0.00 7.43 4.60 -0.88 7.07 0.04
w/ Random Visual Demo. 269.46 352.53 -1.07 0.02 7.13 3.93 -1.07 20.75 2.33

GT Reward (UB) 260.14 461.90 -0.27 0.40 7.00 5.07 -0.03 23.70 0.15
1 We tried running with six seeds, but Eureka with GPT-4o failed to generate any executable reward function for ShadowHand. In the

calculation of percentage improvements over Eureka, we treat the improvements on ShadowHand to be 100%.
2 As the original implementation in (Peng et al., 2024b) is not available, we implement the demonstration in text form with ELEMENTAL.

the best performance across three random seeds to account
for variable responses from GPT-4o. Hyperparameters and
prompts are provided in supplementary.

5.1. Benchmarking Results

In the first set of experiments, we benchmark ELEMEN-
TAL and the baselines on the IsaacGym tasks, with the
results presented in Table 1. BC performs adequately on
simpler tasks such as Cartpole and BallBalance, but fails
on more complex tasks due to covariate shift. IRL without
VLM-based feature extraction struggles to learn effectively
in most tasks, highlighting the challenges posed by Isaac-
Gym’s high-dimensional state spaces. While EUREKA
is able to learn capable policies, ELEMENTAL achieves
on-average 42.3% higher performance and outperforms EU-
REKA on eight out of nine tasks, demonstrating the effec-
tiveness of integrating IRL with VLM-derived features and
visual demonstration information. The correlation between
learned reward and ground-truth reward shown in Figure 2
also illustrates ELEMENTAL’s strong ability to learn a well-
aligned reward function by matching with demonstrations.
Expanded results with statistical significance tests and addi-
tional baselines (e.g., VLM+BC and ablations with different
VLMs) are shown in Supplementary C.

To further evaluate whether VLMs are more suitable for
feature extraction or for drafting full reward functions, we
compare the code execution rates of ELEMENTAL and
EUREKA across three algorithm iterations. A higher code
execution rate indicates fewer coding errors, suggesting
better compatibility with language model capabilities. As
shown in Figure 3, ELEMENTAL achieves a successful

code execution rate of approximately 80% in the first it-
eration, compared to less than 50% for EUREKA. While
both methods improve with successive iterations, ELEMEN-
TAL consistently generates more executable code across
all tasks. A two-way repeated measures ANOVA across
nine paired tasks reveals a significant main effect of algo-
rithm (F (1, 8) = 7.00, p = .030) and round (F (2, 16) =
10.03, p = .002), indicating that ELEMENTAL achieves
statistically significantly higher execution rates than EU-
REKA. The interaction between algorithm and round is
not significant (F (2, 16) = 2.21, p = .144). These results
support the interpretation that GPT-4o is more effective at
generating executable feature extraction code than complete
reward functions, thereby validating ELEMENTAL’s design
choice to delegate reward weighting to IRL.

The ablation results in Table 1 demonstrate the impor-
tance of ELEMENTAL’s key components. Removing self-
reflection significantly reduces performance, confirming its
role in refining both the feature function via VLM and the
policy via IRL. Notably, even without self-reflection, ELE-
MENTAL outperforms standard IRL, indicating that the ini-
tial VLM-generated feature function already provides ben-
efits. The normalization steps are also crucial—removing
them leads to unstable reward learning and inconsistent
scaling, negatively impacting policy performance.

Performance degrades more sharply when substituting vi-
sual demonstrations with textual inputs, as in the setup
from Peng et al. (2024b), suggesting that VLMs leverage
visual semantics more effectively than structured state vec-
tors—particularly on tasks that are difficult to describe via
language alone. For example, on FrankaCabinet, replacing

7

ELEMENTAL

Table 2. This table shows reward correlation of inferred reward functions for EUREKA and ELEMENTAL (ours) on IsaacGym tasks.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

EUREKA 0.77 -0.53 0.96 0.93 1.00 0.59 -0.86 0.34 0.00
ELEMENTAL (Ours) 0.99 0.85 0.89 0.98 1.00 0.98 0.97 0.58 0.31

Table 3. This table compares the generalization performance of ELEMENTAL and EUREKA on Ant-variant environments. Results are
maximized over three seeds. Bold denotes the best performance.

Method Ant Original w/ Reversed Obs w/ Lighter Gravity Ant Running Backward

EUREKA 6.88 5.96 4.39 5.62
ELEMENTAL 8.49 8.47 5.89 9.30
w/o Visual Input 8.16 7.63 3.14 7.46

visual demonstrations with text inputs reduces performance
from 0.36 to 0.00, underscoring how VLMs extract more
actionable features from visual inputs than from tokenized
state vectors (Peng et al., 2024b).

Additionally, using random visual demonstrations leads to
a significant drop in performance, confirming that VLMs
extract meaningful task information when provided with
high-quality demonstrations. These results highlight the
necessity of self-reflection, normalization, and multimodal
demonstrations in achieving ELEMENTAL’s stronger per-
formance.

Under the same computational resource setup, EUREKA av-
eraged 68.21 minutes of runtime across the nine tasks, while
ELEMENTAL averaged 168.36 minutes. This increase is
primarily due to the environment rollouts ELEMENTAL
uses to estimate the reward gradient. However, this trade-off
enables ELEMENTAL to learn a better-aligned reward func-
tion, leading to improved task success and generalization.
We discuss future work to reduce runtime in Sec. 6.

5.2. Generalization Results

In the second set of experiments, we ask the question “are
the LLMs/VLMs just remembering the reward function, as
the knowledge cut-off date is Oct 2023, after IsaacGym is
public?” To answer this question, we test the generaliza-
tion capability of ELEMENTAL by applying it to modified
versions of the IsaacGym environments, particularly vari-
ants of the Ant task. For these modified environments, we
change certain properties, such as state vector order, physics
property (e.g., gravity coefficient), and the task, to evalu-
ate whether ELEMENTAL’s VLM-driven feature inference
combined with IRL can adapt to new, unseen environments
better than EUREKA. We test on four Ant variants:

1. Ant Original: The standard Ant task without modifica-
tions, serving as the baseline environment.

2. Ant with Reversed Observations: The order of the state
vector is reversed, testing the algorithms’ ability to adapt
to changes in the structure of the input data.

3. Ant with Lighter Gravity: The gravity coefficient is re-
duced from 9.81 to 5.00, requiring the features and policy
to adjust for different dynamics. A performance drop is
expected; the ant moves with less friction.

4. Ant Running Backward: The task is modified to require
the Ant to move backward rather than forward, assessing
how well the approaches generalize to a different task
objective in the same environment.

We show the comparison between ELEMENTAL and EU-
REKA in Table 3. In out-of-distribution tasks that language
models have not seen in the training set, EUREKA’s per-
formance declines, suggesting GPT-4o might have mem-
orized the IsaacGym task rewards, which is not helpful
when the state vector is reversed, when the environment
dynamics change, or when the task objective is altered. In
contrast, ELEMENTAL queries the VLM only for feature
functions—information not available in the IsaacGym pub-
lic data—and uses the demonstration-matching IRL process
to determine the reward weights. ELEMENTAL accom-
plishes an average performance improvement of 41.3%,
highlighting its robustness in adapting to changes in both
the environment’s physical properties and the task’s nature.

5.3. Real-World User Study: Teaching Salad Mixing

To evaluate ELEMENTAL’s real-world effectiveness, we
conducted a within-subject user study where twelve partici-
pants taught a Kinova JACO arm to perform a salad mixing
task. ELEMENTAL was able to operate interactively in real
time: each learning round completed within 4 minutes using
a remote server with an NVIDIA A40 GPU. Demonstrations
were captured using a ZED stereo camera and automatically
converted into ten equally spaced visual frames per skill.

8

ELEMENTAL

Figure 3. A comparison of the code execution rate between ELE-
MENTAL and EUREKA in three iterations in the nine IsaacGym
environments. The shades show the standard error.

Participants taught three core skills: go grasp mushroom, go
drop at mixture bowl, and mix bowl with spoon, using both
ELEMENTAL and the baseline EUREKA (order random-
ized). Both methods used the same hardware, interaction
rounds, and input text format, ensuring a fair comparison.
The key distinction is that ELEMENTAL uses demonstra-
tions and IRL to learn and refine reward functions, while
EUREKA relies on LLM-generated reward code from lan-
guage only. The remaining skills were predefined and shared
across both conditions. Teaching followed two interaction
rounds per method: for each skill, participants provided a
kinesthetic demonstration and natural language intent de-
scription, observed robot execution, and gave feedback used
to refine the feature function and/or the reward function.
After teaching, participants observed blind executions of
the full salad mixing task and evaluated both methods using
7-point Likert scales on two criteria: task performance (suc-
cessful execution) and strategy alignment (intent matching).
Each criterion included four questions (max score: 28).

ELEMENTAL significantly outperformed EUREKA on
both metrics. Task scores were 20.58±4.93 vs. 12.42±4.72,
t(11) = −4.65, p < .001; strategy scores were 19.83±6.13
vs. 10.50 ± 4.32, t(11) = −4.20, p < .001. Participants
remarked positively on ELEMENTAL’s robustness to noisy
demonstrations. For example, one participant noted: “Even
if my demonstration was slightly to the left of the mixture
bowl, ELEMENTAL can help me fix this when I give it feed-
back and successfully put ingredients in the mixing bowl.”

These results support the hypothesis that ELEMENTAL
aligns better with user intent, even under imperfect input.
Moreover, the study further supports the system’s scala-
bility: no manual keyframe engineering was needed, and
the same hyperparameters used in simulation were applied
without tuning. Notably, the real-world pipeline required
no hand-labeling—demonstrations were automatically ex-

tracted from ZED cameras, and ELEMENTAL operated
entirely from these visual inputs and user feedback, without
manual annotation. We provide an illustration of the user
study setup in the supplementary material (Figure 4), with
additional examples and insights in Appendix A.

6. Limitation and Future Work
While ELEMENTAL demonstrates strong improvements
in LfD with VLMs, it has several limitations that open av-
enues for future research. One key limitation is its reliance
on environment rollouts for IRL updates, which increases
wall-clock running time. This is a trade-off that allows EL-
EMENTAL to infer reward functions that better align with
demonstrations. Future work could explore more stable and
efficient RL/IRL methods (Henderson et al., 2018; Hussenot
et al., 2021; Adkins et al., 2024), such as Adversarial IRL
(AIRL) or model-based RL, to reduce sample complexity.
Additionally, parallelized or hardware-accelerated imple-
mentations could help mitigate runtime concerns, making
ELEMENTAL more feasible for real-world deployment.

ELEMENTAL also assumes access to reasonably high-
quality demonstrations. While our real-world user study
showed that ELEMENTAL can recover from imperfect in-
puts through feedback, we observed that performance de-
grades with completely random or low-quality demonstra-
tions (e.g., Table 1, ELEMENTAL w/ random visual demo).
Future research could explore filtering and weighting strate-
gies to better handle noisy or suboptimal demonstrations.
For example, filtering could be based on user confidence,
VLM scores, or automated ranking mechanisms. Moreover,
recent advances in learning from suboptimal demonstra-
tions (Brown et al., 2019; Chen et al., 2021; Beliaev et al.,
2022) could be integrated into ELEMENTAL’s IRL pipeline
to further improve robustness.

Finally, given the demonstrated utility of visual inputs, fu-
ture work could explore alternative demonstration modali-
ties, such as continuous video, which may be more natural
for users and improve generalization across robotics tasks.
Incorporating real-time human feedback during the self-
reflection process also remains a promising direction for
adapting the feature and reward refinement loop.

7. Conclusion
We introduced ELEMENTAL, a novel framework that inte-
grates VLMs with LfD to draft feature functions from visual
demonstrations. ELEMENTAL leverages IRL to match
feature functions with demonstrations and introduces an
iterative self-reflection mechanism for continuous improve-
ment. Experiments showed that ELEMENTAL outperforms
previous state-of-the-art methods by 42.3% on standard
IsaacGym tasks and 41.3% in generalizing to novel tasks.

9

ELEMENTAL

Acknowledgement
We wish to thank our reviewers and area chairs for their
valuable feedback in revising our manuscript. This work
was supported by the National Science Foundation (NSF)
under grant IIS-2340177, grant IIS-2112633, and grant CPS
2219755, as well as the National Institutes of Health (NIH)
under grant 1R01HL157457.

Impact Statement
ELEMENTAL advances LfD by integrating VLMs with
IRL to improve reward function engineering. Our contribu-
tion enables robots to learn from both natural language and
visual demonstrations, reducing the need for hand-crafted
reward functions and making robot learning more accessible
to non-experts. By improving the alignment of learned be-
haviors with human demonstrations, ELEMENTAL has the
potential to enhance human-robot interaction in areas such
as assistive robotics, industrial automation, and adaptive
learning systems.

Despite its benefits, ELEMENTAL, like all AI and robotics
research, is a dual-use technology. While ELEMENTAL
offers significant benefits, responsible use will require safe-
guards around demonstration quality, oversight of iterative
reward refinement, and transparency in how VLM-derived
features influence learned behaviors. Additionally, while
ELEMENTAL improves transparency in reward learning,
its dependence on VLMs introduces potential challenges
such as hallucinations or overfitting to language priors.

Another ethical consideration is the potential misuse of ELE-
MENTAL for applications beyond its intended scope. While
the framework is designed for positive use cases, such as
making AI training more interpretable and user-aligned, the
ability to iteratively refine reward functions could be lever-
aged in ways that raise ethical concerns, such as in surveil-
lance or military applications. We advocate for responsible
AI development and encourage the use of human-in-the-
loop safeguards, bias auditing, and clear ethical guidelines
for deployment.

Overall, ELEMENTAL represents a step toward more intu-
itive and generalizable AI systems by integrating demonstra-
tions with language guidance. While its potential benefits
are significant, careful attention must be given to ensuring
fairness, transparency, and responsible use as these tech-
nologies continue to evolve.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via in-

verse reinforcement learning. In Brodley, C. E. (ed.),
Machine Learning, Proceedings of the Twenty-first In-
ternational Conference (ICML 2004), Banff, Alberta,

Canada, July 4-8, 2004, volume 69 of ACM Inter-
national Conference Proceeding Series. ACM, 2004.
doi: 10.1145/1015330.1015430. URL https://doi.
org/10.1145/1015330.1015430.

Abouelazm, A., Michel, J., and Zoellner, J. M. A re-
view of reward functions for reinforcement learning
in the context of autonomous driving. ArXiv preprint,
abs/2405.01440, 2024. URL https://arxiv.org/
abs/2405.01440.

Adeniji, A., Xie, A., Sferrazza, C., Seo, Y., James,
S., and Abbeel, P. Language reward modulation for
pretraining reinforcement learning. ArXiv preprint,
abs/2308.12270, 2023. URL https://arxiv.org/
abs/2308.12270.

Adkins, J., Bowling, M., and White, A. A method for
evaluating hyperparameter sensitivity in reinforcement
learning. Advances in Neural Information Processing
Systems, 37:124820–124842, 2024.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial
Intelligence, 297:103500, 2021.

Beliaev, M., Shih, A., Ermon, S., Sadigh, D., and Pedarsani,
R. Imitation learning by estimating expertise of demon-
strators. In International Conference on Machine Learn-
ing, pp. 1732–1748. PMLR, 2022.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., et al. On the opportuni-
ties and risks of foundation models. ArXiv preprint,
abs/2108.07258, 2021. URL https://arxiv.org/
abs/2108.07258.

Booth, S., Knox, W. B., Shah, J., Niekum, S., Stone, P., and
Allievi, A. The perils of trial-and-error reward design:
Misdesign through overfitting and invalid task specifica-
tions. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2023.

Brown, D. S., Goo, W., Nagarajan, P., and Niekum,
S. Extrapolating beyond suboptimal demonstrations
via inverse reinforcement learning from observations.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 783–792. PMLR,
2019. URL http://proceedings.mlr.press/
v97/brown19a.html.

Chen, L., Paleja, R., Ghuy, M., and Gombolay, M. Joint goal
and strategy inference across heterogeneous demonstra-
tors via reward network distillation. In Proceedings of the

10

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://arxiv.org/abs/2405.01440
https://arxiv.org/abs/2405.01440
https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
http://proceedings.mlr.press/v97/brown19a.html
http://proceedings.mlr.press/v97/brown19a.html

ELEMENTAL

International Conference on Human-Robot Interaction
(HRI), pp. 659–668, 2020.

Chen, L., Paleja, R., and Gombolay, M. Learning from sub-
optimal demonstration via self-supervised reward regres-
sion. In Conference on robot learning, pp. 1262–1277.
PMLR, 2021.

Chen, L., Jayanthi, S., Paleja, R. R., Martin, D., Zakharov,
V., and Gombolay, M. Fast lifelong adaptive inverse rein-
forcement learning from demonstrations. In Proceedings
of Conference on Robot Learning (CoRL), 2022.

Chernova, S. and Thomaz, A. L. Robot Learning from
Human Teachers. Morgan & Claypool Publishers, 2014.

Chi, V. B. and Malle, B. F. Interactive human-robot teaching
recovers and builds trust, even with imperfect learners. In
Proceedings of the 2024 ACM/IEEE International Con-
ference on Human-Robot Interaction, pp. 127–136, 2024.

Di Stefano, G., Gino, F., Pisano, G., and Staats, B. Learn-
ing by thinking: How reflection improves performance.
Harvard Business Review. HBS Working Paper, 2014.

Du, Y., Konyushkova, K., Denil, M., Raju, A., Lan-
don, J., Hill, F., de Freitas, N., and Cabi, S. Vision-
language models as success detectors. ArXiv preprint,
abs/2303.07280, 2023. URL https://arxiv.org/
abs/2303.07280.

Ericsson, K. A. and Simon, H. A. Verbal reports as data.
Psychological review, 87(3):215, 1980.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu,
H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar, A.
Minedojo: Building open-ended embodied agents with
internet-scale knowledge. Advances in Neural Informa-
tion Processing Systems, 35:18343–18362, 2022.

Feldon, D. F. The implications of research on expertise
for curriculum and pedagogy. Educational Psychology
Review, 19:91–110, 2007.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adverserial inverse reinforcement learning. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?
id=rkHywl-A-.

Gupta, D., Chandak, Y., Jordan, S., Thomas, P. S., and
C da Silva, B. Behavior alignment via reward function
optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In McIlraith, S. A. and Weinberger, K. Q. (eds.),
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3207–3214. AAAI Press, 2018.
URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16669.

Hoffman, R. R., Shadbolt, N. R., Burton, A. M., and Klein,
G. Eliciting knowledge from experts: A methodological
analysis. Organizational behavior and human decision
processes, 62(2):129–158, 1995.

Hussenot, L., Andrychowicz, M., Vincent, D., Dadashi,
R., Raichuk, A., Ramos, S., Momchev, N., Girgin, S.,
Marinier, R., Stafiniak, L., et al. Hyperparameter selec-
tion for imitation learning. In International Conference
on Machine Learning, pp. 4511–4522. PMLR, 2021.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Re-
ward design with language models. ArXiv preprint,
abs/2303.00001, 2023. URL https://arxiv.org/
abs/2303.00001.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(39):1–40, 2016.

Lin, J., Du, Y., Watkins, O., Hafner, D., Abbeel, P., Klein,
D., and Dragan, A. Learning to model the world with
language. ArXiv preprint, abs/2308.01399, 2023. URL
https://arxiv.org/abs/2308.01399.

Locke, E. A. Social foundations of thought and action: A
social-cognitive view, 1987.

Ma, Y. J., Kumar, V., Zhang, A., Bastani, O., and Jayaraman,
D. Liv: Language-image representations and rewards for
robotic control. In International Conference on Machine
Learning, pp. 23301–23320. PMLR, 2023a.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani,
O., Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar,
A. Eureka: Human-level reward design via coding large
language models. ArXiv preprint, abs/2310.12931, 2023b.
URL https://arxiv.org/abs/2310.12931.

11

https://arxiv.org/abs/2303.07280
https://arxiv.org/abs/2303.07280
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://arxiv.org/abs/2303.00001
https://arxiv.org/abs/2303.00001
https://arxiv.org/abs/2308.01399
https://arxiv.org/abs/2310.12931

ELEMENTAL

Mahadevan, K., Chien, J., Brown, N., Xu, Z., Parada, C.,
Xia, F., Zeng, A., Takayama, L., and Sadigh, D. Gen-
erative expressive robot behaviors using large language
models. ArXiv preprint, abs/2401.14673, 2024. URL
https://arxiv.org/abs/2401.14673.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. ArXiv preprint,
abs/2108.10470, 2021. URL https://arxiv.org/
abs/2108.10470.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. Reward
function and initial values: Better choices for acceler-
ated goal-directed reinforcement learning. In Artificial
Neural Networks – ICANN 2006, pp. 840–849, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

Myers, V., Zheng, B. C., Mees, O., Levine, S., and Fang,
K. Policy adaptation via language optimization: De-
composing tasks for few-shot imitation. ArXiv preprint,
abs/2408.16228, 2024. URL https://arxiv.org/
abs/2408.16228.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. ArXiv preprint, abs/2203.12601, 2022.
URL https://arxiv.org/abs/2203.12601.

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-
forcement learning. In Langley, P. (ed.), Proceedings
of the Seventeenth International Conference on Machine
Learning (ICML 2000), Stanford University, Stanford,
CA, USA, June 29 - July 2, 2000, pp. 663–670. Morgan
Kaufmann, 2000.

Nisbett, R. E. and Wilson, T. D. Telling more than we can
know: Verbal reports on mental processes. Psychological
review, 84(3):231, 1977.

Peng, A., Bobu, A., Li, B. Z., Sumers, T. R., Sucholutsky,
I., Kumar, N., Griffiths, T. L., and Shah, J. A. Preference-
conditioned language-guided abstraction. ArXiv preprint,
abs/2402.03081, 2024a. URL https://arxiv.org/
abs/2402.03081.

Peng, A., Li, B. Z., Sucholutsky, I., Kumar, N., Shah, J. A.,
Andreas, J., and Bobu, A. Adaptive language-guided
abstraction from contrastive explanations. ArXiv preprint,
abs/2409.08212, 2024b. URL https://arxiv.org/
abs/2409.08212.

Piccolo, S. R., Denny, P., Luxton-Reilly, A., Payne, S. H.,
and Ridge, P. G. Evaluating a large language model’s abil-
ity to solve programming exercises from an introductory
bioinformatics course. PLOS Computational Biology, 19
(9):e1011511, 2023.

Ravichandar, H., Polydoros, A. S., Chernova, S., and Billard,
A. Recent advances in robot learning from demonstration.
Annual Review of Control, Robotics, and Autonomous
Systems, 3, 2020.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the International Confer-
ence on Artificial Intelligence and Statistics, pp. 627–635.
JMLR Workshop and Conference Proceedings, 2011.

Sontakke, S., Zhang, J., Arnold, S., Pertsch, K., Bıyık,
E., Sadigh, D., Finn, C., and Itti, L. Roboclip: One
demonstration is enough to learn robot policies. Advances
in Neural Information Processing Systems, 36, 2024.

Suay, H. B., Brys, T., Taylor, M. E., and Chernova, S. Learn-
ing from demonstration for shaping through inverse rein-
forcement learning. In AAMAS, pp. 429–437, 2016.

Tai, L., Paolo, G., and Liu, M. Virtual-to-real deep rein-
forcement learning: Continuous control of mobile robots
for mapless navigation. In 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp.
31–36. IEEE, 2017.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. ArXiv preprint, abs/2302.13971, 2023.
URL https://arxiv.org/abs/2302.13971.

Wang, Y., Sun, Z., Zhang, J., Xian, Z., Biyik, E., Held,
D., and Erickson, Z. Rl-vlm-f: Reinforcement learn-
ing from vision language foundation model feedback.
ArXiv preprint, abs/2402.03681, 2024. URL https:
//arxiv.org/abs/2402.03681.

Wang, Y.-J., Zhang, B., Chen, J., and Sreenath, K. Prompt a
robot to walk with large language models. ArXiv preprint,
abs/2309.09969, 2023. URL https://arxiv.org/
abs/2309.09969.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language
models. ArXiv preprint, abs/2206.07682, 2022. URL
https://arxiv.org/abs/2206.07682.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Gon-
zalez Arenas, M., Lewis Chiang, H.-T., Erez, T., Hasen-
clever, L., Humplik, J., Ichter, B., Xiao, T., Xu, P., Zeng,
A., Zhang, T., Heess, N., Sadigh, D., Tan, J., Tassa, Y.,
and Xia, F. Language to rewards for robotic skill syn-
thesis. ArXiv preprint, abs/2306.08647, 2023. URL
https://arxiv.org/abs/2306.08647.

12

https://arxiv.org/abs/2401.14673
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2408.16228
https://arxiv.org/abs/2408.16228
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2402.03081
https://arxiv.org/abs/2402.03081
https://arxiv.org/abs/2409.08212
https://arxiv.org/abs/2409.08212
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2309.09969
https://arxiv.org/abs/2309.09969
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2306.08647

ELEMENTAL

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A.,
Fei-Fei, L., and Farhadi, A. Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning.
In 2017 IEEE international conference on robotics and
automation (ICRA), pp. 3357–3364. IEEE, 2017.

Zhu, Z. and Hu, H. Robot learning from demonstra-
tion in robotic assembly: A survey. Robotics, 7(2),
2018. ISSN 2218-6581. doi: 10.3390/robotics7020017.
URL https://www.mdpi.com/2218-6581/7/
2/17.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. PhD thesis,
Carnegie Mellon University, 2010.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
Proceedings of the National Conference on Artificial in-
telligence (AAAI), pp. 1433–1438, 2008.

13

https://www.mdpi.com/2218-6581/7/2/17
https://www.mdpi.com/2218-6581/7/2/17

ELEMENTAL

A. User Study Details

Figure 4. Real-world salad-mixing user study setup. Users
taught three skills: go grasp mushroom, go drop at mixture
bowl, and mix bowl with spoon.

To evaluate ELEMENTAL in practical, real-world settings, we
conducted a user study. This section provides additional details
on the task setup and experimental design.

A.1. Task and Robot Setup

The study centers around a salad mixing task, where participants
teach a Kinova JACO robotic arm to sequentially transport
ingredients and perform a mixing motion. To enable targeted
evaluation within a limited study duration, we decomposed
the task into modular skills—three of which were taught by
participants, while others were predefined.

Taught skills (via ELEMENTAL and EUREKA):

1. Go to mushroom: Navigate to the mushroom ingredient.

2. Go to mixture bowl: Move to the bowl location in prepara-
tion to drop ingredients.

3. Mix bowl with spoon: Stir the bowl contents using a spoon.

Predefined skills:

1. Go to pepper, Go to tomato, Go to spoon, Go to home

2. Pick / Drop: Grasp or release ingredients or utensils.

The robot was controlled via low-level joint position commands.
Visual demonstrations were automatically extracted from ZED
stereo camera footage as ten equally spaced keyframes per skill, requiring no manual annotation. This setup enabled scalable
and consistent demonstration capture across participants.

A.2. Experiment Design

We used a within-subject design where each of the twelve participants taught the three skills using both ELEMENTAL
and EUREKA, with method order randomized. Each teaching session consisted of two interaction rounds per method:
participants first provided a kinesthetic demonstration and a textual intent description, then observed a robot rollout and
gave natural language feedback. The learning algorithm used this input to refine the reward and policy in EUREKA, or the
feature representation, reward, and policy in ELEMENTAL. This observation–feedback loop was repeated twice for each
skill and each method.

After completing all skill teachings, participants watched blind rollouts of the full salad mixing task using both systems.
Each rollout followed the full sequence of ingredient pick-and-drop and bowl mixing using both learned and predefined
skills. Participants then completed a final survey evaluating both methods on two dimensions: task performance (e.g.,
successful execution of actions) and strategy alignment (e.g., matching user preferences). Each criterion was rated via four
7-point Likert scale questions (range 4–28). ELEMENTAL significantly outperformed EUREKA on both metrics, as shown
in Figure 5.

A.3. System Responsiveness

Despite relying on IRL and VLM-based reward learning, ELEMENTAL was tuned to support interactive teaching. Each
learning round—including training and policy/reward refinement—was completed in under 4 minutes using a remote server
with an NVIDIA A40 GPU. The same hyperparameters were used across simulation and real-world settings, demonstrating
ELEMENTAL’s sample efficiency and robustness without task-specific tuning.

14

ELEMENTAL

A.4. Example in Reducing Language Ambiguity through Demonstrations

A key motivation for ELEMENTAL is that visual demonstrations can reduce ambiguity in underspecified natural language
instructions by grounding them in observable behavior. In our user study, participants frequently used vague spatial or
temporal terms when describing tasks. For instance, when teaching the mix bowl with spoon skill, one participant instructed:

“First, the robot should lower its gripper toward the inside of the bowl with the spoon pointing downward. Then, the robot
should move in a way to make the spoon move in a circular motion for mixing.” This instruction includes vague temporal
phrases and spatial instructions.

EUREKA, which relies solely on language, interpreted this instruction by constructing a reward function that encourages a
fixed orientation using a static dot-product term, as shown in Box 1.

BOX 1: EUREKA REWARD FUNCTION.

def compute_reward(ee_pos: torch.Tensor, bowl_position_tensor:
torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:↪→

other contents omitted

Orientation reward
ee_orientation = ee_pos[:, 3:7]
dot_product = torch.abs(torch.sum(ee_orientation * desired_orientation,

dim=-1))↪→

orientation_reward = torch.exp(orientation_reward_temp * (dot_product -
1))↪→

In contrast, ELEMENTAL incorporates visual demonstrations to disambiguate when and how the robot should reorient
(Box 2). Based on the demonstration, it infers that the robot should only begin reorienting when far from the bowl, according
to the “first... then...” temporal structure. This feature shows that the VLM correctly inferred that reorientation should occur
only when the robot is far from the bowl, capturing the “first... then...” structure described in the language.

BOX 2: ELEMENTAL FEATURE FUNCTION.

def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:
other contents omitted

3. Reorient while distant to avoid collision
down_direction = torch.tensor([0.0, 0.0, -1.0], device=obs_buf.device)
orientation_similarity_far =

torch.nn.functional.cosine_similarity(ee_orientation[:, :3],
down_direction.unsqueeze(0), dim=-1)

↪→

↪→

is_far = distance_to_bowl >= 0.2
reorientation_early = torch.where(is_far, orientation_similarity_far,

torch.tensor(0.0, device=obs_buf.device))↪→

This comparison demonstrates how ELEMENTAL reduces ambiguity by grounding vague or implicit instructions. Whereas
EUREKA encodes the user’s description as a constant reward over orientation, ELEMENTAL uses demonstration context to
condition behavior on spatial distance—capturing temporal dependencies not specified explicitly in language.

Such distinctions are not just academic: participants frequently expressed uncertainty when relying on language alone. One
participant asked, “Should I describe this (for example, moving to the left/right side) from my perspective or the robot’s?”
This highlights the challenge of specifying tasks precisely through language. ELEMENTAL mitigates this challenge by
aligning demonstrations with language, enabling more robust and intent-aligned reward inference.

15

ELEMENTAL

(a) Comparison of task scores between Eureka and ELEMEN-
TAL. Participants rated how well the robot completed the
overall task after watching the full execution sequence. ELE-
MENTAL achieved significantly higher task scores.

(b) Comparison of strategy scores between Eureka and ELE-
MENTAL. Participants rated how closely the robot’s execu-
tion matched their intended strategies. ELEMENTAL outper-
formed Eureka with statistical significance.

Figure 5. Participant ratings from the final evaluation phase. ELEMENTAL significantly outperformed Eureka on both task success and
strategy alignment. Error bars denote interquartile ranges; stars indicate statistical significance (*** p < .001).

B. Prompts
We show the prompts used in ELEMENTAL for feature drafting and self-reflection in Box 3–6.

BOX 3: INITIAL SYSTEM PROMPT.

You are a feature engineer trying to write relevant features for the reward
function to solve learning-from-demonstration (inverse reinforcement
learning) tasks as effective as possible.

↪→

↪→

Your goal is to write a feature function for the environment that will help
the agent construct a linear reward function with the constructed
features via inverse reinforcement learning to accomplish the task
described in text and the demonstration.

↪→

↪→

↪→

Your feature function should use useful variables from the environment as
inputs. The feature function signature must follow:↪→

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:

...
return {}

Since the feature function will be decorated with @torch.jit.script, please
make sure that the code is compatible with TorchScript (e.g., use torch
tensor instead of numpy array).

↪→

↪→

You should not wrap the function within a class.

Make sure any new tensor or variable you introduce is on the same device as
the input tensors.↪→

16

ELEMENTAL

BOX 4: INITIAL USER PROMPT.

The Python environment is
{task_obs_code_string}

Write a feature function for the following task: {task_description}.

Three keyframes of a demonstration for how to accomplish the task are shown
in the image (superimposing agent pos).↪→

BOX 5: CODE OUTPUT INSTRUCTION.

The input of the feature function is a torch.Tensor named `obs_buf` that is
a batched state (shape: [batch, num_obs]).↪→

The output of the feature function should be a dictionary where the keys
are the names of the features and the values are the corresponding
feature values for the input state.

↪→

↪→

You must respect the function signature.

The code output should be formatted as a python code string: "```python ...
```".↪→

Some helpful tips for writing the feature function code:

(1) You may find it helpful to normalize the features to a fixed range
by applying transformations↪→

(2) The feature code's input variables must be obs_buf: torch.Tensor,
which corresponds to the state observation (self.obs_buf) returned
by the environment compute_observations() function. Under no
circumstance can you introduce new input variables.

↪→

↪→

↪→

(3) Each output feature should only one a single dimension (shape:
[batch]).↪→

(4) You should think step-by-step: first, think what is important in
the task based on the task description and the demonstration and
come up with names of the features, then, write code to calculate
each feature

↪→

↪→

↪→

(5) You should be aware that the downstream inverse reinforcement
learning only creates reward functions that are linear function of
the constructed features; thus, it is important to construct
expressive features that humans do care in this task

↪→

↪→

↪→

(6) Do not use unicode anywhere such as \u03c0 (pi)

17



ELEMENTAL

BOX 6: SELF-REFLECTION PROMPT.

We trained reward and policy via inverse reinforcement learning using the
provided feature function code with the demonstration.↪→

We tracked the feature values as well as episode lengths.

The mean values of the last {eval_avg_horizon} steps from the learned
policy are:↪→

{insert}

Please carefully analyze the feedback and provide a new, improved feature
function that can better solve the task. Some helpful tips for
analyzing the feedback:

↪→

↪→

(1) If the episode lengths are low, it likely means the policy is
unsuccessful↪→

(2) If the feature counts are significantly different between demo and
learned behavior, then this means IRL cannot match this feature
with the demo as it is written. You may consider

↪→

↪→

(a) Change its scale

(b) Re-writing the feature: check error in the feature computation
(e.g., indexing the observation vector) and be careful about
outlier values that may occur in the computation

↪→

↪→

(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may be unimportant.
You can consider discarding the feature or rewriting it.↪→

(4) You may add/remove features as you see appropriate.

Please analyze each existing features in the suggested manner above first,
and then write the feature function code.↪→

18



ELEMENTAL

Table 4. This table shows benchmarking results on IsaacGym tasks between ELEMENTAL and Eureka. Each cell reports the mean
(standard deviation) across five seeds. The statistical significance shows ∗ if p < .05 and ∗∗ if p < .01. The statistical test (p) shows the
p-value for independent t-test (one-sided) for comparisons that satisfies the normality and homoscedasticity assumptions, and otherwise
shows the p-values for Mann-Whitney U-test (denoted with †). Bold denotes the better performance between ELEMENTAL and Eureka.
Additionally, we added a baseline, VLM+BC, which utilizes the VLM drafted feature functions to train Behavior Cloning (BC) by
transforming all observations into the feature space. We also include preliminary results of ELEMENTAL and Eureka with OpenAI o1
model with 1-5 seed experiments done to show ablation on the VLM used.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

EUREKA 192.66 (26.17) 412.16 (33.20) -0.27 (0.10) 0.10 (0.14) 4.09 (2.26) 3.69 (0.56) -2.14 (1.59) 2.36 (4.91) 0.00 (0.00)
ELEMENTAL (Ours) 258.50 (42.67) 438.90 (43.64) -0.44 (0.15) 0.18 (0.17) 7.00 (1.03) 4.70 (0.12) -0.37 (0.34) 20.54 (3.98) 1.57 (1.35)
Statistical significance ** * ** * ** **
Statistical test (p) 0.009 0.201† 0.970 0.265† 0.015 0.002 0.021 0.004† 0.004†

VLM+BC 80.95 (17.19) 68.77 (17.01) -1.44 (0.12) 0.00 (0.00) 0.01 (0.09) 0.08 (0.23) -2.5 (0.27) 0.00 (0.00) 0.01 (0.01)

EUREKA o1 143.49 (24.70) 434.14 (12.99) -0.26 (0.03) 0.02 (0.00) 6.91 (0.42) 3.33 (1.19) -1.78 (1.59) 8.43 (2.46) 2.14 (0.91)
ELEMENTAL o1 264.92 (69.70) 456.51 (26.16) -0.77 (0.15) 0.06 (0.01) 7.00 (1.05) 4.52 (0.33) -0.54 (0.05) 21.62 (0.73) 2.91 (1.16)

Table 5. This table shows benchmarking results on IsaacGym tasks between ELEMENTAL and Eureka. Each cell reports the max across
five seeds. Bold denotes the better performance.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

EUREKA 215.91 454.18 -0.18 0.34 6.88 4.36 -0.70 11.12 0.00
ELEMENTAL (Ours) 309.38 474.63 -0.30 0.36 8.49 4.81 -0.02 23.38 2.71

C. Additional Simulated Results
In this section, we present expanded experimental results that provide deeper insight into the performance of ELEMENTAL
relative to baselines across benchmark and generalization tasks. These results are computed across five random seeds with
statistical tests to assess the significance of the observed improvements.

Benchmark Performance (Table 4 and 5). Table 4 reports the mean and standard deviation of task performance across
five seeds on the nine IsaacGym environments. ELEMENTAL achieves better performance than EUREKA on eight out
of nine tasks with statistically significant improvements (p < .05 or p < .01) in five tasks. Table 5 further confirms these
gains by showing that ELEMENTAL reaches a higher maximum performance than EUREKA in eight out of nine tasks.
We also include results from a new VLM+BC baseline, which trains a behavior cloning policy using features extracted
by VLMs. This baseline performs poorly across all tasks, underscoring that simply combining VLM-generated features
with demonstrations is insufficient—BC suffers from covariate shift and lacks ELEMENTAL’s self-reflection loop, which
iteratively refines the feature function.

Generalization to Variants (Table 6 and 7). We also assess the generalization capabilities of ELEMENTAL by evaluating
performance on four Ant-environment variants. Table 6 shows that ELEMENTAL outperforms EUREKA in all four variants,
achieving statistical significance in two of them (p < .05). The consistent improvement across these perturbed settings
demonstrates that ELEMENTAL is better equipped to handle out-of-distribution environments, due in part to the tighter
alignment between learned rewards and demonstrations enabled by IRL. Table 7 confirms that ELEMENTAL attains superior
max performance across all variants.

Reward Function Quality (Table 8 and 9). Tables 8 and 9 compare the reward correlation between learned reward
functions and the ground-truth rewards provided in IsaacGym. ELEMENTAL yields better or comparable correlation in all
tasks. These results support the claim that ELEMENTAL produces reward functions that are more consistently aligned with
task objectives due to its iterative self-reflection loop and embedded IRL that improve feature and reward alignment.

19



ELEMENTAL

Table 6. This table compares the generalization performance of ELEMENTAL and EUREKA on Ant-variant environments. Each cell
reports the mean (standard deviation) across five seeds. The statistical significance shows ∗ if p < .05 and ∗∗ if p < .01. The statistical
test (p) shows the p-value for independent t-test (one-sided) for comparisons that satisfies the normality and homoscedasticity assumptions,
and otherwise shows the p-values for Mann-Whitney U-test (denoted with †). Bold denotes the better performance.

Method Ant Original w/ Reversed Obs w/ Lighter Gravity Ant Running Backward

EUREKA 4.09 (2.26) 2.56 (2.93) 2.64 (1.04) 3.94 (2.76)
ELEMENTAL 7.00 (1.03) 5.71 (3.23) 3.77 (1.68) 7.41 (1.25)
Statistical significance * *
Statistical test (p) 0.015 0.072 0.119 0.017

Table 7. This table compares the generalization performance of ELEMENTAL and EUREKA on Ant-variant environments. Each cell
reports the max across five seeds. Bold denotes the better performance.

Method Ant Original w/ Reversed Obs w/ Lighter Gravity Ant Running Backward

EUREKA 6.88 5.96 4.39 6.90
ELEMENTAL 8.49 8.47 5.89 9.30

Ablation: VLM Variants. We also report results using OpenAI’s o1 model, in addition to the GPT-4o-based results
in Table 4. ELEMENTAL continues to outperform EUREKA when both use the o1 model (seven out of nine tasks, on
average 37% gain), suggesting that ELEMENTAL’s architecture is robust to the specific VLM backbone and benefits from
the integration of demonstrations and iterative refinement regardless of the underlying model.

C.1. Case Study

In this subsection, we present a case study illustrating the iterative process of ELEMENTAL on the Humanoid task. The initial
feature function drafted by the Vision-Language Model (VLM) is shown in Box 7. The proposed features—forward velocity,
uprightness, and heading alignment—are well-aligned with the task objectives of running efficiently while maintaining
balance and direction. These features provide a strong starting point for the learning process.

Using this initial feature function, ELEMENTAL trains the IRL process, calculates the feature counts for both the generated
trajectories and the demonstration, and feeds this feedback back to the VLM, as shown in Box 8. The feedback reveals
key discrepancies, such as lower forward velocity. Based on this analysis, the VLM revises the feature function, as shown
in Box 9. Notably, the revised function introduces a new feature, lateral velocity, which captures stride consistency by
taking the absolute value of the lateral movement. This demonstrates the VLM’s capability to construct nonlinear features,
expanding the expressiveness of the feature function.

Finally, ELEMENTAL trains the IRL process again using the updated feature function and compiles the feedback, as
shown in Box 10. The resulting reward weights assign the highest importance to forward velocity, with relatively minor
contributions from stability-related objectives such as uprightness and lateral velocity. This distribution aligns well with
human intuition for the task, where speed is the primary objective, and stability features serve as secondary constraints. The
evolvement of the feature function is illustrated in Figure 6.

Figure 6. This figure illustrates the feature evolution in one example.

This case study highlights the potential of ELEMENTAL to produce models at every stage of its pipeline. The feature
functions generated by the VLM are human-readable and meaningful, allowing practitioners to inspect and refine them as
needed. Additionally, the linear weights learned by ELEMENTAL during the IRL process indicate the relative importance

20



ELEMENTAL

Table 8. This table shows reward correlation of inferred reward functions for EUREKA and ELEMENTAL (ours) on IsaacGym tasks.
Each cell reports the mean (standard deviation) across five seeds.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

EUREKA 0.77 (0.09) 0.48 (0.61) 0.94 (0.02) 0.49 (0.36) 0.97 (0.04) 0.84 (0.17) 0.32 (0.70) 0.32 (0.40) 0.00 (0.00)
ELEMENTAL (Ours) 0.77 (0.15) 0.80 (0.16) 0.32 (0.64) 0.73 (0.33) 0.85 (0.17) 0.84 (0.11) 0.93 (0.08) 0.61 (0.20) 0.27 (0.42)

Table 9. This table shows reward correlation of inferred reward functions for EUREKA and ELEMENTAL (ours) on IsaacGym tasks.
Each cell reports the max across five seeds.

Method IsaacGym Environments

Cartpole Ball Quadcopter Franka Ant Humanoid Anymal Allegro Shadow
Balance Cabinet Hand Hand

EUREKA 0.85 0.95 0.97 0.93 1.00 0.98 0.99 0.77 0.00
ELEMENTAL (Ours) 0.99 0.95 0.89 0.98 1.00 0.98 1.00 0.77 0.82

of each feature in matching the demonstration. The iterative self-reflection mechanism ensures that the learned policies and
reward functions evolve in alignment with the demonstration.

21



ELEMENTAL

BOX 7: 1ST ROUND VLM RESULT

To create a feature function aimed at helping a humanoid robot run as fast as possible, we should focus on features that are
most relevant to running speed and ensuring the humanoid's balance and stability. Useful features could include the
forward velocity, balance (uprightness), and perhaps a component that ensures the humanoid maintains forward momentum
without falling.

↪→
↪→
↪→

Here's the feature function based on the observation buffer structure:

```python
import torch
from typing import Dict

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:

Extract relevant features from the observation buffer
Assuming obs_buf shape: [batch_size, num_obs]

Feature: forward velocity (x direction in local frame)
forward_velocity = obs_buf[:, 1]

Feature: uprightness (use the up projection)
uprightness = obs_buf[:, 10]

Feature: heading alignment (use the heading projection)
heading_alignment = obs_buf[:, 11]

Normalize the features
Assuming value normalizations such as the velocity range, uprightness [-1, 1], heading alignment [-1, 1]
max_forward_velocity = 10.0 # This is an arbitrary normalization
forward_velocity = forward_velocity / max_forward_velocity # Normalizing forward velocity

Combine features into output dictionary
features = {

"forward_velocity": forward_velocity,
"uprightness": uprightness,
"heading_alignment": heading_alignment,

}

return features
```

### Explanation:

1. **`forward_velocity`**: The observation buffer's second column (`obs_buf[:, 1]`) captures the forward velocity in the
local frame.↪→

2. **`uprightness`**: The observation buffer's 11th column (`obs_buf[:, 10]`) captures the upright projection, which is
crucial to ensure the humanoid isn't falling over.↪→

3. **`heading_alignment`**: The observation buffer's 12th column (`obs_buf[:, 11]`) captures heading alignment, which helps
ensure the humanoid is moving forward in the correct direction.↪→

These features will enable the inverse reinforcement learning process to construct a reward function that emphasizes running
fast while maintaining balance and a straight heading.↪→

22



ELEMENTAL

BOX 8: 1ST ROUND FEEDBACK

Calculating mean features on the demonstration results in the following:
episode_lengths: 1000.0
forward_velocity: 0.57
uprightness: 0.94
heading_alignment: 0.91
We trained reward and policy via inverse reinforcement learning using the provided feature function code with the

demonstration.↪→
We tracked the feature values as well as episode lengths.
The mean values of the last 100 steps from the learned policy are:
forward_velocity: 0.4
uprightness: 0.99
heading_alignment: 0.99
IRL reward: 0.05
episode_lengths: 691.47
IRL feature weights: {'forward_velocity': 0.693, 'uprightness': -0.107, 'heading_alignment': -0.201}
Please carefully analyze the feedback and provide a new, improved feature function that can better solve the task. Some

helpful tips for analyzing the feedback:↪→
(1) If the episode lengths are low, it likely means the policy is unsuccessful
(2) If the feature counts are significantly different between demo and learned behavior, then this means IRL cannot match

this feature with the demo as it is written. You may consider↪→
(a) Change its scale
(b) Re-writing the feature: check error in the feature computation (e.g., indexing the observation vector) and be

careful about outlier values that may occur in the computation↪→
(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may be unimportant. You can consider discarding the feature or
rewriting it.↪→

(4) You may add/remove features as you see appropriate.
Please analyze each existing features in the suggested manner above first, and then write the feature function code.The input

of the feature function is a torch.Tensor named `obs_buf` that is a batched state (shape: [batch, num_obs]).↪→
The output of the feature function should be a dictionary where the keys are the names of the features and the values are the

corresponding feature values for the input state.↪→
You must respect the function signature.
The code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the feature function code:
(1) You may find it helpful to normalize the features to a fixed range by applying transformations
(2) The feature code's input variables must be obs_buf: torch.Tensor, which corresponds to the state observation

(self.obs_buf) returned by the environment compute_observations() function. Under no circumstance can you introduce
new input variables.

↪→
↪→
(3) Each output feature should only one a single dimension (shape: [batch]).
(4) You should think step-by-step: first, think what is important in the task based on the task description and the

demonstration and come up with names of the features, then, write code to calculate each feature↪→
(5) You should be aware that the downstream inverse reinforcement learning only creates reward functions that are linear

function of the constructed features; thus, it is important to construct expressive features that humans do care in
this task

↪→
↪→
(6) Do not use unicode anywhere such as \u03c0 (pi)

23



ELEMENTAL

BOX 9: 2ND ROUND VLM RESULT

Based on the provided feedback and analysis of how the current features are performing, we can observe a few key points:

1. **Forward Velocity:**
- The policy is achieving a lower forward velocity than in the demonstration. This suggests that the current method of

calculating or normalizing this feature might need adjustment.↪→
- The forward velocity weight is quite significant (`0.693`).

2. **Uprightness:**
- The policy has a higher uprightness than the demonstration. The weight for uprightness is negative (`-0.107`), which may

indicate that the model learns to be overly cautious about staying upright, potentially at the expense of moving fast.
This negative weight suggests we might need to rethink how this feature is influencing the reward.

↪→
↪→

3. **Heading Alignment:**
- The policy has a higher heading alignment than the demonstration. Similar to uprightness, the weight is also negative

and relatively significant (`-0.201`), indicating it might be overemphasizing this feature.↪→

Given these points, we aim to improve the feature function by:
1. Adjusting the scaling or normalization of the forward velocity.
2. Revisiting and potentially revising the uprightness and heading alignment features to better match the demonstration

characteristics.↪→
3. Considering new or additional features that might encourage the desired behavior such as stability or stride consistency.

Here is the improved feature function:

```python
import torch
from typing import Dict

@torch.jit.script
def compute_feature(obs_buf: torch.Tensor) -> Dict[str, torch.Tensor]:

Extract relevant features from the observation buffer
Assuming obs_buf shape: [batch_size, num_obs]

Feature: forward velocity (x direction in local frame)
forward_velocity = obs_buf[:, 1]

Adjust scaling of forward velocity to emphasize higher speeds, assuming range [-1, 1]
max_forward_velocity = 1.0 # New scaling factor to more accurately reflect achievable max speeds
forward_velocity = forward_velocity / max_forward_velocity # Normalizing forward velocity

Feature: uprightness (use the up projection)
uprightness = obs_buf[:, 10]

Re-normalize uprightness to give more incentive to be upright but not be overly conservative
uprightness = (uprightness - 0.5) * 2 # Adjusting the range to new scaling [-1, 1]

Feature: heading alignment (use the heading projection)
heading_alignment = obs_buf[:, 11]

Normalize heading alignment to confirm alignment direction
heading_alignment = (heading_alignment - 0.5) * 2 # Adjusting the range similarly

Introducing a new feature: lateral velocity (to ensure stability)
lateral_velocity = obs_buf[:, 2]
lateral_velocity = torch.abs(lateral_velocity) # Use absolute value to avoid penalizing/stabilize sideway motions

Normalize lateral velocity, supposing it ranges [-1, 1]
max_lateral_velocity = 1.0
lateral_velocity = lateral_velocity / max_lateral_velocity

Combine features into output dictionary
features = {

"forward_velocity": forward_velocity,
"uprightness": uprightness,
"heading_alignment": heading_alignment,
"lateral_velocity": lateral_velocity

}

return features
```

### Explanation:

1. **`forward_velocity`**: Adjusted scaling to make achievable velocities more impactful.
2. **`uprightness`**: Adjusted to a new normalization to try to balance upright positioning without making the humanoid

overly cautious.↪→
3. **`heading_alignment`**: Similar adjustment for normalization.
4. **`lateral_velocity`**: Added a new feature to penalize sideways movement, ensuring stability and straightforward motion.

These changes aim to provide a more nuanced reward function, hopefully promoting behaviors closer to the demonstration while
balancing speed and stability.↪→

24



ELEMENTAL

BOX 10: 2ND ROUND FEEDBACK

Calculating mean features on the demonstration results in the following:
episode_lengths: 1000.0
forward_velocity: 5.67
uprightness: 0.89
heading_alignment: 0.83
lateral_velocity: 2.31
We trained reward and policy via inverse reinforcement learning using the provided feature function code with the

demonstration.↪→
We tracked the feature values as well as episode lengths.
The mean values of the last 100 steps from the learned policy are:
forward_velocity: 5.04
uprightness: 0.65
heading_alignment: 0.92
lateral_velocity: 2.05
IRL reward: 3.54
episode_lengths: 932.42
IRL feature weights: {'forward_velocity': 0.549, 'uprightness': 0.253, 'heading_alignment': -0.079, 'lateral_velocity':

0.119}↪→
Please carefully analyze the feedback and provide a new, improved feature function that can better solve the task. Some

helpful tips for analyzing the feedback:↪→
(1) If the episode lengths are low, it likely means the policy is unsuccessful
(2) If the feature counts are significantly different between demo and learned behavior, then this means IRL cannot match

this feature with the demo as it is written. You may consider↪→
(a) Change its scale
(b) Re-writing the feature: check error in the feature computation (e.g., indexing the observation vector) and be

careful about outlier values that may occur in the computation↪→
(c) Discarding the feature

(3) If a feature has near-zero weight, the feature may be unimportant. You can consider discarding the feature or
rewriting it.↪→

(4) You may add/remove features as you see appropriate.
Please analyze each existing features in the suggested manner above first, and then write the feature function code.The input

of the feature function is a torch.Tensor named `obs_buf` that is a batched state (shape: [batch, num_obs]).↪→
The output of the feature function should be a dictionary where the keys are the names of the features and the values are the

corresponding feature values for the input state.↪→
You must respect the function signature.
The code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the feature function code:
(1) You may find it helpful to normalize the features to a fixed range by applying transformations
(2) The feature code's input variables must be obs_buf: torch.Tensor, which corresponds to the state observation

(self.obs_buf) returned by the environment compute_observations() function. Under no circumstance can you introduce
new input variables.

↪→
↪→
(3) Each output feature should only one a single dimension (shape: [batch]).
(4) You should think step-by-step: first, think what is important in the task based on the task description and the

demonstration and come up with names of the features, then, write code to calculate each feature↪→
(5) You should be aware that the downstream inverse reinforcement learning only creates reward functions that are linear

function of the constructed features; thus, it is important to construct expressive features that humans do care in
this task

↪→
↪→
(6) Do not use unicode anywhere such as \u03c0 (pi)

25



ELEMENTAL

Hyperparameters Value
Reward learning rate α 1.0

Approximate MaxEnt-IRL number of iterations m 5
Policy training steps k 500

Number of algorithm iterations 3
Number of code generations per iteration 3 (1 for ShadowHand due to longer compile times)

Policy Neural Network Architecture Fully-connected [32, 32] with ReLU activation

Table 10. Hyperparameters and their values

D. ELEMENTAL Hyerparameters
We tune hyperparameters via a grid search. We summarize the ELEMENTAL hyperparameters in Table 10. All other
hyperparameters follow EUREKA’s default setup.

26


