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Abstract

Owing to its many computationally desirable properties, the model of
continuous attractor neural networks (CANNSs) has been successfully applied to
describe the encoding of simple continuous features in neural systems, such as
orientation, moving direction, head direction, and spatial location of objects.
Recent experimental and computational studies revealed that complex features
of external inputs may also be encoded by low-dimensional CANNs embedded
in the high-dimensional space of neural population activity. The new
experimental data also confirmed the existence of the M-shaped correlation
between neuronal responses, which is a correlation structure associated with
the unique dynamics of CANNSs. This body of evidence, which is reviewed in
this report, suggests that CANNs may serve as a canonical model for neural
information representation.
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Introduction

The brain performs computation via dynamics of neural circuits
formed by a large number of neurons. The dynamics of a neural
circuit, on the other hand, are determined by the connection pat-
tern between neurons. Thus, unveiling the structures of neural
networks and their associated dynamical properties is at the core of
elucidating brain functions. A question of common interest in both
experimental and computational neuroscience is whether there exist
canonical circuit models for neural information processing.

Over the past few decades, a type of recurrent network, known as the
continuous attractor neural network (CANN) or dynamic neural field,
has received broad attention from computational neuroscientists'~.
This model has been successfully applied to describe the encod-
ing of continuous stimuli in neural systems, such as orientation’,
moving direction’, head direction®, and spatial location of objects’.
The model has many computationally appealing properties, such as
efficient population decoding®, smooth tracking of moving objects’,
and implementing parametrical working memory'''. The computa-
tional advantages of CANNs and their successes in modeling brain
functions have suggested that CANNs serve as a canonical model
for neural information representation. While there has been some
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evidence for CANN characteristics in the brain (e.g. the movement
map in the superior colliculus)’, we review here recent important
experimental findings and some new results for applying CANNSs to
modeling brain functions.

The model of CANNs

The CANN is a network model for neural information represen-
tation in which stimulus information is encoded in firing pat-
terns of neurons, corresponding to stationary states (attractors) of
the network. Compared with other attractor models, such as the
Hopfield network', the most prominent character of a CANN is
its translation-invariant connections between neurons; that is, the
connection strength between two neurons depends only on the dif-
ference between their preferred stimuli, rather than on the preferred
stimulus values. This translation-invariant connection structure
enables a CANN to hold a continuous family of attractors (sta-
tionary states), rather than isolated ones, with each of the attractor
states encoding a stimulus value (this is where the name “continu-
ous attractor” comes from). These states are often called bumps
because of the localization of their activities in feature space. They
form a submanifold of neutrally stable states in the state space of
the network dynamics (see the illustration in Figure 1). This neutral
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Figure 1. A continuous attractor neural network (CANN) model. (A) An illustration of a one-dimensional CANN, which encodes a continuous
variable (e.g. orientation or direction) x in the region of (-7, 7] with the periodic condition. Neurons are aligned in the network according to
their preferred stimuli. The neuronal connection pattern J(x,x’) is translation-invariant in the space. The network can hold a continuous family
of bump-shaped stationary states. (B) The stationary states of the CANN form a subspace in which the network states are neutrally stable.
The subspace is illustrated as a canyon in the state space of the network. The movement of the network state along the canyon corresponds

to the position shift of a bump.
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stability endows a CANN with the capacity of updating its states
(internal representations of stimuli) smoothly under the drive of an
external input. Several mathematical formulations for CANNSs have
been proposed in the literature. Here, for convenience of descrip-
tion, we present the one whose dynamical behaviors are analytically
solvable'*", although the dynamical behaviors of many other mod-
els are similar.

Consider a one-dimensional continuous stimulus x, such as head-
direction or orientation, encoded by an ensemble of neurons, and the
value of x is in the range of (-7, 7] with a periodic boundary. In the
space of stimulus x, neurons are aligned in the network according to
their preferred stimulus values. Denote U(x,?) as the synaptic input
at time ¢ of the neurons whose preferred stimulus is x, and r(x,7)
the neuronal firing rate. The dynamics of U(x,f) are determined by
the recurrent input from other neurons, its own relaxation, and an
external input /(x,7), which is written as,

z_BU()c,t) _

o ~U(x,t)+ p!](x,x')r(x',t)dx'+]m (x,1), (1

where 7is the synaptic time constant and p the neuron density. J(x,x")
is the interaction strength from neurons at x” to neurons at x, and is
chosen to be Jx.x) = J,/(v2za)exp[ ~(x- ')’ /24* |, where the parameter a
controls the neuronal interaction range. Note that J(x,x") is a function
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of (x —x’); that is, the neuronal interaction is translation-invariant in
the space of neuronal preferred stimuli. The neuronal firing rate r(x, )
is determined by the synaptic input according to

U]

- Dl 2
1+ kp[[UGn] ax” @

r(x,t)

where [U], = max(U, 0). The neuronal firing rate first increases with
the input and then saturates gradually because of divisive normaliza-
tion by the total network activity. In the absence of external input and
for O<k<k, =pJ; / (8 27m), the network holds a continuous family
of stationary states, which are written as U(x|z) = Uyexp[ - (x - 2)*/(4a*)]
and r(x|z) = exp[ - (x—z2)’/(2a”) ]. These stationary states are trans-
lationally invariant and have a Gaussian-bump shape with a free
parameter z indicating their positions.

The dynamical behaviors of a CANN can be readily analyzed by
a projection method' by using the property that the dynamics of a
CANN are dominated by a few motion modes, which correspond
to distortions of the bump shape in terms of height, position, width,
skewness, and so on in the bump shape (Figure 2). We can project
the dynamics of a CANN onto these dominating modes and simplify
the network dynamics significantly. Typically, by including one or
two leading motion modes, the simplified dynamics are adequate to
capture the main features of a CANN.
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Mathematical Formulation
Uz, t) = U (x|z(1))
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Figure 2.The projection method. The dynamics of a continuous attractor neural network are dominated by a few motion modes, corresponding
to distortions of the bump shape in height, position, width, skewness, and so on. We can project the network dynamics on these dominating

modes to simplify it significantly.
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Computational advantages of CANNs

A large volume of theoretical studies revealed many computation-
ally appealing properties of CANNSs (see, for example, 2,3,8,15).
Here, we present two that were recently proposed in the literature.

CANNSs for anticipative tracking

Time delays are pervasive and significant in neural information
processing; for example, visual signal transmitting from the retina
to the primary visual cortex (V1) takes about 40 to 80 ms'®. If these
delays are not compensated properly, our perception of a fast-
moving object will lag behind its true position in the visual world
significantly, impairing our vision and motor control. A CANN
is able to track a moving object smoothly. However, its reaction
is always lagging behind the object location because of the time
needed for neuronal responses and neuronal interactions. In recent
studies, Fung et al.'” and Mi et al."* found that, by incorporating slow
negative feedback modulation in the network dynamics, a CANN
is able to achieve anticipative tracking, compensating for delays in
neural systems (Figure 3A). The negative feedback modulation can
be realized by a number of mechanisms, including spike-frequency
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adaptation in neuronal firing'®, short-term depression of neuro-
nal synapses'’, or negative feedback from a connected network™.
Since the negative feedback reduces the firing rate at the peak of
the bump but is weaker at the shoulder, the tendency of the bump to
move to its vicinity is enhanced. This increases its mobility, and the
bump can move spontaneously when the negative feedback is suf-
ficiently strong. Remarkably, the parameter region of spontaneous
motion effectively coincides with the region of anticipative tracking
(Figures 3C and 3D). Different models relying on the asymmetric
connections between neurons in a CANN were proposed to gen-
erate anticipative neural responses (see, for example, 6,21). Here,
the mechanism based on the negative feedback modulation has the
advantage of realizing a constant anticipative time irrespectively of
the object speed (Figure 3B), agreeing with the experimental finding
on the anticipative behavior of head-direction neurons in rodents™.

CANNSs for multi-sensory information integration

The brain exploits multiple sensory modalities to gather, from dif-
ferent channels, as much information as possible about the sur-
rounding environment. Psychophysical studies reveal that the brain
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Figure 3. Anticipative tracking with a continuous attractor neural network. (A) In the presence of spike-frequency adaptation (SFA), the
network bump (red solid curve) leads the external input (blue dotted curve) moving with velocity V_ . Without SFA, the bump (green dashed
curve) lags behind the external input. Inset: the positions of the bumps as a function of time when the external input starts to move at a
constant velocity after t = 0. (B) The anticipative time ¢ is approximately constant in a broad range of V_ . Symbols represent anticipative
time from Goodridge and Touretzky** rescaled for comparison. (C) Static and spontaneously moving phases in the space of inhibition strength
k= k/k. and SFA strength y. The black curve indicates the phase boundary separating the static and moving phases. In the moving phase,
the color code encodes the speed V., of the spontaneously moving bump. (D) Regions of delayed and anticipative tracking in the same space
when there is a weak and slowly moving external input. The black curve indicates the boundary separating the delayed and anticipative
tracking regions. The color code encodes the anticipative time (negative values indicate delayed time). Note the correspondence between
the anticipative time and V. in (C).
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can integrate these different sensory cues optimally to improve its
perception”’. However, exactly how the brain achieves this remains
largely unknown. In a recent study, Zhang and Wu** proposed that
the brain may employ a decentralized architecture with coupled
CANNSs to carry out this task. In their model, multiple CANNS,
each corresponding to one sensory module, are reciprocally con-
nected with each other, and the connection strengths control the
extent of integration (Figure 4A). Mediated by reciprocal interac-
tions, information from different cues is exchanged between sen-
sory modules, such that global information integration is achieved
at each local processor without the need for a centralized integration
unit. By applying this model to the visual and vestibular cue inte-
gration for inferring heading direction, Zhang and Wu* showed that
the decentralized architecture with coupled CANNSs can explain a
large volume of data about the integration behaviors observed in the
multi-sensory experiments (Figures 4B—4D).

Neural signature of CANNs
The key structure of a CANN is the translation invariance of the
connections between neurons. Limited by experimental techniques,
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we are still unable to confirm the existence of such a connec-
tion pattern of synapses in real neural systems. Nevertheless, we
can validate the existence of a CANN by measuring its unique
dynamical features. One such feature is the anti-symmetric, or the
M-shaped, correlation between neuronal responses'**. The under-
lying cause is intuitively understandable. The dynamics of a CANN
are dominated by the position shift of a bump under the drive of
noisy inputs. Thus, in response to a stimulus corrupted with noise,
neurons whose preferred stimuli are on the same side of the true
stimulus (i.e. they are both larger or both smaller than the stimulus
value, as illustrated in Figure 5A) will increase or decrease their
responses concurrently with the fluctuations of the bump position,
leading to a positive correlation, whereas for neurons whose pre-
ferred stimuli are on different sides of the stimulus, their response
fluctuations are negatively correlated (Figure 5B). Alternatively, we
can measure the correlations of firing rates between a pair of neu-
rons with a typical separation of the bump width in a CANN by
varying the stimulus value systematically. In such a case, we obtain
the M-shaped correlation over the stimulus value space: when the
stimulus value is in between the preferred stimuli of two neurons,

Visual cue
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Figure 4. Optimal multi-sensory integration with coupled continuous attractor neural networks (CANNs). (A) Multiple reciprocally
coupled CANNSs form a decentralized information integration system. (B) An example of two-coupled CANNSs for heading-direction inference
with combined visual and vestibular cues. The mean (C) and the variance (D) of the network estimations agree with the Bayesian predictions.

Adapted from 24.
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Figure 5. The special correlation structure associated with the unique dynamics of a continuous attractor neural network (CANN).
(A) The bump position-shift is the dominating motion mode of a CANN induced by input noises. Consider the true stimulus fixed at zero.
Neurons at the same side of the stimulus are positively correlated (e.g. green ones), whereas neurons on different sides of the stimulus
are negatively correlated (e.g. green versus blue ones). (B) When the true stimulus is fixed at a constant value (e.g. zero), the correlations
between all neuron pairs in a CANN display an anti-symmetric structure. (C) When the stimulus value varies, the correlation between a fixed
neuron pair with a typical separation of the bump width displays an M-shaped structure.

the neuronal responses are negatively correlated; otherwise, they
are positively correlated (Figure 5C).

Notably, the M-shaped correlation between a neuron pair in the
cortex was confirmed in recent experiments. In the study, Wimmer
et al.”® used multiple electrodes to record the activities of neurons in
the prefrontal cortex (PFC) of monkeys when they were performing
a working memory task. The monkeys were firstly presented with
a stimulus appearing randomly in one of eight possible directions,
and then the monkeys needed to memorize the stimulus location
during a delay period when the stimulus was off. Wimmer et al.
found that the dynamics of a CANN can well explain the behav-
iors of the monkey and that the correlation between PFC neurons
in the delay period is M-shaped. In another study, Ponce-Alvarez
et al.” measured the correlation between a neuron pair in the mid-
dle temporal area when monkeys were presented with moving grat-
ing or plaid, and also found the M-shaped structure.

Beyond simple features

In addition to the aforementioned simple, straightforward features
of objects, such as orientation, direction, and spatial location,
experimental data suggest that the brain may use CANNs to proc-
ess less directly perceivable features. For example, in an experi-
mental study, Logothetis et al.”’ found that, after training, neurons
in the inferior temporal cortex of the monkey’s brain displayed
strong selectivity to the view angle of an object and that the neu-
ronal tuning functions were of the bell shape and were aligned to
cover the space of view angles, similar to the structure of a CANN.
Furthermore, the brain may use CANNS to process “complicated”
features. In recent work, Mante et al.”* studied the dynamical prop-
erties of neuronal responses in the PFC when monkeys executed a
context-dependent choice task, in which the monkeys made a left or
right saccade depending on a flexible context cue, which was either
direction of motion or color. Interestingly, the authors found that
although individual neurons’ responses exhibited intractable com-
plexity, the neural responses at the population level follow a low-
dimensional trajectory embedded in the high-dimensional space.
Mante et al. further trained a network model to interpret the experi-
mental finding and found that the CANN structure automatically
emerged in the trained network: the network held a set of stationary

states forming the canyon of a one-dimensional CANN, integration
of cue evidence was implemented in the model as movement along
the canyon (approximately), and different strengths of sensory
inputs led to different stationary states in the canyon. The CANN
model well reproduced the experimental data, indicating that PFC
neurons may exploit the CANN structure to encode the subject
value of evidence/confidence in decision making.

Further aspects

In conclusion, the accumulated facts, including the computationally
appealing properties, many successful examples in modeling brain
functions, and the new supporting experimental data, suggest that
CANNs may serve as a canonical model for information represen-
tation in neural systems. Nevertheless, there is still a lot of work
to do to validate this hypothesis. In experiments, the vast develop-
ment of imaging techniques will eventually give us direct evidence
of whether neuronal synapses are translation-invariant in a feature
space and, if they are, where in the brain and to what extent. In
theory, as implied by the above-reviewed work, we should explore
deeply the functional roles of CANNS, including how CANNs con-
tribute to the information exchanges constantly happening between
cortical areas, how the CANN structure emerges automatically
via either supervised or unsupervised learning in a given compu-
tational task, and how a CANN, which has the capacity of encod-
ing complex, non-trivial features of external inputs (as suggested
by the work of Mante et al.), contributes to the categorization of
objects or formulation of concepts. Overall, these studies will not
only enhance our understanding of the principles of neural informa-
tion processing but also reveal more computational advantages of
CANNs which are useful for developing brain-inspired computa-
tion algorithms.
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