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ABSTRACT

We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich
representations of skin lesions through a novel nested contrastive learning approach
that captures complementary information between images and metadata. Melanoma
detection and skin lesion classification based solely on images, pose significant
challenges due to large variations in imaging conditions (lighting, color, resolution,
distance, etc.) and lack of clinical and phenotypical context. Clinicians typically
follow a holistic approach for assessing the risk level of the patient and for deciding
which lesions may be malignant and need to be excised by considering the patient’s
medical history as well as the appearance of other lesions of the patient. Inspired by
this, SLIMP combines the appearance and the metadata of individual skin lesions
with patient-level metadata relating to their medical record and other clinically
relevant information. By fully exploiting all available data modalities throughout
the learning process, the proposed pre-training strategy improves performance
compared to other pre-training strategies on downstream skin lesion classification
tasks, highlighting the learned representations quality.

1 INTRODUCTION

The analysis of skin lesion characteristics is an important part of dermatological examination,
allowing clinicians to recognize potential skin malignancies and establish suitable follow-up actions
and treatment plans. Among skin malignancies, melanoma, although having a lower incidence with
respect to other skin cancers, has a significantly heavier impact on the patient health in terms of
morbidity and mortality. There are over 330,000 cases of melanoma diagnosed worldwide every year,
leading to more than 55,000 deaths annually (Arnold et al.| 2022), with data suggesting an increased
incidence in the last years (Sun et al.l 2024). Importantly, when detected early (stage I-II), melanoma
can be cured in the majority of cases through surgical excision. This suggests the importance of
developing efficient and effective methods for early detection of melanoma and other types of skin
cancers.

Numerous works in the literature have attacked the problem of classifying skin lesions based on their
appearance (Hasan et al.| 2023} |Adegun & Viriri, |2021)), largely supported by the monumental effort
put forward by the International Skin Imaging Collaboration (ISIC) for constructing the ISIC datasets
and organizing the corresponding challenges from 2016. In dermatological clinical practice though,
clinicians do not base their decisions solely on the appearance of the patient’s individual lesions, but
also consider additional lesion characteristics, as well as their skin phenotype and habits. Drawing
inspiration from this, recent datasets, including SLICE-3D (Kurtansky et al.,[2024)), typically include
lesion and patient metadata (Pacheco et al., 2020; Tschandl et al., [2018}; [Mendonca et al.| 2013)).

Despite the significant effort dedicated in producing large collections of skin lesion data, the amount
of annotated skin lesion data corresponding to malignant lesions still lies far from those available for
other computer vision tasks, making the development of deep-learning methods that rely on large data
quantities troublesome. The combination of different skin lesion datasets can alleviate these problems,
yet differences in imaging modalities (clinical vs dermoscopic images) and metadata attributes pose
an important challenge in their effective use for training deep-learning models. Suitable pre-text tasks
offering self-supervision have proven to be invaluable in such scenarios, enabling the models to learn
rich representative features that can be subsequently employed to address downstream tasks even
when less data are available.
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Building on these observations, we introduce SLIMP (Skin Lesion Image-Metadata Pre-training),
a novel pre-training approach for skin lesions based on nested multi-modal contrastive learning,
which aims to exploit all available data modalities across all stages of the learning process. SLIMP
captures relations between the appearance of the lesions and the metadata associated with them in
the context of the patient-level metadata. By incorporating both lesion and patient level metadata,
the proposed method fully exploits information that is complementary to the appearance of the
lesions, producing representative and generalizable features for skin lesions that lead to improved
performance in downstream tasks. To enable effective transfer to target datasets, we employ an
efficient continual pre-training approach for addressing the problems that arise from the differences
that typically occur between the metadata structure and imaging modalities of different datasets.
Additionally, by exploiting the structure of the common images-metadata embedding space learned
during the pre-training phase, we propose an extrapolation technique for enriching datasets that do
not contain metadata, by transferring metadata from a reference dataset based on their agreement
with the target images.

The contributions of this work are the following: i) We propose a multi-modal pre-training strategy
based on a novel nested contrastive learning schema for producing rich skin lesion representations by
leveraging metadata both at the lesion and patient levels which complement the visual information of
the lesion images; ii) We adapt the learned representations on target datasets through efficient continual
pre-training, effectively addressing differences in metadata attributes and imaging modalities; iii) We
propose a metadata extrapolation strategy for enhancing image-only datasets using suitable reference
metadata; iv) The proposed nested multi-modal pre-training strategy achieves improved performance
in downstream tasks compared to competing pre-training strategies and strong baselines, including
fully-supervised approaches.

2 RELATED WORK

Multi-modal self-supervised representation learning is used for enhancing image-based models
by incorporating different data modalities, especially for tasks where additional context provides
useful information for improved task performance. In this context, CLIP (Radford et al.l [2021)
introduced a method for learning image-text representations through a contrastive learning paradigm.
By linking each image to a natural language description, CLIP captures subtle patterns and nuances,
creating representations that can accommodate different applications. This paradigm has been
followed by a large number of works, including (Zhai et al.,2023)) and (Tschannen et al., 2025). In
a domain-specific context, the work of Bourcier et al.[(2024)) adopted a multi-modal pre-training
approach for learning representations based on satellite imagery and associated metadata, showing
that the additional context provided by metadata leads to improved performance in downstream tasks.

Regarding contrastive learning performed across taxonomies, |[Zhang et al.| (2022)) introduced hier-
archical contrastive pre-training for images, allowing to consider labels organized in a taxonomy,
by proposing a natural extension of the contrastive loss for hierarchical label relations as well as
a constraint enforcing loss for separating distinct lineages. |[Fan et al.| (2024) used three levels of
contrastive learning for improved sentiment analysis by incorporating various features combinations
of the available data modalities.

In the medical domain, the work of Jiang et al.| (2023) highlighted the importance of taking into
account the patient-slide-patch hierarchy in learning suitable representations for cancer diagnosis
based on whole-slide images. On the other hand, |Wang et al.| (2023) used a contrastive loss spanning
multiple levels across the same modality, ranging from patient-level to observation-level, for maxi-
mizing information utilization of the available data, leading to stronger representations for medical
time-series analysis and classification.

In this work we adopt a contrastive learning strategy across two distinct levels of metadata, modeled
as one level nested within the other, as patient-level metadata are shared while lesion-level metadata
regard individual skin lesions. This scheme encourages learning of more representative skin-lesion
representations that can assist in the downstream skin lesion classification task while offering
improved generalization across different patients.

Continual pre-training has become a key strategy to make pretrained models more specialized
and effective for real-world applications, where domain-specific knowledge is often crucial. In this
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context, Gururangan et al.|(2020) demonstrated that simply continuing to pretrain a language model
on domain-specific texts substantially improves the accuracy across diverse tasks, even when labeled
data is limited. |Liu et al.|(2021) developed a continual pre-training framework for the mBART model
to boost machine translation for low-resource languages, where translation data is often limited
or nonexistent. By generating mixed-language text from available monolingual resources, they
enabled mBART to ‘self-train’ on noisy but representative data and extend its language skills to
previously unseen languages. In the domain of geospatial analysis, Mendieta et al.| (2023)) tackled the
resource-intense needs of geospatial applications with a continual pre-training method that exploits
the rich representations coming from large-scale image datasets like ImageNet-22k.The work of |Reed
et al.| (2022) extended this adaptive pre-training to general computer vision, aiming to address the
high costs of self-supervised learning. Their approach, utilize existing pretrained models as a starting
point to accelerate learning, achieving improved accuracy with fewer resources.

Multi-modal continual pre-training has only recently been explored, mainly regarding the adaptation
of vision-language models (Roth et al., 2024; |Chen et al., 2025)). In the medical domain, Ye et al.
(2024)) proposed continual pre-training for multi-modal medical data in a multi-stage manner to
avoid interference between image and non-image modalities during learning. The proposed method
makes use of continual pre-training to fully exploit target dataset metadata. Due to the differences
in the recorded attributes, continual pre-training allows adapting the metadata encoder accordingly,
leading to improved classification performance. To the best of our knowledge, this is the first work
that explores the use of multi-modal continual pre-training for tabular metadata, allowing to fully
exploit the available metadata of target domains. Importantly, the proposed continual pre-training
strategy does not rely on target labels, which are not always available in the context of skin lesion
classification and other similar medical applications.

Data enhancement through retrieval has been proposed in the natural language processing domain
under different settings. In|Borgeaud et al.|(2022), a retrieval-enhanced language model (RETRO)
is introduced augmenting a frozen language model allowing retrieval from a large text database for
improving its performance. In a similar direction, Trauble et al.|(2023) proposed a discrete key-value
bottleneck architecture considering pairs of sparse, separable and learnable key-value codes.

The work of |Norelli et al.[(2023) applies the idea in a multi-modal setting, establishing image-text
correspondences using independently pre-trained image and text encoders by exploiting similarities
within each modality in combination with a reduced dataset of known image-text correspondences.
We consider a retrieval-enhanced variant of SLIMP for allowing multimodal classification even for
image-only datasets, by matching metadata from a reference dataset.

3 METHOD

In this section we present SLIMP, a self-supervised pre-training approach with a nested contrastive
loss. Given a reference skin-lesion classification dataset providing metadata at the lesion and at the
patient levels, the proposed approach aims to learn representative and generalizable skin lesion repre-
sentations by combining appearance information with information stemming from the corresponding
metadata at both levels. Two strategies are then proposed for adapting these representations to target
datasets in a way that fully exploit the available metadata, even when their structure and content differ
from the source data. This leads to enhanced performance on downstream classification and retrieval
tasks by leveraging multi-modal information about the skin lesions. The notation used throughout
this section is summarized in Table 3]

3.1 NESTED CONTRASTIVE MULTI-MODAL LEARNING

The overall approach is presented in Figure [T] and summarized in Algorithm [} For each patient
p € {1,..., M} our model process N, lesion images {III)}ZNZ”1 with an image encoder to extract

image-based features {wé € RP }Z\L”l, where D denotes the dimensionality of the image embedding.
In parallel, the model processes the corresponding lesion-specific tabular metadata { Z'Jé}l]\,:"1 with

a tabular metadata encoder, to extract metadata-based feature representations {hﬁ, €RP }5\2“1 ona
lesion level. The resulting lesion-level representations are jointly optimized using an inner InfoNCE
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Figure 1: SLIMP architecture. An inner multi-modal contrastive loss is employed to maximize
agreement among images of skin lesions and the corresponding metadata. Skin lesion image and
metadata representations of a patient are aggregated, summarizing the lesion phenotype. At the
patient level, agreement between the estimated lesion phenotype and the patient metadata is pursued
through an outer contrastive loss.

loss (Mendieta et al., | 2018]) for all lesions of a single patient, in order to maximize their agreement.
By maximizing the cosine similarity between the corresponding lesion image-metadata pairs and,
analogously, minimizing the cosine similarity between non-matching pairs, the model learns a multi-
modal lesion-level representations. The two lesion-level modalities are merged via concatenation,
which has been shown to be a simple yet effective strategy (Weng et al., |2019) for obtaining a
combined lesion-level representations {(w!, hé)}f\g’l. These combined lesion representations are
aggregated for all the lesions of a patient by applying average pooling and they are subsequently
linearly transformed into a single vector z, € R”, summarizing the lesion phenotype of the patient.
At the outer level, SLIMP processes the patient-specific tabular metadata (P,) utilizing an outer
tabular metadata encoder, yielding a representation x, € RP. An outer InfoNCE loss is then
applied between the patient-level metadata representation x,, RP and the patient-level lesion
phenotype representation z, € RP obtained at the inner level. This nested contrastive pre-training
framework enables the model to learn rich skin lesion representations that take into account the
patient’s phenotype. The complete loss formulation is provided in Section[C]

Algorithm 1: SLIMP Nested Contrastive Learning Pseudocode

Data: Lesion images: {{IIZ,}ZNZ"1 ML, lesion metadata: {{Lﬁ,}l]\fj’1 })L,, patient metadata: {P,}}L .

Sample a batch of B patients
Elesions =0
forpe {1,...,B} do
Build batch of N lesion image-metadata pairs from patient p
fori € {1,...,N}do
wlp = ImageEncoder (I;)
hi, = LesionTabularEncoder (TL;)
end
Licsions += %InfoNCELoss ({wi,}{il, {hi,}fil)
zp = Linear (AvgPool ({(w), kL) }1L1))

end

{xp}le =PatientTabularEncoder ({TPp}le)
Lpatient = InEONCELoss ({(2p, 7p) }5o1)

Etotal =X »Clesions + (1 - )\) . »Cpatient




Under review as a conference paper at ICLR 2026

Tabular Encoder

o)
=]
P, o 2
P 5 =7 Tabular Encoder <
% Lp’ 2
Tabular Encoder g §
I = =
» © 3
5
cl
7l Image Encoder = 7l Image Encoder
P P
input from source dataset input from target dataset

Figure 2: Use of learned representations for skin lesion classification. Classification of a skin lesion
using corresponding data modalities (image+metadata) is shown on the left. Classification of a skin
lesion image using the retrieval-based metadata extrapolation method is shown on the right.

3.2 HANDLING DIVERGENT STRUCTURE OF TARGET DATASETS

SLIMP can be applied on reference, large-scale skin lesion classification datasets as Kurtansky
et al.| (2024) for learning lesion representation both from images and metadata. Nevertheless, due to
differences in clinical practice, regulatory context, and other factors, metadata provided by different
datasets, typically diverge in structure and/or collected attributes. To leverage all available data
modalities on downstream tasks, we firstly propose a multi-modal continual pre-training approach for
effectively adapting the learned representations to target datasets with potentially smaller size and
diverging metadata. We also propose a retrieval-based strategy for allowing metadata-endowed skin
lesion classification even for dataset which lack metadata completely.

Image-metadata continual pre-training When the target dataset provides metadata comprising
different attributes and/or of different structure with respect to the reference one, a multi-modal
continual pre-training approach on the target dataset is employed. In this case, the image and tabular
encoders are fine-tuned to adapt the representations on the input features of the target domain. Besides
diverging metadata, continual pre-training addresses also different imaging modalities between the
reference and the target datasets. Still, caution is needed for ensuring that the models do not suffer
from catastrophic forgetting during continual pre-training. This is addressed by fine-tuning only a
restricted set of the model parameters. In cases where patient metadata are unavailable, a variant of
this setup is considered which uses the lesion level loss alone, taking into account solely the lesion
images and the corresponding metadata, allowing to cope with varying levels of data availability.
Considering the task of lesion classification, the matching image, lesion metadata, and patient
metadata (if available) embeddings that correspond to the lesion are concatenated and passed to a
linear classifier, as depicted in Figure [2| (left).

Dataset enhancement via metadata extrapolation When the target dataset lacks metadata, a
retrieval-based metadata extrapolation approach is used for artificially enhancing the target dataset
by creating metadata pseudo-modalities. As lesion metadata are tightly related to the corresponding
images, we consider the possibility of enhancing datasets which do not provide metadata by construct-
ing pseudo-modalities of patient-level and lesion-level metadata using the corresponding modalities
of the reference dataset on which the SLIMP model has been pre-trained. Drawing inspiration from
Norelli et al.|(2023)), and building on the fact that the lesion and patient level modalities have been
trained to maximize agreement, we use the encoding of the lesion images to retrieve the metadata of
the original dataset that exhibit the highest similarity and use them on downstream tasks ‘as-if” they
were accompanying metadata. A detailed discussion regarding the structure of the SLIMP embedding
space, supporting the validity of this approach, is provided in Section

The inference process of this setup is presented in Figure[2](right). Specifically, the model utilizes only
the images [ 117 from the target dataset, passing them through the image encoder of the SLIMP model
that has been pre-trained on the reference dataset, providing the target dataset image representations
wé. Based on these features, a two-step metadata retrieval process is performed to incorporate

additional context from the reference dataset metadata representations. First, we compare wf, with
the features i derived from the pre-trained SLIMP lesion metadata encoder and we retrieve the
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vector h!" with the highest similarity. The combined feature set {(w!, h'")} is linearly transformed
into a single patient-level vector 2, which is then compared with the features Z, derived from the
pre-trained SLIMP patient metadata encoder, to retrieve the most relevant Z,,. By adding pseudo-
modalities on both the patient and the lesion-level, this retrieval process produces three feature vectors

for each image of the target dataset Qé : {(wé, W, &, )} that can be used for lesion classification.

4 EXPERIMENTAL EVALUATION

4.1 DATASETS

Evaluation is performed considering five widely used, public skin lesion datasets, which differ
in key aspects, including dataset size, imaging modality (dermoscopic or clinical), availability of
metadata (such as the number of patient clinical features), and degree of class imbalance. SLICE-3D
(Kurtansky et al.l|2024) is used as a reference dataset, both due to the significantly higher number
of samples and the richness of the metadata features. PAD-UFES-20 (Pacheco et al.,|2020), HIBA
(ISIC} 2024), HAM 10000 (Tschandl et al.l 2018)), and PH2 (Mendonca et al., 2013)), are considered
as target datasets. The main characteristics of the datasets are summarized in Table[I} while Section [B]
provides additional details.

4.2 IMPLEMENTATION

Unless otherwise stated, we employ ViT-Small (Dosovitskiy et al.l [2021) as a transformer-based
image encoder and TRACE (Christopoulos et al., 2025) as a transformer-based encoder for clinical
tabular data. We train the model for 150 epochs on an NVIDIA RTX A6000 GPU with 48GB of
VRAM. For pre-training the model on the SLICE-3D dataset, we consider a batch size B = 4 patients
and N = 100 lesions. For continual pre-training on target datasets, we fine-tune the embedding layers
of the image and metadata encoders, keeping their attention layers frozen. We have observed that this
strategy leads to increased performance in downstream tasks. During continual pre-training, the batch
size is increased to 64 patients. For allowing downstream performance assessment, we randomly
split the target datasets into training and validation splits with a ratio of 90%-10%, respectively. Both
pre-training stages use the Adamw optimizer with a learning rate of 10~* and A = 0.9. Continual
pre-training is performed for 100 epochs on each dataset. For the classification task, we apply linear
probing, with binary cross entropy loss (BCE) and Adamw optimization algorithm.

4.3 PROTOCOL

The SLIMP model is pre-trained on SLICE-3D, a large-scale medical imaging dataset. For assessing
the intrinsic quality of the SLIMP features, evaluation is performed by considering linear probing as
well as k-nearest neighbors (kNN) on the downstream skin-lesion classification task on different target
datasets (Caron et al., 2021). The skin lesion classification datasets contain different taxonomies,
with important class imbalance of varying degrees (Figure [3). To allow consistent comparison across
all datasets, we mainly consider the task of classifying lesions in benign and malignant. Performance
of the models is evaluated considering four metrics: Accuracy (Acc), Balanced Accuracy (BA),
F1-Score, and area under receiver operator curve (AUC). Balanced Accuracy corresponds to the
average of the Sensitivity and Specificity scores and is particularly relevant in the medical domain as
it captures the model’s ability to correctly identify positive and negative instances, even when datasets

Table 1: Main aspects of skin lesion datasets considered in the evaluation.

Image Number of Number of

Dataset Modality Samples Patients Targets Metadata
SLICE-3D Clinical 401,059 1,042 Benign/Malignant  Patient/Lesion
PAD-UFES-20 Clinical 2,298 1,373 Multiclass Patient/Lesion
HIBA Mixed 1,616 623 Multiclass Patient/Lesion
HAM10000 Dermoscopic 10,015 N/A Multiclass Patient/Lesion
PH2 Dermoscopic 200 N/A Multiclass Lesion
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suffer from significant class imbalance. Section[G] provides additional experiments, discussing also
the multiclass classification performance of SLIMP and its use in downstream retrieval tasks.

4.4 RESULTS

Our main goal is to assess the quality of the skin lesion representations learned by the proposed
SLIMP model. Additionally, we examine the extent in which the use of metadata in different parts
of the pipeline impacts the performance on the downstream classification task. In these regards, we
consider strong baselines in each of these parts. Table 2| presents the results using linear probing on
the four target datasets, as well as the macro-averaged metrics further highlighting the generalization
ability of the model. The kNN classification results are presented in the Appendix (Table[T3).

We first consider comparison using features that have been obtained via pre-training on the reference
SLICE-3D dataset. In this context, we consider the Pre-SLIMP setup, which uses the appearance
features extracted by the image encoder of SLIMP that is pre-trained on the lesion and patient
metadata of SLICE-3D, and compare it against the features obtained by SimCLR (Chen et al., | 2020)
pre-trained on the images of SLICE-3D. We also consider the downstream classification performance
of the subclass-balancing contrastive learning approach (SBCL) proposed in (Hou et al.| 2023)). We
observe that Pre-SLIMP, by exploiting the information encoded in the metadata, achieves similar
performance with SimCLR, even though it does not consider any image-based self-supervision.
This suggests that SLIMP incorporates information from corresponding metadata in the image
representation, leading to more robust representations against image domain shift. By producing
more robust features, Pre-SLIMP outperforms SBCL which explicitly handles class imbalance and
long-tail distributions.

In addition, Table[Z] provides the results from the MAE (He et al., 2022), DINOv2 (Oquab et al.,
2023) and BeiTv2 (Peng et al.,[2022) generic foundation models, as well as the multi-modal models
CLIP (Radford et al., [2021), SigLIP (Zhai et al., [2023), Sigl.IP-2 (Tschannen et al.| 2025) and
WhyLesionCLIP (WL-CLIP) (Yang et al., 2024). The latter is a particularly strong baseline, con-
sidering that is a fine-tuned version of CLIP on the skin lesion domain, considering medical textual
descriptions of the lesion images. For a fair comparison, we consider the ViT-B variants of these
models, where available. We observe that Pre-SLIMP, via nested image-metadata pretraining achieves
a competitive performance against all these models, which have been trained using data which are
orders of magnitude larger. Still, the corresponding attention maps (presented in Section [I)) suggest
that SLIMP is better at capturing prominent appearance features of the lesions, hinting that they are
more suitable for spatially-aware downstream tasks (e.g. lesion segmentation).

Use of metadata As the metadata attributes of the target datasets differ from the reference one, the
pre-trained metadata encoders cannot be directly used. This shortcoming is addressed by the SLIMP
model, which applies continual pre-training on the target dataset as described in Section[d.2] This
allows the use of target dataset metadata, both at the continual pretraining stage and at the downstream
classification task. We see that the image representations obtained after continual pre-training, denoted
as SLIMPyacE, offers improved performance compared to Pre-SLIMP, clearly outperforming the
SBCL method continually pre-trained on the target datasets (SBCL-C). Importantly, the complete
SLIMP method, which uses the features obtained by all data modalities in the downstream task,
leads to significantly improved performance on average, and across most of the datasets. Increasing
the patient batch size from 4 to 8, offers some marginal improvement. Interestingly, SLIMP also
shows competitive performance compared to TFormer (Zhang et al.|[2023), a fully supervised model
for multi-modal lesion classification trained directly on both the images and metadata of the target
dataset, showing a decrease in performance only for the PAD-UFES-20 dataset.

The use of pseudo-modalities constructed through retrieval of metadata from the reference dataset,
denoted as Ret-SLIMP in the tables, shows consistently improved performance compared to Pre-
SLIMP and comparable performance with SLIMPy\acg, €ven though it has not seen any data from
the target datasets during training. This is valuable when the target dataset lacks metadata. This
observation also further highlights the importance of using metadata for downstream classification.

Use of nested contrastive learning To assess the effectiveness of the nested contrastive learning
employed by SLIMP, we also consider a variant of SLIMP, SLIMPg; o1, which comprises a single
InfoNCE loss, applied between the image features and the features obtained by a tabular encoder
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Table 2: Comparison of SLIMP with various baselines, on the lesion classification task using linear
probing. MD stands for ‘Metadata’ used for downstream classification, the asterisk (*) denotes
metadata extrapolation from the reference dataset. For all metrics higher values are better. Best
results are in bold, second best are underlined.

PAD-UFES-20 HIBA HAM10000 PH2 Average
MD Acc BA AUC | Acc BA AUC | Acc BA AUC | Acc BA AUC || Acc BA AUC

Generic Pre-trained Models

MAE X 683 682 .693 | 790 795 .848 |86.0 76.7 901 | 85.0 719 .844 || 79.6 741 .822
DINOv2 X 761 773 828 | 772 774 849 | 8.0 752 897 | 86.7 813 .867 || 81.5 775 .866
BEiTv2 X 770 773 828 | 79.6 799 .851 | 862 782 906 | 95.0 964 992 || 845 83.1 .894
Multi-modal Models

CLIP X 709 710 795 | 82.1 825 .893 | 854 787 892 | 90.0 844 .891 82.1 79.2 .868
SigLIP X 748 750 823 | 765 769 .838 | 865 79.0 .900 | 95.0 96.4 969 || 832 819 .833
SigLIP-2 X 778 779 853 | 82.1 826 .856 | 86.8 79.8 907 | 95.0 964 1.00 || 854 843 904
WL-CLIP X 817 819 883 | 82.1 822 .89¢ | 88.7 83.1 .929 | 90.0 938 1.00 || 85.6 852 .927
Pre-trained on SLICE-3D

SimCLR X 704 705 766 | 846 843 913 |81.2 694 868 | 950 875 1.00 || 82.8 779 .849
SBCL X 661 660 .672 | 667 675 .671 |56.0 63.8 710 | 750 750 .734 || 66.0 68.1 .684

Pre-SLIMP X 765 760 781 | 759 760 .845 | 83.6 67.8 855 | 90.0 833 .941 81.5 75.8 .827
Ret-SLIMP v/° 770 770 814 | 81.5 813 .86l | 822 710 .836 | 950 938 969 || 839 80.8 .837
Continual pre-training

SBCL-C X 713 711 711 | 722 739 760 | 622 734 816 | 90.0 844 719 || 739 757 762
SLIMPmace X 76.1 755 807 | 77.8 78.1 .867 | 847 69.2 .889 | 95.0 964 988 | 834 79.8 854
SLIMPg At v 857 853 906 | 84.6 845 911 | 844 756 .894 | 100 100 1.00 || 874 855 .904
SLIMPg_4 v 909 902 926 | 920 919 954 | 873 835 .923 | 100 100 1.00 | 92.6 914 951
SLIMPg_g v 909 905 929 | 92.6 924 944 | 877 845 929 | 100 100 1.00 || 92.8 919 951
Supervised

TFormer v 913 913 960 | 889 889 .963 | 82.1 762 875|950 91.7 .988 || 89.3 87.0 .947
Low-shot Evaluation

SLIMP, 4, v 839 841 908 | 753 758 863 | 787 738 847 | 70.0 643 548 || 77.0 745 792
SLIMP, g, 88.7 882 922 | 840 842 917 | 839 778 887 | 90.0 845 952 || 86.6 83.7 .920

v
TFormerq, v 813 812 880 | 747 747 811 | 819 660 .804 | 350 488 .702 || 682 67.7 .799
TFormer g, v 8.2 851 .88 | 821 817 .876 | 815 651 .858 | 90.0 833 810 || 84.7 78.8 .857

operating on the concatenated patient-lesion metadata. SLIMP clearly outperforms this single-level
variant, demonstrating the effectiveness of its nested contrastive learning architecture in capturing
image-metadata relations. The only exception is PH2, where both variants converge as the dataset
does not contain patient-level metadata.

Table [3| offers a more detailed analysis, by examining the two variants of the SLIMP architecture
(FLAT and NESTED), when trained on each dataset from scratch. The results clearly show that the
variant based on nested contrastive learning achieve significantly higher performance compared to the
one which uses the same metadata but using a single contrastive learning stage. This is attributed to
the implicit grouping of each patient’s lesions, producing features that better capture their phenotype.
The same table reports the difference of each metric regarding the SLIMP model, showing that the
pre-training on the SLICE-3D dataset helps to achieve improved performance across all datasets.

Low-shot evaluation The proposed multi-modal continual pre-training strategy does not rely on
target labels. This is crucial as data labeling is expensive and time-consuming, especially in the
context of skin lesion classification and other similar medical applications. To further assess the
quality of the learned representations, we examine how SLIMP performs in a low-shot learning
setting, considering that only 1 % or 10 % of the target dataset labels are available for downstream
classification. The results, presented in the last rows of Table [2] (highlighted in orange), indicate that
the SLIMP features lead to remarkable low-shot learning performance. It is interesting to note that
in most cases, SLIMP low-shot performance is better than SLIMPyage and SLIMPgp ar. The first
suggests the importance of the model making use of metadata both during pre-training, but also for

Table 3: Comparison of flat (single-level contrastive loss) and nested SLIMP architecture when
trained on each dataset separately. The difference with SLIMPg_4 model is reported in superscript.

PAD-UFES-20 HIBA HAM10000
Architecture Acc BA AUC Acc BA AUC Acc BA AUC
FLAT 85.2(—5.7) 84.7(—5.5) _902(—.024) 85.2(76.8) 84.9(—7.0) _915(—1)3‘)) 77_8(—9.5) 78_6(—-’1.‘)) .860("063)

NESTED 87.4(—3.5) 86.9(—3.3) .910(—.(”(7) 88.9(—?1) 88.7(—3.2) .934(—.()20) 83.6(—3.7) 82.8(—().7) ‘901(—1)22)
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Table 4: Ablation study of the SLIMP encoder outputs used for downstream classification.
Metadata PAD-UFES-20 HIBA HAM10000 PH2

Image | Gon Patient | Acc  BA FI AUC Acc BA FI AUC Acc BA Fl AUC Acc BA FI AUC
Linear Probing
v X X 761 755 0764 0807 778 78.1 .763 867 847 692 .529 889 950 964 923 988
v v X 8.6 89.1 908 908 883 88.1 .891 947 853 741 .599 899 100 100 1.00 1.00
% v /| 909 902 921 926 920 919 925 954 87.3 835 707 923 - - - -
kNN
X X | 748 746 770 633 827 826 .835 770 841 694 528 851 950 917 909 1.00
v v X 1900 897 911 865 870 867 .884 812 858 761 .626 886 950 964 .923 940
v / | 935 932 942 911 877 875 .885 .849 858 780 .645 .891 - - - -

the downstream classification task. Comparable performance to SLIMPy a7 further highlights the
ability of the nested contrastive learning to capture relations among metadata and images.

4.5 ABLATION

To assess the importance of incorporating two distinct levels of metadata, we compare different
variants of SLIMP in Table[d] Specifically, in the first row we consider the linear probing performance
of a variant where only the output features of the image encoder are utilized for downstream
classification on the target dataset. In the second row we consider both the features of the image
encoder and the lesion-level tabular metadata encoder. The third row shows the results of the proposed
SLIMP model. The last three rows report analogous results with kNN classification. The results
suggest that the addition of each modality contributes positively to the downstream task performance.
Additional ablations are provided in Section[F]

5 CONCLUSIONS AND LIMITATIONS

We have presented SLIMP, a novel nested multi-modal pre-training strategy for learning rich skin
lesion representations by considering lesion images in combination with associated lesion-level
as well as patient-level metadata. The experimental evaluation demonstrates SLIMP’s ability to
learn representations that improve performance in downstream classification tasks, by combining
information about the patient’s lesion phenotype, with information regarding their traits and habits.
In this context, we propose strategies for fully exploiting available metadata, through all the stages
of the learning process, including a method that enables the enhancement of image-only skin lesion
datasets by ‘borrowing’ patient and lesion metadata from reference pre-training data. Importantly,
the proposed method does not rely on data annotations, handling a major challenge in healthcare
applications where data annotation incurs significant costs. The results obtained for low-shot settings
of the target datasets, demonstrate the quality of the obtained skin lesion representations as they
enable high classification performance even with minimal labeled data. Considering the above, our
proposed method has the potential to become widely applicable in clinical settings, providing insights
and decision support during skin lesion diagnosis.

Despite its strengths, the proposed method has certain limitations. Firstly, the nested pre-training
strategy requires a data structure that incorporates both patient- and lesion-level metadata, which
may limit its adaptability to other domains where such structured scenarios do not straight-forwardly
exist. Secondly, significant shift in the image domain, including high variability in the sources and
resolutions of lesion images, can possibly downgrade downstream performance. This problem can be
addressed by incorporating image augmentations in the learning process. Regarding negative impacts,
it should be noted that misuse of this method, as for all computer-aided diagnosis methods, can lead
to overdiagnoses, or misdiagnoses, with important psychological and economic repercussions. Hence,
real-life use of such systems should be intended only for assisting the decision-making of expert
users, and not for direct use by the patients.
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A  NOTATION

Table [5| summarizes the notation used throughout the manuscript.

Table 5: Summary of the notation.

Notation Description
M Number of patients indexed by p € {1,...M}
Np Total lesions of patient p indexed by | € {1,...N,}
P, Tabular metadata for patient p
Li, Tabular metadata for lesion [ of patient p
I é Lesion image [ of patient p
w;, Image encoder output of 1. ;l,
h;, Tabular encoder output of L;,
Tp Tabular encoder output of P,
Zp Linearly transformed output based on {w},, h}
D Dimensionality of each embedding

H= {ﬁl N, Lesion-level pre-trained features of original dataset
X = {Zp };];\11 Patient-level pre-trained features of original dataset
Y Retrieved features from H
2 Linearly transformed output based on {wh, le/}
Ty Retrieved features from X
b concat{wl, B T}
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Figure 3: Class distribution within each dataset considered.

B DATASET DETAILS

The following skin-lesion classification datasets are considered:

SLICE-3D (Kurtansky et al.,[2024): a public skin lesion dataset containing up to 401,059 15mm-
by-15mm field-of-view cropped images, centered on distinct lesions extracted from 3D Total Body
Photography (TBP) collected across seven dermatologic centers worldwide. The dataset was curated
for the ISIC 2024 Challenge and contains 40 clinical features concerning both patients and lesions,
such as age, sex, general anatomic site, common patient identifier, clinical size, and various data
fields from the TBP Lesion Visualizer.

PAD-UFES-20 (Pacheco et al,[2020): a skin lesion dataset containing 2,298 close-up clinical images
collected using different smartphone devices. It includes six types of skin lesions, data from 1,373
patients, and up to 22 clinical features per sample, covering both patient and lesion attributes, such as
age, skin lesion location, and lesion diameter. The skin lesions are: Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma
(MEL), and Nevus (NEV).
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HIBA (ISIC}|2024): a skin lesion archive with clinical and dermoscopic images collected in Argentina,
containing 1,616 images of 10 different types of skin lesions, including Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma
(MEL), Nevus (NEV), Vascular Lesion (VASC), Lichenoid Keratosis (LK), Solar Lentigo (SL), and
Dermatofibroma (DF).

HAM10000 (Tschandl et al.,[2018): also known as “Human Against Machine with 10,000 training
images,” this dataset comprises 10,015 multi-source dermoscopic images of skin lesions divided into
seven classes and includes four clinical features, with two related to patient demographics and two
describing lesion characteristics. The skin lesions are: Actinic Keratosis and Intraepithelial Carcinoma
(AKIEC), Basal Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL), Dermatofibroma
(DF), Melanoma (MEL), Melanocytic Nevi (NV), and Vascular Lesions (VASC).

PH? (Mendonca et al., 2013)): a small dataset with 200 dermoscopic skin lesion images, including
three classes: 80 common nevi, 80 atypical nevi, and 40 melanomas. The dataset contains 13 clinical
lesion features, such as clinical and histological diagnosis, and the assessment of various dermoscopic
criteria.

SLICE-3D (Kurtansky et al.,[2024), being the largest and most complete one, is considered as the
reference dataset for pre-training the SLIMP model. All other datasets are considered as target
datasets for performing skin classification using the pretrained model. Unless otherwise stated,
evaluation is performed considering binary classification targets (benign/malignant) of the datasets
that are better balanced.

For PAD-UFES-20 (Pacheco et al.,2020), malignant classes include Basal Cell Carcinoma (BCC),
Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign classes include Actinic Ker-
atosis (ACK), Nevus (NEV) and Seborrheic Keratosis (SEK). In HAM10000 (Tschandl et al., 2018)),
Basal Cell Carcinoma (BCC) and Melanoma (MEL) are categorized as malignant, with benign classes
comprising Actinic Keratosis (ACK), Nevus (NEV), Vascular Lesion (VASC), Dermatofibroma (DF),
and Benign Keratosis-like Lesions (BKL). In HIBA (ISIC} 2024), the malignant class includes Basal
Cell Carcinoma (BCC), Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign
lesions encompass Actinic Keratosis (ACK), Dermatofibroma (DF), Lichenoid Keratosis (LK), Seb-
orrheic Keratosis (SEK), Nevus (NEV), Vascular Lesion (VASC), and Solar Lentigo (SL). In the case
of PH2 (Mendonca et al.,|2013) dataset, the malignant category consists only of melanomas, while
common nevi and atypical nevi were grouped as benign. SLICE-3D (Kurtansky et al., [2024), the
largest dataset in this study, is inherently binary, with an extremely imbalanced distribution: 99.9%
of lesions are benign, while only 0.1% are malignant.

C NESTED CONTRASTIVE LOSS

Letting s(-,-) denote the cosine similarity function and 7 a temperature parameter, the two-level
nested contrastive loss with a weighting factor A € [0, 1] is defined as follows:

al L bl Lol
1 exp(s(w,,, h,)/T exp(s(h,,,w,)/T
‘Clpesions = _2 § (log p( ( p Iz)/J) +10g p( ( P f)/ l) ) 7 (1)
P=1 ZjeNp exp(s(wy, hp)/7) ZjeNp exp(s(hp, w},)/T)

| __LM . exp(s(zp, zp)/T) o exp(s(zp, 2p)/T)
Fpovent = o0t 1;1(1gZiEMexp(sm,xi)/T)“gzieMexp@(xi,zp)/T))’ @

M
A
Liota = 57 Z; LY ioms + (1= N Lypatient- 3)
p

Licsions and Lopqtient treat features from the same lesion or patient, respectively, as positive pairs
while pushing apart features originating from different lesions or patients.
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Figure 4: Cosine similarity distributions between image and metadata representations. On SLICE-
3D validation hold-out set, we report the similarity to the ground-truth metadata and to

using SLIMP. For HAM10000, PAD-UFES-20, and HIBA, the
retrieved-metadata distributions are shown. Dashed vertical lines indicate the median similarity for
each distribution.

D ADDITIONAL TRAINING DETAILS

Batch sampling strategy For both the initial and continual self-supervised pre-training stages,
we construct each batch with B patients, including their respective patient-level tabular metadata.
Additionally, for each patient, we sample N lesion images and their corresponding lesion-level tabular
metadata. The number of lesions N varies per patient and is capped by an upper limit N,,,.. If a
patient has more lesions, then a subset of N = N4, lesions is randomly sampled in each epoch. In
addition, a positive lesion sampling strategy is implemented, ensuring that, if a patient has malignant
lesions, they are always included in the IV lesions sampled during training. This ensures that the
model encounters an adequate number of malignant lesions.

For the retrieval-based extrapolation setup, where the images from the target dataset lack both lesion
and patient metadata, we create two independent pools with tabular features derived from the metadata
of the SLICE-3D reference dataset, by passing them through the pre-trained inner and outer tabular
encoders. This step does not preserve any association between patients and their corresponding
lesions. Consequently, the retrieval process of patient/lesion-level metadata is not constrained to
select features from the same patient across every modality, maximizing the flexibility of the proposed
architecture.

Training details of supervised methods We pre-train SBCL (Hou et al.,|2023)) with a ResNet-32
architecture, for 1000 epochs on SLICE-3D dataset, followed by a dataset-specific continual pre-
training (SBCL-C) for 100 epochs. Both pre-training setups use the SGD optimizer with a learning
rate of 0.5 for the initial pre-training and le~2 for the continual pre-training. We evaluate each
target dataset on the corresponding SBCL-C model, by applying linear classification for 150 epochs
(following the SLIMP linear probing setting) with a learning rate of 0.1. During linear classification
we select the Classifier-Balancing (CB) (Kang et al.| 2020) train rule, which proved to outperform
LDAM (Label-Distribution-Aware Margin Loss) (Cao et al.| 2019).

Regarding TFormer (Zhang et al.| 2023), we utilize the variant designed to process two modalities,
namely clinical images and tabular metadata, since the target datasets do not explicitly provide clinical
and dermoscopic image pairs of the same lesion. During training, TFormer was fine-tuned on each
target dataset, using Adam optimizer with a learning rate of 1e~*, and a weight decay of 1e~*. The
learning rate was adjusted dynamically through the Cosine Annealing learning rate scheduler. The
loss function used throughout the training process was Binary Cross-Entropy.

E STRUCTURE OF EMBEDDING SPACE

Table [6] reports the distribution percentiles of the cosine similarity between the image features
with the matching (positive) and non-matching (negative) metadata embeddings on the SLICE-
3D dataset, noting that each of them is well approximated by a unimodal, almost symmetric
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distribution. Importantly, the distribution of the negative pairs lies far away from the distribu-
tion of the positive pairs, showing a significant separability in the embedding space, indicat-
ing that a well-structured representation space has been recovered during the pre-training phase.

To provide some further in-
sight, we consider a small sub-
set of SLICE-3D (10%) as a

Table 6: Percentiles of cosine similarity between image features and
matching vs. non-matching metadata embeddings on SLICE-3D.

validation set and we produce ~_Percentile 2%  10% 25% 50% 75% 90% 98%
e . Non-Matching -0.328 0213 -0.117 -0.006 0.100 217 0.369
the distribution of the similar-  \p, uoo 0614 0717 0780 0.836 0.878 0906 0.931

ity scores between the images
of this set with the matching metadata in the embedding space, as well as the corresponding dis-
tribution of the similarity scores with the most similar metadata retrieved from the training set.
The distributions are shown in Figure 4] suggesting that there is a good agreement between them.
Moreover, Figure [ presents the similarity score distributions between the images from the targets
datasets and the retrieving metadata from the SLICE-3D reference dataset. Although these distribu-
tions, as expected, are shifted towards lower scores, still the alignment between the image-metadata
representations is quite satisfactory. This in part explains why the proposed metadata extrapolation
method can lead to improved results, as can be seen by the comparison between Pre-SLIMP and
Ret-SLIMP in Table

Moreover, Table [7]reports the Recall@k metrics on the SLICE-3D validation set to directly assess
whether the true metadata associated with a given image is among the top retrieved candidates.

The fact that R@1 exceeds 45% demon-
strates that the model retrieves the correct
metadata as the top match nearly half of the
time. Given that the validation set contains R@1 R@S R@10 R@15 R@20 R@100
over 40,000 samples, this indicates that the 45.1 6.6 86.3 90.5 92.8 99.1
model is capturing important alignment cues between image and metadata modalities. The rapid
increase between R@1 and R@5/R @10 further indicates that the matching metadata is usually found
within a very narrow ranking window, reflecting a well-structured embedding space. Notably, R@ 100
reaches 99%, an important result given the size of the validation set.

Table 7: Image-metadata retrieval results on SLICE-3D
validation set. R@k: Recall at rank k.

F EXTENDED ABLATION

We report additional ablations concerning the choice of image and tabular encoders, as well as the
patient batch size. In the tables below, we highlight in light blue the reference configuration adopted
in the experiments of the main text.

F.1 IMAGE ENCODER

We consider the influence of the image encoder size on the downstream skin lesion classification task.
Specifically, we consider the Tiny, Small & Base ViT variants (Dosovitskiy et al.l [2021; [Touvron
et al.l 2021). Table E] shows the influence of the image encoder size on the performance metrics
across four datasets: PAD-UFES-20, HIBA, HAM 10000, and PH2. Interestingly, the influence of the
image encoder size in the case of SLIMP is reduced, which can be attributed to the complementary
information added by the metadata through the tabular encoder. Table [] reports the number of
parameters for the different image encoder sizes, with ViT-Base being approximately 4 x larger than
ViT-Small and 15x larger than ViT-Tiny.

The choice of NV, the number of images and lesions selected per patient during training, also plays
a role in performance differences. For ViT-Tiny and ViT-Small, N = 100 was chosen to balance
computation and training efficiency, while for ViT-Base, N = 50 was used due to the model’s
significantly larger size and computational requirements. This may partially explain the performance
drop observed in ViT-Base architectures, as the model has less diverse per-patient data for training.
In summary, ViT-Small tends to strike the best balance between performance and model complexity,
as seen across most datasets.
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Table 8: Impact of image encoder size on the skin classification performance using SLIMP. Best

results in bold.
PAD-UFES-20 HIBA HAM10000 PH2
Acc BA F1 AUC | Acc BA F1 AUC ‘ Acc BA F1 AUC | Acc BA F1 AUC
SLIMP w/ ViT-T 89.6 89.0 908 922 | 89.5 893 904 939 | 847 817 .665 910 | 950 917 909 100
SLIMP w/ VIS 909 902 .921 926 | 920 919 925 .954 873 835 .707 .923 | 100 100 1.00 1.00
SLIMPw/ViT-B 878 869 896 899 | 833 830 851 918 [817 724 .553 862 | 90.0 833 .800 1.00
SLIMPw/ ViT-T 817 814 837 858 | 833 832 842 004 | 857 749 612 904 | 900 833 800 1.00

SLIMP w/ ViT-S  93.5 932 .942 911 | 87.7 875 885 849 858 78.0 .645 .893 | 950 964 .923 940
SLIMP w/ VIT-B  84.8 844 865 900 | 81.5 81.3 .830 .887 | 823 644 438 851 |80.0 667 .500 1.00

kNN |linprob

Table 9: Number of parameters for the SLIMP and the SLIMP methods for different image and

tabular encoders.
# of params (milions)

w/ TRACE w/ FT-Transformer
ViT-Tiny ViT-Small ViT-Base ViT-Small
SLIMP
SLICE-3D 8.7 34.3 136 99.9
SLIMP
PAD-UFES-20 2.2 8.3 32.6
HIBA 2.1 8.0 31.3 78.5
HAM10000 2.1 8.0 31.3

F.2 TABULAR ENCODER

We compare the performance of SLIMP considering two tabular encoders: FT-Transformer (Gor
1shniy et al.,|2021) and TRACE (Christopoulos et al., |2025). Table presents the corresponding
performance across all datasets, using ViT-Small as the image encoder. TRACE, which is specialized
for clinical data, consistently outperforms the generic FT-Transformer across all datasets and metrics
considered, despite the fact that SLIMP with FT-Transformer has a significantly larger number of
parameters, as shown in Table[9] In fact, despite being over four times bigger, FT-Transformer does
not achieve the same level of performance. Moreover, in contrast to the adopted tabular encoder
TRACE, FT-Transformer requires a significant amount of hyper-parameter tuning to achieve optimal
performance. These observations suggest that the task-specific design of TRACE offers a better
balance of efficiency and performance when working with medical metadata, making it a more
suitable choice for SLIMP.

Table [I1] compares the computational complexity, measured in GFLOPS, for SimCLR, SLIMP
with FT-Transformer, and SLIMP with TRACE with different encoder sizes (ViT-Tiny, ViT-Small,
ViT-Base). Naturally, computational costs scale with the size of the ViT encoder, highlighting the
trade-off between model size and efficiency. In relation to metadata encoding, SimCLR which
lacks metadata encoding is slightly more efficient with respect to the proposed multimodal SLIMP
method, but SLIMP generally performs better, as has been shown in the results presented in the
main text. On the other hand, the FT-Transformer tabular encoder introduces a significant overhead.
The reference configuration featuring SLIMP with TRACE is a more balanced choice, offering
improved performance with significantly less GFLOPS compared to the FT-Transformer. The number
of GFLOPS for the supervised approaches SBCL, SBCL-C and TFormer are also reported in the table
for comparison. Additionally, Table[I2] reports the number of parameters and the relative training
time between the SImCLR, SLIMP, SBCL and TFormer. Relative training times are normalized with
respect to the SimCLR’s training time on SLICE-3D.

Table 10: Comparison between the generic tabular encoder FT-Transformer and the tabular encoder

for medical data TRACE. Best results in bold.
PAD-UFES-20 HIBA HAM10000
Acc BA FlI AUC| Acc BA Fl AUC | Acc BA Fl AUC
SLIMP w/ FT-Transformer 89.6 89.1 .908 .946 | 84.6 84.0 .871 910 | 80.2 50.0 .000 .655
SLIMP w/ TRACE 90.9 90.2 .921 926 | 92.0 919 925 954 | 87.3 83.5 .707 .923

SLIMP w/ FT-Transformer 87.4 872 .886 .939 | 82.7 82.6 .837 .882 | 77.7 524 159 .745
SLIMP w/ TRACE 93.5 932 942 0911 | 877 875 885 849 | 858 78.0 .645 .893

kNN linprob|
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Table 11: Comparison of computational complexity in terms of GFLOPS between SBCL(-C),
TFormer, SimCLR, SLIMP with FT-Transformer, and SLIMP with TRACE with different encoder
sizes. VIT-T, ViT-S and ViT-B correspond to ViT-Tiny, ViT-Small and ViT-Base, respectively.

\ GFLOPS
SBCL(-C) 0.564
TFormer 4.509
SimCLR 1.258 14.608 | 17.582 (ViT-T | ViT-S | ViT-B)
SLIMP w/ FT-Transformer | 1.69416.298 [ 24.233 (ViT-T | ViT-S | ViT-B)
SLIMP w/ TRACE 1.298 14.765 | 18.203 (ViT-T | ViT-S | ViT-B)

Table 12: Model size comparison based on the total trainable parameters for every dataset (columns)
and the relative training time, normalized to SimCLR’s training time on SLICE-3D.

SLICE-3D PAD-UFES-20 HIBA HAMI0000 PH2
SimCLR 5.5M

E  SLIMP  34.3M 8.3M 8.0M 8.0M 41M
§  SBCL 0.5M 0.5M 0.5M 0.5M 0.5M
s TFormer 27.8M 278M  278M  27.8M
» SImCLR 1

£  SLIMP 0.3 0.04 0.03 0.1 0.002
= SBCL 02 0.06 0.05 0.01 0.002
£  TFormer 0.01 0.01 0.04 0.002

F.3 IMAGE ENCODER FINETUNING

Restricting fine-tuning to the image embedding

layers leads to improved results because it miti-

gates catastrophic forgetting. In fact, there is Table 13: Comparison of full fine-tuning (v) and
a significant domain shift between the refer- embeddings-only tuning (X) across target datasets.
ence and the target datasets, both because of Best results in bold.

the diverging nature of their metadata attributes,  Dataset FT Acc BAcc F1  AUC
and due to the different modality of the images 870 867 0883 0922
in each dataset. By updating only the embed- 909 902 0921 0.926
ding layers, SLIMP preserves the representa- 839 887 0898 0937
tions learned on the much larger (and with richer ~ HIBA 020 919 0925 0954
metadata) SLICE—?)D datasetz Whlle still adapt- %65 737 0606 0917
ing to the divergent characteristics of the target HAM10000 873 835 0707 0923
datasets. To validate this, we provide Table@]
comparing two scenarios. The first row of each dataset reports the performance after full fine-tuning
of all encoder parameters, while the second one reports the strategy adopted in SLIMP, namely
limiting the fine-tuning to the embedding layers only. We observe that the latter strategy consistently
yields improved performance across all datasets and metrics.

PAD-UFES-20

RN N R N

F.4 PATIENT BATCH SIZE

We examine the impact of the patient batch size considered in the continual pre-training of the SLIMP
on the PAD-UFES-20 dataset. Table [I4]shows how the patient batch size affects performance on
binary skin lesion classification. We observe that smaller batch sizes, as B = 4 and B = 8§, yield
slightly lower Balanced Accuracy (BA) and F1 scores, while larger batch sizes, lead to improved
performance across all metrics but AUC. B = 64 achieves the highest BA of 90.2% and an F1
score of 0.921. Interestingly, further increasing the batch size (e.g., B = 128 or B = 256) does
not result in further performance gains and, in most cases, slightly decreases overall performance.
This further highlights the importance of carefully choosing the patient batch size considered in the
pre-training, as it can significantly impact performance. The choice of B = 64 strikes an effective
balance, justifying its choice as the reference configuration.
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Table 14: Performance of the SLIMP method with different batch sizes (B) during the continual
self-supervised learning stage on the PAD-UFES-20 dataset. Best results in bold.
Acc  BA F1  AUC
SLIMPg_, 900 864 .886 .907
SLIMPg_g 89.1 884 906 911
SLIMPg.3; 88.7 884 .898 .928
SLIMPg_¢4 909 90.2 921 .926
SLIMPg_15s 89.6 89.1 908 918
SLIMPg_s¢ 89.6 89.1 .908  .927

G ADDITIONAL EXPERIMENTS

G.1 KNN CLASSIFICATION PERFORMANCE

To further enhance our evaluation protocol, we performed k-nearest neighbors (kNN) classification
for the downstream skin lesions classification task. Unlike linear probing, kNN offers a training-free
evaluation that directly measures how well the learned feature space clusters samples of the same class.
This protocol is widely adopted in contrastive and self-supervised learning, as it avoids introducing
additional parameters or optimization choices while still reflecting the discriminative power of the
representations. As reported in Table[I5] SLIMP consistently surpasses all baselines across datasets,
with the sole exception of HAM10000, and achieves an average accuracy improvement of 5.1%
over the second-best method. These results further support the findings reported in the main text,
and demonstrate that the embedding space recovered by SLIMP is well-structured, even without
task-specific fine-tuning.

Table 15: kNN accuracy (%) on the binary classification task across four target datasets. The average
performance is reported in the last column. Best results are in bold, second best are underlined.

Method PAD-UFES-20 HAMI10000 HIBA PH2 AVG

MAE 66.1 85.8 765 950 809
BEiTv2 5.7 87.6 77.8 80.0 80.3
DINOv2 72.6 83.8 772 95.0 822
CLIP 72.6 86.6 80.9 95.0 838
SigLIP 71.0 86.0 784 900 829
SigLIP-2 75.7 85.1 80.9 90.0 829
WL-CLIP 76.5 89.7 852 90.0 854
SimCLR 67.4 87.2 803 625 744
SLIMPgp ar 81.3 84.1 77.8 950 84.6
SLIMPg_4 93.5 85.9 87.7 95.0 905

G.2 MULTICLASS CLASSIFICATION

In Table[16] we evaluate our proposed SLIMP method in a multiclass classification setting on PAD-
UFES-20 dataset, in comparison with the baselines from Table [2] We report results for the overall
Accuracy (Acc), F1-macro (which ensures equal contribution from minority classes), and F1-weighted
(which accounts for class imbalance). Notably, SLIMP outperforms all baselines across all metrics,
highlighting the robustness of SLIMP in handling imbalanced multiclass classification tasks. We
note that techniques addressing class imbalance can be combined with SLIMP to further improve
multiclass classification performance.

G.3 RETRIEVAL

We conduct Image-to-Text (I2T) and Text-to-Image (T2I) downstream retrieval tasks across three
target datasets (PAD-UFES-20, HAM 10000, HIBA) comparing our proposed method, SLIMP with
multi-modal baselines such as CLIP, SigLIP, SigLIP-2 and WhyLesionCLIP. For the baseline methods,
we convert the tabular metadata into natural language descriptions using a large language model
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Table 16: Multiclass classification results on PAD-UFES-20 dataset. The Metadata column indicates
whether metadata are used during the downstream classification task. Best results in bold second
best are underlined.

Method Metadata Acc Fl-macro Fl-weighted

MAE X 70.0 .631 .692
DINOv2 X 73.0 614 126
BEiTv2 X 74.4 714 738
CLIP X 70.9 .584 .698
SigLIP X 73.9 .680 124
SigLIPv2 X 74.8 700 745
WL-CLIP X 722 .650 7126
SimCLR X 84.2 .688 .826
SBCL X 45.7 .289 433
SLIMP v 85.2 .833 845
TFormer v 78.7 .698 792

(GPT-40). For SLIMP, both 12T and T2I tasks are performed using tabular metadata processed
directly by our tabular encoder. The retrieval follows an instance-level protocol, where for T2I the
ground truth is the lesion image described by a given description/metadata instance, and for 12T the
true match is the specific set of either tabular metadata or textual description, corresponding to the
input image. Queries for both tasks are drawn from the validation split of each target dataset, which
remains unseen during all training phases.

We report the retrieval results for I2T and T2I tasks, in tables[T7]and [I8|respectively. We evaluate
retrieval using three metrics: Recall at rank k (R@k), Normalized Discounted Cumulative Gain
(N@k) and mean Average Precision (mAP). N@k rewards relevant items appearing higher in the
ranking and is a particularly critical metric in clinical evaluation tasks. Across all three target datasets,
our approach substantially outperforms the baselines in most cases, often by large margins, despite
being based on a ViT-S backbone while the competing methods were evaluated with larger ViT-B/L
models. The gains we report in PAD-UFES-20 and HIBA, where rich patient- and lesion-level
metadata are available, underscore the robustness of our method in leveraging structured clinical
information. On HAM10000 dataset, our model still achieves the best retrieval quality in terms of
NDCG. Notably, we outperform WhyLesionCLIP on the mAP metric, with gains of +4.9, +14.9, and
+21.5 for I2T retrieval on PAD-UFES-20, HAM 10000, and HIBA, respectively, and +3.6, +11.3, and
+18.0 for T2I retrieval on the same datasets.

Table 17: Image-to-Text retrieval performance on three target datasets. We compare SLIMP
against cross-modal pretraining baselines; CLIP, SigLIP, SigLIP-2, and WhyLesionCLIP (WL-CLIP).
Retrieval is evaluated using Recall at rank k (R@Xk), Normalized Discounted Cumulative Gain at k
(N@k), and mean average precision (mAP). Best results in bold, second best are underlined.

Models R@5 R@I0 R@I5 R@20 R@I00 N@5 N@I0 N@I5 N@20 N@I00 mAP
PAD-UFES-20

CLIPyirp 33 70 102 137 515 18 30 39 4.8 1.5 32

SigLIPyirp 65 80 126 144 535 43 49 6.3 6.7 135 55

SigLIP-2virg 7.4 98 117 133 494 50 5.8 6.4 6.7 132 56

WL-CLIPyirp 26 6.1 1.3 124 520 13 25 3.8 4.1 1.1 30

SLIMPyirs 90 148 190 282 772 56 15 88 112 209 79

HAMI0000

CLIPyirp 06 1.0 1.4 2.1 109 05 07 0.8 1.0 3.6 1.9

SigLIPyirs 10 15 22 2.9 120 0.9 1.1 1.4 1.6 4.4 2.4

SigLIP-2yirg 0.6 1.2 22 2.8 118 08 1. 1.3 1.6 45 2.5

WL-CLIPyir, 12 2.6 3.6 4.8 217 12 17 22 2.7 75 3.6

SLIMPyirs L0 19 24 2.9 155 09 33 9 5.8 131 185
HIBA

CLIPyirp 39 74 105 136 664 26 39 4.6 55 156 438

SigLIPyirp 35 89 151 207 724 35 57 7.4 8.9 187 66

SigLIP-2vir.p 3.6 6.2 14.7 19.7 78.0 2.2 3.0 55 6.9 18.6 4.9
WL-CLIPyir;, 11.6 18.0 24.8 35.1 90.1 7.9 10.4 12.3 15.5 26.3 10.9
SLIMPy;1-g 9.4 20.0 27.5 33.8 89.2 15.2 20.2 24.5 27.7 51.5 324
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Table 18: Text-to-Image retrieval performance on three target datasets. We compare SLIMP
against cross-modal pretraining baselines; CLIP, SigLIP, SigLIP-2, and WhyLesionCLIP (WL-CLIP).
Retrieval is evaluated using Recall at rank k (R@Xk), Normalized Discounted Cumulative Gain at k
(N@k), and mean average precision (mAP). Best results in bold, second best are underlined.

Models R@5 R@I0 R@I5 R@20 R@I00 N@5 N@I0 N@I5 N@20 N@I00 AP
PAD UFES 20

CLIPyirs 61 85 9.8 115 507 41 49 5.3 5.7 126 45
SigLIPyirp 44 72 102 130 548 30 40 4.9 5.6 131 45
SigLIP-2yirs 5.7 89 102 137 489 37 49 5.2 6.1 125 49
WL-CLIPyz; 39 65 8.5 102 457 3.1 3.6 42 46 1.0 40
SLIMPyirs 87 161 261 300 783 67 104 135 145 223 7.6
HAM10000

CLIPyirp 0.7 1.2 1.6 1.8 9.4 1.5 2.0 22 24 74 1.3
SigLIPyirp 12 22 24 33 136 25 43 4.6 5.4 9.9 1.9
SigLIP-2virg 0.9 1.8 2.8 3.5 14.0 13 21 2.8 33 9.5 1.8
WL-CLIPyz; 1.5 3.1 4.7 6.5 197 30 50 6.0 7.0 1.6 23
SLIMPy;r.s L1 20 2.7 34 168 342 366 398 412 466 136
HIBA

CLIPyirp 25 71 113 138 658 12 36 5.0 5.6 158 35
SigLIPyir-p 25 65 1.1 173 779 20 36 45 6.0 184 40
SigLIP-2yirg 3.7 105 132 187 698 40 68 7.7 9.6 182 54

WL-CLIPyr. 93 179 213 280 840 74 115 126 147 238 86
SLIMPyrs 104 204 277 320 920 450 521 548 572 576 266

G.4 TEXTUAL DATA

We reproduce a concept-based interpretability (CBI) method (Patricio et al., 2024), by adapting
CLIP on the SLICE-3D dataset, considering a ViT-B/16 backbone architecture which offers optimal
results. This methodology uses visual-language models for exploiting textual concepts for melanoma
classification offering three different variants; (1) the Baseline approach, which directly applies CLIP,
selecting the label that achieves the highest cosine similarity between the image and text embeddings,
(2) the CBM approach, which introduces dermoscopic concepts and utilizes melanoma-specific
coefficients to make predictions and (3) the GPT-CBM approach, which extends each dermoscopic
concept introduced in CBM with multiple textual descriptions by querying it into ChatGPT.

In Table[I9|we compare the performance of the above approaches, with our proposed SLIMP method,
across three different target datasets, in a ‘melanoma vs all’ classification scenario. SLIMP is only
adapted during linear probing while all pre-trained models on SLICE-3D dataset remain unchanged,
highlighting the robustness of the learned representations. SLIMP consistently outperforms all other
approaches without the need of task-specific pre-training.

Table 19: Comparison of SLIMP method with CBI variants across three target datasets. Results for
the proposed SLIMP method are obtained using a linear probing setting. Best results in bold.

PAD-UFES-20 HIBA HAM10000
Acc BA FI AUC | Acc BA F1 AUC | Acc BA FlI AUC
Baseline 239 513 .044 422 | 685 548 261 .502 | 72.0 58.6 .247 .595
CBM 787 69.6 .109 778 | 482 613 333 .659 | 54.1 58.8 .238 .565
GPT-CBM 357 573 .051 599 | 488 61.7 336 .638 | 555 57.6 .231 .581
SLIMP 98.7 70.0 .571 .993 | 90.1 723 .600 .939 | 89.1 67.9 452 .892

H FEATURE IMPORTANCE

In Figure [5| we estimate feature importance scores from the last-layer self-attention maps of the
tabular transformer. Each attention matrix A € RT*T, with T the number of tokens ([cls] + features),
is the standard dot product of queries and keys followed by a softmax activation function. We discard
the [cls] token, as our downstream tasks rely on the global average pooling (GAP) of the output
feature tokens coming from TRACE rather than the [cls] representation. After masking the diagonal
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Figure 5: Normalized feature importance scores for and features. The

importance scores are derived from the attention mechanism of each tabular transformer respectively.

and renormalizing each row, the normalized importance of feature j is computed as

1 Aij
E[T—l i zk;Aik}
Tmp; = : Y . D Imp; =1,
Yom ]E[inl Zi;&m Zk#::znAik:| J

where ¢ indexes querying features, j receiving feature and & runs over all possible receivers in row .
The resulting distributions in Figure [5|highlight which and level features dominate the
model’s internal attention mechanism. We observe that age, the number of lesions per patient and
the Fitzpatrick skin type (where available) consistently dominate the outer level of the architecture,
reflecting their strong influence in clinical diagnosis. Importantly, these features are considered
among the most relevant according to the dermatology literature. In addition, for the PAD-UFES-20
dataset the inner tabular transformer attends strongly to critical features such as the anatomical region
of the lesion and indicators of lesion change detection (e.g., whether the lesion has grown or itched).

I QUALITATIVE ASSESSMENT

Figure [6] shows the t-SNE (Hinton & Roweis| 2002) embeddings of the three SLIMP variants
presented in Tabled] on the PAD-UFES-20 dataset. We observe a better separation between benign
and malignant lesions when metadata are considered during pre-training.
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Figures [7]and 8] presents randomly selected lesions from each dataset validation split, with the corre-
sponding attention maps extracted from the pre-trained image encoders of MAE, BEiTv2, DINOv2,
CLIP, WL-CLIP, SimCLR and SLIMP (ours) in this order. We note that SLIMP effectively localizes
the majority of the lesions, regardless of differences in lesion shape, texture and color. This consis-
tency in identifying relevant lesion regions indicates the robustness of the learned representations
across diverse datasets that exhibit a high variation in visual appearance, also due to different imaging
modalities. It also showcases the ability of the model to focus on relevant skin-lesion features,
supporting the improved downstream classification performance, and suggesting that the method can
enhance the interpretability and reliability of the results.

Figure 6: t-SNE visualization of SLIMP features for and malignant lesions in the PAD-UFES-
20 dataset. Left: Pre-training using image encoder alone; Middle: Pre-training using image and
lesion metadata; Right: Pre-training using images with lesion and patient-level metadata.
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Figure 7: Attention maps obtained from the last self-attention block of the image encoder across
different pre-trained models. The leftmost column shows the original image, while the remaining
columns display heatmap overlays from MAE, BEiTv2, DINOv2, CLIP, WL-CLIP, SimCLR, and our
proposed SLIMP (rightmost column). The top seven rows correspond to samples from SLICE-3D
reference dataset, while the bottom three rows correspond to samples from PH2 target dataset.
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Figure 8: Attention maps obtained from the last self-attention block of the image encoder across
different pre-trained models. The leftmost column shows the original image, while the remaining
columns display heatmap overlays from MAE, BEiTv2, DINOv2, CLIP, WL-CLIP, SimCLR, and our
proposed SLIMP (rightmost column). The top four rows correspond to samples from PAD-UFES-20
target dataset, the middle four rows correspond to samples from HIBA target dataset, and the bottom
four rows correspond to samples from HAM10000 target dataset.
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