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Abstract

Recently, the use of pretrained language mod-
els (PLMs) as soft knowledge bases has gained
growing interest, sparking the development
of knowledge probes to evaluate their fac-
tual knowledge retrieval capabilities. How-
ever, existing knowledge probes for genera-
tive PLMs that support multi-token entities ex-
hibit quadratic time complexity O(n?), lim-
iting the size of knowledge graphs used for
probing. To address this, we propose DEcoder
Embedding-based Relational (DEER) probe,
utilizing embedding vectors extracted from gen-
erative PLMs. DEER probe achieves effec-
tive time complexity of linear order O(n), sup-
ports rank-based evaluation metrics including
Hit@Fk, handles multi-token entity names and
enables probing whilst disambiguation of ho-
mographic tail-enity names. We empirically
show that DEER-probe correlates with existing
knowledge probes, validating its probing capa-
bility, and we demonstrate the practical benefits
of its improved scalability.

1 Introduction

Knowledge probes evaluate factual knowledge re-
trieval capabilities of pre-trained language mod-
els (PLMs). Their applications include identify-
ing missing knowledge in PLMs and quantifying
the amount of domain-specific knowledge encoded
in their parameters. Knowledge probes achieve
this by assessing a PLM’s capability to complete
a relational knowledge. A knowledge graph (KG)
represents a relational knowledge as a triplet con-
sisting of (head-entity, relation-type, tail-entity).
To complete a relational knowledge, models must
predict the correct tail-entity, given a partially filled
triplet, (head-entity, relation-type, 7) which we call
a query.

To the best of our knowledge, the only knowl-
edge probe capable of probing generative PLMs
with multi-token tail entity names and the Hit@%, a
conventional evaluation metric in knowledge base
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Figure 1: An illustration of DEER’s architecture.
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completion, is BEAR (Wiland et al., 2024; Youssef
et al., 2023). However, BEAR exhibit quadratic
time complexity O(n?), making probing of PLMs
on large-scale KGs infeasible. Moreover, BEAR
predicts the tail entity for a query by computing the
joint probability of the textual sequence formed by
concatenating the query and a tail entity candidate’s
textual representation. The reliance on joint proba-
bility may introduce a token length bias, favoring
candidates with shorter names.

To address these issues, we propose DEER
(DEcoder Embedding-based Relational) Probe, a
knowledge probe utilizing embedding vectors ex-
tracted from a causal PLM through the PromptEOL
method (Jiang et al., 2024), as shown in Figure 1.
DEER effectively realizes linear time complexity,
O(n), whilst reducing the token length bias in
probing. DEER also enables probing whilst dis-
ambiguating identically named tail entities.



This work addresses the following questions:

RQ1: Does the improved time complexity yield
observable reductions in compute time?

RQ2: Does DEER exhibit reduced token length
bias compared to BEAR?

RQ3: Does DEER align with existing knowledge
probes?

To evaluate the practical implications of DEER’s
improved time complexity, we measured the time
required to probe GPT-2-Small (Radford et al.,
2019) with WN18RR (Dettmers et al., 2018) un-
der both BEAR and DEER. BEAR was estimated,
through extrapolation, to require 330410 days, ren-
dering full evaluation infeasible, whereas DEER
completed the task in 16 &= 1 minutes, making such
evaluation tractable. Token length bias was as-
sessed by computing the Pearson correlation be-
tween predicted ranks and tail entity token lengths.
BEAR exhibited a strong correlation » = 0.484
and p < 107°!, while DEER was uncorrelated
with 7 = 0.005 and p = 0.913, indicating DEER’s
ability to evaluate knowledge independent of token
length. Finally, DEER’s alignment with the estab-
lished probe, LAMA, was assessed via log-scale
rank correlation, yielding a maximum r = 0.804,
supporting its use for knowledge probing.

2 Background

Knowledge Probing A KG is defined as a set of
triplets 7 > (h,r,t), where h, r and ¢ denote the
head entity, relation-type and tail entity. In knowl-
edge probing, given a query (h,r,?), PLMs are
tasked with predicting the corresponding tail entity
t. This is typically achieved by ranking a set of can-
didate tail entities &£, according to their probability
P(t = ele € ). Performance is evaluated using
Hit@k which measures the fraction of test triplets
for which the correct tail entity is ranked within the
top k candidates.

Existing Knowledge Probes for Causal PLMs
The first proposed knowledge probe, LAMA
(Petroni et al., 2019), prompts a PLM with a cloze-
style question, then ranks the tail entity candidates
by the log likelihood of the token corresponding
to their name at the masked position. However,
it can only test entities with a single token name.
KAMEL (Kalo and Fichtel, 2022) enabled probing
of multi-token entities using text generation. How-
ever, the predicted tail entities are evaluated using

exact string matching, limiting the evaluation met-
ric to Hit@1. BEAR was recently proposed to sup-
port both the Hit @k metric and multi-token entities.
However, it requires computing log-likelihood for
all possible query and entity combinations, hence
the PLM must process O(|Q| x |£]) inputs, where
Q is the set of queries, resulting in quadratic time
complexity. In addition, since prior methods rely
on token predictions, they cannot disambiguate
identically named tail entity candidates.

PromptEOL Embedding PromptEOL (Jiang
et al., 2024) is a method for creating sentence em-
bedding vectors using a generative PLM without
additional training. It prompts a model to sum-
marize a sentence in one word, then uses the last
hidden vector, usually used for next-token predic-
tion, as the sentence embedding. The prompt tem-
plate: This sentence: {S} means in one word “, is
used, where S is replaced by the sentence to encode.
Appendix A.1 provides a formal description.

3 Problem Formulation

Textual Knowledge Graph We define a textual
knowledge graph as a KG with textual represen-
tations of entities and relation types. We denote
set of all entity names, entity descriptions and rela-
tion names as Ename, Edesc aNd Rpame, respectively.
Thereby, given a set of all possible strings >,
Ename, Edescs Rname C 2F. We assume the exis-
tence of & — Ename, € — Edesc and R — Ropame
mapping the entities and relations to their corre-
sponding textual representations.

Embedding-Based Probes Embedding-based
knowledge probing frameworks (Dufter et al.,
2021) consist of a query encoder fq, a tail entity
encoder f; and a similarity function ¢. Given func-
tions mapping the query and entities to their textual
representations, fo™*': @ — X* and f{*': & —
3*, the query encoder and the tail entity en-
coder maps the textual representation of queries
and tail entity candidates to an encoding vector
for f&(Q) = Eq and fi: fi™(E) — Ei, where
Eq, By C R™

The similarity function ¢: Ey x Ex — R mea-
sures the distance between a query embedding and
a tail entity embedding. Given a query q € O,
the model ranks all tail entity candidates e € £ by
their similarity scores, defined by ¢. Formally, let
N = {n|n € N,n < |£]} denote the set of rank
indices. A one-to-one function [: @ x N — &



€name - €desc
This sentence: “{word}” means in one word: “{one word}”
This sentence: “ename”’ means in one word:

Figure 2: The template used by the tail encoder f. The
entities’ name and description replaces e,ame and €gesc.
An example is shown in Figure 6, Appendix A.2.

(Mhames Prames Toame) (dress up, verb group, trick up)

(disfavour, hypernym, single out)
(deer, hypernym,

8 8 8
(77name > Pname> Tname)

(Pname Thame,

Figure 3: Left: The query-encoding template, fc‘f’“ for
knowledge probing. The names of the query’s h and
r replaces the symbols hpame and rpame. The names of
h, r and t in the n™ randomly sampled triplet replaces

and 7.} Right: A completed example

n n
nname’ pname name °

for a query, (deer, hypernym, ?).

assigns to each query ¢, a ranked list of tail-entities
such that: z € Q = e, = fy(fiex(z)) and
x € & = e; = fi(fixt(x)). Notice the infor-
mation processed by the encoders, scale linearly,
O(]Q| + |€]). Since the compute time for cosine
similarity is negligible compared to the encoder for-
ward pass, the effective time complexity is O(n).

4 DEER: Proposed Method

As shown in Figure 1, DEER instantiate the
embedding-based framework using PromptEOL as
both the query encoder, fy, and the tail-entity en-
coder, f;. To generate the encoding, custom prompt
templates are populated with Erame, Edesc, and
Rname, then fed into fq and f;. The last hidden vec-
tor, used as a sentence embedding in PromptEOL,
serves as the encoding vector. Cosine similarity
is used as ¢ to assign a unique rank, N to each
tail entity candidates. The following paragraphs
discuss the custom templates used by fq and f;.
Tail-Entities Encoding Template, f{*** Figure 2
shows the template used by the tail-entity encoder,
ft to acquire a tail-entity encoding. The inclusion
of egesc €nables disambiguation of identical names.
Prober Query Encoding Template, /i Fig-
ure 3 shows the template used by the query encoder,
fq» during knowledge probing. The eight-shot ex-
ample is compiled by randomly sampling from the
training set. Appendix A.2 gives the design ratio-
nale.

Prober Time/query Total time

BEAR ap. 200 £ 500 s/query 330 £ 10 days

DEER 0.0316 + 0.0009 s/query 16 =+ 1 minutes
Table 1: Compute time comparison on WNI18RR.

BEAR results are approximated via extrapolation.

S Experiments

Four sets of experiments were conducted to address
the questions: Compute Time, Probe Agreement,
Token Bias, and Baseline. Except for Compute
Time, which employed GPT-2', all experiments
were conducted using the OPT model®> (Zhang
et al., 2022) as the PLM for PromptEOL.

Datasets and Metrics WNI18RR was used as the
KG. The names and descriptions of the entities
in the KG were acquired from Yao et al. (2019)
using process described in Appendix C. Hit@10
threshold were used throughout the experiments to
evaluate the PLMs.

Prompt Templates for LAMA and BEAR To
minimize discrepancy in prompt design when com-
paring with DEER, prompt design that is similar
to DEER’s is used for LAMA and BEAR. These
templates are given in Appendix A.3.

5.1 Compute Time Experiment

Experimental Setup To demonstrate the practi-
cal impact of DEER’s improved time complexity,
we compared the time required to probe the full
WN18RR knowledge graph using GPT-2 (124M)
under both DEER and BEAR. DEER’s compute
time was directly measured over all |Q| = 93,003
queries obtained from the KG, using the full entity
set, |£| = 40,943, as tail candidates. In contrast,
since BEAR’s compute time is infeasible to mea-
sure directly, it was estimated through extrapola-
tion. Both experiments were conducted using an
RTX 3090 GPU with 8 CPU cores. Experimental
details are provided in Appendix C.1.

Results Table 1 shows that the improved time
complexity results in reduced probing time in prac-
tice. Under our setup, DEER reduces compute
time from approximately 330 £ 10 days to 16 + 1
minutes when probing WN18RR, corresponding
to a (30,000 £ 2,000) x speedup, enabling probing
of KGs that would otherwise be infeasible under
BEAR.

1https: //huggingface.co/gpt2
2https://huggingface.co/facebook/opt-30b
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Figure 4: A box plot showing a positive correlation between tail entity token length and BEAR ranks, and a

negligible correlation under DEER.

5.2 Token Length Bias Experiment

Experimental Setup To investigate whether
DEER exhibit lower token length bias than BEAR,
Pearson correlation between the token length of
the correct tail entity and its predicted rank was
computed across 500 queries sampled from the
WN18RR test set. Experimental details and further
analysis are provided in Appendix C.2 and E.1.

Results As shown in Figure 4, BEAR’s predicted
correlate with token length (r = 0.484, p < 1079),
whereas DEER shows negligible correlation (r =
0.005, p = 0.913). Assuming query’s difficulty is
independent of tail entity length, BEAR may be
susceptible to token-length-induced false positives
and negatives, while DEER remains unaffected.

5.3 Probe Agreement Experiment

Experimental Setup Pearson correlation be-
tween tail entity ranks predicted by LAMA and
DEER was measured to assess DEER’s agreement
with an established knowledge probe. Ranks were
compared in log scale to account for the reduced
significance of differences at higher ranks. Exper-
imental setup and additional BEAR comparisons
are provided in Appendix C.3 and E.4, respectively.

Result Table 2 shows that sub-billion models ex-
hibit limited rank agreement, whereas models over
a billion parameters achieve high correlation, with
OPT-6.7B reaching r = 0.804. Figure 5 illustrates
this, supporting DEER’s viability as a knowledge
probe for super-billion-parameter models.

6 Conclusion

This paper introduced DEER probe, a novel and
scalable knowledge probing method for generative
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Figure 5: A scatter plot showing rank of tail entities
predicted by LAMA and DEER in log scale. Each
points represent a triplet, the bottom-left and top-right
quadrants indicate agreements in Hit@ 10 and Miss@10.
Figure 9, Appendix D show results by parameter size.

PLM Name Log(Rank),
OPT-350M 0.496
OPT-1.3B 0.737
OPT-6.7B 0.804

Table 2: Pearson correlation between DEER and LAMA
rank. Table 4, Appendix D shows the full result.

PLMs. By utilizing embedding vectors acquired
from the PLM, DEER enables input size to scale
linearly, O(| Q| + |£]), overcoming BEAR’s limita-
tion. Empirical results demonstrate that DEER can
probe KGs infeasible under BEAR, and its avoid-
ance of token probability reduces biases induced by
entity name length. DEER also aligns closely with
LAMA, offering a promising direction for future
knowledge probing research.



7 Limitations

Reproducibility Source code for the experi-
ments as well as a Python package for DEER probe
is made and will be relaced upon acceptance of the

paper.

Possibility of Data Leakage The original dataset
of WN18RR, the WN18 (Bordes et al., 2013) had
both been released before the of PLMS such as
OPT, meaning it may have been included within
the training corpus. Even though progress have
been made in knowledge graph completion evalua-
tion technique that avoids such issue (Sakai et al.,
2024), utilization of such technique on DEER is
non-trivial, as it utilizes hypothetical, non real-
world relations, that would not be stored in the
parametric knowledge. However, since our aim is
to evaluate the knowledge memorized within the
parametric knowledge, it does not alter the fact
these knowledge are stored within the parameters.

Inclusion of Tail-Entity Descriptions during
Knowledge Probing When encoding tail-entities
during knowledge probing, the description of the
entity is provided to allow disambigation. This
allows the PLM to infer relations correctly, even
in absense of the knolwedge around the tail-entity.
This could be an issue when assessing the knowl-
edge retrival capability of PLMs, however, we ar-
gue the effect of such case is limited as demon-
strated by the high correlation between DEER and
LAMA, Table 4, where LAMA is never shown such
descriptions.

The Use of Log Scale The agreement between
DEER, LAMA and BEAR was compared in linear
and log scale, even though the two showed weaker
correlation in the linear scale, we argue that the
conclusion drawn in log scale should be preferred,
taking similar line of argument for the preference of
MRR over Rank in the knowledge base completion
community, where the weight on the importance
of the difference in rank is reduced as the rank
increase.

Assumption of Normal Distribution in Standard
Error When computing the standard error and
the confidence interval, a normal distribution of the
data was assumed without proof.

8 Ethical Considerations

Throughout the paper, we investigated the ability
of DEER using the Open Pre-trained Transform-

ers (OPT) for PromptEOL. Thereby any, derivative
work of DEER utilizing OPT, is subject to the OPT
License Agreement >, which prohibits the use for
the purpose of: commercial or production, military
or nuclear technology, surveillance, biometric pro-
cessing, violation of third-party right and violation
of any applicable law.
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A Methodological Details
A.1 Formal Description of PromptEOL

PromptEOL uses a generative PLM for sentence
embedding. Given a sequence of input tokens
x1,x2,...,T,, the last hidden state, h,, corre-
sponding to the token z,,, is used as the sentence
embedding vector. More specifically, h,, is the
vector typically used for next token prediction by
applying a final dense layer followed by a soft-
max function. This process is expressed as z,, =
Wh,, + b, where 2,41 = arg max(softmax(zy,)),
where h,, is the last hidden layer, W is the weight
of the projection layer and b is the bias term. To
embed a sentence, it uses the following prompt
template: This sentence: "S" means in one word
", where S is replaced with the target sentence.

deer - distinguished from Bovidae by the male’s having solid
deciduous antlers

This sentence: “{word}” means in one word: “{one word}
This sentence: “deer” means in one word: “

”»

Figure 6: An example of the tail-entities encoding tem-
plate when used to encode the “deer” entity. Thereby,
€name 18 “deer” and egeq is “distinguished from Bovidae
by the male’s having solid”.

(Miames Prames Toame) (dress up, verb group, trick up)

(disfavor, hypernym, single out)
(deer, hypernym, mammal)

8 8 8
(nnamcs Pname> Thame)

(hname > T'name, tname)

Figure 7: Left: BEAR’s prompt template used to cal-
culate the probability of tail-entity, given a query. The
names of query’s head entity and relation type replaces
the symbols hp,me and rpame. The names of head-entity,
relation-type and tail-entity in the n™ randomly sampled
triplet replaces 75 mes Prame> Toame- Right: A completed
example for a query, (deer, hypernym, ?) and tail-entity
candidate, mammal. In essence, it is DEER’s query
encoding template with addition of the tail entity name.

PromptEOL enables creation of embedding vec-
tors conditioned by prompts (Yamada and Zhang,
2025).

A.2 Prompt Templates, Examples and
Rationale

The Query Encoding Templates are designed so
that the next-token PLM tries predicting, when
given the template, is semantically similar to the
one it tries predicting when given the Tail-Entity
Template. Hence, when the two embeddings are
measured with a similarity measure when the cor-
rect prediction is made, the similarity function, ¢,
gives a high score between the embeddings e, and
€;.

A complete example of the Tail-Entity Encoding
Template is shown in Figure 6.

A.3 Prompt Templates for LAMA and BEAR

DEER’s query encoding template, Figure 3, was
used for predicting the logits values in LAMA.
BEAR utilized prompt template shown in Figure 7
to compute probability for each query tail-entity
pair.
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B Experiment-Specific Details

C Creation of Entity Names and
Descriptions

As discussed in Section 5, dataset provided by Yao
et al. (2019) was used to construct the entity name
and description of WN18RR. However, the data
provided the names with meta data such as their
part of speech, e.g. “__whitetail_deer_NN_17, this
was cleaned to form a name in natural language,
e.g. “whitetail deer”, when used as an entity-name.
Empty descriptions were replaced with a dash char-

[T3E2]

acter: .

C.1 Compute Time Experimental Setup
Detail

BEAR’s compute time when probing GPT2-
Small (124M) with the WNI8SRR KG was
estimated through extrapolation. To achieve
this, query subsets of varying sizes, |Q| =
{16, 31, 46,61, 76,91,106, 121,136,151}, were
sampled from WN18RR. Each subsets were probed
using identical tail candidate set as the DEER’s
compute time experiment, thereby || = 40,943.
A linear regression model was fitted to the ob-
served probing time, the obtained gradient and the
y-intercept of the model was used to estimate the
time required to probe the entire WN18RR KG
using GPT2 under BEAR. The compute time ex-
periment was repeated 3 times to obtain mean and
variance for the observed data. Few-shot triplets
for query encoding were randomly resampled every
time. BEAR’s compute time was measured using
the library* published by Wiland et al. (2024).

C.2 Token Length Experimental Setup Detail

Tail entity scores were obtained using the OPT
model and its tokenizer was used to compute the
token length of the tail entity name.

C.3 LAMA Agreement Experimental Setup
Detail

As discussed in Section 5.3, DEER utilizes few
shot example, and to ensure an identical bias when
comparing DEER with LAMA, LAMA was also
prompted with a prober template instead of the
usual, cloze-style questions. The tail-entities were
ranked in an identical manner to the original work,
where they are ranked by the log-likelihood of the

4h’ctps ://github.com/1lm-pub-quiz/1m-pub-quiz
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Figure 8: LAMA Agreement Experiment Diagram.

respective token. Since the sentence encoding gen-
erated by PromptEOL, is the vector that is typically
used for decoding the next token, the query en-
coding vector of DEER was used to calculate the
log-likelihood of the next tokens to calculate the
LAMA rank as illustrated in Figure 8.

D Full Results of the Experiments

Table 4 shows the full result of the LAMA Agree-
ment experiment. The statistics of the datasets are
provided in Table 3.

E Supplementary Results and Analysis

E.1 Token Length Bias

Figure 10 compares BEAR rank against DEER
rank using facist grid of scatter plots. In each scat-
ter plots, points within the top left quadrant and the
bottom left quadrant corresponds to triplets where
BEAR and DEER disagreed when evaluating un-
der the Hit@ 10 metric. The top left corresponds to
Hit@ 10 for DEER but Miss@ 10 for BEAR, and the
bottom right corresponds to Miss@ 10 for DEER
but Hit@10 for BEAR. Qualitatively, we find ob-
serve that the top left quadrants is occupied by
points with large token length, e.g. token length >
4, where as the bottom left quadrant is occupied by
points with lower token length, e.g. token length
< 4. This suggests that the points of disagreement
between DEER and BEAR is partially caused by
the presence of token-length bias in BEAR and lack
there of in DEER.

E.2 LAMA Hit@k vs DEER Hit@k

To investigate if correlation in ranks between
LAMA and DEER translates to an alignment in
their Hit@k metrics, the values obtained in the
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LAMA Agreement experiment were used to com-
pute the Hit@ k of each models, and compared. The
results is shown in Table 6.

E.3 BEAR Agreement Experiment

Experimental Setup Pearson correlation be-
tween the predicted ranks by DEER and BEAR
was measured using a subset of WN18RR and OPT
models of varying sizes. To construct the subset,
500 triplets were randomly sampled from the test
set of WN18RR, entities that appeared within the
subset were used as the tail entity candidates.

Result Table 7 shows the results of the exper-
iment. As shown in Figure 10, a strong corela-
tion for OPT-6.7B was observed with r = 0.642
and p < 107°8. However, lower parameter mod-
els, 125M-1.3B, showed lower correlation with
r = [0.138,0.483]. As discussed in Appendix E.1,
we partially attribute its cause to the token length
bias.

E.4 BEAR Agreement Experiment

Experimental Setup Pearson correlation be-
tween the predicted ranks by DEER and BEAR was
measured using a subset of BEAR dataset’ (Wiland
et al., 2024) and OPT-6.7B. As the etity candidates
are defined per each relation types, the two probes
were compared on four randomly selected relation
types, p272, p344, p466 and p1412. A scatter plot
of the comparisons was made in a linear scale, as
the number of tail entity candidates is small, with
maximum candidates of 60, and the correlation was
also calculated in a linear scale.

Result Figure 11 shows the results of the com-
parison. Qualitatively, the quality of agreement
varied across relation types. With relation types
p272 and p1312 demonstrating Pearson correla-
tion of r = 0.345 and r = 0.361, where as rela-
tion type p343 demonstrated lower correlation with
r = 0.150 and p = 0.67.

Shttps://github.com/1lm-pub-quiz/BEAR
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LAMA Rank

LAMA Rank

Figure 9: A facist grid of scatter plots comparing LAMA'’s predicted rank against DEER’s for OPT models of

OPT-125M
r=0.496, p=2.41e-38

OPT-350M
r=0.496, p=2.98e-38

parameter sizes {125M, 350M, 1.3B and 6.7B}.

BEAR Rank

10%
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Figure 10: A facist grid of scatter plots comparing BEAR’s predicted rank against DEER’s for OPT models of
parameter sizes {125M, 350M, 1.3B and 6.7B}. Interpretation of the plot is given in Appendix E.1 of the Appendix.
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BEAR Rank vs DEER Rank on the BEAR Dataset
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Figure 11: Comparisons between BEAR Rank and DEER Rank on the BEAR Dataset. The comparison was made
in a linear scale to account for the lower number of tail entity candidates, with maximum number of candidates of

60. OPT-6.7B was used for all comparisons.
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Dataset Name Q| €]

Compute Time Experiment 93003 40944
Token Bias Experiment 500 948
LAMA Agreement Experiment 596 4948
BEAR Agreement Experiment 500 948

Table 3: Statistics of the dataset used in each experiments.

PLM Name Rank Log(Rank)

r p-value r p-value

OPT-125M 0466 1.75x 1073 0373 3.82x 1072
OPT-350M 0387 8.86x1072% 0612 1.30 x 10752
OPT-iml-1.3B 0.551 1.268 x 107*®  0.767 2.46 x 10~11¢
OPT-1.3B 0472  1.87x1073% 0726 1.25x 107"
OPT-6.7B 0.596  1.59x107°®  0.806  1.6x107 %7
OPT-iml-30B  0.462 6.75x10733 0710  1.61 x 1072
OPT-30B 0.487 7.56x10737 0.763  9.63x107115

Table 4: The full result of the LAMA agreement experiment, showing the pearson’s correlation between the rank of
the correct tail-entity predicted by DEER and LAMA, along with its correlation in log scale.

Pearson Correlation
PLM Log(LAMA Rank) vs Log(DEER Rank) p value

OPT-125M 0.496 2.41E-38
OPT-350M 0.496 2.98E-38
OPT-1.3B 0.737 3.03E-103
OPT-6.7B 0.804 2.57E-136

Table 5: Table of Pearson correlation between LAMA rank and DEER rank in log scale across a range of parameters.

Model Name Hit@l Hit@10 Hit@100

BEAR-125M 1% 9% 27%
DEER-125M 2% 7% 24%
BEAR-350M 4% 17% 39%
DEER-350M 1% 9% 35%
BEAR-1.3B 6% 34% 55%
DEER-1.3B 5% 21% 50%
BEAR-6.8B 10% 52% 1%
DEER-6.8B 7% 51% 78%

Table 6: A table of Hit@{1, 10, 500} and MRR of LAMA and DEER calculated from the result of the LAMA
Agreement Experiment. The standard errors are shown in parentheses. 95% confidence interval of a metric s can be
calculated using CI; = s & (1.96 x SE;), where SE is the standard error. Notice that most metrics of super-billion
parametr models differ within the confidence interval. Metrics that differ within this interval are shown in bold.

Pearson Correlation
PLM Log(BEAR Rank) vs Log(DEER Rank) p value

OPT-125M 0.138 0.00204
OPT-350M 0.170 0.000128
OPT-1.3B 0.483 1.50E-30
OPT-6.7B 0.642 2.25E-59

Table 7: Table of Pearson correlation between BEAR rank and DEER rank in Log scale across a range of parameters.
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