

000 001 SKIN LESION PHENOTYPING VIA NESTED MULTI- 002 MODAL CONTRASTIVE LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich
012 representations of skin lesions through a novel nested contrastive learning approach
013 that captures complementary information between images and metadata. Melanoma
014 detection and skin lesion classification based solely on images, pose significant
015 challenges due to large variations in imaging conditions (lighting, color, resolution,
016 distance, etc.) and lack of clinical and phenotypical context. Clinicians typically
017 follow a holistic approach for assessing the risk level of the patient and for deciding
018 which lesions may be malignant and need to be excised by considering the patient's
019 medical history as well as the appearance of other lesions of the patient. Inspired by
020 this, SLIMP combines the appearance and the metadata of individual skin lesions
021 with patient-level metadata relating to their medical record and other clinically
022 relevant information. By fully exploiting all available data modalities throughout
023 the learning process, the proposed pre-training strategy improves performance
024 compared to other pre-training strategies on downstream skin lesion classification
025 tasks, highlighting the learned representations quality.

026 1 INTRODUCTION

029 The analysis of skin lesion characteristics is an important part of dermatological examination,
030 allowing clinicians to recognize potential skin malignancies and establish suitable follow-up actions
031 and treatment plans. Among skin malignancies, melanoma, although having a lower incidence with
032 respect to other skin cancers, has a significantly heavier impact on the patient health in terms of
033 morbidity and mortality. There are over 330,000 cases of melanoma diagnosed worldwide every year,
034 leading to more than 55,000 deaths annually (Arnold et al., 2022), with data suggesting an increased
035 incidence in the last years (Sun et al., 2024). Importantly, when detected early (stage I-II), melanoma
036 can be cured in the majority of cases through surgical excision. This suggests the importance of
037 developing efficient and effective methods for early detection of melanoma and other types of skin
038 cancers.

039 Numerous works in the literature have attacked the problem of classifying skin lesions based on their
040 appearance (Hasan et al., 2023; Adegun & Viriri, 2021), largely supported by the monumental effort
041 put forward by the International Skin Imaging Collaboration (ISIC) for constructing the ISIC datasets
042 and organizing the corresponding challenges from 2016. In dermatological clinical practice though,
043 clinicians do not base their decisions solely on the appearance of the patient's individual lesions, but
044 also consider additional lesion characteristics, as well as their skin phenotype and habits. Drawing
045 inspiration from this, recent datasets, including SLICE-3D (Kurtansky et al., 2024), typically include
lesion and patient metadata (Pacheco et al., 2020; Tschandl et al., 2018; Mendonça et al., 2013).

046 Despite the significant effort dedicated in producing large collections of skin lesion data, the amount
047 of annotated skin lesion data corresponding to malignant lesions still lies far from those available for
048 other computer vision tasks, making the development of deep-learning methods that rely on large data
049 quantities troublesome. The combination of different skin lesion datasets can alleviate these problems,
050 yet differences in imaging modalities (clinical vs dermoscopic images) and metadata attributes pose
051 an important challenge in their effective use for training deep-learning models. Suitable pre-text tasks
052 offering self-supervision have proven to be invaluable in such scenarios, enabling the models to learn
053 rich representative features that can be subsequently employed to address downstream tasks even
when less data are available.

Building on these observations, we introduce SLIMP (Skin Lesion Image-Metadata Pre-training), a novel pre-training approach for skin lesions based on nested multi-modal contrastive learning, which aims to exploit all available data modalities across all stages of the learning process. SLIMP captures relations between the appearance of the lesions and the metadata associated with them in the context of the patient-level metadata. By incorporating both lesion and patient level metadata, the proposed method fully exploits information that is complementary to the appearance of the lesions, producing representative and generalizable features for skin lesions that lead to improved performance in downstream tasks. To enable effective transfer to target datasets, we employ an efficient continual pre-training approach for addressing the problems that arise from the differences that typically occur between the metadata structure and imaging modalities of different datasets. Additionally, by exploiting the structure of the common images-metadata embedding space learned during the pre-training phase, we propose an extrapolation technique for enriching datasets that do not contain metadata, by transferring metadata from a reference dataset based on their agreement with the target images.

The contributions of this work are the following:

1. We propose a multi-modal pre-training strategy based on a novel nested contrastive learning schema for producing rich skin lesion representations by leveraging metadata both at the lesion and patient levels which complement the visual information of the lesion images;
2. We adapt the learned representations on target datasets through efficient continual pre-training, effectively addressing differences in metadata attributes and imaging modalities;
3. We propose a metadata extrapolation strategy for enhancing image-only datasets using suitable reference metadata;
4. The proposed nested multi-modal pre-training strategy achieves improved performance in downstream tasks compared to competing pre-training strategies and strong baselines, including fully-supervised approaches.

2 RELATED WORK

Multi-modal self-supervised representation learning is used for enhancing image-based models by incorporating different data modalities, especially for tasks where additional context provides useful information for improved task performance. In this context, CLIP (Radford et al., 2021) introduced a method for learning image-text representations through a contrastive learning paradigm. By linking each image to a natural language description, CLIP captures subtle patterns and nuances, creating representations that can accommodate different applications. This paradigm has been followed by a large number of works, including (Zhai et al., 2023) and (Tschannen et al., 2025). In a domain-specific context, the work of Bourcier et al. (2024) adopted a multi-modal pre-training approach for learning representations based on satellite imagery and associated metadata, showing that the additional context provided by metadata leads to improved performance in downstream tasks.

Regarding contrastive learning performed across taxonomies, Zhang et al. (2022) introduced hierarchical contrastive pre-training for images, allowing to consider labels organized in a taxonomy, by proposing a natural extension of the contrastive loss for hierarchical label relations as well as a constraint enforcing loss for separating distinct lineages. Fan et al. (2024) used three levels of contrastive learning for improved sentiment analysis by incorporating various features combinations of the available data modalities.

In the medical domain, the work of Jiang et al. (2023) highlighted the importance of taking into account the patient-slide-patch hierarchy in learning suitable representations for cancer diagnosis based on whole-slide images. On the other hand, Wang et al. (2023) used a contrastive loss spanning multiple levels across the same modality, ranging from patient-level to observation-level, for maximizing information utilization of the available data, leading to stronger representations for medical time-series analysis and classification.

In this work we adopt a contrastive learning strategy across two distinct levels of metadata, modeled as one level nested within the other, as patient-level metadata are shared while lesion-level metadata regard individual skin lesions. This scheme encourages learning of more representative skin-lesion

108 representations that can assist in the downstream skin lesion classification task while offering
 109 improved generalization across different patients.
 110

111 **Dermatology-specific representation learning** has been pursued in several approaches specifically
 112 tailored for skin lesion analysis, going beyond generic computer vision models. WhyLesionCLIP
 113 Yang et al. (2024) adapts the CLIP architecture using a supervised objective, fine-tuning it on a
 114 large corpus of skin lesion images and biomedical text descriptions to capture domain-specific
 115 semantics. Similarly, PanDerm Yan et al. (2025) leverages large-scale vision-language pre-training to
 116 address diverse dermatological tasks. Addressing the specific challenge of class imbalance in medical
 117 datasets, SBCL Hou et al. (2023) employs a supervised subclass-balancing contrastive strategy
 118 to improve representation learning on long-tailed distributions. While these methods effectively
 119 leverage unstructured text or specialized sampling strategies, SLIMP introduces a distinct paradigm
 120 by modeling the inherent structured, compositional hierarchy of tabular metadata, a critical clinical
 121 modality that offers complementary constraints to text-based or image-only approaches.
 122

123 **Continual pre-training** has become a key strategy to make pretrained models more specialized
 124 and effective for real-world applications, where domain-specific knowledge is often crucial. In this
 125 context, Gururangan et al. (2020) demonstrated that simply continuing to pretrain a language model
 126 on domain-specific texts substantially improves the accuracy across diverse tasks, even when labeled
 127 data is limited. Liu et al. (2021) developed a continual pre-training framework for the mBART model
 128 to boost machine translation for low-resource languages, where translation data is often limited
 129 or nonexistent. By generating mixed-language text from available monolingual resources, they
 130 enabled mBART to ‘self-train’ on noisy but representative data and extend its language skills to
 131 previously unseen languages. In the domain of geospatial analysis, Mendieta et al. (2023) tackled the
 132 resource-intense needs of geospatial applications with a continual pre-training method that exploits
 133 the rich representations coming from large-scale image datasets like ImageNet-22k. The work of Reed
 134 et al. (2022) extended this adaptive pre-training to general computer vision, aiming to address the
 135 high costs of self-supervised learning. Their approach, utilize existing pretrained models as a starting
 136 point to accelerate learning, achieving improved accuracy with fewer resources.
 137

138 Multi-modal continual pre-training has only recently been explored, mainly regarding the adaptation
 139 of vision-language models (Roth et al., 2024; Chen et al., 2025). In the medical domain, Ye et al.
 140 (2024) proposed continual pre-training for multi-modal medical data in a multi-stage manner to
 141 avoid interference between image and non-image modalities during learning. The proposed method
 142 makes use of continual pre-training to fully exploit target dataset metadata. Due to the differences
 143 in the recorded attributes, continual pre-training allows adapting the metadata encoder accordingly,
 144 leading to improved classification performance. To the best of our knowledge, this is the first work
 145 that explores the use of multi-modal continual pre-training for tabular metadata, allowing to fully
 146 exploit the available metadata of target domains. Importantly, the proposed continual pre-training
 147 strategy does not rely on target labels, which are not always available in the context of skin lesion
 148 classification and other similar medical applications.
 149

150 **Data enhancement through retrieval** has been proposed in the natural language processing domain
 151 under different settings. In Borgeaud et al. (2022), a retrieval-enhanced language model (RETRO)
 152 is introduced augmenting a frozen language model allowing retrieval from a large text database for
 153 improving its performance. In a similar direction, Träuble et al. (2023) proposed a discrete key-value
 154 bottleneck architecture considering pairs of sparse, separable and learnable key-value codes.
 155

156 The work of Norelli et al. (2023) applies the idea in a multi-modal setting, establishing image-text
 157 correspondences using independently pre-trained image and text encoders by exploiting similarities
 158 within each modality in combination with a reduced dataset of known image-text correspondences.
 159 We consider a retrieval-enhanced variant of SLIMP for allowing multimodal classification even for
 160 image-only datasets, by matching metadata from a reference dataset.
 161

162 3 METHOD

163 In this section we present SLIMP, a self-supervised pre-training approach with a nested contrastive
 164 loss. Given a reference skin-lesion classification dataset providing metadata at the lesion and at
 165 the patient levels, the proposed approach aims to learn representative and generalizable skin lesion
 166

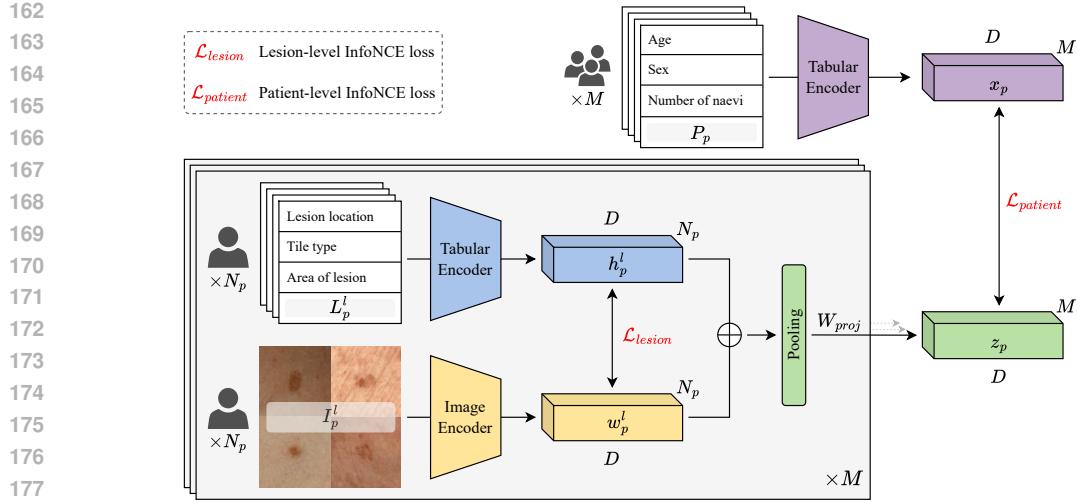


Figure 1: SLIMP architecture. An inner multi-modal contrastive loss is employed to maximize agreement among images of skin lesions and the corresponding metadata. Skin lesion image and metadata representations of a patient are aggregated, summarizing the lesion phenotype. At the patient level, agreement between the estimated lesion phenotype and the patient metadata is pursued through an outer contrastive loss.

representations by combining appearance information with information stemming from the corresponding metadata at both levels. Two strategies are then proposed for adapting these representations to target datasets in a way that fully exploits the available metadata, even when their structure and content differ from the source data. This leads to enhanced performance on downstream classification and retrieval tasks by leveraging multi-modal information about the skin lesions. The notation used throughout this section is summarized in Table 5.

3.1 NESTED CONTRASTIVE MULTI-MODAL LEARNING

The overall approach is presented in Figure 1 and summarized in Algorithm 1. For each patient, $p \in \{1, \dots, M\}$ our model processes N_p lesion images $\{I_p^l\}_{l=1}^{N_p}$ with an image encoder to extract image-based features $\{w_p^l \in \mathbb{R}^D\}_{l=1}^{N_p}$, where D denotes the dimensionality of the image embedding. In parallel, the model processes the corresponding lesion-specific tabular metadata $\{L_p^l\}_{l=1}^{N_p}$ with a

Algorithm 1: SLIMP Nested Contrastive Learning Pseudocode

Data: Lesion images: $\{\{I_p^l\}_{l=1}^{N_p}\}_{p=1}^M$, lesion metadata: $\{\{L_p^l\}_{l=1}^{N_p}\}_{p=1}^M$, patient metadata: $\{P_p\}_{p=1}^M$.
 Sample a batch of B patients
 $\mathcal{L}_{lesions} = 0$
for $p \in \{1, \dots, B\}$ **do**
 Build batch of N lesion image-metadata pairs from patient p
for $l \in \{1, \dots, N\}$ **do**
 $w_p^l = \text{ImageEncoder}(I_p^l)$
 $h_p^l = \text{LesionTabularEncoder}(TL_p^l)$
end
 $\mathcal{L}_{lesions} += \frac{1}{B} \text{InfoNCELoss}(\{w_p^l\}_{l=1}^N, \{h_p^l\}_{l=1}^N)$
 $z_p = \text{Linear}(\text{AvgPool}(\{(w_p^l, h_p^l)\}_{l=1}^N))$
end
 $\{x_p\}_{p=1}^B = \text{PatientTabularEncoder}(\{TP_p\}_{p=1}^B)$
 $\mathcal{L}_{patient} = \text{InfoNCELoss}(\{(z_p, x_p)\}_{p=1}^B)$
 $\mathcal{L}_{total} = \lambda \cdot \mathcal{L}_{lesions} + (1 - \lambda) \cdot \mathcal{L}_{patient}$

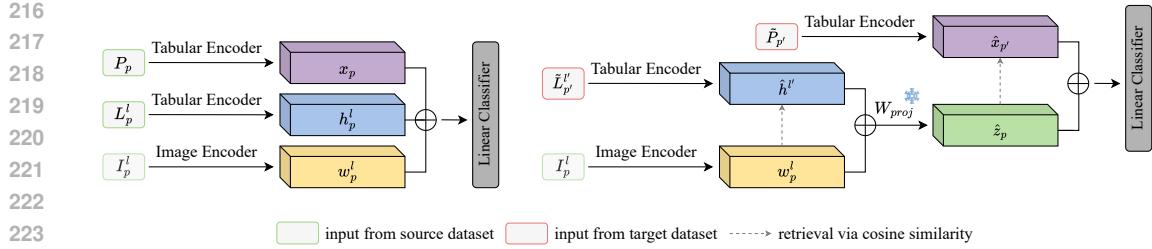


Figure 2: Use of learned representations for skin lesion classification. Classification of a skin lesion using corresponding data modalities (image+metadata) is shown on the left. Classification of a skin lesion image using the retrieval-based metadata extrapolation method is shown on the right.

tabular metadata encoder to extract metadata-based feature representations $\{h_p^l \in \mathbb{R}^D\}_{l=1}^{N_p}$ on a lesion level. The resulting lesion-level representations are jointly optimized using an inner loss ($\mathcal{L}_{lesions}$) based on InfoNCE (Mendieta et al., 2018) to maximize the agreement between the lesions of a single patient. By maximizing the similarity between the corresponding lesion image-metadata pairs and, analogously, minimizing the cosine similarity between non-matching pairs, the model learns multi-modal lesion-level representations. The two lesion-level modalities are merged via concatenation, which has been shown to be a simple yet effective strategy (Weng et al., 2019) for obtaining a combined lesion-level representation $\{(w_p^l, h_p^l)\}_{l=1}^{N_p}$. These combined lesion representations are aggregated for all the lesions of a patient by applying average pooling, and they are subsequently linearly transformed into a single vector $z_p \in \mathbb{R}^D$, summarizing the lesion phenotype of the patient. At the outer level, SLIMP processes the patient-specific tabular metadata (P_p) utilizing an outer tabular metadata encoder, yielding a representation $x_p \in \mathbb{R}^D$. An outer InfoNCE loss ($\mathcal{L}_{patient}$) is then applied between the patient-level metadata representation $x_p \in \mathbb{R}^D$ and the patient-level lesion phenotype representation $z_p \in \mathbb{R}^D$ obtained at the inner level. This nested contrastive pre-training framework enables the model to learn rich skin lesion representations that take into consideration the patient’s phenotype. The complete loss formulation is provided in Section C.

3.2 SELF-SUPERVISED IMAGE-METADATA CONTINUAL PRE-TRAINING

Due to differences in clinical practice, regulatory context, and other related factors, skin-lesion datasets show significant variability both as far as imaging modality is concerned and because of quantitative and qualitative different behavioral and clinical attributes collected from the patients. To overcome this inherent difficulty, we propose a multi-modal continual pre-training approach for adapting the representations learned by pre-training SLIMP on a large reference dataset to potentially smaller datasets with diverging metadata and/or imaging modalities.

To achieve this unsupervised adaptation, the image and tabular encoders are fine-tuned by employing the same nested multi-modal contrastive architecture to the target domain. To address the domain differences, only the first (embedding) layers of the image and the tabular encoders are modified, keeping deeper layers frozen. This helps to preserve the structure of the common learned space, alleviating catastrophic forgetting, while allowing for the target domain data to be suitably mapped to this common space. Implementation details are provided in Section D, while we compare this strategy against fine-tuning all the model parameters in Section F. For completeness, we specify that in cases where only lesion-level metadata are available, a *flattened* SLIMP variant is considered, taking into account solely the lesion images and the corresponding metadata.

3.3 SUPERVISED SKIN-LESION CLASSIFICATION USING MULTI-MODAL FEATURES

To assess the quality of the features learned by SLIMP, we consider the downstream skin-lesion classification task following the standard evaluation protocol in self-supervised learning literature by employing a supervised linear classifier operating on the concatenation of the features produced by the frozen image encoder and the two frozen tabular encoders that process lesion- and patient-level metadata, respectively.

270 **Dataset enhancement via metadata extrapolation** When the target dataset lacks metadata, a
 271 retrieval-based metadata extrapolation approach is used for artificially enhancing the target dataset
 272 by creating metadata pseudo-modalities. As lesion metadata are tightly related to the corresponding
 273 images, we consider the possibility of enhancing datasets that do not provide metadata by constructing
 274 pseudo-modalities of patient-level and lesion-level metadata using the corresponding modalities of
 275 the reference dataset on which the SLIMP model has been pre-trained. Drawing inspiration from
 276 Norelli et al. (2023) and building on the fact that the lesion- and patient-level modalities have been
 277 trained to maximize agreement, we use the encoding of the lesion images to retrieve the metadata of
 278 the original dataset that exhibit the highest similarity and use them on downstream tasks. A detailed
 279 discussion regarding the structure of the SLIMP embedding space, supporting the validity of this
 280 approach, is provided in Section E, while Section F provides an ablation.

281 This classification paradigm is presented in Figure 2 (right). Specifically, the model utilizes only the
 282 images I_p^l from the target dataset, passing them through the image encoder of the SLIMP model that
 283 has been pre-trained on the reference dataset, providing the target dataset image representations w_p^l .
 284 Based on these features, a two-step metadata retrieval process is performed to incorporate additional
 285 context from the reference dataset metadata representations. First, we compare w_p^l with the features
 286 \hat{h}^l derived from the pre-trained SLIMP lesion metadata encoder, and we retrieve the vector \hat{h}^l with
 287 the highest similarity. The combined feature set $\{(w_p^l, \hat{h}^l)\}$ is linearly transformed into a single
 288 patient-level vector \hat{z}_p , which is then compared with the features $\hat{x}_{p'}$ derived from the pre-trained
 289 SLIMP patient metadata encoder to retrieve the most relevant $\hat{x}_{p'}$. By adding pseudo-modalities on
 290 both the patient and the lesion level, this retrieval process produces three feature vectors for each
 291 image of the target dataset $\hat{y}_p^l : \{(w_p^l, \hat{h}^l, \hat{x}_{p'})\}$ that can be used for lesion classification.

293 4 EXPERIMENTAL EVALUATION

295 4.1 DATASETS

297 Evaluation is performed considering five widely used, public skin lesion datasets, which differ
 298 in key aspects, including dataset size, imaging modality (dermoscopic or clinical), availability of
 299 metadata (such as the number of patient clinical features), and degree of class imbalance. SLICE-3D
 300 (Kurtansky et al., 2024) is used as a reference dataset, both due to the significantly higher number
 301 of samples and the richness of the metadata features. PAD-UFES-20 (Pacheco et al., 2020), HIBA
 302 (ISIC, 2024), HAM10000 (Tschandl et al., 2018), and PH2 (Mendonça et al., 2013) are considered as
 303 target datasets. The main characteristics of the datasets are summarized in Table 1, while Section B
 304 provides additional details.

305 4.2 IMPLEMENTATION

307 Unless otherwise stated, we employ ViT-Small (Dosovitskiy et al., 2021) as a transformer-based image
 308 encoder and TRACE (Christopoulos et al., 2025) as a transformer-based encoder for clinical tabular
 309 data. We train the model for 150 epochs on an NVIDIA RTX A6000 GPU with 48GB of VRAM.
 310 For pre-training the model on the SLICE-3D dataset, we consider a batch size of $B = 4$ patients and
 311 $N = 100$ lesions. For continual pre-training on target datasets, we fine-tune the embedding layers of
 312 the image and metadata encoders, keeping their attention layers frozen. We have observed that this
 313 strategy leads to increased performance in downstream tasks. During continual pre-training, the batch
 314 size is increased to 64 patients. **For evaluating the intrinsic quality of the feature representations, we**
 315 **employ the standard practice established in the self-supervised learning literature, randomly splitting**

318 Table 1: Main aspects of skin lesion datasets considered in the evaluation.

319 Dataset	320 Image Modality	321 Number of Samples	322 Number of Patients	323 Targets	Patient Missing Values(%)	Lesion Missing Values(%)	Metadata
321 SLICE-3D	Clinical	401,059	1,042	Benign/Malignant	1.78%	0.04%	Patient/Lesion
322 PAD-UFES-20	Clinical	2,298	1,373	Multiclass	32.20%	7.00%	Patient/Lesion
323 HIBA	Mixed	1,616	623	Multiclass	21.20%	12.80%	Patient/Lesion
HAM10000	Dermoscopic	10,015	N/A	Multiclass	0.57%	1.17%	Patient/Lesion
PH2	Dermoscopic	200	N/A	Multiclass	N/A	6.12%	Lesion

324 the target datasets into training and validation splits with a ratio of 90%-10%, respectively. Evaluation
 325 following a stricter patient-disjoint splitting strategy is discussed in Section F. Both pre-training
 326 stages use the AdamW optimizer with a learning rate of 10^{-4} and $\lambda = 0.9$. Continual pre-training is
 327 performed for 100 epochs on each dataset. For the classification task, we apply linear probing with
 328 binary cross entropy loss (BCE) and the AdamW optimization algorithm.
 329

330 4.3 PROTOCOL

332 The SLIMP model is pre-trained on SLICE-3D, a large-scale medical imaging dataset. For assessing
 333 the intrinsic quality of the SLIMP features, evaluation is performed by considering linear probing as
 334 well as k-nearest neighbors (kNN) on the downstream skin-lesion classification task on different target
 335 datasets (Caron et al., 2021). The skin lesion classification datasets contain different taxonomies,
 336 with important class imbalance of varying degrees (Figure 3). To allow consistent comparison across
 337 all datasets, we mainly consider the task of classifying lesions as benign and malignant. Performance
 338 of the models is evaluated considering four metrics: Accuracy (Acc) and Balanced Accuracy (BA)
 339 reported as percentages, and F1-Score and area under the receiver operator curve (AUC) reported
 340 as dimensionless numbers. Balanced Accuracy corresponds to the average of the Sensitivity and
 341 Specificity scores and is particularly relevant in the medical domain as it captures the model’s ability
 342 to correctly identify positive and negative instances, even when datasets suffer from significant class
 343 imbalance. Section G, provides additional experiments, discussing also the multiclass classification
 344 performance of SLIMP and its use in downstream retrieval tasks.
 345

346 4.4 RESULTS

347 Our main goal is to assess the quality of the skin lesion representations learned by the proposed
 348 SLIMP model. Additionally, we examine the extent in which the use of metadata in different parts
 349 of the pipeline impacts the performance on the downstream classification task. In these regards, we
 350 consider strong baselines in each of these parts. Table 2 presents the results using linear probing on
 351 the four target datasets, as well as the macro-averaged metrics further highlighting the generalization
 352 ability of the model. The kNN classification results are presented in the Appendix (Table 18).

353 We first consider comparison using features that have been obtained via pre-training on the reference
 354 SLICE-3D dataset. In this context, we consider the Pre-SLIMP setup, which uses the appearance
 355 features extracted by the image encoder of SLIMP that is pre-trained on the lesion and patient metadata
 356 of SLICE-3D, and compare it against the features obtained by SimCLR (Chen et al., 2020) pre-trained
 357 on the images of SLICE-3D. We also consider the downstream classification performance of the
 358 subclass-balancing contrastive learning approach (SBCL) proposed in (Hou et al., 2023). We observe
 359 that Pre-SLIMP, by exploiting the information encoded in the metadata, achieves similar performance
 360 to SimCLR, even though it does not consider any image-based self-supervision. This suggests that
 361 SLIMP incorporates information from corresponding metadata in the image representation, leading
 362 to more robust representations against image domain shift. By producing more robust features,
 363 Pre-SLIMP outperforms SBCL which explicitly handles class imbalance and long-tail distributions.
 364

365 In addition, Table 2 provides the results from the MAE (He et al., 2022), DINOv2 (Oquab et al.,
 366 2023) and BeiTv2 (Peng et al., 2022) generic foundation models, as well as the multi-modal models
 367 CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), SigLIP-2 (Tschannen et al., 2025) and
 368 WhyLesionCLIP (WL-CLIP) (Yang et al., 2024), alongside PanDerm Yan et al. (2025). The latter
 369 two serve as robust domain-specific baselines. WL-CLIP is a supervised fine-tuning of CLIP on skin
 370 lesion descriptions, while PanDerm is a large-scale vision-language foundation model tailored for
 371 clinical dermatology. For a fair comparison, we consider the ViT-B variants of these models, where
 372 available. We observe that Pre-SLIMP, via nested image-metadata pre-training achieves a competitive
 373 performance against all these models, which have been trained using data that are orders of magnitude
 374 larger. Still, the corresponding attention maps (presented in Section I) suggest that SLIMP is better
 375 at capturing prominent appearance features of the lesions, hinting that they are more suitable for
 376 spatially-aware downstream tasks (e.g. lesion segmentation). Importantly, SLIMP by employing a
 377 nested structure dictated by the patient-lesions relation, outperforms massive dermatology-specific
 378 foundation models like WL-CLIP and PanDerm (e.g., by more than 6% Balanced Accuracy on
 379 average), despite using a significantly smaller backbone. This shows that structured metadata
 380 integration helps to increase performance more than simply scaling up vision-language pre-training.
 381

378
379
380
381
382Table 2: Comparison of SLIMP with various baselines, on the lesion classification task using linear probing. MD stands for ‘Metadata’ used for downstream classification, the asterisk (*) denotes metadata extrapolation from the reference dataset. For all metrics higher values are better. Best results are in **bold**, second best are underlined.

	PAD-UFES-20				HIBA			HAM10000			PH2			Average		
	MD	Acc	BA	AUC	Acc	BA	AUC	Acc	BA	AUC	Acc	BA	AUC	Acc	BA	AUC
<i>Pre-trained Vision Models</i>																
MAE	\times	68.3	68.2	.693	79.0	79.5	.848	86.0	76.7	.901	85.0	71.9	.844	79.6	74.1	.822
DINOv2	\times	76.1	77.3	.828	77.2	77.4	.849	86.0	75.2	.897	86.7	81.3	.867	81.5	77.5	.866
BEiT2	\times	77.0	77.3	.828	79.6	79.9	.851	86.2	78.2	.906	95.0	96.4	.992	84.5	83.1	.894
PanDerm _{Base}	\times	75.2	75.5	.857	86.4	86.5	.932	85.1	70.0	.892	95.0	96.4	.969	85.4	82.1	.913
PanDerm _{Large}	\times	80.0	80.1	.904	87.7	87.7	.941	88.5	77.6	.925	95.0	96.4	1.00	87.8	85.5	.943
<i>Pre-trained Vision-Language Models</i>																
CLIP	\times	70.9	71.0	.795	82.1	82.5	.893	85.4	78.7	.892	90.0	84.4	.891	82.1	79.2	.868
SigLIP	\times	74.8	75.0	.823	76.5	76.9	.838	86.5	79.0	.900	95.0	96.4	.969	83.2	81.9	.883
SigLIP-2	\times	77.8	77.9	.853	82.1	82.6	.856	86.8	79.8	.907	95.0	96.4	1.00	85.4	84.3	.904
WL-CLIP	\times	81.7	81.9	.883	82.1	82.2	.896	88.7	83.1	.929	90.0	93.8	1.00	85.6	85.2	.927
<i>Pre-trained on SLICE-3D</i>																
SimCLR	\times	70.4	70.5	.766	84.6	84.3	.913	81.2	69.4	.868	95.0	87.5	1.00	82.8	77.9	.849
SBCL	\times	66.1	66.0	.672	66.7	67.5	.671	56.0	63.8	.710	75.0	75.0	.734	66.0	68.1	.684
Pre-SLIMP	\times	76.5	76.0	.781	75.9	76.0	.845	83.6	67.8	.855	90.0	83.3	.941	81.5	75.8	.827
Ret-SLIMP	\checkmark^*	77.0	77.0	.814	81.5	81.3	.861	82.2	71.0	.836	95.0	93.8	.969	83.9	80.8	.837
<i>Continual pre-training</i>																
SBCL-C	\times	71.3	71.1	.711	72.2	73.9	.760	62.2	73.4	.816	90.0	84.4	.719	73.9	75.7	.762
SLIMP _{IMAGE}	\times	76.1	75.5	.807	77.8	78.1	.867	84.7	69.2	.889	95.0	96.4	<u>.988</u>	83.4	79.8	.854
SLIMP _{FLAT}	\checkmark	85.7	85.3	.906	84.6	84.5	.911	84.4	75.6	.894	100	100	1.00	87.4	85.5	.904
SLIMP _{B=4}	\checkmark	90.9	90.2	.926	92.0	91.9	.954	87.3	83.5	.923	100	100	1.00	92.6	91.4	.951
SLIMP _{B=8}	\checkmark	90.9	90.5	.929	92.6	92.4	.944	87.7	84.5	.929	100	100	1.00	92.8	91.9	.951
<i>Supervised</i>																
TFFormer	\checkmark	91.3	91.3	.960	88.9	88.9	.963	82.1	76.2	.875	95.0	91.7	.988	89.3	87.0	.947
<i>Low-shot Evaluation</i>																
SLIMP _{1%}	\checkmark	83.9	84.1	.908	75.3	75.8	.863	78.7	73.8	.847	70.0	64.3	.548	77.0	74.5	.792
SLIMP _{10%}	\checkmark	88.7	88.2	.922	84.0	84.2	.917	83.9	77.8	.887	90.0	84.5	.952	86.6	83.7	.920
TFFormer _{1%}	\checkmark	81.3	81.2	.880	74.7	74.7	.811	81.9	66.0	.804	35.0	48.8	.702	68.2	67.7	.799
TFFormer _{10%}	\checkmark	85.2	85.1	.886	82.1	81.7	.876	81.5	65.1	.858	90.0	83.3	.810	84.7	78.8	.857

405
406

Use of metadata As the metadata attributes of the target datasets differ from the reference one, the pre-trained metadata encoders cannot be directly used. This shortcoming is addressed by the SLIMP model, which applies continual pre-training on the target dataset as described in Section 4.2. This allows the use of target dataset metadata, both at the continual pretraining stage and at the downstream classification task. We see that the image representations obtained after continual pre-training, denoted as SLIMP_{IMAGE}, offer improved performance compared to Pre-SLIMP, clearly outperforming the SBCL method continually pre-trained on the target datasets (SBCL-C). Importantly, the complete SLIMP method, which uses the features obtained by all data modalities in the downstream task, leads to significantly improved performance on average and across most of the datasets. Increasing the patient batch size from 4 to 8 offers some marginal improvement. Interestingly, SLIMP also shows competitive performance compared to TFFormer (Zhang et al., 2023), a fully supervised model for multi-modal lesion classification trained directly on both the images and metadata of the target dataset, showing a decrease in performance only for the PAD-UFES-20 dataset.

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

The use of pseudo-modalities constructed through retrieval of metadata from the reference dataset, denoted as Ret-SLIMP in the tables, shows consistently improved performance compared to Pre-SLIMP and comparable performance with SLIMP_{IMAGE}, even though it has not seen any data from the target datasets during training. This is valuable when the target dataset lacks metadata. This observation also further highlights the importance of using metadata for downstream classification.

426
427
428
429
430
431

Impact of nested contrastive learning To assess the effectiveness of the nested contrastive learning employed by SLIMP, we also consider a variant of SLIMP, SLIMP_{FLAT}, which comprises a single InfoNCE loss applied between the image features and the features obtained by a tabular encoder operating on the concatenated patient-lesion metadata. SLIMP clearly outperforms this single-level variant, demonstrating the effectiveness of its nested contrastive learning architecture in capturing image-metadata relations. The only exception is PH2, where both variants converge as the dataset does not contain patient-level metadata.

Table 3 offers a more detailed analysis by examining the two variants of the SLIMP architecture (FLAT and NESTED) when trained on each dataset from scratch. The results clearly show that the variant based on nested contrastive learning achieves significantly higher performance compared to the one that uses the same metadata using a single contrastive learning stage. This is attributed to the implicit grouping of each patient’s lesions, producing features that better capture their phenotype. The same table reports the difference of each metric regarding the SLIMP model, showing that the pre-training on the SLICE-3D dataset helps to achieve improved performance across all datasets.

Low-shot evaluation The proposed multi-modal continual pre-training strategy does not rely on target labels. This is crucial as data labeling is expensive and time-consuming, especially in the context of skin lesion classification and other similar medical applications. To further assess the quality of the learned representations, we examine how SLIMP performs in a low-shot learning setting, considering that only 1% or 10% of the target dataset labels are available for downstream classification. The results, presented in the last rows of Table 2 (highlighted in orange), indicate that the SLIMP features lead to remarkable low-shot learning performance. It is interesting to note that in most cases, SLIMP low-shot performance is better than SLIMP_{IMAGE} and SLIMP_{FLAT}. The first suggests the importance of the model making use of metadata both during pre-training and also for the downstream classification task. Comparable performance to SLIMP_{FLAT} further highlights the ability of the nested contrastive learning to capture relations among metadata and images.

4.5 ABLATION

To assess the importance of incorporating two distinct levels of metadata, we compare different variants of SLIMP in Table 4. Specifically, in the first row we consider the linear probing performance of a variant where only the output features of the image encoder are utilized for downstream classification on the target dataset. In the second row we consider both the features of the image encoder and the lesion-level tabular metadata encoder. The third row shows the results of the proposed SLIMP model. The last three rows report analogous results with kNN classification. The results suggest that the addition of each modality contributes positively to the downstream task performance. Additional ablations are provided in Section F.

5 CONCLUSIONS AND LIMITATIONS

We have presented SLIMP, a novel nested multi-modal pre-training strategy for learning rich skin lesion representations by considering lesion images in combination with associated lesion-level as well as patient-level metadata. The experimental evaluation demonstrates SLIMP’s ability to learn representations that improve performance in downstream classification tasks, by combining information about the patient’s lesion phenotype, with information regarding their traits and habits. In this context, we propose strategies for fully exploiting available metadata, through all the stages of the learning process, including a method that enables the enhancement of image-only skin lesion datasets by ‘borrowing’ patient and lesion metadata from reference pre-training data. Importantly, the proposed method does not rely on data annotations, handling a major challenge in healthcare applications where data annotation incurs significant costs. The results obtained for low-shot settings of the target datasets, demonstrate the quality of the obtained skin lesion representations as they enable high classification performance even with minimal labeled data. Considering the above, our proposed method has the potential to become widely applicable in clinical settings, providing insights and decision support during skin lesion diagnosis.

Despite its strengths, the proposed method has certain limitations. Firstly, the nested pre-training strategy requires a data structure that incorporates both patient- and lesion-level metadata, which

Table 3: Comparison of flat (single-level contrastive loss) and nested SLIMP architecture when trained on each dataset separately. The difference with SLIMP_{B=4} model is reported in superscript.

Architecture	PAD-UFES-20			HIBA			HAM10000		
	Acc	BA	AUC	Acc	BA	AUC	Acc	BA	AUC
FLAT	85.2 ^(-5.7)	84.7 ^(-5.5)	.902 ^(-.024)	85.2 ^(-6.8)	84.9 ^(-7.0)	.915 ^(-.039)	77.8 ^(-9.5)	78.6 ^(-4.9)	.860 ^(-.063)
NESTED	87.4 ^(-3.5)	86.9 ^(-3.3)	.910 ^(-.016)	88.9 ^(-3.1)	88.7 ^(-3.2)	.934 ^(-.020)	83.6 ^(-3.7)	82.8 ^(-0.7)	.901 ^(-.022)

486

487 Table 4: Ablation study of the SLIMP encoder outputs used for downstream classification.

488 Image	489 Metadata	490 Lesion	491 Patient	492 PAD-UFES-20			493 HIBA			494 HAM10000			495 PH2						
				496 Acc	497 BA	498 F1	499 AUC	500 Acc	501 BA	502 F1	503 AUC	504 Acc	505 BA	506 F1	507 AUC				
<i>Linear Probing</i>																			
✓	✗	✗		76.1	75.5	0.764	0.807	77.8	78.1	.763	.867	84.7	69.2	.529	.889	95.0	96.4	.923	.988
✓	✓	✗		89.6	89.1	.908	.908	88.3	88.1	.891	.947	85.3	74.1	.599	.899	100	100	1.00	1.00
✓	✓	✓		90.9	90.2	.921	.926	92.0	91.9	.925	.954	87.3	83.5	.707	.923	-	-	-	-
<i>kNN</i>																			
✓	✗	✗		74.8	74.6	.770	.633	82.7	82.6	.835	.770	84.1	69.4	.528	.851	95.0	91.7	.909	1.00
✓	✓	✗		90.0	89.7	.911	.865	87.0	86.7	.884	.812	85.8	76.1	.626	.886	95.0	96.4	.923	.940
✓	✓	✓		93.5	93.2	.942	.911	87.7	87.5	.885	.849	85.8	78.0	.645	.891	-	-	-	-

494

495

496 may limit its adaptability to other domains where such structured scenarios do not straight-forwardly
497 exist. Secondly, significant shift in the image domain, including high variability in the sources and
498 resolutions of lesion images, can possibly downgrade downstream performance. This problem can be
499 addressed by incorporating image augmentations in the learning process. Regarding negative impacts,
500 it should be noted that misuse of this method, as for all computer-aided diagnosis methods, can lead
501 to overdiagnoses, or misdiagnoses, with important psychological and economic repercussions. Hence,
502 real-life use of such systems should be intended only for assisting the decision-making of expert
503 users, and not for direct use by the patients.

504

505

REFERENCES

506 Adekanmi Adegun and Serestina Viriri. Deep learning techniques for skin lesion analysis and melanoma cancer
507 detection: a survey of state-of-the-art. *Artificial Intelligence Review*, 54(2):811–841, 2021.

508 Melina Arnold, Deependra Singh, Mathieu Laversanne, Jerome Vignat, Salvatore Vaccarella, Filip Meheus,
509 Anne E. Cust, Esther de Vries, David C. Whiteman, and Freddie Bray. Global burden of cutaneous melanoma
510 in 2020 and projections to 2040. *JAMA Dermatology*, 158(5):495–503, 05 2022. doi: 10.1001/jamadermatol.
511 2022.0160.

512 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George Bm
513 Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving language models
514 by retrieving from trillions of tokens. In *International Conference on Machine Learning*, pp. 2206–2240,
515 2022.

516 Jules Bourcier, Gohar Dashyan, Karteek Alahari, and Jocelyn Chanussot. Learning representations of satellite
517 images from metadata supervision. In *European Conference on Computer Vision*, pp. 1–30, 2024.

518 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced datasets with
519 label-distribution-aware margin loss. In *Advances in Neural Information Processing Systems*, pp. 1565–1576,
520 2019.

521 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
522 Joulin. Emerging properties in self-supervised vision transformers. In *IEEE/CVF International Conference
523 on Computer Vision*, pp. 9650–9660, 2021.

524 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
525 learning of visual representations. In *International Conference on Machine Learning*, volume 119, pp.
526 1597–1607, 2020.

527 Yitong Chen, Lingchen Meng, Wujian Peng, Zuxuan Wu, and Yu-Gang Jiang. Comp: Continual multimodal
528 pre-training for vision foundation models. *arXiv preprint arXiv:2503.18931*, 2025.

529 Dionysis Christopoulos, Sotiris Spanos, Valsamis Ntouskos, and Konstantinos Karantzalos. Trace: Transformer-
530 based risk assessment for clinical evaluation. *IEEE Access*, 13:101721–101734, 2025.

531 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
532 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
533 image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on
534 Learning Representations*, 2021.

535 Cunhang Fan, Kang Zhu, Jianhua Tao, Guofeng Yi, Jun Xue, and Zhao Lv. Multi-level contrastive learning:
536 Hierarchical alleviation of heterogeneity in multimodal sentiment analysis. *IEEE Transactions on Affective
537 Computing*, pp. 1–17, 2024. doi: 10.1109/TAFFC.2024.3423671.

540 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
 541 tabular data. In *Advances in Neural Information Processing Systems*, volume 34, pp. 18932–18943, 2021.

542

543 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A.
 544 Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In *Association for Computational
 545 Linguistics*, pp. 8342–8360, 2020. doi: 10.18653/v1/2020.acl-main.740.

546

547 Md. Kamrul Hasan, Md. Asif Ahamad, Choon Hwai Yap, and Guang Yang. A survey, review, and future trends
 548 of skin lesion segmentation and classification. *Computers in Biology and Medicine*, 155:106624, 2023. ISSN
 549 0010-4825. doi: <https://doi.org/10.1016/j.combiomed.2023.106624>.

550

551 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders
 552 are scalable vision learners. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 553 15979–15988, 2022. doi: 10.1109/CVPR52688.2022.01553.

554

555 Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Obermayer
 556 (eds.), *Advances in Neural Information Processing Systems*, volume 15. MIT Press, 2002.

557

558 Chengkai Hou, Jieyu Zhang, Haonan Wang, and Tianyi Zhou. Subclass-balancing contrastive learning for
 559 long-tailed recognition. In *IEEE/CVF International Conference on Computer Vision*, pp. 5372–5384, 2023.

560

561 ISIC. International Skin Imaging Collaboration Archive Collection 176, 2024. URL <https://api.isic-archive.com/collections/176/>.

562

563 Cheng Jiang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Christian W. Freudiger, Daniel A. Orringer,
 564 Honglak Lee, and Todd C. Hollon. Hierarchical discriminative learning improves visual representations
 565 of biomedical microscopy. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 566 19798–19808, 2023.

567

568 Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis Kalantidis.
 569 Decoupling representation and classifier for long-tailed recognition. In *International Conference on Learning
 570 Representations*, 2020.

571

572 Nicholas Kurtansky, Brian D’Alessandro, Maura Gillis, Brigid Betz-Stablein, Sara Cerminara, Rafael Garcia,
 573 Elisabeth Goessinger, Philippe Gottfrois, Pascale Guitera, Allan Halpern, Valerie Jakrot, Harald Kittler,
 574 Kivanc Kose, Konstantinos Liopyris, Josep Malvehy, Victoria Mar, Linda Martin, Thomas Mathew, and
 575 Veronica Rotemberg. The SLICE-3D dataset: 400,000 skin lesion image crops extracted from 3D TBP for
 576 skin cancer detection. *Scientific Data*, 11, 08 2024. doi: 10.1038/s41597-024-03743-w.

577

578 Zihan Liu, Genta Indra Winata, and Pascale Fung. Continual mixed-language pre-training for extremely
 579 low-resource neural machine translation. In *Findings of the Association for Computational Linguistics:
 580 ACL-IJCNLP 2021*, pp. 2706–2718, 2021. doi: 10.18653/v1/2021.findings-acl.239.

581

582 Matías Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Representation learning with contrastive
 583 predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.

584

585 Matías Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Towards geospatial foundation models via
 586 continual pretraining. In *IEEE/CVF International Conference on Computer Vision*, pp. 16806–16816, 2023.

587

588 Teresa Mendonça, Pedro Ferreira, Jorge Marques, André Marçal, and Jorge Rozeira. PH2 - A dermoscopic
 589 image database for research and benchmarking. In *IEEE Engineering in Medicine and Biology Society*, pp.
 590 5437–5440, 2013. doi: 10.1109/EMBC.2013.6610779.

591

592 Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, and Francesco Locatello.
 593 Asif: Coupled data turns unimodal models to multimodal without training. In *Advances in Neural Information
 594 Processing Systems*, volume 36, pp. 15303–15319, 2023.

595

596 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre
 597 Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang, Hu Xu,
 598 Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas, Gabriel Synnaeve,
 599 Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2:
 600 Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

601

602 Andre G.C. Pacheco, Gustavo R. Lima, Amanda S. Salomão, Breno Krohling, Igor P. Biral, Gabriel G. de
 603 Angelo, Fábio C.R. Alves Jr, José G.M. Esgario, Alana C. Simora, Pedro B.C. Castro, Felipe B. Rodrigues,
 604 Patricia H.L. Frasson, Renato A. Krohling, Helder Knidel, Maria C.S. Santos, Rachel B. do Espírito Santo,
 605 Telma L.S.G. Macedo, Tania R.P. Canuto, and Luíz F.S. de Barros. PAD-UFES-20: A skin lesion dataset
 606 composed of patient data and clinical images collected from smartphones. *Data in Brief*, 32:106221, 2020.
 607 ISSN 2352-3409. doi: <https://doi.org/10.1016/j.dib.2020.106221>.

594 Cristiano Patrício, Luís F. Teixeira, and João C. Neves. Towards concept-based interpretability of skin lesion
 595 diagnosis using vision-language models. In *IEEE International Symposium on Biomedical Imaging*, pp. 1–5.
 596 IEEE, 2024.

597 Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2: Masked image modeling with
 598 vector-quantized visual tokenizers. *arXiv preprint arXiv:2208.06366*, 2022.

599 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 600 Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
 601 visual models from natural language supervision. In *International Conference on Machine Learning*, volume
 602 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021.

603 Colorado J Reed, Xiangyu Yue, Ani Nrusimha, Sayna Ebrahimi, Vivek Vijaykumar, Richard Mao, Bo Li, Shang-
 604 hang Zhang, Devin Guillory, Sean Metzger, Kurt Keutzer, and Trevor Darrell. Self-supervised pretraining
 605 improves self-supervised pretraining. In *IEEE/CVF Winter Conference on Applications of Computer Vision*,
 606 pp. 2584–2594, 2022.

607 Karsten Roth, Vishaal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Mehdi Cherti, Oriol Vinyals, Olivier
 608 Hénaff, Samuel Albanie, Matthias Bethge, and Zeynep Akata. A practitioner’s guide to continual multimodal
 609 pretraining. *arXiv preprint arXiv:2408.14471*, 2024.

610 Yulin Sun, Yiming Shen, Qian Liu, Hao Zhang, Lingling Jia, Yi Chai, Hua Jiang, Minjuan Wu, and Yufei
 611 Li. Global trends in melanoma burden: A comprehensive analysis from the global burden of disease
 612 study, 1990-2021. *Journal of the American Academy of Dermatology*, 2024. ISSN 0190-9622. doi:
 613 <https://doi.org/10.1016/j.jaad.2024.09.035>.

614 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jegou.
 615 Training data-efficient image transformers & distillation through attention. In Marina Meila and Tong Zhang
 616 (eds.), *International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning
 617 Research*, pp. 10347–10357. PMLR, 2021.

618 Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Mozer, Kenji Kawaguchi, Yoshua Bengio, and
 619 Bernhard Schölkopf. Discrete key-value bottleneck. In *International Conference on Machine Learning*, pp.
 620 34431–34455, 2023.

621 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a large collection of multi-source
 622 dermatoscopic images of common pigmented skin lesions. *Scientific Data*, 5(1), 2018. ISSN 2052-4463. doi:
 623 10.1038/sdata.2018.161.

624 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil
 625 Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2: Multilingual vision-
 626 language encoders with improved semantic understanding, localization, and dense features. *arXiv preprint
 627 arXiv:2502.14786*, 2025.

628 Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang. Contrast everything: A hierarchical contrastive
 629 framework for medical time-series. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 630 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 55694–55717, 2023.

631 Wei-Hung Weng, Yuannan Cai, Angela Lin, Fraser Tan, and Po-Hsuan Cameron Chen. Multimodal multitask
 632 representation learning for pathology biobank metadata prediction. *arXiv preprint arXiv:1909.07846*, 2019.

633 Siyuan Yan, Zhen Yu, Clare Primiero, Cristina Vico-Alonso, Zhonghua Wang, Litao Yang, Philipp Tschandl,
 634 Ming Hu, Lie Ju, Gin Tan, et al. A multimodal vision foundation model for clinical dermatology. *Nature
 635 Medicine*, pp. 1–12, 2025.

636 Yue Yang, Mona Gandhi, Yufei Wang, Yifan Wu, Michael S. Yao, Chris Callison-Burch, James C. Gee, and
 637 Mark Yatskar. A textbook remedy for domain shifts: Knowledge priors for medical image analysis. In
 638 *Advances in Neural Information Processing Systems*, volume 37, pp. 90683–90713, 2024.

639 Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Qi Wu, and Yong Xia. Continual self-supervised learning:
 640 Towards universal multi-modal medical data representation learning. In *IEEE/CVF Conference on Computer
 641 Vision and Pattern Recognition*, pp. 11114–11124, 2024.

642 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
 643 pre-training. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 11975–11986, 2023.

644 Shu Zhang, Ran Xu, Caiming Xiong, and Chetan Ramaiah. Use all the labels: A hierarchical multi-label
 645 contrastive learning framework. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 646 16660–16669, 2022.

648 Yilan Zhang, Fengying Xie, and Jianqi Chen. Tformer: A throughout fusion transformer for multi-modal
649 skin lesion diagnosis. *Computers in Biology and Medicine*, 157:106712, 2023. ISSN 0010-4825. doi:
650 <https://doi.org/10.1016/j.combiomed.2023.106712>.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
A NOTATION704
705
Table 5 summarizes the notation used throughout the manuscript.
706
707708
709
Table 5: Summary of the notation.

Notation	Description
M	Number of patients indexed by $p \in \{1, \dots, M\}$
N_p	Total lesions of patient p indexed by $l \in \{1, \dots, N_p\}$
P_p	Tabular metadata for patient p
L_p^l	Tabular metadata for lesion l of patient p
I_p^l	Lesion image l of patient p
w_p^l	Image encoder output of I_p^l
h_p^l	Tabular encoder output of L_p^l
x_p	Tabular encoder output of P_p
z_p	Linearly transformed output based on $\{w_p^l, h_p^l\}$
D	Dimensionality of each embedding
$\tilde{H} = \{\tilde{h}^l\}_{l=1}^N$	Lesion-level pre-trained features of original dataset
$\tilde{X} = \{\tilde{x}_p\}_{p=1}^M$	Patient-level pre-trained features of original dataset
$\hat{h}^{l'}$	Retrieved features from \tilde{H}
\hat{z}_p	Linearly transformed output based on $\{w_p^l, \hat{h}^{l'}\}$
\hat{x}_p'	Retrieved features from \tilde{X}
\hat{y}_p^l	concat $\{w_p^l, \hat{h}^{l'}, \hat{x}_p'\}$

726
727
B DATASET DETAILS730
731
The following skin-lesion classification datasets are considered:732
733
SLICE-3D (Kurtansky et al., 2024): a public skin lesion dataset containing up to 401,059 15mm-
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
1001010
1001011
1001012
1001013
1001014
1001015
1001016
1001017
1001018
1001019
1001020
1001021
1001022
1001023
1001024
1001025
1001026
1001027
1001028
1001029
1001030
1001031
1001032
1001033
1001034
1001035
1001036
1001037
1001038
1001039
1001040
1001041
1001042
1001043
1001044
1001045
1001046
1001047
1001048
1001049
1001050
1001051
1001052
1001053
1001054
1001055
1001056
1001057
1001058
1001059
1001060
1001061
1001062
1001063
1001064
1001065
1001066
1001067
1001068
1001069
1001070
1001071
1001072
1001073
1001074
1001075
1001076
1001077
1001078
1001079
1001080
1001081
1001082
1001083
1001084
1001085
1001086
1001087
1001088
1001089
1001090
1001091
1001092
1001093
1001094
1001095
1001096
1001097
1001098
1001099
10

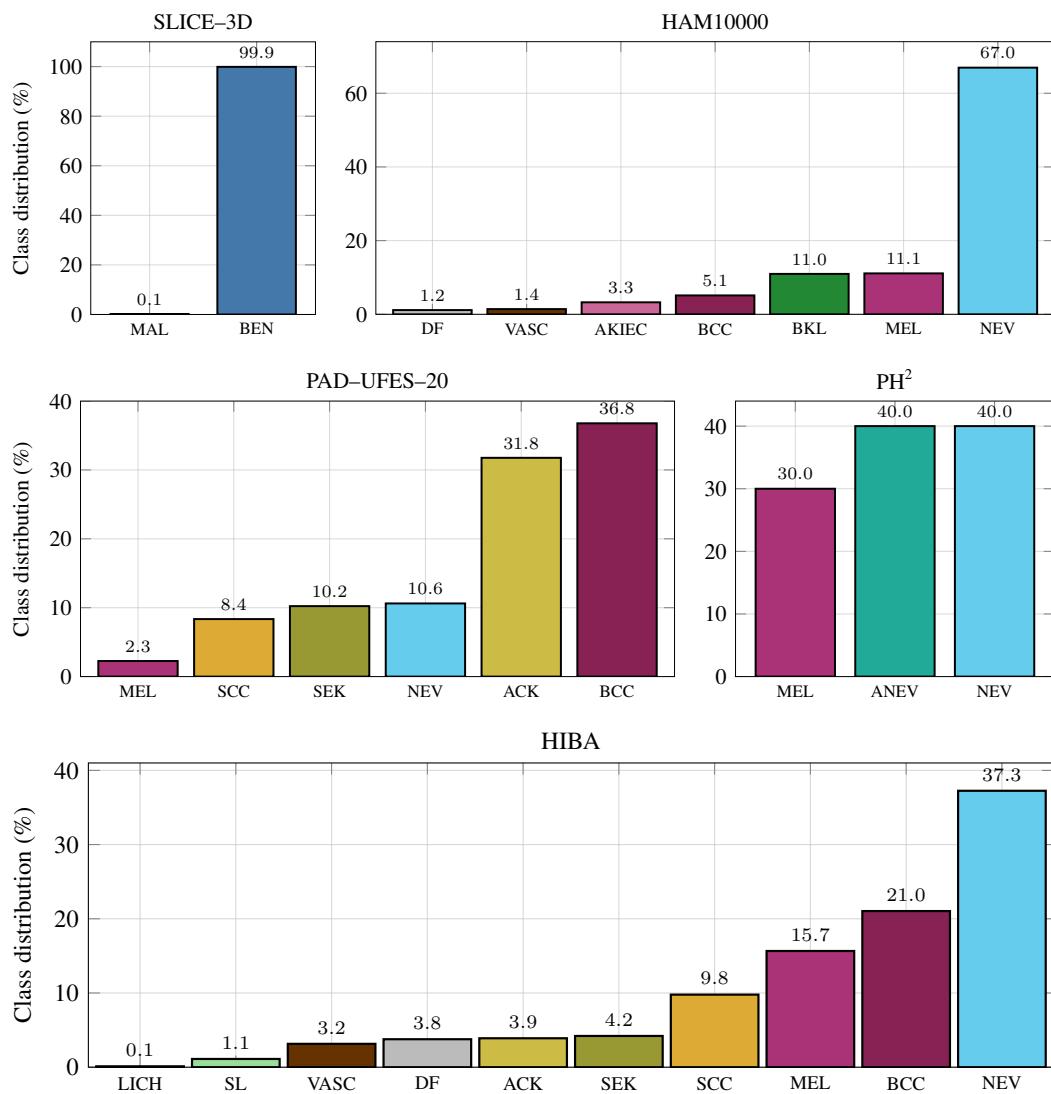


Figure 3: Class distribution within each dataset considered.

lesion features, such as clinical and histological diagnosis, and the assessment of various dermoscopic criteria.

SLICE-3D (Kurtansky et al., 2024), being the largest and most complete one, is considered as the reference dataset for pre-training the SLIMP model. All other datasets are considered as target datasets for performing skin classification using the pretrained model. Unless otherwise stated, evaluation is performed considering binary classification targets (benign/malignant) of the datasets that are better balanced.

For **PAD-UFES-20** (Pacheco et al., 2020), malignant classes include Basal Cell Carcinoma (BCC), Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign classes include Actinic Keratosis (ACK), Nevus (NEV) and Seborrheic Keratosis (SEK). In **HAM10000** (Tschandl et al., 2018), Basal Cell Carcinoma (BCC) and Melanoma (MEL) are categorized as malignant, with benign classes comprising Actinic Keratosis (ACK), Nevus (NEV), Vascular Lesion (VASC), Dermatofibroma (DF), and Benign Keratosis-like Lesions (BKL). In **HIBA** (ISIC, 2024), the malignant class includes Basal Cell Carcinoma (BCC), Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign lesions encompass Actinic Keratosis (ACK), Dermatofibroma (DF), Lichenoid Keratosis (LK), Seborrheic Keratosis (SEK), Nevus (NEV), Vascular Lesion (VASC), and Solar Lentigo (SL). In the case

of **PH2** (Mendonça et al., 2013) dataset, the malignant category consists only of melanomas, while common nevi and atypical nevi were grouped as benign. **SLICE-3D** (Kurtansky et al., 2024), the largest dataset in this study, is inherently binary, with an extremely imbalanced distribution: 99.9% of lesions are benign, while only 0.1% are malignant.

C NESTED CONTRASTIVE LOSS

Letting $s(\cdot, \cdot)$ denote the cosine similarity function and τ a temperature parameter, the two-level nested contrastive loss with a weighting factor $\lambda \in [0, 1]$ is defined as follows:

$$\mathcal{L}_{lesions}^p = -\frac{1}{2N_p} \sum_{l=1}^{N_p} \left(\log \frac{\exp(s(w_p^l, h_p^l)/\tau)}{\sum_{j \in N_p} \exp(s(w_p^l, h_p^j)/\tau)} + \log \frac{\exp(s(h_p^l, w_p^l)/\tau)}{\sum_{j \in N_p} \exp(s(h_p^j, w_p^l)/\tau)} \right), \quad (1)$$

$$\mathcal{L}_{patient} = -\frac{1}{2M} \sum_{p=1}^M \left(\log \frac{\exp(s(z_p, x_p)/\tau)}{\sum_{i \in M} \exp(s(z_p, x_i)/\tau)} + \log \frac{\exp(s(x_p, z_p)/\tau)}{\sum_{i \in M} \exp(s(x_i, z_p)/\tau)} \right), \quad (2)$$

$$\mathcal{L}_{total} = \frac{\lambda}{M} \sum_{p=1}^M \mathcal{L}_{lesions}^p + (1 - \lambda) \mathcal{L}_{patient}. \quad (3)$$

$\mathcal{L}_{lesions}$ and $\mathcal{L}_{patient}$ treat features from the same lesion or patient, respectively, as positive pairs while pushing apart features originating from different lesions or patients.

D ADDITIONAL TRAINING DETAILS

Batch sampling strategy For both the initial and continual self-supervised pre-training stages, we construct each batch with B patients, including their respective patient-level tabular metadata. Additionally, for each patient, we sample N lesion images and their corresponding lesion-level tabular metadata. The number of lesions N varies per patient and is capped by an upper limit N_{max} . If a patient has more lesions, then a subset of $N = N_{max}$ lesions is randomly sampled in each epoch. In addition, a positive lesion sampling strategy is implemented, ensuring that, if a patient has malignant lesions, they are always included in the N lesions sampled during training. This ensures that the model encounters an adequate number of malignant lesions. [Section F provides a relative ablation.](#)

For the retrieval-based extrapolation setup, where the images from the target dataset lack both lesion and patient metadata, we create two independent pools with tabular features derived from the metadata of the SLICE-3D reference dataset by passing them through the pre-trained inner and outer tabular encoders. This step does not preserve any association between patients and their corresponding lesions. Consequently, the retrieval process of patient/lesion-level metadata is not constrained to select features from the same patient across every modality, maximizing the flexibility of the proposed architecture.

Training details of SLIMP During self-supervised training, both in the initial pre-training on SLICE-3D and in the continual pre-training on the target dataset, SLIMP uses the same nested lesion-level and patient-level InfoNCE objectives ($\mathcal{L}_{lesions}$ and $\mathcal{L}_{patient}$). During reference pre-training on the SLICE-3D dataset, all components of the architecture, including the ViT backbone and the lesion- and patient-metadata encoders, are fully optimized. Instead, during self-supervised continual pre-training, SLIMP is adapted on the unlabeled data of the target datasets by fine-tuning the embedding layers of the image and metadata encoders while keeping all other layers frozen. Specifically, the ViT patch-embedding layer and the input-embedding layers of the two TRACE tabulat encoders are fine-tuned, keeping the rest of the blocks frozen. This strategy enables a slight but effective domain-adaptation as shown in Table 14 where it consistently outperforms fine-tuning all the model parameters. Both pre-training stages are entirely class-agnostic.

For supervised downstream skin-lesion classification, all encoders remain frozen and a linear classifier is trained, as defined in a standard Linear Probing schema, with a *Cross-Entropy* loss. If the target dataset misses patient-level and/or lesion-level metadata, we first apply retrieval-based metadata

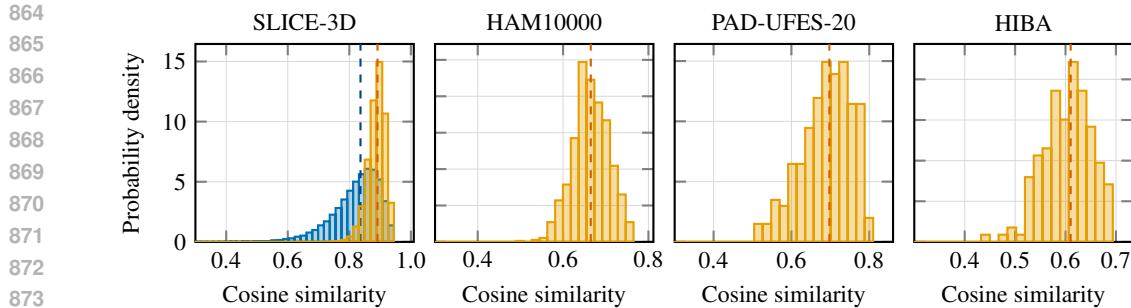


Figure 4: Cosine similarity distributions between image and metadata representations. On SLICE-3D validation hold-out set, we report the similarity to the [ground-truth metadata](#) and to [metadata retrieved from the training set](#) using SLIMP. For HAM10000, PAD-UFES-20, and HIBA, the retrieved-metadata distributions are shown. Dashed vertical lines indicate the median similarity for each distribution.

[extrapolation at inference time without updating any encoder parameters \(see Section 3\), and then apply linear probing using the resulting multi-modal features.](#)

Training details of supervised methods We pre-train SBCL (Hou et al., 2023) with a ResNet-32 architecture, for 1000 epochs on the SLICE-3D dataset, followed by a dataset-specific continual pre-training (SBCL-C) for 100 epochs. Both pre-training setups use the SGD optimizer with a learning rate of 0.5 for the initial pre-training and $1e^{-2}$ for the continual pre-training. We evaluate each target dataset on the corresponding SBCL-C model by applying linear classification for 150 epochs (following the SLIMP linear probing setting) with a learning rate of 0.1. During linear classification, we select the Classifier-Balancing (CB) (Kang et al., 2020) train rule, which proved to outperform LDAM (Label-Distribution-Aware Margin Loss) (Cao et al., 2019).

Regarding TFormer (Zhang et al., 2023), we utilize the variant designed to process two modalities, namely clinical images and tabular metadata, since the target datasets do not explicitly provide clinical and dermoscopic image pairs of the same lesion. During training, TFormer was fine-tuned on each target dataset, using the Adam optimizer with a learning rate of $1e^{-4}$, and a weight decay of $1e^{-4}$. The learning rate was adjusted dynamically through the Cosine Annealing learning rate scheduler. The loss function used throughout the training process was Binary Cross-Entropy.

E STRUCTURE OF EMBEDDING SPACE

Table 6 reports the distribution percentiles of the cosine similarity between the image features with the matching (positive) and non-matching (negative) metadata embeddings on the SLICE-3D dataset, noting that each of them is well approximated by a unimodal, almost symmetric distribution. Importantly, the distribution of the negative pairs lies far away from the distribution of the positive pairs, showing a significant separability in the embedding space, indicating that a well-structured representation space has been recovered during the pre-training phase.

To provide some further insight, we consider a small subset of SLICE-3D (10%) as a validation set and we produce the distribution of the similarity scores between the images of this set with the matching metadata in the embedding space, as well as the corresponding distribution of the similarity scores with the most similar metadata retrieved from the training set. The distributions are shown in Figure 4, suggesting that there is a good agreement between them. Moreover, Figure 4 presents the similarity score distributions between the images from the targets datasets and the retrieving metadata from the SLICE-3D reference dataset. Although these distributions, as expected, are shifted towards lower scores, still the alignment between the image-metadata representations is quite satisfactory.

Table 6: Percentiles of cosine similarity between image features and matching vs. non-matching metadata embeddings on SLICE-3D.

Percentile	2%	10%	25%	50%	75%	90%	98%
Non-Matching	-0.328	-0.213	-0.117	-0.006	0.109	.217	0.369
Matching	0.614	0.717	0.780	0.836	0.878	0.906	0.931

918 This in part explains why the proposed metadata extrapolation method can lead to improved results,
 919 as can be seen by the comparison between Pre-SLIMP and Ret-SLIMP in Table 2.
 920

921 Moreover, Table 7 reports the Recall@k
 922 metrics on the SLICE-3D validation set to
 923 directly assess whether the true metadata
 924 associated with a given image is among the
 925 top retrieved candidates. The fact that R@1
 926 exceeds 45% demonstrates that the model retrieves the correct metadata as the top match nearly half
 927 of the time. Given that the validation set contains over 40,000 samples, this indicates that the model
 928 is capturing important alignment cues between image and metadata modalities. The rapid increase
 929 between R@1 and R@5/R@10 further indicates that the matching metadata is usually found within a
 930 very narrow ranking window, reflecting a well-structured embedding space. Notably, R@100 reaches
 931 99%, an important result given the size of the validation set.

F EXTENDED ABLATION

934 We report additional ablations concerning the choice of image and tabular encoders, as well as the
 935 patient batch size. In the tables below, we highlight in light blue the reference configuration adopted
 936 in the experiments of the main text.
 937

F.1 IMAGE ENCODER

940 We consider the influence of the image encoder size on the downstream skin lesion classification task.
 941 Specifically, we consider the Tiny, Small & Base ViT variants (Dosovitskiy et al., 2021; Touvron
 942 et al., 2021). Table 8 shows the influence of the image encoder size on the performance metrics
 943 across four datasets: PAD-UFES-20, HIBA, HAM10000, and PH2. Interestingly, the influence of the
 944 image encoder size in the case of SLIMP is reduced, which can be attributed to the complementary
 945 information added by the metadata through the tabular encoder. Table 9 reports the number of
 946 parameters for the different image encoder sizes, with ViT-Base being approximately 4× larger than
 947 ViT-Small and 15× larger than ViT-Tiny.
 948

949 Table 8: Impact of image encoder size on the skin classification performance using SLIMP. Best
 950 results in **bold**.

	PAD-UFES-20				HIBA				HAM10000				PH2				
	Acc	BA	F1	AUC	Acc	BA	F1	AUC	Acc	BA	F1	AUC	Acc	BA	F1	AUC	
Inprob	SLIMP w/ ViT-T	89.6	89.0	.908	.922	89.5	89.3	.904	.939	84.7	81.7	.665	.910	95.0	91.7	.909	1.00
	SLIMP w/ ViT-S	90.9	90.2	.921	.926	92.0	91.9	.925	.954	87.3	83.5	.707	.923	100	100	1.00	1.00
KNN	SLIMP w/ ViT-B	87.8	86.9	.896	.899	83.3	83.0	.851	.918	81.7	72.4	.553	.862	90.0	83.3	.800	1.00
	SLIMP w/ ViT-T	81.7	81.4	.837	.858	83.3	83.2	.842	.904	85.7	74.9	.612	.904	90.0	83.3	.800	1.00
KNN	SLIMP w/ ViT-S	93.5	93.2	.942	.911	87.7	87.5	.885	.849	85.8	78.0	.645	.893	95.0	96.4	.923	.940
	SLIMP w/ ViT-B	84.8	84.4	.865	.900	81.5	81.3	.830	.887	82.3	64.4	.438	.851	80.0	66.7	.500	1.00

956 Table 9: Number of parameters (millions) for the proposed SLIMP method for different image and
 957 tabular encoders.

	ViT-Tiny	w/ TRACE		w/ FT-Transformer	
		ViT-Small	ViT-Base	ViT-Small	ViT-Base
SLICE-3D	8.7	34.3	136	99.9	
PAD-UFES-20	2.2	8.3	32.6		
HIBA	2.1	8.0	31.3	78.5	
HAM10000	2.1	8.0	31.3		

958 The choice of N , the number of images and lesions selected per patient during training, also plays
 959 a role in performance differences. For ViT-Tiny and ViT-Small, $N = 100$ was chosen to balance
 960 computation and training efficiency, while for ViT-Base, $N = 50$ was used due to the model’s
 961 significantly larger size and computational requirements. This may partially explain the performance
 962 drop observed in ViT-Base architectures, as the model has less diverse per-patient data for training.
 963 In summary, ViT-Small tends to strike the best balance between performance and model complexity,
 964 as seen across most datasets.

972
 973 Table 10: Comparison between the generic tabular encoder FT-Transformer and the tabular encoder
 974 for medical data TRACE. Best results in **bold**.

		PAD-UFES-20				HIBA				HAM10000			
		Acc	BA	F1	AUC	Acc	BA	F1	AUC	Acc	BA	F1	AUC
976 <small>linprob</small>	SLIMP w/ FT-Transformer	89.6	89.1	.908	.946	84.6	84.0	.871	.910	80.2	50.0	.000	.655
	SLIMP w/ TRACE	90.9	90.2	.921	.926	92.0	91.9	.925	.954	87.3	83.5	.707	.923
978 <small>kNN</small>	SLIMP w/ FT-Transformer	87.4	87.2	.886	.939	82.7	82.6	.837	.882	77.7	52.4	.159	.745
	SLIMP w/ TRACE	93.5	93.2	.942	.911	87.7	87.5	.885	.849	85.8	78.0	.645	.893

981 F.2 TABULAR ENCODER

983 We compare the performance of SLIMP considering two tabular encoders: FT-Transformer (Gor-
 984 ishniy et al., 2021) and TRACE (Christopoulos et al., 2025). Table 10 presents the corresponding
 985 performance across all datasets, using ViT-Small as the image encoder. TRACE, which is specialized
 986 for clinical data, consistently outperforms the generic FT-Transformer across all datasets and metrics
 987 considered, despite the fact that SLIMP with FT-Transformer has a significantly larger number of
 988 parameters, as shown in Table 9. In fact, despite being over four times bigger, FT-Transformer does
 989 not achieve the same level of performance. Moreover, in contrast to the adopted tabular encoder
 990 TRACE, FT-Transformer requires a significant amount of hyperparameter tuning to achieve optimal
 991 performance. These observations suggest that the task-specific design of TRACE offers a better
 992 balance of efficiency and performance when working with medical metadata, making it a more
 993 suitable choice for SLIMP.

994 Table 11 compares the computational complexity, measured
 995 in GFLOPS, for SimCLR,
 996 SLIMP with FT-Transformer,
 997 and SLIMP with TRACE with
 998 different encoder sizes (ViT-
 999 Tiny, ViT-Small, ViT-Base).
 1000 Naturally, computational costs
 1001 scale with the size of the ViT
 1002 encoder, highlighting the trade-
 1003 off between model size and ef-
 1004 ficiency. In relation to metadata encoding, SimCLR which lacks metadata encoding, is slightly more
 1005 efficient compared to the proposed multimodal SLIMP method, but SLIMP generally performs better,
 1006 as has been shown in the results presented in the main text. On the other hand, the FT-Transformer
 1007 tabular encoder introduces a significant overhead. The reference configuration featuring SLIMP
 1008 with TRACE is a more balanced choice, offering improved performance with significantly less
 1009 GFLOPS compared to the FT-Transformer. The number of GFLOPS for the supervised approaches
 1010 SBCL, SBCL-C and TFormer are also reported in the table for comparison. Additionally, Table 12,
 1011 reports the number of parameters and the relative training time between SimCLR, SLIMP, SBCL
 1012 and TFormer. Relative training times are normalized with respect to the SimCLR’s training time on
 1013 SLICE-3D.

1014
 1015 Table 11: Comparison of computational complexity in terms of
 1016 GFLOPS between SBCL(-C), TFormer, SimCLR, SLIMP with FT-
 1017 Transformer, and SLIMP with TRACE with different encoder sizes.
 1018 ViT-T, ViT-S and ViT-B correspond to ViT-Tiny, ViT-Small and
 1019 ViT-Base, respectively.

	GFLOPS
SBCL(-C)	0.564
TFormer	4.509
SimCLR	1.258 4.608 17.582 (ViT-T ViT-S ViT-B)
SLIMP w/ FT-Transformer	1.694 6.298 24.233 (ViT-T ViT-S ViT-B)
SLIMP w/ TRACE	1.298 4.765 18.203 (ViT-T ViT-S ViT-B)

1017 Table 12: Model size comparison based on the total trainable parameters for every dataset (columns)
 1018 and the relative training time, normalized to SimCLR’s training time on SLICE-3D.

		SLICE-3D	PAD-UFES-20	HIBA	HAM10000	PH2
1019 <small># params</small>	SimCLR	5.5M				
	SLIMP	34.3M	8.3M	8.0M	8.0M	4.1M
	SBCL	0.5M	0.5M	0.5M	0.5M	0.5M
	TFormer		27.8M	27.8M	27.8M	27.8M
1020 <small>rel. time</small>	SimCLR	1				
	SLIMP	0.3	0.04	0.03	0.1	0.002
	SBCL	0.2	0.06	0.05	0.01	0.002
	TFormer		0.01	0.01	0.04	0.002

1026 F.3 POSITIVE SAMPLING STRATEGY
1027

1028 To assess the impact of the
1029 positive sampling strategy, we
1030 train a SLIMP variant on
1031 SLICE-3D with uniform
1032 lesion sampling (w/o p.s.). As
1033 reported in Table 13, positive
1034 sampling (w/ p.s.) provides
1035 small, yet consistent perfor-
1036 mance gains across all three target
1037 datasets (e.g., accuracy gains
1038 89.6%→90.9% on PAD-UFES-20,
1039 89.5%→92.0% on HIBA, 86.0%→87.3%
1040 on HAM10000). Hence, although global performance
1041 does not critically depend on positive sampling due to the dominance of benign signal, this strategy
1042 ensures the model encounters rare malignant phenotypes during pre-training, improving the model’s
1043 ability to discriminate diverse lesion characteristics in downstream tasks.

1044 F.4 IMAGE ENCODER FINETUNING
1045

1046 Restricting fine-tuning to the image em-
1047 bedding layers leads to improved results
1048 because it mitigates catastrophic forget-
1049 ting. In fact, there is a significant domain
1050 shift between the reference and the target
1051 datasets, both because of the diverging na-
1052 ture of their metadata attributes and due
1053 to the different modality of the images in
1054 each dataset. By updating only the em-
1055 bedding layers, SLIMP preserves the repre-
1056 sentations learned on the much larger (and
1057 with richer metadata) SLICE-3D dataset
1058 while still adapting to the divergent char-
1059 acteristics of the target datasets. To validate this, we provide Table 14 comparing two scenarios. The
1060 first row of each dataset reports the performance after full fine-tuning of all encoder parameters,
1061 while the second one reports the strategy adopted in SLIMP, namely limiting the fine-tuning to the
1062 embedding layers only. We observe that the latter strategy consistently yields improved performance
1063 across all datasets and metrics.

1064 F.5 PATIENT BATCH SIZE
1065

1066 We examine the impact of the patient
1067 batch size considered in the continual pre-
1068 training of the SLIMP on the PAD-UFES-
1069 20 dataset. Table 15 shows how the patient
1070 batch size affects performance on binary
1071 skin lesion classification. We observe that
1072 smaller batch sizes, such as $B = 4$ and
1073 $B = 8$, yield slightly lower Balanced Accur-
1074 acy (BA) and F1 scores, while larger batch
1075 sizes lead to improved performance across
1076 all metrics but AUC. $B = 64$ achieves the
1077 highest BA of 90.2% and an F1 score of
1078 0.921. Interestingly, further increasing the
1079 batch size (e.g., $B = 128$ or $B = 256$)

1080 does not result in further performance gains and, in most cases, slightly decreases overall perfor-
1081 mance. This further highlights the importance of carefully choosing the patient batch size considered
1082 in the pre-training, as it can significantly impact performance. The choice $B = 64$ strikes an effective
1083 balance, justifying its choice as the reference configuration.

1084 Table 13: Uniform (w/o p.s) vs. positive sampling (w/ p.s) ablation
1085 on PAD-UFES-20, HIBA and HAM10000 datasets.

	PAD-UFES-20			HIBA			HAM10000		
	Acc	BA	AUC	Acc	BA	AUC	Acc	BA	AUC
w/o p.s.	89.6	89.9	.926	89.5	89.3	.933	86.0	84.6	.919
w/ p.s.	90.9	90.2	.926	92.0	91.9	.954	87.3	83.5	.923

1086 Table 14: Comparison of full fine-tuning (✓) and
1087 embeddings-only tuning (✗) across target datasets. Best
1088 results in **bold**.

Dataset	FT	Acc	BAcc	F1	AUC
PAD-UFES-20	✓	87.0	86.7	0.883	0.922
	✗	90.9	90.2	0.921	0.926
HIBA	✓	88.9	88.7	0.898	0.937
	✗	92.0	91.9	0.925	0.954
HAM10000	✓	86.5	73.7	0.606	0.917
	✗	87.3	83.5	0.707	0.923

1089 To validate this, we provide Table 14 comparing two scenarios. The
1090 first row of each dataset reports the performance after full fine-tuning of all encoder parameters,
1091 while the second one reports the strategy adopted in SLIMP, namely limiting the fine-tuning to the
1092 embedding layers only. We observe that the latter strategy consistently yields improved performance
1093 across all datasets and metrics.

1094 Table 15: Performance of the SLIMP method with
1095 different batch sizes (B) during the continual self-
1096 supervised learning stage on the PAD-UFES-20 dataset.
1097 Best results in **bold**.

	Acc	BA	F1	AUC
SLIMP _{B=4}	90.0	86.4	.886	.907
SLIMP _{B=8}	89.1	88.4	.906	.911
SLIMP _{B=32}	88.7	88.4	.898	.928
SLIMP _{B=64}	90.9	90.2	.921	.926
SLIMP _{B=128}	89.6	89.1	.908	.918
SLIMP _{B=256}	89.6	89.1	.908	.927

1080
1081

F.6 PATIENT-DISJOINT SPLITS

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

To evaluate the robustness of SLIMP under stricter evaluation protocols, we additionally measure performance using patient-disjoint splits, where all lesions originating from the same patient are assigned to the same split. We construct these splits while maintaining a lesion-level ratio as close as possible to the standard 90%-10% train/validation division.

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

The top three rows of Table 16 report the downstream classification performance considering these patient-disjoint splits across the PAD-UFES-20, HIBA, and HAM10000 datasets, while the last three rows of the table summarize the performance obtained using our standard lesion-level splitting strategy over three random seeds. We observe that the patient-disjoint results consistently fall within the variation ranges observed in the multi-seed lesion-level results. For example, HIBA achieves a Balanced Accuracy of 91.8% under patient-disjoint splits, which lies well within the range of $91.2\% \pm 1.4\%$ obtained under our standard lesion-level splits. Similar trends are observed for PAD-UFES-20 and HAM10000. In several cases (e.g., HIBA and HAM10000), the patient-disjoint performance even surpasses the average performance of the lesion-level splits. These findings indicate that SLIMP does not rely on patient overlap across splits to achieve strong downstream performance, and that its representations remain stable under patient-level isolation.

1104

F.7 RETRIEVAL ABLATIONS

1105

To further evaluate our retrieval-based metadata extrapolation approach, we consider comparison with two alternative strategies. The proposed approach shown in Figure 2 (right) operates in two stages. In the first stage image features from the target dataset are used to retrieve the closest lesion-level metadata from the reference dataset, and in the second stage the retrieved image and lesion embeddings are jointly used to retrieve the closest patient-level metadata. This ensures that the retrieved patient metadata is semantically aligned with the target lesion, rather than simply being the metadata associated with the initially retrieved reference lesion. Table 17 compares this approach with two alternatives. The first alternative, considers Image-to-Image ($I \rightarrow I$) retrieval, where we retrieve the most similar lesion from the reference dataset relying solely on the image features and directly use the lesion and patient metadata associated with the corresponding lesion. In the second alternative ($I \rightarrow L$), we consider a single-stage approach where lesion metadata are retrieved from the reference dataset given the image features, combined with the metadata of the patient who has the retrieved lesion. The results show that the full two-stage retrieval strategy ($I \rightarrow L \rightarrow P$) consistently yields the strongest overall performance across all datasets, highlighting the advantage of retrieving patient-level using the learned embedding space, rather than relying solely on image-based or lesion-level associations.

1129

1130

G ADDITIONAL EXPERIMENTS

1131
1132
1133

G.1 KNN CLASSIFICATION PERFORMANCE

Table 16: Evaluation of SLIMP under standard (joint) vs. patient-disjoint evaluation splits. For the standard splitting strategy, we report the mean performance and corresponding standard deviation for each metric across three random dataset splits.

		Acc	BA	F1	AUC
disjoint	PAD-UFES-20	89.5	89.6	.894	.940
	HIBA	91.7	91.8	.915	.954
	HAM10000	87.9	80.8	.676	.926
joint	PAD-UFES-20	90.6 ± 0.9	90.4 ± 0.8	$.909 \pm .017$	$.935 \pm .001$
	HIBA	91.2 ± 1.4	91.2 ± 1.4	$.911 \pm .016$	$.951 \pm .010$
	HAM10000	87.8 ± 0.4	81.6 ± 1.7	$.694 \pm .016$	$.926 \pm .000$

Table 17: Comparison of three alternative metadata extrapolation strategies. Best results in **bold**.

Dataset	Method	Acc	BAcc	AUC
PAD-UFES-20	$I \rightarrow I$	73.0	73.5	.765
	$I \rightarrow L$	73.5	73.2	.765
	$I \rightarrow L \rightarrow P$	77.0	77.0	.814
HIBA	$I \rightarrow I$	77.2	77.2	.815
	$I \rightarrow L$	76.5	76.6	.862
	$I \rightarrow L \rightarrow P$	81.5	81.3	.861
HAM10000	$I \rightarrow I$	83.3	67.5	.830
	$I \rightarrow L$	83.4	63.6	.833
	$I \rightarrow L \rightarrow P$	82.2	71.0	.836

Table 17 compares this approach with two alternatives. The first alternative, considers Image-to-Image ($I \rightarrow I$) retrieval, where we retrieve the most similar lesion from the reference dataset relying solely on the image features and directly use the lesion and patient metadata associated with the corresponding lesion. In the second alternative ($I \rightarrow L$), we consider a single-stage approach where lesion metadata are retrieved from the reference dataset given the image features, combined with the metadata of the patient who has the retrieved lesion. The results show that the full two-stage retrieval strategy ($I \rightarrow L \rightarrow P$) consistently yields the strongest overall performance across all datasets, highlighting the advantage of retrieving patient-level using the learned embedding space, rather than relying solely on image-based or lesion-level associations.

To further enhance our evaluation protocol, we performed k-nearest neighbors (kNN) classification for the downstream skin lesions classification task. Unlike linear probing, kNN offers a training-free evaluation that directly measures how well the learned feature space clusters samples of the same class. This protocol is widely adopted in contrastive and self-supervised learning, as it avoids introducing additional parameters or optimization choices while still reflecting the discriminative power of the representations. As reported in Table 18, SLIMP consistently surpasses all baselines across datasets, with the sole exception of HAM10000, and achieves an average accuracy improvement of 5.1% over the second-best method. These results further support the findings reported in the main text, and demonstrate that the embedding space recovered by SLIMP is well-structured, even without task-specific fine-tuning.

Table 18: **kNN accuracy** (%) on the binary classification task across four target datasets. The average performance is reported in the last column. Best results are in **bold**, second best are underlined. (PAD: PAD-UFES-20)

Method	PAD	HAM10000	HIBA	PH2	AVG
MAE	66.1	85.8	76.5	95.0	80.9
BEiT v2	75.7	<u>87.6</u>	77.8	80.0	80.3
DINOv2	72.6	83.8	77.2	95.0	82.2
CLIP	72.6	86.6	80.9	95.0	83.8
SigLIP	77.0	86.0	78.4	<u>90.0</u>	82.9
SigLIP-2	75.7	85.1	80.9	<u>90.0</u>	82.9
WL-CLIP	76.5	89.7	<u>85.2</u>	<u>90.0</u>	<u>85.4</u>
SimCLR	67.4	87.2	80.3	62.5	74.4
SLIMP _{FLAT}	81.3	84.1	77.8	95.0	84.6
SLIMP _{B=4}	93.5	85.9	87.7	95.0	90.5

G.2 MULTICLASS CLASSIFICATION

In Table 19 we evaluate our proposed SLIMP method in a multiclass classification setting on PAD-UFES-20 dataset, in comparison with the baselines from Table 2. We report results for the overall Accuracy (Acc), F1-macro (which ensures equal contribution from minority classes), and F1-weighted (which accounts for class imbalance). Notably, SLIMP outperforms all baselines across all metrics, highlighting the robustness of SLIMP in handling imbalanced multiclass classification tasks. We note that techniques addressing class imbalance can be combined with SLIMP to further improve multiclass classification performance.

Table 19: Multiclass classification results on PAD-UFES-20 dataset. The *Metadata* column indicates whether metadata are used during the downstream classification task. Best results in **bold** second best are underlined.

Method	Metadata	Acc	F1-macro	F1-weighted
MAE	✗	70.0	.631	.692
DINOv2	✗	73.0	.614	.726
BEiT v2	✗	74.4	<u>.714</u>	.738
CLIP	✗	70.9	.584	.698
SigLIP	✗	73.9	.680	.724
SigLIPv2	✗	74.8	.700	.745
WL-CLIP	✗	72.2	.650	.726
SimCLR	✗	<u>84.2</u>	.688	<u>.826</u>
SBCL	✗	45.7	.289	.433
SLIMP	✓	85.2	.833	.845
TFormer	✓	78.7	.698	.792

G.3 RETRIEVAL

We conduct Image-to-Text (I2T) and Text-to-Image (T2I) downstream retrieval tasks across three target datasets (PAD-UFES-20, HAM10000, HIBA) comparing our proposed method, SLIMP with multi-modal baselines such as CLIP, SigLIP, SigLIP-2 and WhyLesionCLIP. For the baseline methods, we convert the tabular metadata into natural language descriptions using a large language model (GPT-4o). For SLIMP, both I2T and T2I tasks are performed using tabular metadata processed directly by our tabular encoder. The retrieval follows an instance-level protocol, where for T2I the ground truth is the lesion image described by a given description/metadata instance, and for I2T the true match is the specific set of either tabular metadata or textual description, corresponding to the input image. Queries for both tasks are drawn from the validation split of each target dataset, which remains unseen during all training phases.

1188
 1189 Table 20: **Image-to-Text** retrieval performance on three target datasets. We compare SLIMP
 1190 against cross-modal pretraining baselines; CLIP, SigLIP, SigLIP-2, and WhyLesionCLIP (WL-CLIP).
 1191 Retrieval is evaluated using Recall at rank k (R@k), Normalized Discounted Cumulative Gain at k
 1192 (N@k), and mean average precision (mAP). Best results in **bold**, second best are underlined.

Models	R@5	R@10	R@15	R@20	R@100	N@5	N@10	N@15	N@20	N@100	mAP
<i>PAD-UFES-20</i>											
CLIP _{ViT-B}	3.3	7.0	10.2	13.7	51.5	1.8	3.0	3.9	4.8	11.5	3.2
SigLIP _{ViT-B}	6.5	8.0	<u>12.6</u>	<u>14.4</u>	<u>53.5</u>	4.3	4.9	6.3	<u>6.7</u>	<u>13.5</u>	5.5
SigLIP-2 _{ViT-B}	<u>7.4</u>	<u>9.8</u>	11.7	13.3	49.4	<u>5.0</u>	<u>5.8</u>	<u>6.4</u>	<u>6.7</u>	13.2	<u>5.6</u>
WL-CLIP _{ViT-L}	2.6	6.1	11.3	12.4	52.0	1.3	2.5	3.8	4.1	11.1	3.0
SLIMP_{ViT-S}	9.0	14.8	19.0	28.2	77.2	5.6	7.5	8.8	11.2	20.9	7.9
<i>HAM10000</i>											
CLIP _{ViT-B}	0.6	1.0	1.4	2.1	10.9	0.5	0.7	0.8	1.0	3.6	1.9
SigLIP _{ViT-B}	1.0	1.5	2.2	<u>2.9</u>	12.0	<u>0.9</u>	1.1	1.4	1.6	4.4	2.4
SigLIP-2 _{ViT-B}	0.6	1.2	2.2	2.8	11.8	0.8	1.0	1.3	1.6	4.5	2.5
WL-CLIP _{ViT-L}	<u>1.2</u>	2.6	3.6	4.8	21.7	1.2	<u>1.7</u>	<u>2.2</u>	<u>2.7</u>	7.5	<u>3.6</u>
SLIMP_{ViT-S}	<u>1.0</u>	1.9	2.4	<u>2.9</u>	15.5	<u>0.9</u>	3.3	4.9	5.8	13.1	18.5
<i>HIBA</i>											
CLIP _{ViT-B}	3.9	7.4	10.5	13.6	66.4	2.6	3.9	4.6	5.5	15.6	4.8
SigLIP _{ViT-B}	3.5	8.9	15.1	20.7	72.4	3.5	5.7	7.4	8.9	18.7	6.6
SigLIP-2 _{ViT-B}	3.6	6.2	14.7	19.7	78.0	2.2	3.0	5.5	6.9	18.6	4.9
WL-CLIP _{ViT-L}	11.6	<u>18.0</u>	<u>24.8</u>	35.1	90.1	<u>7.9</u>	<u>10.4</u>	<u>12.3</u>	<u>15.5</u>	<u>26.3</u>	<u>10.9</u>
SLIMP_{ViT-S}	<u>9.4</u>	20.0	27.5	<u>33.8</u>	<u>89.2</u>	15.2	20.2	24.5	27.7	51.5	32.4

1208
 1209
 1210 We report the retrieval results for I2T and T2I tasks, in tables 20 and 21 respectively. We evaluate
 1211 retrieval using three metrics: Recall at rank k (R@k), Normalized Discounted Cumulative Gain
 1212 (N@k) and mean Average Precision (mAP). N@k rewards relevant items appearing higher in the
 1213 ranking and is a particularly critical metric in clinical evaluation tasks. Across all three target datasets,
 1214 our approach substantially outperforms the baselines in most cases, often by large margins, despite
 1215 being based on a ViT-S backbone while the competing methods were evaluated with larger ViT-B/L
 1216 models. The gains we report in PAD-UFES-20 and HIBA, where rich patient- and lesion-level
 1217 metadata are available, underscore the robustness of our method in leveraging structured clinical
 1218 information. On HAM10000 dataset, our model still achieves the best retrieval quality in terms of
 1219 NDCG. Notably, we outperform WhyLesionCLIP on the mAP metric, with gains of **+4.9**, **+14.9**, and
 1220 **+21.5** for I2T retrieval on PAD-UFES-20, HAM10000, and HIBA, respectively, and **+3.6**, **+11.3**, and
 1221 **+18.0** for T2I retrieval on the same datasets.

1222
 1223 Table 21: **Text-to-Image** retrieval performance on three target datasets. We compare SLIMP
 1224 against cross-modal pretraining baselines; CLIP, SigLIP, SigLIP-2, and WhyLesionCLIP (WL-CLIP).
 1225 Retrieval is evaluated using Recall at rank k (R@k), Normalized Discounted Cumulative Gain at k
 1226 (N@k), and mean average precision (mAP). Best results in **bold**, second best are underlined.

Models	R@5	R@10	R@15	R@20	R@100	N@5	N@10	N@15	N@20	N@100	mAP
<i>PAD UFES 20</i>											
CLIP _{ViT-B}	<u>6.1</u>	8.5	9.8	11.5	50.7	<u>4.1</u>	<u>4.9</u>	<u>5.3</u>	5.7	12.6	4.5
SigLIP _{ViT-B}	4.4	7.2	<u>10.2</u>	13.0	<u>54.8</u>	3.0	4.0	4.9	5.6	<u>13.1</u>	4.5
SigLIP-2 _{ViT-B}	5.7	<u>8.9</u>	<u>10.2</u>	<u>13.7</u>	48.9	3.7	<u>4.9</u>	5.2	<u>6.1</u>	12.5	4.9
WL-CLIP _{ViT-L}	3.9	<u>6.5</u>	8.5	10.2	45.7	3.1	3.6	4.2	4.6	11.0	4.0
SLIMP_{ViT-S}	8.7	16.1	26.1	30.0	78.3	6.7	10.4	13.5	14.5	22.3	7.6
<i>HAM10000</i>											
CLIP _{ViT-B}	0.7	1.2	1.6	1.8	9.4	1.5	2.0	2.2	2.4	7.4	1.3
SigLIP _{ViT-B}	<u>1.2</u>	<u>2.2</u>	2.4	3.3	13.6	2.5	4.3	4.6	5.4	9.9	1.9
SigLIP-2 _{ViT-B}	0.9	1.8	<u>2.8</u>	<u>3.5</u>	14.0	1.3	2.1	2.8	3.3	9.5	1.8
WL-CLIP _{ViT-L}	<u>1.5</u>	3.1	4.7	6.5	19.7	<u>3.0</u>	<u>5.0</u>	<u>6.0</u>	<u>7.0</u>	<u>11.6</u>	<u>2.3</u>
SLIMP_{ViT-S}	1.1	2.0	2.7	3.4	<u>16.8</u>	34.2	36.6	39.8	41.2	46.6	13.6
<i>HIBA</i>											
CLIP _{ViT-B}	2.5	7.1	11.3	13.8	65.8	1.2	3.6	5.0	5.6	15.8	3.5
SigLIP _{ViT-B}	2.5	6.5	11.1	17.3	77.9	2.0	3.6	4.5	6.0	18.4	4.0
SigLIP-2 _{ViT-B}	3.7	10.5	13.2	18.7	69.8	4.0	6.8	7.7	9.6	18.2	5.4
WL-CLIP _{ViT-L}	<u>9.3</u>	<u>17.9</u>	<u>21.3</u>	<u>28.0</u>	<u>84.0</u>	<u>7.4</u>	<u>11.5</u>	<u>12.6</u>	<u>14.7</u>	<u>23.8</u>	<u>8.6</u>
SLIMP_{ViT-S}	10.4	20.4	27.7	32.0	92.0	45.0	52.1	54.8	57.2	57.6	26.6

1242 G.4 TEXTUAL DATA
1243

1244 We reproduce a concept-based interpretability (CBI) method (Patrício et al., 2024), by adapting
1245 CLIP on the SLICE-3D dataset, considering a ViT-B/16 backbone architecture which offers optimal
1246 results. This methodology uses visual-language models for exploiting textual concepts for melanoma
1247 classification offering three different variants; (1) the *Baseline* approach, which directly applies CLIP,
1248 selecting the label that achieves the highest cosine similarity between the image and text embeddings,
1249 (2) the *CBM* approach, which introduces dermoscopic concepts and utilizes melanoma-specific
1250 coefficients to make predictions and (3) the *GPT-CBM* approach, which extends each dermoscopic
1251 concept introduced in CBM with multiple textual descriptions by querying it into ChatGPT.

1252 In Table 22 we compare the performance of the above approaches, with our proposed SLIMP method,
1253 across three different target datasets, in a ‘melanoma vs all’ classification scenario. SLIMP is only
1254 adapted during linear probing while all pre-trained models on SLICE-3D dataset remain unchanged,
1255 highlighting the robustness of the learned representations. SLIMP consistently outperforms all other
1256 approaches without the need of task-specific pre-training.

1258 Table 22: Comparison of SLIMP method with CBI variants across three target datasets. Results for
1259 the proposed SLIMP method are obtained using a linear probing setting. Best results in **bold**.

	PAD-UFES-20				HIBA				HAM10000			
	Acc	BA	F1	AUC	Acc	BA	F1	AUC	Acc	BA	F1	AUC
Baseline	23.9	51.3	.044	.422	68.5	54.8	.261	.502	72.0	58.6	.247	.595
CBM	78.7	69.6	.109	.778	48.2	61.3	.333	.659	54.1	58.8	.238	.565
GPT-CBM	35.7	57.3	.051	.599	48.8	61.7	.336	.638	55.5	57.6	.231	.581
SLIMP	98.7	70.0	.571	.993	90.1	72.3	.600	.939	89.1	67.9	.452	.892

1266
1267 H FEATURE IMPORTANCE
1268

1269 In Figure 5 we estimate feature importance scores from the **last-layer self-attention maps** of the
1270 tabular transformer. Each attention matrix $A \in \mathbb{R}^{T \times T}$, with T the number of tokens ([cls] + features),
1271 is the standard dot product of queries and keys followed by a softmax activation function. We discard
1272 the [cls] token, as our downstream tasks rely on the global average pooling (GAP) of the output
1273 feature tokens coming from TRACE rather than the [cls] representation. After masking the diagonal
1274 and renormalizing each row, the normalized importance of feature j is computed as
1275

$$\text{Imp}_j = \frac{\mathbb{E}\left[\frac{1}{T-1} \sum_{i \neq j} \frac{A_{ij}}{\sum_{k \neq j} A_{ik}}\right]}{\sum_m \mathbb{E}\left[\frac{1}{T-1} \sum_{i \neq m} \frac{A_{im}}{\sum_{k \neq m} A_{ik}}\right]}, \quad \sum_j \text{Imp}_j = 1,$$

1276 where i indexes querying features, j receiving feature and k runs over all possible receivers in row i .
1277 The resulting distributions in Figure 5 highlight which **patient**- and **lesion**-level features dominate the
1278 model’s internal attention mechanism. We observe that age, the number of lesions per patient and
1279 the Fitzpatrick skin type (where available) consistently dominate the outer level of the architecture,
1280 reflecting their strong influence in clinical diagnosis. Importantly, these features are considered among
1281 the most relevant according to the dermatology literature. In addition, for the PAD-UFES-20 dataset
1282 the inner tabular transformer attends strongly to critical features such as the anatomical region of the
1283 lesion and indicators of lesion change detection (e.g., whether the lesion has grown or itched). For
1284 HIBA and SLICE-3D, we observe a similar pattern; morphology, size and localization systematically
1285 receive higher attention by our lesion-level descriptors, suggesting that SLIMP consistently focuses
1286 on clinically meaningful attributes at both hierarchical levels.

1287 I QUALITATIVE ASSESSMENT
1288

1289 Figure 6 shows the t-SNE (Hinton & Roweis, 2002) embeddings of the three SLIMP variants
1290 presented in Table 4, on the PAD-UFES-20 dataset. We observe a better separation between benign
1291 and malignant lesions when metadata are considered during pre-training.

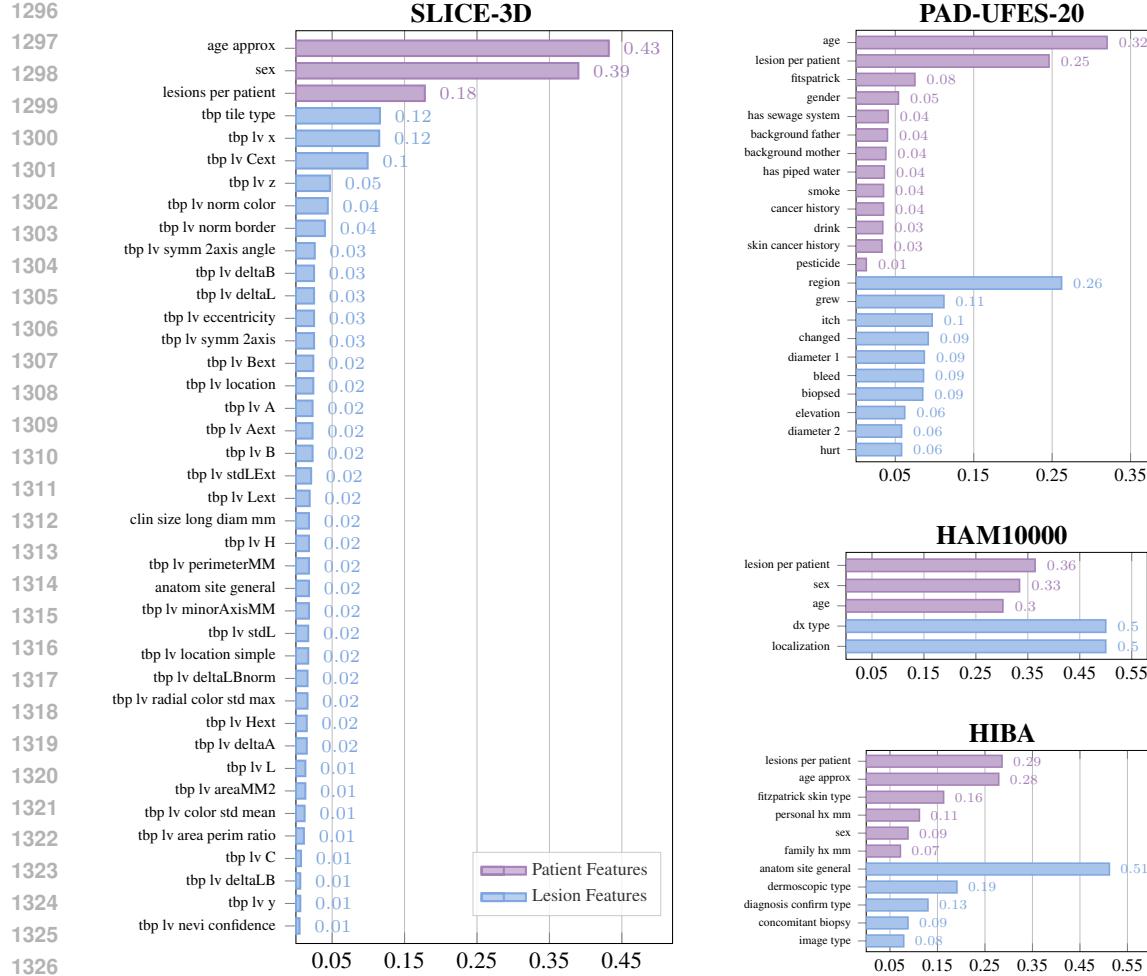


Figure 5: Normalized feature importance scores for patient-level and lesion-level features. The importance scores are derived from the attention mechanism of each tabular transformer respectively.

Figure 7 provides a qualitative evaluation of the proposed metadata retrieval process. For each target sample (left), we display the image corresponding to the lesion metadata (right) retrieved from the SLICE-3D dataset. Although our method does not retrieve images but rather lesion metadata, the images corresponding to the retrieved metadata exhibit notable visual similarity compared to the input image in terms of lesion morphology, color, and overall structure, even under challenging conditions

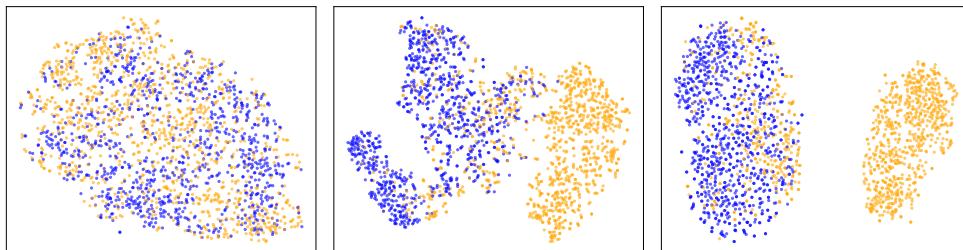
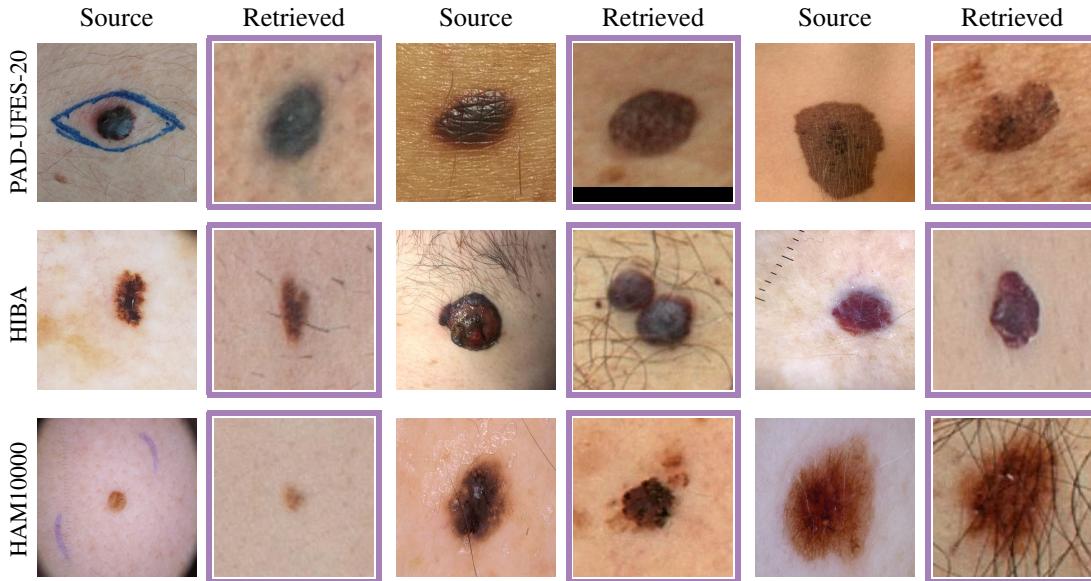


Figure 6: t-SNE visualization of SLIMP features for benign and malignant lesions in the PAD-UFES-20 dataset. **Left:** Pre-training using image encoder alone; **Middle:** Pre-training using image and lesion metadata; **Right:** Pre-training using images with lesion and patient-level metadata.

1350 such as hair occlusion, presence of artifacts, and differing imaging modalities. This further supports
 1351 the semantic consistency captured by our learned representations and validates the effectiveness of
 1352 the retrieval-based metadata extrapolation strategy.
 1353



1374 Figure 7: Qualitative examples of our retrieval-based metadata extrapolation method. For each lesion
 1375 image (left) from the target dataset, we display the image associated with the lesion-level metadata
 1376 retrieved by our model (right) from the reference dataset (SLICE-3D).

1377 Figures 8 and 9 presents randomly selected lesions from each dataset validation split, with the corre-
 1378 sponding attention maps extracted from the pre-trained image encoders of MAE, BEiT_{v2}, DINO_{v2},
 1379 CLIP, WL-CLIP, SimCLR and SLIMP (ours) in this order. We note that SLIMP effectively localizes
 1380 the majority of the lesions, regardless of differences in lesion shape, texture and color. This consis-
 1381 tency in identifying relevant lesion regions indicates the robustness of the learned representations
 1382 across diverse datasets that exhibit a high variation in visual appearance, also due to different imaging
 1383 modalities. It also showcases the ability of the model to focus on relevant skin-lesion features,
 1384 supporting the improved downstream classification performance, and suggesting that the method can
 1385 enhance the interpretability and reliability of the results.

1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

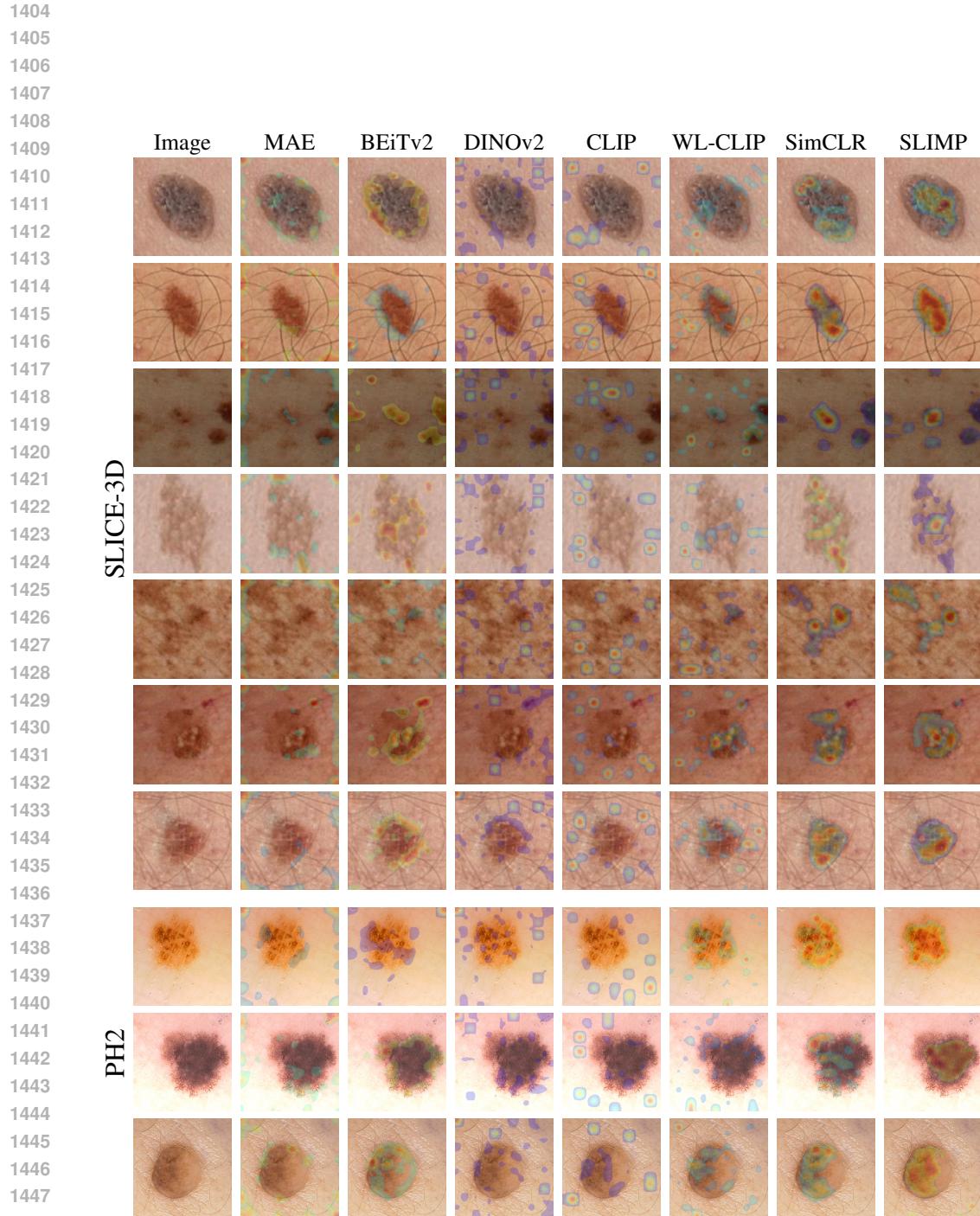
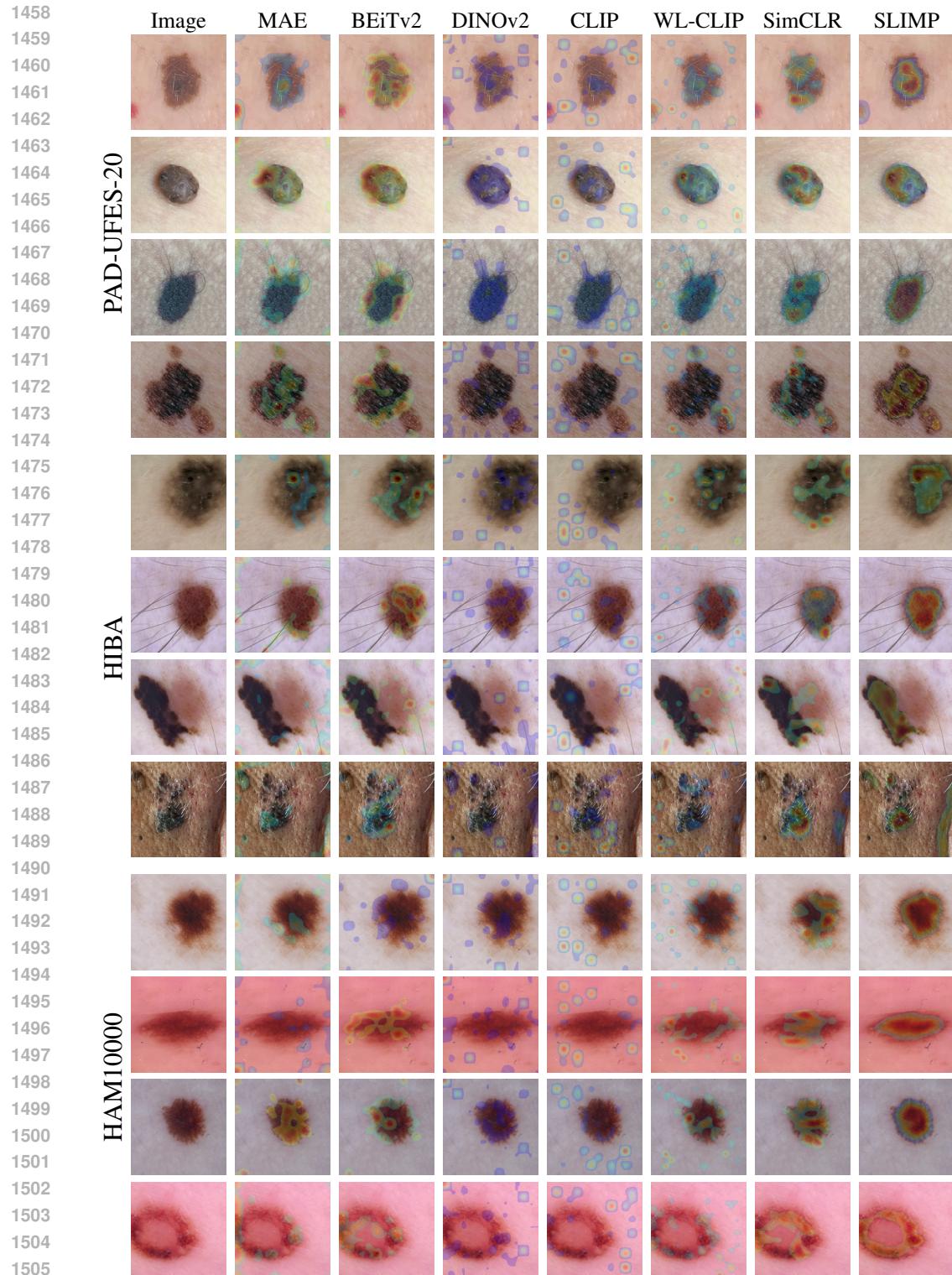


Figure 8: Attention maps obtained from the last self-attention block of the image encoder across different pre-trained models. The leftmost column shows the original image, while the remaining columns display heatmap overlays from MAE, BEiT2, DINOv2, CLIP, WL-CLIP, SimCLR, and our proposed SLIMP (rightmost column). The top seven rows correspond to samples from SLICE-3D reference dataset, while the bottom three rows correspond to samples from PH2 target dataset.



1507
 1508
 1509
 1510
 1511

Figure 9: Attention maps obtained from the last self-attention block of the image encoder across different pre-trained models. The leftmost column shows the original image, while the remaining columns display heatmap overlays from MAE, BEiT_{v2}, DINO_{v2}, CLIP, WL-CLIP, SimCLR, and our proposed SLIMP (rightmost column). The top four rows correspond to samples from PAD-UFES-20 target dataset, the middle four rows correspond to samples from HIBA target dataset, and the bottom four rows correspond to samples from HAM10000 target dataset.