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Abstract

Recent studies have shown that large lan-001
guage models can display surprising accu-002
racy at learning tasks from few examples pre-003
sented in the input context, which goes un-004
der the name of in-context learning. Other005
studies have shown that language models can006
sometimes display the undesirable behavior007
of falling back into loops in which an utter-008
ance is repeated infinitely often. Here, we009
observe that the model’s capacity to produce010
repetitions goes well beyond frequent or well-011
formed utterances, and generalizes to repeat-012
ing completely arbitrary sequences of tokens.013
Construing this as a simple form of in-context014
learning, we hypothesize that these two phe-015
nomena are linked through shared processing016
steps. With controlled experiments, we show017
that impairing the network from producing018
repetitions severely affects in-context learning,019
without reducing its overall predictive perfor-020
mance, thus supporting the proposed hypothe-021
sis.022

1 Introduction023

Large language models are becoming increasingly024

predominant in NLP for solving a wide range of025

tasks. Those models are often used in their capac-026

ity to generate natural language to produce an an-027

swer to a task description given as context (Brown028

et al., 2020; Raffel et al., 2020; Radford et al., 2019;029

Petroni et al., 2019). Despite the promise of this030

paradigm, some studies have raised concerns on031

the generative capabilities of these models, noting032

that they can shift from “generating” text to “de-033

generating” (Holtzman et al., 2020). One such case034

of degeneration is producing repetitions, where the035

model falls into repeating indefinitely the same se-036

quence of tokens (or very similar variations). Thus,037

different studies have been conducted aimed at cor-038

recting this “bug” in the language models (Welleck039

et al., 2019; Fu et al., 2020; Lin et al., 2021; Liu040

et al., 2021b).041
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Figure 1: We hypothesize that repetitions and in-
context learning are related mechanisms.

While previous work has focused on repetitions 042

of natural text, here we show that the model’s ca- 043

pacity to predict copies of a sequence goes well 044

beyond natural well-formed text, generalizing to 045

completely arbitrary sequences of tokens that dra- 046

matically differ from the distribution the model was 047

trained on. This observation hints at a general ca- 048

pacity of the model to detect and copy a repeated 049

pattern in the input, independently of its content. 050

Furthermore, we hypothesize that there is a link 051

between this emergent property, and the surpris- 052

ing in-context learning (ICL) capacity of large lan- 053

guage models (Brown et al., 2020; Raffel et al., 054

2020). ICL means that providing the language 055

model with a few examples of a desired task in 056

its context, and a query on a new instance of that 057

task, it can generate the correct answer with reason- 058

able accuracy. We hypothesize that this “feature” 059

is linked to producing repetitions as follows. Given 060

a sequence of examples, we expect that a model 061

capable of ICL should first segment the input into 062

individual examples, and second, extract a general 063

relation between them to answer a query. Process- 064

ing a repeated sequence in the input might involve a 065

similar pipeline with the only difference that there 066

is no variance in the examples, and thus the model 067

reduces to producing the same examples verbatim. 068

We test the link between these two capacities by 069

fine-tuning a decoder-only Transformer model to 070

avoid producing repetitions and show that it also 071
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impairs its capacity to do ICL.072

Until now, ICL capacity was attributed to the073

sheer size of recent models. Here, we introduce074

a benchmark based on the word analogy task by075

Mikolov et al. (2013) and show that all variants of076

GPT-2 (Radford et al., 2019) are capable of ICL,077

albeit for simpler tasks. Equipped with this more078

versatile instance of ICL, we then impair a GPT-079

2 medium model from producing repetitions us-080

ing Unlikelihood Training (Welleck et al., 2019).081

The resulting model has disastrous performance on082

the ICL capacity (dropping from 0.8 to almost 0)083

without deteriorating the ability to model human084

language as measured by perplexity. In a nutshell,085

we: 1) show that modern language-models are able,086

out-of-the-shelf, of copying any arbitrary sequence087

(Sect. 3). 2) re-purpose an analogy data-set and088

evaluating the accuracy of much smaller language-089

models than previously considered on this simpli-090

fied ICL task (Sect. 4). 3) provide evidence sup-091

porting our hypothesis that the two phenomena are092

linked, by showing that impairing the production093

of repetitions affect significantly ICL capabilities094

(Sect. 5).095

2 Related work096

2.1 Repetitions in language models097

Drawbacks of modern language generation models098

include the generation of very fluent, but incorrect099

statements. Those are captured by the ill-defined100

concept of hallucination, and several methods have101

been proposed to detect them, often involving ex-102

amining the self-attention (Zhou et al., 2020; Be-103

rard et al., 2019). Raunak et al. (2021) proposes a104

classification of such hallucinations for translation.105

Here we are particularly interested in their “oscil-106

latory hallucinations”, defined as “an inadequate107

translation that contains repeating ngrams”.108

The specific problem of repeated strings is stud-109

ied by a number of papers. Liu et al. (2021c) pro-110

poses a copying penalty whose magnitude depend111

on the confidence of the model in the current pre-112

diction. This solution of down-weighting tokens113

that appear in the context is a standard one, and pro-114

duces text preferred by humans (Foster and White,115

2007). Probably most famously, this has been used116

in Unlikelihood Training (Welleck et al., 2019) to117

further train a language-generation model. Simi-118

larly, Lin et al. (2021) proposes to increase the119

likelihood of novel tokens. Fu et al. (2020) ana-120

lyzes the problem in a Markovian set-up, which121

simplifies analysis as the transitions are indepen- 122

dent of the context. Their analysis leads them to 123

consider words whose left context (preceding word) 124

is frequent and often succeeded by that word. By 125

de-tokenizing those pairs at the pre-processing step 126

the resulted text is indeed less repetitive, although 127

perplexity and BLEU scores also degrade slightly. 128

2.2 In-context learning 129

In-context learning (ICL) refers to the hypothesis 130

introduced by Brown et al. (2020) that language 131

models can learn to perform tasks from natural lan- 132

guage instructions and/or examples given as part of 133

their prompt. Some studies have started to inquire 134

which factors affect most the performance of these 135

models at learning some tasks (Liu et al., 2021a; 136

Zhao et al., 2021). Others have looked at synthetic 137

tasks to try to shed light on the learning capabilities 138

of GPT-3 (Rong, 2021). Nonetheless, the science 139

on this phenomenon is still young, and more work 140

is needed to improve our understanding of ICL. 141

3 Generating arbitrary repetitions 142

We first verify if modern pre-trained language mod- 143

els are capable of copying any arbitrary sequence. 144

This can be seen as testing ICL for what is arguably 145

the simplest of tasks: given the same prefix, predict 146

always the same token. Having such skill would 147

depend on the model developing a general-purpose 148

copying mechanism that is independent of the kind 149

of input being copied. In other words, we test 150

whether the model can copy sequences that are 151

completely out-of-distribution in the training data. 152

Note that it is not obvious that a pre-trained model 153

would be able to do so. In the past, language gen- 154

eration models had to enforce copying from the 155

source document explicitly (Gu et al., 2016), for 156

instance through the use of a pointer-network (See 157

et al., 2017; Miao and Blunsom, 2016). 158

To test this for arbitrary sequences, we uniformly 159

sample 10 tokens from the 50 257 different tokens 160

in its vocabulary to form an arbitrary sequence. 161

Then, we prompt the model with 1 to 5 copies 162

of this sequence, before prompting it with its 9 163

first tokens and asking it to predict the 10-th one. 164

Results are displayed in Fig. 2. As can be seen, all 165

different variants of GPT-2 obtain almost perfect 166

prediction with as little as 2 copies in the prompt. 167

4 In-context learning in smaller models 168

Brown et al. (2020) shows famously that ICL arises 169
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Figure 2: Base accuracy at the repetitions task.

with very large models. In their experiments, mod-170

els of 1.3B or 13B parameters obtained only single-171

digit accuracy when provided one example, while a172

175B parameter models obtains around 45%. Thus,173

the capability of ICL has been hypothesized to be-174

long to the realm of very large language models175

such as GPT-3. Here, we observe that this capacity176

is already present in smaller language models for177

less complex tasks, allowing to experiment with178

publicly available models, such as GPT-2.1179

To find ICL in smaller models, we adapt the180

word analogy task introduced by Mikolov et al.181

(2013) to a few-shot learning scenario. This task182

contains different kinds of word analogy trials,183

such as Athens is to Greece as Baghdad is184

to ?. There are 14 categories of analogies, some185

semantic/knowledge-based as in the previous ex-186

ample, and some grammatical such as convert-187

ing an adjective to its comparative or superlative188

counterpart. We format tasks as 1-shot learning189

prompts, as follows: “Q: Athens A: Greece190

; Q: Baghdad A:”, which we feed to the lan-191

guage model, and extract the first non-empty word192

that is greedily generated, and then compare it with193

the target answer (Iraq in the example). To gener-194

ate k-shot learning examples, we randomly sample195

more pairs of analogous words in the same relation196

and concatenate them to the prompt using the semi-197

colon separator. We evaluate all language models198

in the GPT-2 family, observing in Fig. 3 that they199

all have relatively high performance on this task,200

exhibiting the expected trend of higher accuracy201

with larger models or more examples in the input.202

5 Impairing repetitions203

Our hypothesis predicts that ICL builds on skills204

that are needed to compute repetitions. If a model205

1At the time of writing, all available decoder-only models
are still of the same order of magnitude than GPT-2. The
much larger T5 (Raffel et al., 2020), with 11B parameter, is
an encoder-decoder model.
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Figure 3: Base accuracy on the analogy task.

is discouraged from producing repetitions, then 206

we predict that this should also affect ICL. To test 207

this prediction, we rely on Unlikelihood Training 208

(UL) (Welleck et al., 2019) which impairs repe- 209

titions by fine-tuning an auto-regressive language 210

model using two objectives on samples from a train- 211

ing corpus (Wikipedia). The first objective being 212

minimized aims at reducing the probability of n- 213

grams that appear in the previous context. The 214

second one is a standard language modelling ob- 215

jective on the training corpus. The combination 216

is done by alternating randomly between the two 217

objectives. We obtain multiple models by varying 218

the τ parameter that controls the proportion of gra- 219

dient steps performed on the unlikelihood objective 220

with respect to the standard language modelling 221

one (details in Appendix A). 222

If ICL is affected by UL, this would raise the 223

question if this follows from the unlikelihood ob- 224

jective or from disrupting the model’s capabilities. 225

Thus, we contrast the above-described UL (wiki) 226

condition with two other control conditions. In LM 227

(wiki), we only fine-tune the model on the language 228

model objective, which disrupts the model by over- 229

fitting to the Wikipedia corpus. By increasing the 230

number of fine-tuning epochs, we obtain a range of 231

language models with diverse levels of quality that 232

are comparable to the models fine-tuned with un- 233

likelood training. Second, in UL (gen), we perform 234

standard UL but sampling the training sequences 235

from the model itself rather than from a given cor- 236

pus. This approach, inspired by GDC (Khalifa 237

et al., 2020), aims at reducing drift from the origi- 238

nal model by minimizing the cross-entropy loss on 239

sequences sampled from it. While UL does not pro- 240

vide the strong theoretical guarantees of GDC, we 241

hypothesize that using self-generated samples as a 242

training corpus can result in higher quality models 243

in general. In detail, we generate 200k sequences 244

of 500 tokens each, which in total has a comparable 245

size to the Wikipedia corpus used by UL (wiki). To 246
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Figure 4: (top) k-shot acc. at predicting the last symbol of a 10-token sequence from k copies followed by the first
9 tokens. (bottom) k-shot acc. at ICL on analogies when presented with k examples followed by a query.

measure the quality of the different models, we use247

perplexity on a held-out dataset, namely the Penn248

Treebank Corpus (Marcus et al., 1993, PTB).2249

6 Results & Discussion250

The results of our main experiments are summa-251

rized in Fig. 4, showing repetition and analogy252

accuracy. From left to right, each panel corre-253

sponds to adding one more example to the con-254

text, starting from only one example in the left-255

most one. First, we note that repetition accuracy256

drops significantly (from 0.8 to 0.2 and lower) for257

UL (wiki)—something expected, as this is exactly258

the purpose of UL—, with only minor but consis-259

tent loss in model quality. The models with worse260

quality are those with the highest values of the τ261

parameter, although, surprisingly, they are not the262

ones with the lowest repetition accuracy. The re-263

sults on analogy are more relevant to our study.264

We begin by comparing the UL (wiki) with the265

LM (wiki) conditions. When only one example266

is provided, UL models have better ICL perfor-267

mance than LM when comparing two models with268

equivalent perplexity. However, they have a similar269

behaviour when 2 or 3 examples are provided and270

finally the trend reverts when more examples are271

provided as context. In the extreme case we tested,272

performance of UL drops from 0.6799 to 0.3130273

for 5-shot analogy tasks without significantly im-274

pacting perplexity. Thus, the more examples are275

2ptb_text_only of HuggingFace’s
datasets (Lhoest et al., 2021).

provided, the more the models in the UL (wiki) 276

condition are affected with respect to the control 277

LM (wiki) one. 278

The contrast between the UL/LM conditions 279

is exacerbated when comparing UL (gen) to LM 280

(wiki): it seems ICL can be made arbitrarily bad 281

with only minor impact on perplexity. Moreover, 282

while the UL condition already shows a stronger 283

impact than LM for 1-shot learning, the differ- 284

ence grows larger with more examples and reaches 285

0.0039 analogy accuracy for a UL model with the 286

same perplexity than a LM model that obtains 287

0.6136. Interestingly, the perplexity of the UL 288

models are very little impacted (the dots are almost 289

vertically aligned). 290

7 Conclusions 291

We have shown that LMs are more capable at pro- 292

ducing repetitions than previously acknowledged, 293

and tested the hypothesis that ICL capacity of mod- 294

ern large language models builds on the same abil- 295

ity to detect and reproduce repeated patterns. After 296

impairing the generation of repetitions using UL, 297

we observe that ICL degrades and perform control 298

experiments to measure the magnitude of the degra- 299

dation. A potential shortcoming of this analysis is 300

that while UL impairs generation of repetitions, 301

it does not necessarily (although it might) impair 302

their detection. For future work, we envision a 303

replication of these effects through other methods 304

to impair repetitions, using larger models and more 305

complex ICL tasks. 306
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A Experimental details423

For Unlikelihood Learning (UL), we varied the424

threshold parameter τ 3 across the following values:425

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.83, 0.85, 0.87,426

0.9, 0.92, 0.95, 0.97, 0.99.427

For over-fitting on the dataset, we continue train-428

ing of GPT-2 on the same dataset (either wiki or the429

generated text) for more epochs. We report results430

on 1, 3, 4, 5, 6, 7, 8, 9, 10 and 15 epochs.431

B Full sequence arbitrary repetitions432

On the above experiments about repeated se-433

quences, we focused on the setting of predicting434

the last token of a repeated 10-token-long sequence435

given all the previous 9 ones because of the analogy436

this bears with ICL (see Fig. 1). Nonetheless, it437

is interesting to measure the models’ accuracy at438

predicting all the 10 tokens in the sequence. Fig. 5439

shows exactly that. Interestingly, smaller models440

have higher accuracy than bigger ones, although441

they all have very high accuracy with 2 or 3 exam-442

ples.443
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Figure 5: Base accuracy at predicting greedily all 10 to-
kens of an arbitrary sequence as a function of the num-
ber of copies in the input context.

3sequence-tune-rate in the codebase we used,
at https://github.com/facebookresearch/
unlikelihood_training.
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