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Abstract001

Recently, the use of pretrained language mod-002
els (PLMs) as soft knowledge bases has gained003
growing interest, sparking the development004
of knowledge probes to evaluate their fac-005
tual knowledge retrieval capabilities. How-006
ever, existing knowledge probes for genera-007
tive PLMs that support multi-token entities ex-008
hibit quadratic time complexity O(n2), lim-009
iting the size of knowledge graphs used for010
probing. To address this, we propose DEcoder011
Embedding-based Relational (DEER) probe,012
utilizing embedding vectors extracted from gen-013
erative PLMs. DEER probe achieves effec-014
tive time complexity of linear order O(n), sup-015
ports rank-based evaluation metrics including016
Hit@k, handles multi-token entity names and017
enables probing whilst disambiguation of ho-018
mographic tail-enity names. We empirically019
show that DEER-probe correlates with existing020
knowledge probes, validating its probing capa-021
bility, and we demonstrate the practical benefits022
of its improved scalability.023

1 Introduction024

Knowledge probes evaluate factual knowledge re-025

trieval capabilities of pre-trained language mod-026

els (PLMs). Their applications include identify-027

ing missing knowledge in PLMs and quantifying028

the amount of domain-specific knowledge encoded029

in their parameters. Knowledge probes achieve030

this by assessing a PLM’s capability to complete031

a relational knowledge. A knowledge graph (KG)032

represents a relational knowledge as a triplet con-033

sisting of (head-entity, relation-type, tail-entity).034

To complete a relational knowledge, models must035

predict the correct tail-entity, given a partially filled036

triplet, (head-entity, relation-type, ?) which we call037

a query.038

To the best of our knowledge, the only knowl-039

edge probe capable of probing generative PLMs040

with multi-token tail entity names and the Hit@k, a041

conventional evaluation metric in knowledge base042

Figure 1: An illustration of DEER’s architecture.

completion, is BEAR (Wiland et al., 2024; Youssef 043

et al., 2023). However, BEAR exhibit quadratic 044

time complexity O(n2), making probing of PLMs 045

on large-scale KGs infeasible. Moreover, BEAR 046

predicts the tail entity for a query by computing the 047

joint probability of the textual sequence formed by 048

concatenating the query and a tail entity candidate’s 049

textual representation. The reliance on joint proba- 050

bility may introduce a token length bias, favoring 051

candidates with shorter names. 052

To address these issues, we propose DEER 053

(DEcoder Embedding-based Relational) Probe, a 054

knowledge probe utilizing embedding vectors ex- 055

tracted from a causal PLM through the PromptEOL 056

method (Jiang et al., 2024), as shown in Figure 1. 057

DEER effectively realizes linear time complexity, 058

O(n), whilst reducing the token length bias in 059

probing. DEER also enables probing whilst dis- 060

ambiguating identically named tail entities. 061
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This work addresses the following questions:062

RQ1: Does the improved time complexity yield063

observable reductions in compute time?064

RQ2: Does DEER exhibit reduced token length065

bias compared to BEAR?066

RQ3: Does DEER align with existing knowledge067

probes?068

To evaluate the practical implications of DEER’s069

improved time complexity, we measured the time070

required to probe GPT-2-Small (Radford et al.,071

2019) with WN18RR (Dettmers et al., 2018) un-072

der both BEAR and DEER. BEAR was estimated,073

through extrapolation, to require 330±10 days, ren-074

dering full evaluation infeasible, whereas DEER075

completed the task in 16± 1 minutes, making such076

evaluation tractable. Token length bias was as-077

sessed by computing the Pearson correlation be-078

tween predicted ranks and tail entity token lengths.079

BEAR exhibited a strong correlation r = 0.484080

and p < 10−51, while DEER was uncorrelated081

with r = 0.005 and p = 0.913, indicating DEER’s082

ability to evaluate knowledge independent of token083

length. Finally, DEER’s alignment with the estab-084

lished probe, LAMA, was assessed via log-scale085

rank correlation, yielding a maximum r = 0.804,086

supporting its use for knowledge probing.087

2 Background088

Knowledge Probing A KG is defined as a set of089

triplets T ∋ (h, r, t), where h, r and t denote the090

head entity, relation-type and tail entity. In knowl-091

edge probing, given a query (h, r, ?), PLMs are092

tasked with predicting the corresponding tail entity093

t. This is typically achieved by ranking a set of can-094

didate tail entities E , according to their probability095

P (t = e|e ∈ E). Performance is evaluated using096

Hit@k which measures the fraction of test triplets097

for which the correct tail entity is ranked within the098

top k candidates.099

Existing Knowledge Probes for Causal PLMs100

The first proposed knowledge probe, LAMA101

(Petroni et al., 2019), prompts a PLM with a cloze-102

style question, then ranks the tail entity candidates103

by the log likelihood of the token corresponding104

to their name at the masked position. However,105

it can only test entities with a single token name.106

KAMEL (Kalo and Fichtel, 2022) enabled probing107

of multi-token entities using text generation. How-108

ever, the predicted tail entities are evaluated using109

exact string matching, limiting the evaluation met- 110

ric to Hit@1. BEAR was recently proposed to sup- 111

port both the Hit@k metric and multi-token entities. 112

However, it requires computing log-likelihood for 113

all possible query and entity combinations, hence 114

the PLM must process O(|Q| × |E|) inputs, where 115

Q is the set of queries, resulting in quadratic time 116

complexity. In addition, since prior methods rely 117

on token predictions, they cannot disambiguate 118

identically named tail entity candidates. 119

PromptEOL Embedding PromptEOL (Jiang 120

et al., 2024) is a method for creating sentence em- 121

bedding vectors using a generative PLM without 122

additional training. It prompts a model to sum- 123

marize a sentence in one word, then uses the last 124

hidden vector, usually used for next-token predic- 125

tion, as the sentence embedding. The prompt tem- 126

plate: This sentence: {S} means in one word “, is 127

used, where S is replaced by the sentence to encode. 128

Appendix A.1 provides a formal description. 129

3 Problem Formulation 130

Textual Knowledge Graph We define a textual 131

knowledge graph as a KG with textual represen- 132

tations of entities and relation types. We denote 133

set of all entity names, entity descriptions and rela- 134

tion names as Ename, Edesc and Rname, respectively. 135

Thereby, given a set of all possible strings Σ∗, 136

Ename, Edesc,Rname ⊆ Σ∗. We assume the exis- 137

tence of E → Ename, E → Edesc and R → Rname, 138

mapping the entities and relations to their corre- 139

sponding textual representations. 140

Embedding-Based Probes Embedding-based 141

knowledge probing frameworks (Dufter et al., 142

2021) consist of a query encoder fq, a tail entity 143

encoder ft and a similarity function ϕ. Given func- 144

tions mapping the query and entities to their textual 145

representations, f text
q : Q → Σ∗ and f text

t : E → 146

Σ∗, the query encoder and the tail entity en- 147

coder maps the textual representation of queries 148

and tail entity candidates to an encoding vector 149

fq : f
text
q (Q) → Eq and ft : f

text
t (E) → Et, where 150

Eq, Et ⊆ Rn. 151

The similarity function ϕ : Eq × Et → R mea- 152

sures the distance between a query embedding and 153

a tail entity embedding. Given a query q ∈ Q, 154

the model ranks all tail entity candidates e ∈ E by 155

their similarity scores, defined by ϕ. Formally, let 156

N = {n|n ∈ N, n ≤ |E|} denote the set of rank 157

indices. A one-to-one function I : Q × N → E 158
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ename - edesc
This sentence: “{word}” means in one word: “{one word}”
This sentence: “ename” means in one word: “

Figure 2: The template used by the tail encoder ft. The
entities’ name and description replaces ename and edesc.
An example is shown in Figure 6, Appendix A.2.

(η1
name, ρ1name, τ1

name)

...

(η8
name, ρ8name, τ8

name)
(hname, rname,

(dress up, verb group, trick up)

...

(disfavour, hypernym, single out)
(deer, hypernym,

Figure 3: Left: The query-encoding template, f text
q for

knowledge probing. The names of the query’s h and
r replaces the symbols hname and rname. The names of
h, r and t in the nth randomly sampled triplet replaces
ηnname, ρ

n
name and τnname . Right: A completed example

for a query, (deer, hypernym, ?).

assigns to each query q, a ranked list of tail-entities159

such that: x ∈ Q ⇒ ex = fq(ftext(x)) and160

x ∈ E ⇒ ex = ft(ftext(x)). Notice the infor-161

mation processed by the encoders, scale linearly,162

O(|Q| + |E|). Since the compute time for cosine163

similarity is negligible compared to the encoder for-164

ward pass, the effective time complexity is O(n).165

4 DEER: Proposed Method166

As shown in Figure 1, DEER instantiate the167

embedding-based framework using PromptEOL as168

both the query encoder, fq, and the tail-entity en-169

coder, ft. To generate the encoding, custom prompt170

templates are populated with Ename, Edesc, and171

Rname, then fed into fq and ft. The last hidden vec-172

tor, used as a sentence embedding in PromptEOL,173

serves as the encoding vector. Cosine similarity174

is used as ϕ to assign a unique rank, N to each175

tail entity candidates. The following paragraphs176

discuss the custom templates used by fq and ft.177

Tail-Entities Encoding Template, f text
t Figure 2178

shows the template used by the tail-entity encoder,179

ft to acquire a tail-entity encoding. The inclusion180

of edesc enables disambiguation of identical names.181

Prober Query Encoding Template, f text
q Fig-182

ure 3 shows the template used by the query encoder,183

fq, during knowledge probing. The eight-shot ex-184

ample is compiled by randomly sampling from the185

training set. Appendix A.2 gives the design ratio-186

nale.187

Prober Time/query Total time

BEAR ap. 200± 500 s/query 330± 10 days
DEER 0.0316± 0.0009 s/query 16± 1 minutes

Table 1: Compute time comparison on WN18RR.
BEAR results are approximated via extrapolation.

5 Experiments 188

Four sets of experiments were conducted to address 189

the questions: Compute Time, Probe Agreement, 190

Token Bias, and Baseline. Except for Compute 191

Time, which employed GPT-21, all experiments 192

were conducted using the OPT model2 (Zhang 193

et al., 2022) as the PLM for PromptEOL. 194

Datasets and Metrics WN18RR was used as the 195

KG. The names and descriptions of the entities 196

in the KG were acquired from Yao et al. (2019) 197

using process described in Appendix C. Hit@10 198

threshold were used throughout the experiments to 199

evaluate the PLMs. 200

Prompt Templates for LAMA and BEAR To 201

minimize discrepancy in prompt design when com- 202

paring with DEER, prompt design that is similar 203

to DEER’s is used for LAMA and BEAR. These 204

templates are given in Appendix A.3. 205

5.1 Compute Time Experiment 206

Experimental Setup To demonstrate the practi- 207

cal impact of DEER’s improved time complexity, 208

we compared the time required to probe the full 209

WN18RR knowledge graph using GPT-2 (124M) 210

under both DEER and BEAR. DEER’s compute 211

time was directly measured over all |Q| = 93,003 212

queries obtained from the KG, using the full entity 213

set, |E| = 40,943, as tail candidates. In contrast, 214

since BEAR’s compute time is infeasible to mea- 215

sure directly, it was estimated through extrapola- 216

tion. Both experiments were conducted using an 217

RTX 3090 GPU with 8 CPU cores. Experimental 218

details are provided in Appendix C.1. 219

Results Table 1 shows that the improved time 220

complexity results in reduced probing time in prac- 221

tice. Under our setup, DEER reduces compute 222

time from approximately 330± 10 days to 16± 1 223

minutes when probing WN18RR, corresponding 224

to a (30,000± 2,000)× speedup, enabling probing 225

of KGs that would otherwise be infeasible under 226

BEAR. 227

1https://huggingface.co/gpt2
2https://huggingface.co/facebook/opt-30b
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Figure 4: A box plot showing a positive correlation between tail entity token length and BEAR ranks, and a
negligible correlation under DEER.

5.2 Token Length Bias Experiment228

Experimental Setup To investigate whether229

DEER exhibit lower token length bias than BEAR,230

Pearson correlation between the token length of231

the correct tail entity and its predicted rank was232

computed across 500 queries sampled from the233

WN18RR test set. Experimental details and further234

analysis are provided in Appendix C.2 and E.1.235

Results As shown in Figure 4, BEAR’s predicted236

correlate with token length (r = 0.484, p < 10−5),237

whereas DEER shows negligible correlation (r =238

0.005, p = 0.913). Assuming query’s difficulty is239

independent of tail entity length, BEAR may be240

susceptible to token-length-induced false positives241

and negatives, while DEER remains unaffected.242

5.3 Probe Agreement Experiment243

Experimental Setup Pearson correlation be-244

tween tail entity ranks predicted by LAMA and245

DEER was measured to assess DEER’s agreement246

with an established knowledge probe. Ranks were247

compared in log scale to account for the reduced248

significance of differences at higher ranks. Exper-249

imental setup and additional BEAR comparisons250

are provided in Appendix C.3 and E.4, respectively.251

Result Table 2 shows that sub-billion models ex-252

hibit limited rank agreement, whereas models over253

a billion parameters achieve high correlation, with254

OPT-6.7B reaching r = 0.804. Figure 5 illustrates255

this, supporting DEER’s viability as a knowledge256

probe for super-billion-parameter models.257

6 Conclusion258

This paper introduced DEER probe, a novel and259

scalable knowledge probing method for generative260
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k

LAMA vs DEER Rank (OPT-6.7B)

Figure 5: A scatter plot showing rank of tail entities
predicted by LAMA and DEER in log scale. Each
points represent a triplet, the bottom-left and top-right
quadrants indicate agreements in Hit@10 and Miss@10.
Figure 9, Appendix D show results by parameter size.

PLM Name Log(Rank), r

OPT-350M 0.496
OPT-1.3B 0.737
OPT-6.7B 0.804

Table 2: Pearson correlation between DEER and LAMA
rank. Table 4, Appendix D shows the full result.

PLMs. By utilizing embedding vectors acquired 261

from the PLM, DEER enables input size to scale 262

linearly, O(|Q|+ |E|), overcoming BEAR’s limita- 263

tion. Empirical results demonstrate that DEER can 264

probe KGs infeasible under BEAR, and its avoid- 265

ance of token probability reduces biases induced by 266

entity name length. DEER also aligns closely with 267

LAMA, offering a promising direction for future 268

knowledge probing research. 269
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7 Limitations270

Reproducibility Source code for the experi-271

ments as well as a Python package for DEER probe272

is made and will be relaced upon acceptance of the273

paper.274

Possibility of Data Leakage The original dataset275

of WN18RR, the WN18 (Bordes et al., 2013) had276

both been released before the of PLMS such as277

OPT, meaning it may have been included within278

the training corpus. Even though progress have279

been made in knowledge graph completion evalua-280

tion technique that avoids such issue (Sakai et al.,281

2024), utilization of such technique on DEER is282

non-trivial, as it utilizes hypothetical, non real-283

world relations, that would not be stored in the284

parametric knowledge. However, since our aim is285

to evaluate the knowledge memorized within the286

parametric knowledge, it does not alter the fact287

these knowledge are stored within the parameters.288

Inclusion of Tail-Entity Descriptions during289

Knowledge Probing When encoding tail-entities290

during knowledge probing, the description of the291

entity is provided to allow disambigation. This292

allows the PLM to infer relations correctly, even293

in absense of the knolwedge around the tail-entity.294

This could be an issue when assessing the knowl-295

edge retrival capability of PLMs, however, we ar-296

gue the effect of such case is limited as demon-297

strated by the high correlation between DEER and298

LAMA, Table 4, where LAMA is never shown such299

descriptions.300

The Use of Log Scale The agreement between301

DEER, LAMA and BEAR was compared in linear302

and log scale, even though the two showed weaker303

correlation in the linear scale, we argue that the304

conclusion drawn in log scale should be preferred,305

taking similar line of argument for the preference of306

MRR over Rank in the knowledge base completion307

community, where the weight on the importance308

of the difference in rank is reduced as the rank309

increase.310

Assumption of Normal Distribution in Standard311

Error When computing the standard error and312

the confidence interval, a normal distribution of the313

data was assumed without proof.314

8 Ethical Considerations315

Throughout the paper, we investigated the ability316

of DEER using the Open Pre-trained Transform-317

ers (OPT) for PromptEOL. Thereby any, derivative 318

work of DEER utilizing OPT, is subject to the OPT 319

License Agreement 3, which prohibits the use for 320

the purpose of: commercial or production, military 321

or nuclear technology, surveillance, biometric pro- 322

cessing, violation of third-party right and violation 323

of any applicable law. 324
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A Methodological Details406

A.1 Formal Description of PromptEOL407

PromptEOL uses a generative PLM for sentence408

embedding. Given a sequence of input tokens409

x1, x2, . . . , xn, the last hidden state, hn, corre-410

sponding to the token xn, is used as the sentence411

embedding vector. More specifically, hn is the412

vector typically used for next token prediction by413

applying a final dense layer followed by a soft-414

max function. This process is expressed as zn =415

Whn + b, where xn+1 = argmax(softmax(zn)),416

where hn is the last hidden layer, W is the weight417

of the projection layer and b is the bias term. To418

embed a sentence, it uses the following prompt419

template: This sentence: "S" means in one word420

", where S is replaced with the target sentence.421

deer - distinguished from Bovidae by the male’s having solid
deciduous antlers
This sentence: “{word}” means in one word: “{one word}”
This sentence: “deer” means in one word: “

Figure 6: An example of the tail-entities encoding tem-
plate when used to encode the “deer” entity. Thereby,
ename is “deer” and edesc is “distinguished from Bovidae
by the male’s having solid”.

(η1
name, ρ1name, τ1

name)

...

(η8
name, ρ8name, τ8

name)
(hname, rname, tname)

(dress up, verb group, trick up)

...

(disfavor, hypernym, single out)
(deer, hypernym, mammal)

Figure 7: Left: BEAR’s prompt template used to cal-
culate the probability of tail-entity, given a query. The
names of query’s head entity and relation type replaces
the symbols hname and rname. The names of head-entity,
relation-type and tail-entity in the nth randomly sampled
triplet replaces ηnname, ρnname, τnname. Right: A completed
example for a query, (deer, hypernym, ?) and tail-entity
candidate, mammal. In essence, it is DEER’s query
encoding template with addition of the tail entity name.

PromptEOL enables creation of embedding vec- 422

tors conditioned by prompts (Yamada and Zhang, 423

2025). 424

A.2 Prompt Templates, Examples and 425

Rationale 426

The Query Encoding Templates are designed so 427

that the next-token PLM tries predicting, when 428

given the template, is semantically similar to the 429

one it tries predicting when given the Tail-Entity 430

Template. Hence, when the two embeddings are 431

measured with a similarity measure when the cor- 432

rect prediction is made, the similarity function, ϕ, 433

gives a high score between the embeddings eq and 434

et. 435

A complete example of the Tail-Entity Encoding 436

Template is shown in Figure 6. 437

A.3 Prompt Templates for LAMA and BEAR 438

DEER’s query encoding template, Figure 3, was 439

used for predicting the logits values in LAMA. 440

BEAR utilized prompt template shown in Figure 7 441

to compute probability for each query tail-entity 442

pair. 443
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B Experiment-Specific Details444

C Creation of Entity Names and445

Descriptions446

As discussed in Section 5, dataset provided by Yao447

et al. (2019) was used to construct the entity name448

and description of WN18RR. However, the data449

provided the names with meta data such as their450

part of speech, e.g. “__whitetail_deer_NN_1”, this451

was cleaned to form a name in natural language,452

e.g. “whitetail deer”, when used as an entity-name.453

Empty descriptions were replaced with a dash char-454

acter: “-”.455

C.1 Compute Time Experimental Setup456

Detail457

BEAR’s compute time when probing GPT2-458

Small (124M) with the WN18RR KG was459

estimated through extrapolation. To achieve460

this, query subsets of varying sizes, |Q| =461

{16, 31, 46, 61, 76, 91, 106, 121, 136, 151}, were462

sampled from WN18RR. Each subsets were probed463

using identical tail candidate set as the DEER’s464

compute time experiment, thereby |E| = 40,943.465

A linear regression model was fitted to the ob-466

served probing time, the obtained gradient and the467

y-intercept of the model was used to estimate the468

time required to probe the entire WN18RR KG469

using GPT2 under BEAR. The compute time ex-470

periment was repeated 3 times to obtain mean and471

variance for the observed data. Few-shot triplets472

for query encoding were randomly resampled every473

time. BEAR’s compute time was measured using474

the library4 published by Wiland et al. (2024).475

C.2 Token Length Experimental Setup Detail476

Tail entity scores were obtained using the OPT477

model and its tokenizer was used to compute the478

token length of the tail entity name.479

C.3 LAMA Agreement Experimental Setup480

Detail481

As discussed in Section 5.3, DEER utilizes few482

shot example, and to ensure an identical bias when483

comparing DEER with LAMA, LAMA was also484

prompted with a prober template instead of the485

usual, cloze-style questions. The tail-entities were486

ranked in an identical manner to the original work,487

where they are ranked by the log-likelihood of the488

4https://github.com/lm-pub-quiz/lm-pub-quiz
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respective token. Since the sentence encoding gen- 489

erated by PromptEOL, is the vector that is typically 490

used for decoding the next token, the query en- 491

coding vector of DEER was used to calculate the 492

log-likelihood of the next tokens to calculate the 493

LAMA rank as illustrated in Figure 8. 494

D Full Results of the Experiments 495

Table 4 shows the full result of the LAMA Agree- 496

ment experiment. The statistics of the datasets are 497

provided in Table 3. 498

E Supplementary Results and Analysis 499

E.1 Token Length Bias 500

Figure 10 compares BEAR rank against DEER 501

rank using facist grid of scatter plots. In each scat- 502

ter plots, points within the top left quadrant and the 503

bottom left quadrant corresponds to triplets where 504

BEAR and DEER disagreed when evaluating un- 505

der the Hit@10 metric. The top left corresponds to 506

Hit@10 for DEER but Miss@10 for BEAR, and the 507

bottom right corresponds to Miss@10 for DEER 508

but Hit@10 for BEAR. Qualitatively, we find ob- 509

serve that the top left quadrants is occupied by 510

points with large token length, e.g. token length ≥ 511

4, where as the bottom left quadrant is occupied by 512

points with lower token length, e.g. token length 513

≤ 4. This suggests that the points of disagreement 514

between DEER and BEAR is partially caused by 515

the presence of token-length bias in BEAR and lack 516

there of in DEER. 517

E.2 LAMA Hit@k vs DEER Hit@k 518

To investigate if correlation in ranks between 519

LAMA and DEER translates to an alignment in 520

their Hit@k metrics, the values obtained in the 521
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LAMA Agreement experiment were used to com-522

pute the Hit@k of each models, and compared. The523

results is shown in Table 6.524

E.3 BEAR Agreement Experiment525

Experimental Setup Pearson correlation be-526

tween the predicted ranks by DEER and BEAR527

was measured using a subset of WN18RR and OPT528

models of varying sizes. To construct the subset,529

500 triplets were randomly sampled from the test530

set of WN18RR, entities that appeared within the531

subset were used as the tail entity candidates.532

Result Table 7 shows the results of the exper-533

iment. As shown in Figure 10, a strong corela-534

tion for OPT-6.7B was observed with r = 0.642535

and p < 10−58. However, lower parameter mod-536

els, 125M-1.3B, showed lower correlation with537

r = [0.138, 0.483]. As discussed in Appendix E.1,538

we partially attribute its cause to the token length539

bias.540

E.4 BEAR Agreement Experiment541

Experimental Setup Pearson correlation be-542

tween the predicted ranks by DEER and BEAR was543

measured using a subset of BEAR dataset5 (Wiland544

et al., 2024) and OPT-6.7B. As the etity candidates545

are defined per each relation types, the two probes546

were compared on four randomly selected relation547

types, p272, p344, p466 and p1412. A scatter plot548

of the comparisons was made in a linear scale, as549

the number of tail entity candidates is small, with550

maximum candidates of 60, and the correlation was551

also calculated in a linear scale.552

Result Figure 11 shows the results of the com-553

parison. Qualitatively, the quality of agreement554

varied across relation types. With relation types555

p272 and p1312 demonstrating Pearson correla-556

tion of r = 0.345 and r = 0.361, where as rela-557

tion type p343 demonstrated lower correlation with558

r = 0.150 and p = 0.67.559

5https://github.com/lm-pub-quiz/BEAR
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Dataset Name |Q| |E|

Compute Time Experiment 93003 40944
Token Bias Experiment 500 948

LAMA Agreement Experiment 596 4948
BEAR Agreement Experiment 500 948

Table 3: Statistics of the dataset used in each experiments.

PLM Name Rank Log(Rank)

r p-value r p-value

OPT-125M 0.466 1.75× 10−33 0.373 3.82× 10−21

OPT-350M 0.387 8.86× 10−23 0.612 1.30× 10−62

OPT-iml-1.3B 0.551 1.268× 10−48 0.767 2.46× 10−116

OPT-1.3B 0.472 1.87× 10−34 0.726 1.25× 10−98

OPT-6.7B 0.596 1.59×10−58 0.806 1.6×10−137

OPT-iml-30B 0.462 6.75×10−33 0.710 1.61× 10−92

OPT-30B 0.487 7.56×10−37 0.763 9.63×10−115

Table 4: The full result of the LAMA agreement experiment, showing the pearson’s correlation between the rank of
the correct tail-entity predicted by DEER and LAMA, along with its correlation in log scale.

PLM
Pearson Correlation

Log(LAMA Rank) vs Log(DEER Rank) p value

OPT-125M 0.496 2.41E-38
OPT-350M 0.496 2.98E-38
OPT-1.3B 0.737 3.03E-103
OPT-6.7B 0.804 2.57E-136

Table 5: Table of Pearson correlation between LAMA rank and DEER rank in log scale across a range of parameters.

Model Name Hit@1 Hit@10 Hit@100

BEAR-125M 1% 9% 27%
DEER-125M 2% 7% 24%

BEAR-350M 4% 17% 39%
DEER-350M 1% 9% 35%

BEAR-1.3B 6% 34% 55%
DEER-1.3B 5% 21% 50%

BEAR-6.8B 10% 52% 71%
DEER-6.8B 7% 51% 78%

Table 6: A table of Hit@{1, 10, 500} and MRR of LAMA and DEER calculated from the result of the LAMA
Agreement Experiment. The standard errors are shown in parentheses. 95% confidence interval of a metric s can be
calculated using CIs = s± (1.96× SEs), where SE is the standard error. Notice that most metrics of super-billion
parametr models differ within the confidence interval. Metrics that differ within this interval are shown in bold.

PLM
Pearson Correlation

Log(BEAR Rank) vs Log(DEER Rank) p value

OPT-125M 0.138 0.00204
OPT-350M 0.170 0.000128
OPT-1.3B 0.483 1.50E-30
OPT-6.7B 0.642 2.25E-59

Table 7: Table of Pearson correlation between BEAR rank and DEER rank in Log scale across a range of parameters.
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