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ABSTRACT

We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich
representations of skin lesions through a novel nested contrastive learning approach
that captures complementary information between images and metadata. Melanoma
detection and skin lesion classification based solely on images, pose significant
challenges due to large variations in imaging conditions (lighting, color, resolution,
distance, etc.) and lack of clinical and phenotypical context. Clinicians typically
follow a holistic approach for assessing the risk level of the patient and for deciding
which lesions may be malignant and need to be excised by considering the patient’s
medical history as well as the appearance of other lesions of the patient. Inspired by
this, SLIMP combines the appearance and the metadata of individual skin lesions
with patient-level metadata relating to their medical record and other clinically
relevant information. By fully exploiting all available data modalities throughout
the learning process, the proposed pre-training strategy improves performance
compared to other pre-training strategies on downstream skin lesion classification
tasks, highlighting the learned representations quality.

1 INTRODUCTION

The analysis of skin lesion characteristics is an important part of dermatological examination,
allowing clinicians to recognize potential skin malignancies and establish suitable follow-up actions
and treatment plans. Among skin malignancies, melanoma, although having a lower incidence with
respect to other skin cancers, has a significantly heavier impact on the patient health in terms of
morbidity and mortality. There are over 330,000 cases of melanoma diagnosed worldwide every year,
leading to more than 55,000 deaths annually (Arnold et al.| 2022), with data suggesting an increased
incidence in the last years (Sun et al.l 2024). Importantly, when detected early (stage I-II), melanoma
can be cured in the majority of cases through surgical excision. This suggests the importance of
developing efficient and effective methods for early detection of melanoma and other types of skin
cancers.

Numerous works in the literature have attacked the problem of classifying skin lesions based on their
appearance (Hasan et al.| 2023} |Adegun & Viriri, |2021)), largely supported by the monumental effort
put forward by the International Skin Imaging Collaboration (ISIC) for constructing the ISIC datasets
and organizing the corresponding challenges from 2016. In dermatological clinical practice though,
clinicians do not base their decisions solely on the appearance of the patient’s individual lesions, but
also consider additional lesion characteristics, as well as their skin phenotype and habits. Drawing
inspiration from this, recent datasets, including SLICE-3D (Kurtansky et al.,[2024)), typically include
lesion and patient metadata (Pacheco et al., 2020; Tschandl et al., [2018}; [Mendonca et al.| 2013)).

Despite the significant effort dedicated in producing large collections of skin lesion data, the amount
of annotated skin lesion data corresponding to malignant lesions still lies far from those available for
other computer vision tasks, making the development of deep-learning methods that rely on large data
quantities troublesome. The combination of different skin lesion datasets can alleviate these problems,
yet differences in imaging modalities (clinical vs dermoscopic images) and metadata attributes pose
an important challenge in their effective use for training deep-learning models. Suitable pre-text tasks
offering self-supervision have proven to be invaluable in such scenarios, enabling the models to learn
rich representative features that can be subsequently employed to address downstream tasks even
when less data are available.
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Building on these observations, we introduce SLIMP (Skin Lesion Image-Metadata Pre-training),
a novel pre-training approach for skin lesions based on nested multi-modal contrastive learning,
which aims to exploit all available data modalities across all stages of the learning process. SLIMP
captures relations between the appearance of the lesions and the metadata associated with them in
the context of the patient-level metadata. By incorporating both lesion and patient level metadata,
the proposed method fully exploits information that is complementary to the appearance of the
lesions, producing representative and generalizable features for skin lesions that lead to improved
performance in downstream tasks. To enable effective transfer to target datasets, we employ an
efficient continual pre-training approach for addressing the problems that arise from the differences
that typically occur between the metadata structure and imaging modalities of different datasets.
Additionally, by exploiting the structure of the common images-metadata embedding space learned
during the pre-training phase, we propose an extrapolation technique for enriching datasets that do
not contain metadata, by transferring metadata from a reference dataset based on their agreement
with the target images.

The contributions of this work are the following:

1. We propose a multi-modal pre-training strategy based on a novel nested contrastive learning
schema for producing rich skin lesion representations by leveraging metadata both at the
lesion and patient levels which complement the visual information of the lesion images;

2. We adapt the learned representations on target datasets through efficient continual pre-
training, effectively addressing differences in metadata attributes and imaging modalities;

3. We propose a metadata extrapolation strategy for enhancing image-only datasets using
suitable reference metadata;

4. The proposed nested multi-modal pre-training strategy achieves improved performance
in downstream tasks compared to competing pre-training strategies and strong baselines,
including fully-supervised approaches.

2 RELATED WORK

Multi-modal self-supervised representation learning is used for enhancing image-based models
by incorporating different data modalities, especially for tasks where additional context provides
useful information for improved task performance. In this context, CLIP (Radford et al.l [2021)
introduced a method for learning image-text representations through a contrastive learning paradigm.
By linking each image to a natural language description, CLIP captures subtle patterns and nuances,
creating representations that can accommodate different applications. This paradigm has been
followed by a large number of works, including (Zhai et al.,|2023) and (Tschannen et al.,2025). In
a domain-specific context, the work of Bourcier et al.| (2024)) adopted a multi-modal pre-training
approach for learning representations based on satellite imagery and associated metadata, showing
that the additional context provided by metadata leads to improved performance in downstream tasks.

Regarding contrastive learning performed across taxonomies, |[Zhang et al.| (2022)) introduced hier-
archical contrastive pre-training for images, allowing to consider labels organized in a taxonomy,
by proposing a natural extension of the contrastive loss for hierarchical label relations as well as
a constraint enforcing loss for separating distinct lineages. [Fan et al.| (2024) used three levels of
contrastive learning for improved sentiment analysis by incorporating various features combinations
of the available data modalities.

In the medical domain, the work of Jiang et al.| (2023) highlighted the importance of taking into
account the patient-slide-patch hierarchy in learning suitable representations for cancer diagnosis
based on whole-slide images. On the other hand, |Wang et al.| (2023) used a contrastive loss spanning
multiple levels across the same modality, ranging from patient-level to observation-level, for maxi-
mizing information utilization of the available data, leading to stronger representations for medical
time-series analysis and classification.

In this work we adopt a contrastive learning strategy across two distinct levels of metadata, modeled
as one level nested within the other, as patient-level metadata are shared while lesion-level metadata
regard individual skin lesions. This scheme encourages learning of more representative skin-lesion
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representations that can assist in the downstream skin lesion classification task while offering
improved generalization across different patients.

Dermatology-specific representation learning has been pursued in several approaches specifically
tailored for skin lesion analysis, going beyond generic computer vision models. WhyLesionCLIP
Yang et al.| (2024) adapts the CLIP architecture using a supervised objective, fine-tuning it on a
large corpus of skin lesion images and biomedical text descriptions to capture domain-specific
semantics. Similarly, PanDerm |Yan et al.[(2025)) leverages large-scale vision-language pre-training to
address diverse dermatological tasks. Addressing the specific challenge of class imbalance in medical
datasets, SBCL |Hou et al.| (2023)) employs a supervised subclass-balancing contrastive strategy
to improve representation learning on long-tailed distributions. While these methods effectively
leverage unstructured text or specialized sampling strategies, SLIMP introduces a distinct paradigm
by modeling the inherent structured, compositional hierarchy of tabular metadata, a critical clinical
modality that offers complementary constraints to text-based or image-only approaches.

Continual pre-training has become a key strategy to make pretrained models more specialized
and effective for real-world applications, where domain-specific knowledge is often crucial. In this
context, Gururangan et al.[(2020) demonstrated that simply continuing to pretrain a language model
on domain-specific texts substantially improves the accuracy across diverse tasks, even when labeled
data is limited. [Liu et al.|(2021) developed a continual pre-training framework for the mBART model
to boost machine translation for low-resource languages, where translation data is often limited
or nonexistent. By generating mixed-language text from available monolingual resources, they
enabled mBART to ‘self-train’ on noisy but representative data and extend its language skills to
previously unseen languages. In the domain of geospatial analysis, Mendieta et al.| (2023)) tackled the
resource-intense needs of geospatial applications with a continual pre-training method that exploits
the rich representations coming from large-scale image datasets like ImageNet-22k.The work of Reed
et al.| (2022) extended this adaptive pre-training to general computer vision, aiming to address the
high costs of self-supervised learning. Their approach, utilize existing pretrained models as a starting
point to accelerate learning, achieving improved accuracy with fewer resources.

Multi-modal continual pre-training has only recently been explored, mainly regarding the adaptation
of vision-language models (Roth et al.l 2024; |Chen et al., 2025)). In the medical domain, Ye et al.
(2024) proposed continual pre-training for multi-modal medical data in a multi-stage manner to
avoid interference between image and non-image modalities during learning. The proposed method
makes use of continual pre-training to fully exploit target dataset metadata. Due to the differences
in the recorded attributes, continual pre-training allows adapting the metadata encoder accordingly,
leading to improved classification performance. To the best of our knowledge, this is the first work
that explores the use of multi-modal continual pre-training for tabular metadata, allowing to fully
exploit the available metadata of target domains. Importantly, the proposed continual pre-training
strategy does not rely on target labels, which are not always available in the context of skin lesion
classification and other similar medical applications.

Data enhancement through retrieval has been proposed in the natural language processing domain
under different settings. In|Borgeaud et al.| (2022), a retrieval-enhanced language model (RETRO)
is introduced augmenting a frozen language model allowing retrieval from a large text database for
improving its performance. In a similar direction, |Trauble et al.|(2023) proposed a discrete key-value
bottleneck architecture considering pairs of sparse, separable and learnable key-value codes.

The work of |Norelli et al.[(2023) applies the idea in a multi-modal setting, establishing image-text
correspondences using independently pre-trained image and text encoders by exploiting similarities
within each modality in combination with a reduced dataset of known image-text correspondences.
We consider a retrieval-enhanced variant of SLIMP for allowing multimodal classification even for
image-only datasets, by matching metadata from a reference dataset.

3 METHOD

In this section we present SLIMP, a self-supervised pre-training approach with a nested contrastive
loss. Given a reference skin-lesion classification dataset providing metadata at the lesion and at
the patient levels, the proposed approach aims to learn representative and generalizable skin lesion
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Figure 1: SLIMP architecture. An inner multi-modal contrastive loss is employed to maximize
agreement among images of skin lesions and the corresponding metadata. Skin lesion image and
metadata representations of a patient are aggregated, summarizing the lesion phenotype. At the
patient level, agreement between the estimated lesion phenotype and the patient metadata is pursued
through an outer contrastive loss.

representations by combining appearance information with information stemming from the corre-
sponding metadata at both levels. Two strategies are then proposed for adapting these representations
to target datasets in a way that fully exploits the available metadata, even when their structure and
content differ from the source data. This leads to enhanced performance on downstream classification
and retrieval tasks by leveraging multi-modal information about the skin lesions. The notation used
throughout this section is summarized in Table[3]

3.1 NESTED CONTRASTIVE MULTI-MODAL LEARNING

The overall approach is presented in Figure [T] and summarized in Algorithm [I] For each patient,
p € {1,..., M} our model processes NV, lesion images {Ill)}i\ipl with an image encoder to extract

image-based features {wé € RP }i\i”l, where D denotes the dimensionality of the image embedding.

In parallel, the model processes the corresponding lesion-specific tabular metadata {Lé}zN:IH with a

Algorithm 1: SLIMP Nested Contrastive Learning Pseudocode

Data: Lesion images: {{IIZ,}ZNZ"1 ML, lesion metadata: {{Lﬁ,}l]\fj’1 })L,, patient metadata: {P,}}L .

Sample a batch of B patients
L‘«lesions =0
forpe {1,...,B} do
Build batch of N lesion image-metadata pairs from patient p
fori € {1,...,N}do
wlp = ImageEncoder (I;)
hé = LesionTabularEncoder (TL;)
end
Licsions += %InfoNCELoss ({wi,}{il, {hi,}fil)
zp = Linear (AvgPool ({(w), kL) }1L1))

end

{xp}le =PatientTabularEncoder ({TPp}le)
Lpatient = InEONCELoss ({(2p, 7p) }5o1)

Etotal =X »Clesions + (1 - )\) . »Cpatient
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Figure 2: Use of learned representations for skin lesion classification. Classification of a skin lesion
using corresponding data modalities (image+metadata) is shown on the left. Classification of a skin
lesion image using the retrieval-based metadata extrapolation method is shown on the right.

tabular metadata encoder to extract metadata-based feature representations { hi, eRP }l]\]:‘D1 on a lesion
level. The resulting lesion-level representations are jointly optimized using an inner 10ss (Licsions)
based on InfoNCE (Mendieta et al.,|2018) to maximize the agreement between the lesions of a single
patient. By maximizing the similarity between the corresponding lesion image-metadata pairs and,
analogously, minimizing the cosine similarity between non-matching pairs, the model learns multi-
modal lesion-level representations. The two lesion-level modalities are merged via concatenation,
which has been shown to be a simple yet effective strategy (Weng et al., [2019) for obtaining a

combined lesion-level representation {(w?, hé)}lN:’”l. These combined lesion representations are
aggregated for all the lesions of a patient by applying average pooling, and they are subsequently
linearly transformed into a single vector z, € R”, summarizing the lesion phenotype of the patient.
At the outer level, SLIMP processes the patient-specific tabular metadata (P,) utilizing an outer
tabular metadata encoder, yielding a representation x,, € RP. An outer InfoNCE loss (Lpatient) 18
then applied between the patient-level metadata representation x,, € RP and the patient-level lesion
phenotype representation z, € RP obtained at the inner level. This nested contrastive pre-training
framework enables the model to learn rich skin lesion representations that take into consideration the
patient’s phenotype. The complete loss formulation is provided in Section[C]

3.2 SELF-SUPERVISED IMAGE-METADATA CONTINUAL PRE-TRAINING

Due to differences in clinical practice, regulatory context, and other related factors, skin-lesion
datasets show significant variability both as far as imaging modality is concerned and because of
quantitative and qualitative different behavioral and clinical attributes collected from the patients.
To overcome this inherent difficulty, we propose a multi-modal continual pre-training approach for
adapting the representations learned by pre-training SLIMP on a large reference dataset to potentially
smaller datasets with diverging metadata and/or imaging modalities.

To achieve this unsupervised adaptation, the image and tabular encoders are fine-tuned by employing
the same nested multi-modal contrastive architecture to the target domain. To address the domain
differences, only the first (embedding) layers of the image and the tabular encoders are modified,
keeping deeper layers frozen. This helps to preserve the structure of the common learned space,
alleviating catastrophic forgetting, while allowing for the target domain data to be suitably mapped
to this common space. Implementation details are provided in Section|D| while we compare this
strategy against fine-tuning all the model parameters in Section[F} For completness, we specify that in
cases where only lesion-level metadata are available, a flattened SLIMP variant is considered, taking
into account solely the lesion images and the corresponding metadata.

3.3 SUPERVISED SKIN-LESION CLASSIFICATION USING MULTI-MODAL FEATURES

To assess the quality of the features learned by SLIMP, we consider the downstream skin-lesion
classification task following the standard evaluation protocol in self-supervised learning literature by
employing a supervised linear classifier operating on the concatenation of the features produced by
the frozen image encoder and the two frozen tabular encoders that process lesion- and patient-level
metadata, respectively.
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Dataset enhancement via metadata extrapolation When the target dataset lacks metadata, a
retrieval-based metadata extrapolation approach is used for artificially enhancing the target dataset
by creating metadata pseudo-modalities. As lesion metadata are tightly related to the corresponding
images, we consider the possibility of enhancing datasets that do not provide metadata by constructing
pseudo-modalities of patient-level and lesion-level metadata using the corresponding modalities of
the reference dataset on which the SLIMP model has been pre-trained. Drawing inspiration from
Norelli et al.| (2023) and building on the fact that the lesion- and patient-level modalities have been
trained to maximize agreement, we use the encoding of the lesion images to retrieve the metadata of
the original dataset that exhibit the highest similarity and use them on downstream tasks. A detailed
discussion regarding the structure of the SLIMP embedding space, supporting the validity of this
approach, is provided in Section [E] while Section [F] provides an ablation.

This classification paradigm is presented in Figure [2] (right). Specifically, the model utilizes only the

images Illj from the target dataset, passing them through the image encoder of the SLIMP model that

has been pre-trained on the reference dataset, providing the target dataset image representations wé.

Based on these features, a two-step metadata retrieval process is performed to incorporate additional
context from the reference dataset metadata representations. First, we compare wg) with the features

hY derived from the pre-trained SLIMP lesion metadata encoder, and we retrieve the vector h' with
the highest similarity. The combined feature set {(w}, hY')} is linearly transformed into a single
patient-level vector Z,, which is then compared with the features Z,, derived from the pre-trained
SLIMP patient metadata encoder to retrieve the most relevant £,,. By adding pseudo-modalities on
both the patient and the lesion level, this retrieval process produces three feature vectors for each
image of the target dataset g, : {(w}, A, &)} that can be used for lesion classification.

4 EXPERIMENTAL EVALUATION

4.1 DATASETS

Evaluation is performed considering five widely used, public skin lesion datasets, which differ
in key aspects, including dataset size, imaging modality (dermoscopic or clinical), availability of
metadata (such as the number of patient clinical features), and degree of class imbalance. SLICE-3D
(Kurtansky et al.}2024) is used as a reference dataset, both due to the significantly higher number
of samples and the richness of the metadata features. PAD-UFES-20 (Pacheco et al.,[2020), HIBA
(ISIC} [2024), HAM10000 (Tschandl et al., 2018)), and PH2 (Mendonga et al.,[2013) are considered as
target datasets. The main characteristics of the datasets are summarized in Table|[I] while Section [B]
provides additional details.

4.2 IMPLEMENTATION

Unless otherwise stated, we employ ViT-Small (Dosovitskiy et al.,2021)) as a transformer-based image
encoder and TRACE (Christopoulos et al., [2025)) as a transformer-based encoder for clinical tabular
data. We train the model for 150 epochs on an NVIDIA RTX A6000 GPU with 48GB of VRAM.
For pre-training the model on the SLICE-3D dataset, we consider a batch size of B = 4 patients and
N =100 lesions. For continual pre-training on target datasets, we fine-tune the embedding layers of
the image and metadata encoders, keeping their attention layers frozen. We have observed that this
strategy leads to increased performance in downstream tasks. During continual pre-training, the batch
size is increased to 64 patients. For evaluating the intrinsic quality of the feature representations, we
employ the standard practice established in the self-supervised learning literature, randomly splitting

Table 1: Main aspects of skin lesion datasets considered in the evaluation.

Image Number of Number of Patient Missing Lesion Missing
Dataset Modality Samples Patients Targets Values(%) Values(%) Metadata
SLICE-3D Clinical 401,059 1,042 Benign/Malignant 1.78% 0.04% Patient/Lesion
PAD-UFES-20 Clinical 2,298 1,373 Multiclass 32.20% 7.00% Patient/Lesion
HIBA Mixed 1,616 623 Multiclass 21.20% 12.80% Patient/Lesion
HAM10000 Dermoscopic 10,015 N/A Multiclass 0.57% 1.17% Patient/Lesion
PH2 Dermoscopic 200 N/A Multiclass N/A 6.12% Lesion
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the target datasets into training and validation splits with a ratio of 90%-10%, respectively. Evaluation
following a stricter patient-disjoint splitting strategy is discussed in Section [F] Both pre-training
stages use the AdamW optimizer with a learning rate of 10~% and A = 0.9. Continual pre-training is
performed for 100 epochs on each dataset. For the classification task, we apply linear probing with
binary cross entropy loss (BCE) and the AdamW optimization algorithm.

4.3 PROTOCOL

The SLIMP model is pre-trained on SLICE-3D, a large-scale medical imaging dataset. For assessing
the intrinsic quality of the SLIMP features, evaluation is performed by considering linear probing as
well as k-nearest neighbors (kNN) on the downstream skin-lesion classification task on different target
datasets (Caron et al., 2021). The skin lesion classification datasets contain different taxonomies,
with important class imbalance of varying degrees (Figure [3). To allow consistent comparison across
all datasets, we mainly consider the task of classifying lesions as benign and malignant. Performance
of the models is evaluated considering four metrics: Accuracy (Acc) and Balanced Accuracy (BA)
reported as percentages, and F1-Score and area under the receiver operator curve (AUC) reported
as dimensionless numbers. Balanced Accuracy corresponds to the average of the Sensitivity and
Specificity scores and is particularly relevant in the medical domain as it captures the model’s ability
to correctly identify positive and negative instances, even when datasets suffer from significant class
imbalance. Section[G] provides additional experiments, discussing also the multiclass classification
performance of SLIMP and its use in downstream retrieval tasks.

4.4 RESULTS

Our main goal is to assess the quality of the skin lesion representations learned by the proposed
SLIMP model. Additionally, we examine the extent in which the use of metadata in different parts
of the pipeline impacts the performance on the downstream classification task. In these regards, we
consider strong baselines in each of these parts. Table 2| presents the results using linear probing on
the four target datasets, as well as the macro-averaged metrics further highlighting the generalization
ability of the model. The kNN classification results are presented in the Appendix (Table[T§).

We first consider comparison using features that have been obtained via pre-training on the reference
SLICE-3D dataset. In this context, we consider the Pre-SLIMP setup, which uses the appearance
features extracted by the image encoder of SLIMP that is pre-trained on the lesion and patient metadata
of SLICE-3D, and compare it against the features obtained by SimCLR (Chen et al.,2020) pre-trained
on the images of SLICE-3D. We also consider the downstream classification performance of the
subclass-balancing contrastive learning approach (SBCL) proposed in (Hou et al., 2023)). We observe
that Pre-SLIMP, by exploiting the information encoded in the metadata, achieves similar performance
to SimCLR, even though it does not consider any image-based self-supervision. This suggests that
SLIMP incorporates information from corresponding metadata in the image representation, leading
to more robust representations against image domain shift. By producing more robust features,
Pre-SLIMP outperforms SBCL which explicitly handles class imbalance and long-tail distributions.

In addition, Table 2] provides the results from the MAE (He et al., 2022}, DINOv2 (Oquab et al.,
2023)) and BeiTv2 (Peng et al.,[2022) generic foundation models, as well as the multi-modal models
CLIP (Radford et al., [2021)), SigLIP (Zhai et al., [2023)), SigL.IP-2 (Tschannen et al., |2025) and
WhyLesionCLIP (WL-CLIP) (Yang et al., 2024), alongside PanDerm |Yan et al.[(2025)). The latter
two serve as robust domain-specific baselines. WL-CLIP is a supervised fine-tuning of CLIP on skin
lesion descriptions, while PanDerm is a large-scale vision-language foundation model tailored for
clinical dermatology. For a fair comparison, we consider the ViT-B variants of these models, where
available. We observe that Pre-SLIMP, via nested image-metadata pre-training achieves a competitive
performance against all these models, which have been trained using data that are orders of magnitude
larger. Still, the corresponding attention maps (presented in Section [[) suggest that SLIMP is better
at capturing prominent appearance features of the lesions, hinting that they are more suitable for
spatially-aware downstream tasks (e.g. lesion segmentation). Importantly, SLIMP by employing a
nested structure dictated by the patient-lesions relation, outperforms massive dermatology-specific
foundation models like WL-CLIP and PanDerm (e.g., by more than 6% Balanced Accuracy on
average), despite using a significantly smaller backbone. This shows that structured metadata
integration helps to increase performance more than simply scaling up vision-language pre-training.
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Table 2: Comparison of SLIMP with various baselines, on the lesion classification task using linear
probing. MD stands for ‘Metadata’ used for downstream classification, the asterisk (*) denotes
metadata extrapolation from the reference dataset. For all metrics higher values are better. Best

results are in bold, second best are underlined.

PAD-UFES-20 HIBA HAM10000 PH2 Average
MD Acc BA AUC | Acc BA AUC | Acc BA AUC | Acc BA AUC || Acc BA AUC

Pre-trained Vision Models

MAE X 683 682 .693 | 790 795 848 | 86.0 76.7 901 | 85.0 719 .844 || 79.6 741 822
DINOvV2 X 761 773 828 | 772 714 849 | 86.0 752 .897 | 86.7 813 867 || 815 715 866
BEiTv2 X 770 773 828 | 79.6 799 851 | 862 782 906 | 950 96.4 992 || 84.5 83.1 .894

PanDermge X 752 755 857 | 864 865 932 | 8.1 700 .892 | 950 964 969 || 854 82,1 913
PanDermpae X 800 80.1 .904 | 87.7 87.7 .941 | 8.5 77.6 .925 | 950 96. 1.00 || 87.8 855 .943
Pre-trained Vision-Language Models

CLIP X 709 71.0 795 | 82.1 825 .893 | 854 787 .892 | 90.0 844 .891 82.1 79.2 .868
SigLIP X 748 750 823 | 765 769 .838 | 86.5 79.0 .900 | 95.0 964 969 || 83.2 819 .883
SigLIP-2 X 778 779 853 | 82.1 826 .856 | 86.8 79.8 907 | 950 964 1.00 || 854 843 904
WL-CLIP X 817 819 833 | 821 822 .896 | 88.7 831 .929 | 900 938 1.00 || 85.6 852 .927
Pre-trained on SLICE-3D

SimCLR X 704 705 766 | 84.6 843 913 | 81.2 694 868 | 950 875 1.00 || 82.8 779 .849
SBCL X 661 660 .672 | 66.7 67.5 .671 | 56.0 63.8 .710 | 75.0 75.0 734 || 66.0 68.1 .684

Pre-SLIMP X 765 760 781 | 759 76.0 845 | 83.6 67.8 .855 | 90.0 833 941 | 815 758 .827
Ret-SLIMP /' 770 770 814 | 815 813 861 | 822 71.0 .836 | 950 938 .969 | 83.9 80.8 .837
Continual pre-training
SBCL-C X 713 711 711 | 722 739 760 | 622 734 816 | 90.0 844 719 || 739 757 162

SLIMP\AGE X 761 755 807 | 77.8 78.1 867 | 847 69.2 .889 | 950 964 988 | 834 79.8 854
SLIMPgy T v 857 853 906 | 846 845 911 | 844 756 .894 | 100 100 1.00 | 874 855 904
SLIMPg_4 v 909 902 926 | 92.0 919 954 | 873 835 .923 | 100 100 1.00 | 92.6 914 .951
SLIMPg_g v 909 905 929 | 92.6 924 944 | 87.7 845 929 | 100 100 1.00 | 92.8 919 .951
Supervised ‘

TFormer v 913 913 960 | 889 889 963 | 82.1 762 875 | 950 91.7 988 | 89.3 87.0 .947
Low-shot Evaluation ‘

SLIMP, 4, v/ 839 841 908 | 753 758 863 | 787 73.8 847 | 70.0 643 548 | 77.0 745 792

SLIMP v 887 882 922 |84.0 842 917 | 839 778 887 | 90.0 845 952 | 86.6 83.7 .920
TFormer g, v 813 812 880 | 747 747 811 | 819 660 804 350 488 702 | 682 67.7 .79
TFormer g, v 82 851 886 |81 81.7 876 |81.5 651 .858 | 90.0 833 810 | 847 78.8 .857

Use of metadata As the metadata attributes of the target datasets differ from the reference one, the
pre-trained metadata encoders cannot be directly used. This shortcoming is addressed by the SLIMP
model, which applies continual pre-training on the target dataset as described in Section[d.2] This
allows the use of target dataset metadata, both at the continual pretraining stage and at the downstream
classification task. We see that the image representations obtained after continual pre-training, denoted
as SLIMPyviace, offer improved performance compared to Pre-SLIMP, clearly outperforming the
SBCL method continually pre-trained on the target datasets (SBCL-C). Importantly, the complete
SLIMP method, which uses the features obtained by all data modalities in the downstream task,
leads to significantly improved performance on average and across most of the datasets. Increasing
the patient batch size from 4 to 8 offers some marginal improvement. Interestingly, SLIMP also
shows competitive performance compared to TFormer (Zhang et al.| [2023)), a fully supervised model
for multi-modal lesion classification trained directly on both the images and metadata of the target
dataset, showing a decrease in performance only for the PAD-UFES-20 dataset.

The use of pseudo-modalities constructed through retrieval of metadata from the reference dataset,
denoted as Ret-SLIMP in the tables, shows consistently improved performance compared to Pre-
SLIMP and comparable performance with SLIMPy\acE, even though it has not seen any data from
the target datasets during training. This is valuable when the target dataset lacks metadata. This
observation also further highlights the importance of using metadata for downstream classification.

Impact of nested contrastive learning To assess the effectiveness of the nested contrastive learning
employed by SLIMP, we also consider a variant of SLIMP, SLIMPg; o1, which comprises a single
InfoNCE loss applied between the image features and the features obtained by a tabular encoder
operating on the concatenated patient-lesion metadata. SLIMP clearly outperforms this single-level
variant, demonstrating the effectiveness of its nested contrastive learning architecture in capturing
image-metadata relations. The only exception is PH2, where both variants converge as the dataset
does not contain patient-level metadata.
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Table [3] offers a more detailed analysis by examining the two variants of the SLIMP architecture
(FLAT and NESTED) when trained on each dataset from scratch. The results clearly show that the
variant based on nested contrastive learning achieves significantly higher performance compared to
the one that uses the same metadata using a single contrastive learning stage. This is attributed to the
implicit grouping of each patient’s lesions, producing features that better capture their phenotype.
The same table reports the difference of each metric regarding the SLIMP model, showing that the
pre-training on the SLICE-3D dataset helps to achieve improved performance across all datasets.

Low-shot evaluation The proposed multi-modal continual pre-training strategy does not rely on
target labels. This is crucial as data labeling is expensive and time-consuming, especially in the
context of skin lesion classification and other similar medical applications. To further assess the
quality of the learned representations, we examine how SLIMP performs in a low-shot learning
setting, considering that only 1% or 10% of the target dataset labels are available for downstream
classification. The results, presented in the last rows of Table [2] (highlighted in orange), indicate that
the SLIMP features lead to remarkable low-shot learning performance. It is interesting to note that
in most cases, SLIMP low-shot performance is better than SLIMPyage and SLIMPg ar. The first
suggests the importance of the model making use of metadata both during pre-training and also for
the downstream classification task. Comparable performance to SLIMPg a7 further highlights the
ability of the nested contrastive learning to capture relations among metadata and images.

4.5 ABLATION

To assess the importance of incorporating two distinct levels of metadata, we compare different
variants of SLIMP in Table[d] Specifically, in the first row we consider the linear probing performance
of a variant where only the output features of the image encoder are utilized for downstream
classification on the target dataset. In the second row we consider both the features of the image
encoder and the lesion-level tabular metadata encoder. The third row shows the results of the proposed
SLIMP model. The last three rows report analogous results with kNN classification. The results
suggest that the addition of each modality contributes positively to the downstream task performance.
Additional ablations are provided in Section[F]

5 CONCLUSIONS AND LIMITATIONS

We have presented SLIMP, a novel nested multi-modal pre-training strategy for learning rich skin
lesion representations by considering lesion images in combination with associated lesion-level
as well as patient-level metadata. The experimental evaluation demonstrates SLIMP’s ability to
learn representations that improve performance in downstream classification tasks, by combining
information about the patient’s lesion phenotype, with information regarding their traits and habits.
In this context, we propose strategies for fully exploiting available metadata, through all the stages
of the learning process, including a method that enables the enhancement of image-only skin lesion
datasets by ‘borrowing’ patient and lesion metadata from reference pre-training data. Importantly,
the proposed method does not rely on data annotations, handling a major challenge in healthcare
applications where data annotation incurs significant costs. The results obtained for low-shot settings
of the target datasets, demonstrate the quality of the obtained skin lesion representations as they
enable high classification performance even with minimal labeled data. Considering the above, our
proposed method has the potential to become widely applicable in clinical settings, providing insights
and decision support during skin lesion diagnosis.

Despite its strengths, the proposed method has certain limitations. Firstly, the nested pre-training
strategy requires a data structure that incorporates both patient- and lesion-level metadata, which

Table 3: Comparison of flat (single-level contrastive loss) and nested SLIMP architecture when
trained on each dataset separately. The difference with SLIMPg_4 model is reported in superscript.

PAD-UFES-20 HIBA HAM10000
Architecture Acc BA AUC Acc BA AUC Acc BA AUC
FLAT 85.2(—5.7) 84.7(—5.5) _902(—.024) 85.2(76.8) 84.9(—7.0) _915(—.03‘)) 77.8(—9.5) 78_6(—-’1.‘)) .860("063)
NESTED 87.4(—3.5) 86.9(—3.3) .910(—.(”(7) 88.9(—?1) 88.7(—3.2) .934(—.(120) 83.6(—3.7) 82.8(—().7) ‘901(—1)22)
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Table 4: Ablation study of the SLIMP encoder outputs used for downstream classification.
Metadata PAD-UFES-20 HIBA HAM10000 PH2

Image | Gon Patient | Acc  BA FI AUC Acc BA FI AUC Acc BA Fl AUC Acc BA FI AUC
Linear Probing
v X X 761 755 0764 0807 778 78.1 .763 867 847 692 .529 889 950 964 923 988
v v X 8.6 89.1 908 908 883 88.1 .891 947 853 741 .599 899 100 100 1.00 1.00
% v /| 909 902 921 926 920 919 925 954 87.3 835 707 923 - - - -
kNN
X X | 748 746 770 633 827 826 .835 770 841 694 528 851 950 917 909 1.00
v v X 1900 897 911 865 870 867 .884 812 858 761 .626 886 950 964 .923 940
v / | 935 932 942 911 877 875 .885 .849 858 780 .645 .891 - - - -

may limit its adaptability to other domains where such structured scenarios do not straight-forwardly
exist. Secondly, significant shift in the image domain, including high variability in the sources and
resolutions of lesion images, can possibly downgrade downstream performance. This problem can be
addressed by incorporating image augmentations in the learning process. Regarding negative impacts,
it should be noted that misuse of this method, as for all computer-aided diagnosis methods, can lead
to overdiagnoses, or misdiagnoses, with important psychological and economic repercussions. Hence,
real-life use of such systems should be intended only for assisting the decision-making of expert
users, and not for direct use by the patients.
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A NOTATION

Table [5| summarizes the notation used throughout the manuscript.

Table 5: Summary of the notation.

Notation Description
M Number of patients indexed by p € {1,...M}
N, Total lesions of patient p indexed by I € {1,...Np}
P, Tabular metadata for patient p
Li, Tabular metadata for lesion [ of patient p
I f, Lesion image [ of patient p
w; Image encoder output of IZQ
h;, Tabular encoder output of L;,
Tp Tabular encoder output of P,
Zp Linearly transformed output based on {w,, hl,}
D Dimensionality of each embedding

H= {ﬁl}f\él Lesion-level pre-trained features of original dataset
X = {@p},L, Patient-level pre-trained features of original dataset
g Retrieved features from H

. ~ql
2 Linearly transformed output based on {wl,, " }
Ty Retrieved features from X

~qt
b concat{wh, h' , &, }

B DATASET DETAILS

The following skin-lesion classification datasets are considered:

SLICE-3D (Kurtansky et al.,[2024): a public skin lesion dataset containing up to 401,059 15mm-
by-15mm field-of-view cropped images, centered on distinct lesions extracted from 3D Total Body
Photography (TBP) collected across seven dermatologic centers worldwide. The dataset was curated
for the ISIC 2024 Challenge and contains 40 clinical features concerning both patients and lesions,
such as age, sex, general anatomic site, common patient identifier, clinical size, and various data
fields from the TBP Lesion Visualizer.

PAD-UFES-20 (Pacheco et al., 2020): a skin lesion dataset containing 2,298 close-up clinical images
collected using different smartphone devices. It includes six types of skin lesions, data from 1,373
patients, and up to 22 clinical features per sample, covering both patient and lesion attributes, such as
age, skin lesion location, and lesion diameter. The skin lesions are: Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma
(MEL), and Nevus (NEV).

HIBA (ISIC,2024): a skin lesion archive with clinical and dermoscopic images collected in Argentina,
containing 1,616 images of 10 different types of skin lesions, including Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma
(MEL), Nevus (NEV), Vascular Lesion (VASC), Lichenoid Keratosis (LK), Solar Lentigo (SL), and
Dermatofibroma (DF).

HAM10000 (Tschandl et al.,|2018)): also known as “Human Against Machine with 10,000 training
images,” this dataset comprises 10,015 multi-source dermoscopic images of skin lesions divided into
seven classes and includes four clinical features, with two related to patient demographics and two
describing lesion characteristics. The skin lesions are: Actinic Keratosis and Intraepithelial Carcinoma
(AKIEC), Basal Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL), Dermatofibroma
(DF), Melanoma (MEL), Melanocytic Nevi (NV), and Vascular Lesions (VASC).

PH? (Mendonga et al., | 2013)): a small dataset with 200 dermoscopic skin lesion images, including
three classes: 80 common nevi, 80 atypical nevi, and 40 melanomas. The dataset contains 13 clinical
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Figure 3: Class distribution within each dataset considered.

lesion features, such as clinical and histological diagnosis, and the assessment of various dermoscopic
criteria.

SLICE-3D (Kurtansky et al.|[2024), being the largest and most complete one, is considered as the
reference dataset for pre-training the SLIMP model. All other datasets are considered as target
datasets for performing skin classification using the pretrained model. Unless otherwise stated,
evaluation is performed considering binary classification targets (benign/malignant) of the datasets
that are better balanced.

For PAD-UFES-20 (Pacheco et al [2020), malignant classes include Basal Cell Carcinoma (BCC),
Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign classes include Actinic Ker-
atosis (ACK), Nevus (NEV) and Seborrheic Keratosis (SEK). In HAM10000 (Tschandl et al 2018]),
Basal Cell Carcinoma (BCC) and Melanoma (MEL) are categorized as malignant, with benign classes
comprising Actinic Keratosis (ACK), Nevus (NEV), Vascular Lesion (VASC), Dermatofibroma (DF),
and Benign Keratosis-like Lesions (BKL). In HIBA 2024), the malignant class includes Basal
Cell Carcinoma (BCC), Melanoma (MEL) and Squamous Cell Carcinoma (SCC), while benign
lesions encompass Actinic Keratosis (ACK), Dermatofibroma (DF), Lichenoid Keratosis (LK), Seb-
orrheic Keratosis (SEK), Nevus (NEV), Vascular Lesion (VASC), and Solar Lentigo (SL). In the case
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of PH2 (Mendonca et al.,|2013) dataset, the malignant category consists only of melanomas, while
common nevi and atypical nevi were grouped as benign. SLICE-3D (Kurtansky et al., [2024), the
largest dataset in this study, is inherently binary, with an extremely imbalanced distribution: 99.9%
of lesions are benign, while only 0.1% are malignant.

C NESTED CONTRASTIVE LOSS

Letting s(-,-) denote the cosine similarity function and 7 a temperature parameter, the two-level
nested contrastive loss with a weighting factor A € [0, 1] is defined as follows:

Np 1 gl 1ol
I h,,
oL <1og exp(s(wj, 1;)/7;) + log LB wﬁ)/? ) W
2N, =1 ZjeNp eXP(S(wpv hy)/T) ZjeNp exp(s(hp, wp)/T)
M
1 exp(s(zp, Tp)/T) exp(s(Tp, 2p)/T) )
L atient — S a7 lo +1lo 5 (2)
patient = o0y p; ( S o ED(8(2p 7)) P S as eXD(5(i, 29)/T)
M
£total = M Z Efesions + (1 - A)Epatient- (3)
p=1

Liesions and Loqtiens treat features from the same lesion or patient, respectively, as positive pairs
while pushing apart features originating from different lesions or patients.

D ADDITIONAL TRAINING DETAILS

Batch sampling strategy For both the initial and continual self-supervised pre-training stages,
we construct each batch with B patients, including their respective patient-level tabular metadata.
Additionally, for each patient, we sample N lesion images and their corresponding lesion-level tabular
metadata. The number of lesions N varies per patient and is capped by an upper limit N,,,,. If a
patient has more lesions, then a subset of N = N, 4, lesions is randomly sampled in each epoch. In
addition, a positive lesion sampling strategy is implemented, ensuring that, if a patient has malignant
lesions, they are always included in the IV lesions sampled during training. This ensures that the
model encounters an adequate number of malignant lesions. Section [F]provides a relative ablation.

For the retrieval-based extrapolation setup, where the images from the target dataset lack both lesion
and patient metadata, we create two independent pools with tabular features derived from the metadata
of the SLICE-3D reference dataset by passing them through the pre-trained inner and outer tabular
encoders. This step does not preserve any association between patients and their corresponding
lesions. Consequently, the retrieval process of patient/lesion-level metadata is not constrained to
select features from the same patient across every modality, maximizing the flexibility of the proposed
architecture.

Training details of SLIMP During self-supervised training, both in the initial pre-training on
SLICE-3D and in the continual pre-training on the target dataset, SLIMP uses the same nested
lesion-level and patient-level InfoNCE objectives (Licsions and Lpqatient). During reference pre-
training on the SLICE-3D dataset, all components of the architecture, including the ViT backbone
and the lesion- and patient-metadata encoders, are fully optimized. Instead, during self-supervised
continual pre-training, SLIMP is adapted on the unlabeled data of the target datasets by fine-tuning
the embedding layers of the image and metadata encoders while keeping all other layers frozen.
Specifically, the ViT patch-embedding layer and the input-embedding layers of the two TRACE
tabulat encoders are fine-tuned, keeping the rest of the blocks frozen. This strategy enables a slight
but effective domain-adaptation as shown in Table[T4] where it consistently outperforms fine-tuning
all the model parameters. Both pre-training stages are entirely class-agnostic.

For supervised downstream skin-lesion classification, all encoders remain frozen and a linear classifier
is trained, as defined in a standard Linear Probing schema, with a Cross-Entropy loss. If the target
dataset misses patient-level and/or lesion-level metadata, we first apply retrieval-based metadata
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Figure 4: Cosine similarity distributions between image and metadata representations. On SLICE-3D
validation hold-out set, we report the similarity to the ground-truth metadata and to

using SLIMP. For HAM 10000, PAD-UFES-20, and HIBA, the retrieved-metadata
distributions are shown. Dashed vertical lines indicate the median similarity for each distribution.

extrapolation at inference time without updating any encoder parameters (see Section [3)), and then
apply linear probing using the resulting multi-modal features.

Training details of supervised methods We pre-train SBCL (Hou et al.|[2023)) with a ResNet-32
architecture, for 1000 epochs on the SLICE-3D dataset, followed by a dataset-specific continual
pre-training (SBCL-C) for 100 epochs. Both pre-training setups use the SGD optimizer with a
learning rate of 0.5 for the initial pre-training and 1e~2 for the continual pre-training. We evaluate
each target dataset on the corresponding SBCL-C model by applying linear classification for 150
epochs (following the SLIMP linear probing setting) with a learning rate of 0.1. During linear
classification, we select the Classifier-Balancing (CB) (Kang et al., [2020) train rule, which proved to
outperform LDAM (Label-Distribution-Aware Margin Loss) (Cao et al.,2019).

Regarding TFormer (Zhang et al.| 2023), we utilize the variant designed to process two modalities,
namely clinical images and tabular metadata, since the target datasets do not explicitly provide clinical
and dermoscopic image pairs of the same lesion. During training, TFormer was fine-tuned on each
target dataset, using the Adam optimizer with a learning rate of 1e~*, and a weight decay of 1e~*.
The learning rate was adjusted dynamically through the Cosine Annealing learning rate scheduler.
The loss function used throughout the training process was Binary Cross-Entropy.

E STRUCTURE OF EMBEDDING SPACE

Table 6] reports the distribution  Table 6: Percentiles of cosine similarity between image features and

percentiles of the cosine sim- matching vs. non-matching metadata embeddings on SLICE-3D.
ilarity between the image fea-

b ni " Percentile 2%  10% 25% 50% 75% 90% 98%
tures with the matching (posi- g -Marching -0328 0213 0.117 0006 0.100 217 0369
tive) and non-matching (nega-  Matching 0614 0717 0780 0836 0878 0906 0.931

tive) metadata embeddings on
the SLICE-3D dataset, noting that each of them is well approximated by a unimodal, almost symmet-
ric distribution. Importantly, the distribution of the negative pairs lies far away from the distribution
of the positive pairs, showing a significant separability in the embedding space, indicating that a
well-structured representation space has been recovered during the pre-training phase.

To provide some further insight, we consider a small subset of SLICE-3D (10%) as a validation
set and we produce the distribution of the similarity scores between the images of this set with the
matching metadata in the embedding space, as well as the corresponding distribution of the similarity
scores with the most similar metadata retrieved from the training set. The distributions are shown in
Figure ] suggesting that there is a good agreement between them. Moreover, Figure @ presents the
similarity score distributions between the images from the targets datasets and the retrieving metadata
from the SLICE-3D reference dataset. Although these distributions, as expected, are shifted towards
lower scores, still the alignment between the image-metadata representations is quite satisfactory.
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This in part explains why the proposed metadata extrapolation method can lead to improved results,
as can be seen by the comparison between Pre-SLIMP and Ret-SLIMP in Table 2]

Moreover, Table [/| reports the Recall@k
metrics on the SLICE-3D validation set to
directly assess whether the true metadata
associated with a given image is among the
top retrieved candidates. The fact that R@1
exceeds 45% demonstrates that the model retrieves the correct metadata as the top match nearly half
of the time. Given that the validation set contains over 40,000 samples, this indicates that the model
is capturing important alignment cues between image and metadata modalities. The rapid increase
between R@1 and R@5/R @10 further indicates that the matching metadata is usually found within a
very narrow ranking window, reflecting a well-structured embedding space. Notably, R@ 100 reaches
99%, an important result given the size of the validation set.

Table 7: Image-metadata retrieval results on SLICE-3D
validation set. R@k: Recall at rank k.
R@1 R@5 R@10 R@15 R@20 R@100
451  76.6 86.3 90.5 92.8 99.1

F EXTENDED ABLATION

We report additional ablations concerning the choice of image and tabular encoders, as well as the
patient batch size. In the tables below, we highlight in light blue the reference configuration adopted
in the experiments of the main text.

F.1 IMAGE ENCODER

We consider the influence of the image encoder size on the downstream skin lesion classification task.
Specifically, we consider the Tiny, Small & Base ViT variants (Dosovitskiy et al.| 2021 [Touvron
et al., 2021)). Table |8 shows the influence of the image encoder size on the performance metrics
across four datasets: PAD-UFES-20, HIBA, HAM 10000, and PH2. Interestingly, the influence of the
image encoder size in the case of SLIMP is reduced, which can be attributed to the complementary
information added by the metadata through the tabular encoder. Table [9 reports the number of
parameters for the different image encoder sizes, with ViT-Base being approximately 4 x larger than
ViT-Small and 15x larger than ViT-Tiny.

Table 8: Impact of image encoder size on the skin classification performance using SLIMP. Best

results in bold.
PAD-UFES-20 HIBA HAM10000 PH2

Acc  BA F1 AUC | Acc  BA F1 AUC \ Acc  BA F1 AUC | Acc BA F1 AUC
SLIMP w/ ViT-T  89.6 89.0 908 .922 | 89.5 89.3 .904 .939 \ 84.7 81.7 665 910 | 950 91.7 909 1.00
SLIMP w/ ViT-S  90.9 90.2 921 .926 | 92.0 919 .925 954 873 835 .707 .923 | 100 100 1.00 1.00
SLIMP w/ ViT-B  87.8 869 .896 .899 | 833 83.0 .851 918 \ 81.7 724 553 862 | 90.0 83.3 .800 1.00
SLIMP w/ ViT-T 81.7 814 .837 858 | 833 832 .842 .904 \ 857 749 612 .904 | 90.0 833 .800 1.00
SLIMP w/ ViT-S 93.5 932 942 911 | 87.7 875 .885 .849 858 78.0 .645 893 | 95.0 964 .923 940
SLIMP w/ ViT-B  84.8 844 865 .900 | 81.5 81.3 .830 .887 ‘ 823 644 438 851 | 80.0 66.7 .500 1.00

kNN [linprob

Table 9: Number of parameters (millions) for the proposed SLIMP method for different image and
tabular encoders.

w/ TRACE w/ FT-Transformer
ViT-Tiny ViT-Small ViT-Base ViT-Small
SLICE-3D 8.7 34.3 136 99.9
PAD-UFES-20 2.2 8.3 32.6
HIBA 2.1 8.0 31.3 78.5
HAM10000 2.1 8.0 31.3

The choice of NV, the number of images and lesions selected per patient during training, also plays
a role in performance differences. For ViT-Tiny and ViT-Small, N = 100 was chosen to balance
computation and training efficiency, while for ViT-Base, N = 50 was used due to the model’s
significantly larger size and computational requirements. This may partially explain the performance
drop observed in ViT-Base architectures, as the model has less diverse per-patient data for training.
In summary, ViT-Small tends to strike the best balance between performance and model complexity,
as seen across most datasets.
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Table 10: Comparison between the generic tabular encoder FT-Transformer and the tabular encoder

for medical data TRACE. Best results in bold.
PAD-UFES-20 HIBA HAM10000
Acc BA F1 AUC | Acc BA F1 AUC | Acc BA F1 AUC
SLIMP w/ FT-Transformer 89.6 89.1 908 .946 | 84.6 84.0 .871 .910 | 80.2 50.0 .000 .655
SLIMP w/ TRACE 90.9 90.2 .921 926 | 92.0 919 925 954 | 87.3 83.5 .707 .923

SLIMP w/ FT-Transformer 87.4 872 .886 .939 | 827 826 .837 882 | 777 524 159 745
SLIMP w/ TRACE 93.5 932 942 911 | 877 875 .885 .849 | 858 78.0 .645 .893

kNN linprob

F.2 TABULAR ENCODER

We compare the performance of SLIMP considering two tabular encoders: FT-Transformer (Gor-
ishniy et al.| [2021)) and TRACE (Christopoulos et al.|[2025)). Table [TI0|presents the corresponding
performance across all datasets, using ViT-Small as the image encoder. TRACE, which is specialized
for clinical data, consistently outperforms the generic FT-Transformer across all datasets and metrics
considered, despite the fact that SLIMP with FT-Transformer has a significantly larger number of
parameters, as shown in Table[9] In fact, despite being over four times bigger, FT-Transformer does
not achieve the same level of performance. Moreover, in contrast to the adopted tabular encoder
TRACE, FT-Transformer requires a significant amount of hyperparameter tuning to achieve optimal
performance. These observations suggest that the task-specific design of TRACE offers a better
balance of efficiency and performance when working with medical metadata, making it a more
suitable choice for SLIMP.

Tal?lem]compar.es the compu-  Table 11: Comparison of computational complexity in terms of
tational complexity, measured ~ GFLOPS between SBCL(-C), TFormer, SimCLR, SLIMP with FT-
in GFLOPS, for SimCLR, Transformer, and SLIMP with TRACE with different encoder sizes.

SLIMP with ET—Transformer, ViT-T, ViT-S and ViT-B correspond to ViT-Tiny, ViT-Small and
and SLIMP with TRACE with  vjT.Base, respectively.

different encoder sizes (ViT- | GFLOPS

Tiny, ViT-Small, ViT-Base). SBCL(-C) 0.564

Naturally, computational costs 'g_ForCnIlj{ 1.25814.608 | 17 5842.5((\)/9‘T T I ViT-S | ViT-B)
. . . 1m . . . 11- 11- 11-

scale with the size of the VIT V' ep o crommer | 1.694 16,298 124.233 (VITT | VIT-S | VIT-B)

encoder, highlighting the trade- gy 1mp w/ TRACE 1.298 1 4.765 | 18.203 (VAiT-T | ViT-S | ViT-B)

off between model size and ef-

ficiency. In relation to metadata encoding, SimCLR which lacks metadata encoding, is slightly more
efficient compared to the proposed multimodal SLIMP method, but SLIMP generally performs better,
as has been shown in the results presented in the main text. On the other hand, the FT-Transformer
tabular encoder introduces a significant overhead. The reference configuration featuring SLIMP
with TRACE is a more balanced choice, offering improved performance with significantly less
GFLOPS compared to the FT-Transformer. The number of GFLOPS for the supervised approaches
SBCL, SBCL-C and TFormer are also reported in the table for comparison. Additionally, Table[T2}
reports the number of parameters and the relative training time between SimCLR, SLIMP, SBCL
and TFormer. Relative training times are normalized with respect to the SImCLR’s training time on
SLICE-3D.

Table 12: Model size comparison based on the total trainable parameters for every dataset (columns)
and the relative training time, normalized to SImCLR’s training time on SLICE-3D.

SLICE-3D PAD-UFES-20 HIBA HAMI10000 PH2
SimCLR 5.5M

E  SLIMP 34.3M 8.3M 8.0M 8.0M 4.1M
g SBCL 0.5M 0.5M 0.5M 0.5M 0.5M
+  TFormer 27.8M 27.8M 27.8M 27.8M
» SImCLR 1

£ SLIMP 0.3 0.04 0.03 0.1 0.002
= SBCL 0.2 0.06 0.05 0.01 0.002
£  TFormer 0.01 0.01 0.04 0.002
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F.3 POSITIVE SAMPLING STRATEGY

To assess the impact of the s . . .
positive sampling strategy, we Table 13: Uniform (w/o p.s) vs. positive sampling (w/ p.s) ablation

. . on PAD-UFES-20, HIBA and HAM10000 datasets.
train a SLIMP variant on
SLICE-3D with uniform le- PAD-UFES-20 HIBA HAM10000
sion sampling (W/o p.s). As Acc BA AUC Acc BA AUC Acc BA AUC
reported in Table posi-  wiops 89.6 899 926 895 893 933 86.0 846 919
tive Samphng (W/ ps) provides w/ p-s 90.9 90.2 926 92.0 919 954 87.3 83.5 923
small, yet consistent perfor-
mance gains across all three target datasets (e.g., accuracy gains 89.6%—90.9% on PAD-UFES-20,
89.5%—92.0% on HIBA, 86.0%—87.3% on HAM10000). Hence, although global performance
does not critically depend on positive sampling due to the dominance of benign signal, this strategy
ensures the model encounters rare malignant phenotypes during pre-training, improving the model’s
ability to discriminate diverse lesion characteristics in downstream tasks.

F.4 IMAGE ENCODER FINETUNING

Restricting fine-tuning to the image em-
bedding layers leads to improved results
because it mitigates catastrophic forget-
ting. In fact, there is a significant domain
shift between the reference and the target Dataset FT Acc BAcc F1  AUC
datasets, both because of the diverging na-

ture of their metadata attributes and due =~ PAD-UFES-20 gzjg gg; 8§§i 83%%
to the different modality of the images in - - - -
each dataset. By updating only the em- HIBA 88.9  88.7 0.898 0.937
bedding layers, SLIMP preserves the repre- 920 919 0925 0954
sentations learned on the much larger (and 86.5 7377 0.606 0.917
with richer metadata) SLICE-3D dataset 87.3 835 0.707 0.923
while still adapting to the divergent charac-
teristics of the target datasets. To validate this, we provide Table [I4]comparing two scenarios. The
first row of each dataset reports the performance after full fine-tuning of all encoder parameters,
while the second one reports the strategy adopted in SLIMP, namely limiting the fine-tuning to the
embedding layers only. We observe that the latter strategy consistently yields improved performance
across all datasets and metrics.

Table 14: Comparison of full fine-tuning (v/) and
embeddings-only tuning (X) across target datasets. Best
results in bold.

HAM10000

XN XxN| X%\

F.5 PATIENT BATCH SIZE

We examine the impact of the patient .

batch size considered in the continual pre- Table 15: Performance of the SLIMP method with
training of the SLIMP on the PAD-UFES- different batch sizes (B) during the continual self-
20 dataset. Table[T5]shows how the patient supervised learning stage on the PAD-UFES-20 dataset.

batch size affects performance on binary ~Best results in bold.

skin lesion classification. We observe that Acc BA Fl1 AUC
smaller batch sizes, such as B = 4 and

B = 8, yield slightly lower Balanced Accu- SLIMPp_4 90.0  86.4 886 .907
racy (BA) and F1 scores, while larger batch SLIMPp_g 89.1 884 .906 911
sizes lead to improved performance across SLIMPg_;,  88.7 884 .898 .928
all metrics but AUC. B = 64 achieves the SLIMPp_g, 909 90.2 921 926
highest BA of 90.2% and an F1 score of SLIMPg_125  89.6 89.1 .908 918

0.921. Interestingly, further increasing the SLIMPg_ss  89.6 89.1 .908 .927

batch size (e.g., B = 128 or B = 256)

does not result in further performance gains and, in most cases, slightly decreases overall perfor-
mance. This further highlights the importance of carefully choosing the patient batch size considered
in the pre-training, as it can significantly impact performance. The choice B = 64 strikes an effective
balance, justifying its choice as the reference configuration.
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F.6 PATIENT-DISJOINT SPLITS

To evaluate the r(?bustness of Table 16: Evaluation of SLIMP under standard (joint) vs. patient-
SLIMP under stricter §valua— disjoint evaluation splits. For the standard splitting strategy, we
tion protocols, we additionally  report the mean performance and corresponding standard deviation

measure performance Using  for each metric across three random dataset splits.
patient-disjoint splits, where

all lesions originating from the Acc BA F1 AUC

same patient are assigned to 2 PAD-UFES-20 89.5 89.6 .894 .940

the same split. We construct & 3231\210000 g;; g(l)g 2;2 33‘6‘

these splits while maintaining _= - i . :

a lesion-level ratio as close as . PAD-UFES20 90.6+£0.9 904+08 909+ .017 935+ .00l
ossible to the standard 90%.- g HIBA 912+ 14 912+14 9114+.016 .951+.010

p o =  HAMI10000 87.8+04 81.6+1.7 .694+.016 .926 =+ .000

10% train/validation division.
The top three rows of Table[T6 report the downstream classification performance considering these
patient-disjoint splits across the PAD-UFES-20, HIBA, and HAM10000 datasets, while the last
three rows of the table summarize the performance obtained using our standard lesion-level splitting
strategy over three random seeds. We observe that the patient-disjoint results consistently fall within
the variation ranges observed in the multi-seed lesion-level results. For example, HIBA achieves a
Balanced Accuracy of 91.8% under patient-disjoint splits, which lies well within the range of 91.2%
+ 1.4% obtained under our standard lesion-level splits. Similar trends are observed for PAD-UFES-20
and HAM10000. In several cases (e.g., HIBA and HAM10000), the patient-disjoint performance
even surpasses the average performance of the lesion-level splits. These findings indicate that SLIMP
does not rely on patient overlap across splits to achieve strong downstream performance, and that its
representations remain stable under patient-level isolation.

F.7 RETRIEVAL ABLATIONS

To further evaluate our retrieval-based Taple 17: Comparison of three alternative metadata

metadata extrapolation approach, we con-  extrapolation strategies. Best results in bold.
sider comparison with two alternative

strategies. The proposed approach shown Dataset Method Acc BAcc AUC
in Figure [2] (right) operates in two stages. 11 30 735 765
In the first stage image featqres from the PAD-UFES-20 1L 735 732 765
target dataset are used to retrieve the clos- ISLP 770 710 814
est lesion-level metadata from the refer-

ence dataset, and in the second stage the I-I 772 772 815
retrieved image and lesion embeddings are ~ HIBA I-L 765 76,6 .862
jointly used to retrieve the closest patient- I-L—P 815 813 .86l
level metadata. This ensures that the re- I>I 833 675 830
trieved patient metadata is semantically HAM10000 I>L 834 636 833
aligned with the target lesion, rather than ISLSP 822 1710 836

simply being the metadata associated with
the initially retrieved reference lesion. Table[I7]compares this approach with two alternatives. The
first alternative, considers Image-to-Image (I—1I) retrieval, where we retrieve the most similar lesion
from the reference dataset relying solely on the image features and directly use the lesion and patient
metadata associated with the corresponding lesion. In the second alternative (I—L), we consider a
single-stage approach where lesion metadata are retrieved from the reference dataset given the image
features, combined with the metadata of the patient who has the retrieved lesion. The results show that
the full two-stage retrieval strategy (I—L—P) consistently yields the strongest overall performance
across all datasets, highlighting the advantage of retrieving patient-level using the learned embedding
space, rather than relying solely on image-based or lesion-level associations.

G ADDITIONAL EXPERIMENTS

G.1 KNN CLASSIFICATION PERFORMANCE
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To further enhance our evaluation protocol, Table 18: kNN accuracy (%) on the binary classifi-
we performed k-nearest neighbors (kNN) cation task across four target datasets. The average
classification for the downstream skin le- performance is reported in the last column. Best results
sions classification task. Unlike linear prob- are in bold, second best are underlined. (PAD: PAD-
ing, KNN offers a training-free evaluation UFES-20)

that directly measures how well the learned
feature space clusters samples of the same

Method PAD HAMI10000 HIBA PH2 AVG

class. This protocol is widely adopted in ~ MAE 06.1 85.8 765 950 809
contrastive and self-supervised learning, =~ BEITV2 757 87.6 77.8 800 803
as it avoids introducing additional param- DINGOv2 726 83.8 772 950 822
o hoices while still C.LIP 72.6 86.6 809 95.0 8338

eters or optimization chc SigLIP 77.0 86.0 784 90.0 829
reflecting the discriminative power of the SigLIP-2 75.7 85.1 809 900 829
representations. As reported in Table[I8] ~ WL-CLIP 765 89.7 85.2 90.0 854
SLIMP consistently surpasses all baselines SimCLR 67.4 87.2 803 625 744
across datasets, with the sole exception of =~ SLIMPrar 813 84.1 778 950 84.6
SLIMPg-4 93.5 85.9 87.7 950 90.5

HAM10000, and achieves an average accu-
racy improvement of 5.1% over the second-best method. These results further support the findings
reported in the main text, and demonstrate that the embedding space recovered by SLIMP is well-
structured, even without task-specific fine-tuning.

G.2 MULTICLASS CLASSIFICATION

In Table[I9) we evaluate our proposed SLIMP method in a multiclass classification setting on PAD-
UFES-20 dataset, in comparison with the baselines from Table@ We report results for the overall
Accuracy (Acc), F1-macro (which ensures equal contribution from minority classes), and F1-weighted
(which accounts for class imbalance). Notably, SLIMP outperforms all baselines across all metrics,
highlighting the robustness of SLIMP in handling imbalanced multiclass classification tasks. We
note that techniques addressing class imbalance can be combined with SLIMP to further improve
multiclass classification performance.

Table 19: Multiclass classification results on PAD-UFES-20 dataset. The Metadata column indicates
whether metadata are used during the downstream classification task. Best results in bold second
best are underlined.

Method Metadata Acc Fl-macro Fl-weighted

MAE X 70.0 .631 .692
DINOv2 X 73.0 .614 126
BEiTv2 X 74.4 14 738
CLIP X 70.9 584 .698
SigLIP X 73.9 .680 724
SigLIPv2 X 74.8 .700 745
WL-CLIP X 722 .650 726
SimCLR X 84.2 .638 .826
SBCL X 45.7 .289 433
SLIMP v 85.2 .833 845
TFormer v 78.7 .698 792

G.3 RETRIEVAL

We conduct Image-to-Text (I2T) and Text-to-Image (T2I) downstream retrieval tasks across three
target datasets (PAD-UFES-20, HAM 10000, HIBA) comparing our proposed method, SLIMP with
multi-modal baselines such as CLIP, SigLIP, SigL.IP-2 and WhyLesionCLIP. For the baseline methods,
we convert the tabular metadata into natural language descriptions using a large language model
(GPT-40). For SLIMP, both I2T and T2I tasks are performed using tabular metadata processed
directly by our tabular encoder. The retrieval follows an instance-level protocol, where for T2I the
ground truth is the lesion image described by a given description/metadata instance, and for 12T the
true match is the specific set of either tabular metadata or textual description, corresponding to the
input image. Queries for both tasks are drawn from the validation split of each target dataset, which
remains unseen during all training phases.
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Table 20: Image-to-Text retrieval performance on three target datasets. We compare SLIMP
against cross-modal pretraining baselines; CLIP, SigLIP, SigLIP-2, and WhyLesionCLIP (WL-CLIP).
Retrieval is evaluated using Recall at rank k (R@Xk), Normalized Discounted Cumulative Gain at k
(N@k), and mean average precision (mAP). Best results in bold, second best are underlined.

Models R@5 R@I0 R@I5 R@20 R@I00 N@5 N@I0 N@I5 N@20 N@I00 mAP
PAD-UFES-20

CLIPyirp 33 70 102 137 515 1.8 3.0 3.9 4.8 115 32
SigLIPyirp 65 80 126 144 535 43 49 6.3 6.7 135 55
SigLIP2virg 7.4 98 117 133 494 50 58 6.4 6.7 132 56
WL-CLIPyir, 2.6 6.1 113 124 520 13 25 3.8 4.1 1.1 3.0
SLIMPyirs 90 148 190 282 772 56 15 88 112 209 79
HAMI0000

CLIPyirp 06 1.0 1.4 2.1 109 05 07 0.8 1.0 3.6 1.9
SigLIPyirp 10 15 22 2.9 120 0.9 1.1 1.4 1.6 4.4 2.4
SigLIP-2yirg 0.6 1.2 22 2.8 118 08 1.0 1.3 1.6 45 25
WL-CLIPyry 12 2.6 3.6 4.8 27 12 17 22 2.7 75 3.6
SLIMPy;rs 1.0 19 24 2.9 155 09 3. 4.9 5.8 131 185
HIBA

CLIPyirp 39 74 105 136 664 26 39 4.6 55 156 438
SigLIPyirp 35 89 151 207 724 35 57 7.4 8.9 187 6.6
SigLIP-2yirg 3.6 62 147 197 780 22 30 55 6.9 18.6 49
WL-CLIPyir, 11.6  18.0 24.8 35.1 90.1 79 104 123 15.5 26.3 10.9
SLIMPyirs 94 200 275 338 892 152 202 245 277 515 324

We report the retrieval results for I2T and T2I tasks, in tables [20|and 21| respectively. We evaluate
retrieval using three metrics: Recall at rank k (R@k), Normalized Discounted Cumulative Gain
(N@k) and mean Average Precision (mAP). N@k rewards relevant items appearing higher in the
ranking and is a particularly critical metric in clinical evaluation tasks. Across all three target datasets,
our approach substantially outperforms the baselines in most cases, often by large margins, despite
being based on a ViT-S backbone while the competing methods were evaluated with larger ViT-B/L
models. The gains we report in PAD-UFES-20 and HIBA, where rich patient- and lesion-level
metadata are available, underscore the robustness of our method in leveraging structured clinical
information. On HAM 10000 dataset, our model still achieves the best retrieval quality in terms of
NDCG. Notably, we outperform WhyLesionCLIP on the mAP metric, with gains of +4.9, +14.9, and
+21.5 for I2T retrieval on PAD-UFES-20, HAM 10000, and HIBA, respectively, and +3.6, +11.3, and
+18.0 for T2I retrieval on the same datasets.

Table 21: Text-to-Image retrieval performance on three target datasets. We compare SLIMP
against cross-modal pretraining baselines; CLIP, SigLIP, SigL.IP-2, and WhyLesionCLIP (WL-CLIP).
Retrieval is evaluated using Recall at rank k (R@Xk), Normalized Discounted Cumulative Gain at k
(N@k), and mean average precision (mAP). Best results in bold, second best are underlined.

Models R@5 R@I0 R@I5 R@20 R@I00 N@5 N@I0 N@I5 N@20 N@I00 mAP
PAD UFES 20

CLIPyirp 61 85 9.8 115 507 41 49 5.3 5.7 126 45

SigLIPyirp 44 72 102 130 548 3.0 40 4.9 5.6 131 45

SigLIP-2vzs 5.7 89 102 137 489 37 49 52 6.1 125 49

WL-CLIPyr. 39 65 8.5 102 457 3.1 36 42 4.6 1.0 4.0

SLIMPyirs 87 161 261 300 783 67 104 135 145 223 76

HAMI0000

CLIPyirp 07 12 1.6 1.8 9.4 15 20 22 2.4 7.4 1.3

SigLIPyir-p 12 22 24 33 136 25 43 46 5.4 9.9 1.9

SigLIP-2virg 0.9 1.8 2.8 3.5 14.0 13 21 2.8 33 9.5 1.8

WL-CLIPyry 15 3.1 4.7 6.5 197 30 50 6.0 7.0 1.6 23

SLIMPyir.s L1 20 2.7 34 168 342 366 398 412 466 136
HIBA

CLIPyirp 25 11 113 138 658 12 36 5.0 5.6 158 35

SigLIPyirp 25 65 1.1 173 779 20 3.6 45 6.0 184 4.0

SigLIP-2yirg 3.7 105 132 187 698 40 68 77 9.6 182 54

WL-CLIPyit, 9.3 17.9 213 28.0 84.0 7.4 11.5 12.6 14.7 23.8 8.6

SLIMPyrs 104 204 277 320 920 450 521 548 572 576 266
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G.4 TEXTUAL DATA

We reproduce a concept-based interpretability (CBI) method (Patricio et al.| [2024)), by adapting
CLIP on the SLICE-3D dataset, considering a ViT-B/16 backbone architecture which offers optimal
results. This methodology uses visual-language models for exploiting textual concepts for melanoma
classification offering three different variants; (1) the Baseline approach, which directly applies CLIP,
selecting the label that achieves the highest cosine similarity between the image and text embeddings,
(2) the CBM approach, which introduces dermoscopic concepts and utilizes melanoma-specific
coefficients to make predictions and (3) the GPT-CBM approach, which extends each dermoscopic
concept introduced in CBM with multiple textual descriptions by querying it into ChatGPT.

In Table 22| we compare the performance of the above approaches, with our proposed SLIMP method,
across three different target datasets, in a ‘melanoma vs all’ classification scenario. SLIMP is only
adapted during linear probing while all pre-trained models on SLICE-3D dataset remain unchanged,
highlighting the robustness of the learned representations. SLIMP consistently outperforms all other
approaches without the need of task-specific pre-training.

Table 22: Comparison of SLIMP method with CBI variants across three target datasets. Results for
the proposed SLIMP method are obtained using a linear probing setting. Best results in bold.
PAD-UFES-20 HIBA HAM10000

Acc  BA F1 AUC | Acc BA F1 AUC | Acc BA F1  AUC
Baseline 239 513 .044 422 | 685 548 261 .502 | 720 58.6 .247 595
CBM 787 69.6 .109 778 | 482 613 .333 .659 | 54.1 588 238 .565
GPT-CBM 357 573 .051 .599 | 488 61.7 .336 .638 | 555 57.6 .231 .581
SLIMP 987 70.0 .571 .993 | 90.1 723 .600 939 | 89.1 67.9 .452 .892

H FEATURE IMPORTANCE

In Figure 5| we estimate feature importance scores from the last-layer self-attention maps of the
tabular transformer. Each attention matrix A € RT*T, with T the number of tokens ([cls] + features),
is the standard dot product of queries and keys followed by a softmax activation function. We discard
the [cls] token, as our downstream tasks rely on the global average pooling (GAP) of the output
feature tokens coming from TRACE rather than the [cls] representation. After masking the diagonal
and renormalizing each row, the normalized importance of feature j is computed as

1 Am'
E{T_l 2iti Zk#jJAik}
1 AM?L
Em E |:T71 Zz;ﬁm Ek#m Ak

where ¢ indexes querying features, j receiving feature and & runs over all possible receivers in row .
The resulting distributions in Figure [5|highlight which and level features dominate the
model’s internal attention mechanism. We observe that age, the number of lesions per patient and
the Fitzpatrick skin type (where available) consistently dominate the outer level of the architecture,
reflecting their strong influence in clinical diagnosis. Importantly, these features are considered among
the most relevant according to the dermatology literature. In addition, for the PAD-UFES-20 dataset
the inner tabular transformer attends strongly to critical features such as the anatomical region of the
lesion and indicators of lesion change detection (e.g., whether the lesion has grown or itched). For
HIBA and SLICE-3D, we observe a similar pattern; morphology, size and localization systematically
receive higher attention by our lesion-level descriptors, suggesting that SLIMP consistently focuses
on clinically meaningful attributes at both hierarchical levels.

Impj =

’ Zlmp] :17
| 4

I QUALITATIVE ASSESSMENT

Figure [6] shows the t-SNE (Hinton & Roweis| 2002) embeddings of the three SLIMP variants
presented in Table d] on the PAD-UFES-20 dataset. We observe a better separation between benign
and malignant lesions when metadata are considered during pre-training.
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Figure 5: Normalized feature importance scores for
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and lesion-level features. The
importance scores are derived from the attention mechanism of each tabular transformer respectively.

Figure[7]provides a qualitative evaluation of the proposed metadata retrieval process. For each target
sample (left), we display the image corresponding to the lesion metadata (right) retrieved from the
SLICE-3D dataset. Although our method does not retrieve images but rather lesion metadata, the
images corresponding to the retrieved metadata exhibit notable visual similarity compared to the input
image in terms of lesion morphology, color, and overall structure, even under challenging conditions

Figure 6: t-SNE visualization of SLIMP features for
20 dataset. Left: Pre-training using image encoder alone; Middle: Pre-training using image and
lesion metadata; Right: Pre-training using images with lesion and patient-level metadata.
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such as hair occlusion, presence of artifacts, and differing imaging modalities. This further supports
the semantic consistency captured by our learned representations and validates the effectiveness of
the retrieval-based metadata extrapolation strategy.

Source Retrieved Source Retrieved Source Retrieved

PAD-UFES-20

HIBA

HAM10000

Figure 7: Qualitative examples of our retrieval-based metadata extrapolation method. For each lesion
image (left) from the target dataset, we display the image associated with the lesion-level metadata
retrieved by our model (right) from the reference dataset (SLICE-3D).

Figures[§|and [9] presents randomly selected lesions from each dataset validation split, with the corre-
sponding attention maps extracted from the pre-trained image encoders of MAE, BEiTv2, DINOv2,
CLIP, WL-CLIP, SimCLR and SLIMP (ours) in this order. We note that SLIMP effectively localizes
the majority of the lesions, regardless of differences in lesion shape, texture and color. This consis-
tency in identifying relevant lesion regions indicates the robustness of the learned representations
across diverse datasets that exhibit a high variation in visual appearance, also due to different imaging
modalities. It also showcases the ability of the model to focus on relevant skin-lesion features,
supporting the improved downstream classification performance, and suggesting that the method can
enhance the interpretability and reliability of the results.
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Image MAE BEiTv2 DINOv2 CLIP WL-CLIP SimCLR SLIMP

SLICE-3D
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Figure 8: Attention maps obtained from the last self-attention block of the image encoder across
different pre-trained models. The leftmost column shows the original image, while the remaining
columns display heatmap overlays from MAE, BEiTv2, DINOv2, CLIP, WL-CLIP, SimCLR, and our
proposed SLIMP (rightmost column). The top seven rows correspond to samples from SLICE-3D
reference dataset, while the bottom three rows correspond to samples from PH2 target dataset.
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Figure 9: Attention maps obtained from the last self-attention block of the image encoder across
different pre-trained models. The leftmost column shows the original image, while the remaining
columns display heatmap overlays from MAE, BEiTv2, DINOv2, CLIP, WL-CLIP, SimCLR, and our
proposed SLIMP (rightmost column). The top four rows correspond to samples from PAD-UFES-20
target dataset, the middle four rows correspond to samples from HIBA target dataset, and the bottom
four rows correspond to samples from HAM10000 target dataset.
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