
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

ONE MUST IMAGINE EXPERTS HAPPY: REBALANCING
NEURAL ROUTERS VIA CONSTRAINED OPTIMIZATION

Kushal Thaman
Department of Computer Science
Stanford University
Stanford, CA 94305, USA
kushalt@stanford.edu

ABSTRACT

Mixture-of-Experts models promise scalable capacity by routing tokens to a
sparse set of expert networks, but imbalanced routing (i.e. routing collapse)
can degrade performance and hinder distributed expert parallelism. Conventional
remedies add an auxiliary load-balancing loss, but this introduces conflicting gra-
dients that hamper primary optimization. Recent bias-based routing strategies
avoid auxiliary losses by dynamically adjusting per-expert biases that are updated
using the sign of deviation from mean load. This requires careful tuning, is still
susceptible to load fluctuations and suboptimal load utilization, and can lead to
oscillations (“gating thrash”) if mistuned. We propose Dual Unified Ascent for
Load-balancing (DUAL), a technique that recasts router load balancing as a con-
strained optimization problem. By learning per-expert bias updates derived from
Lagrange dual variables, DUAL adjusts gating bias increments proportional to
each expert’s load error with a damping term that prevents bias overshoot, com-
bined with a differentiable router using a sparsemax function for the gating log-
its. Experimental results on 330M-parameter language models demonstrate that
DUAL attains more uniform expert utilization without sacrificing performance,
consistently reduces router imbalance, and slightly outperforms the performance
of state-of-the-art Mixture-of-Expert techniques.

1 INTRODUCTION

Scaling language models via Mixture-of-Experts (MoE) increases capacity without a linear rise in
computation by routing each token to a sparse gated subset of experts (Shazeer et al. (2017)), but
ensuring that tokens are evenly distributed across experts remains a critical challenge. For an input
token ut, the standard MoE layer computes:

ht = ut +
∑
i∈Kt

gi,t FFNi(ut),

where Kt is the set of experts selected by a gating network and

gi,t =
si,t∑

j∈Kt
sj,t

, si,t = σ(u⊤
t ei).

Imbalanced routing leads to routing collapse with a few experts consistently overloaded while oth-
ers remain underutilized, and to severe computational bottlenecks in distributed settings. Early
solutions proposed auxiliary load-balancing losses (with Switch Transformer, described in Fedus
et al. (2021) and GShard, described in Lepikhin et al. (2020)) to penalize disparities in expert usage.
Although these losses do enforce balance, they inject interfering gradients that degrade the main task
optimization. Recent auxiliary-loss-free methods eliminate these interfering gradients by adjusting
per-expert biases heuristically (Dai et al. (2024)), e.g. with s′i,t = si,t + bi and update these biases
with a simple sign update bi ← bi + γ sign(c̄− ci), where ci is the token count for expert i and c̄ is
the average load. Although effective compared to auxiliary strategies, this update uses only the sign
and ignores the magnitude of the error.

1

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 1: Comparison of different methods for MoE load balancing. Each method converges roughly
to the same training loss and model performance, but we demonstrate a large disparity in the success
of load balancing: our proposed DualAscent technique keeps all experts active, closer to the idea
normalized load (ri = ci

c̄ for expert i, and c̄ is the average token count) of 1 for the least and most
used experts, compared to other techniques that allow some experts to be underutilized.

Further, we found that even this strategy exhibits various limitations: it often yields a suboptimal
maximal and minimal expert usage ratio (with overloaded experts persisting in various regimes),
and these bias update rules—commonly based on sign or proportional corrections—lack a rigorous
mathematical foundation. Such heuristically assigned expert bias updates often result in unstable or
oscillatory behavior, and fail to guarantee convergence to a truly balanced load distribution.

2 METHODS

2.1 CONSTRAINED OPTIMIZATION FORMULATION

We view token-to-expert assignment as minimizing the model’s negative log-likelihood while en-
forcing balanced expert usage and capacity limits. For a batch of N tokens where each token selects
K experts on average, the ideal (target) load per expert is n∗ = N ·K

E , with nj denoting the number
of tokens assigned to expert j. Because routing decisions are discrete, we relax them to soft assign-
ments pi,j ∈ [0, 1] (with

∑
j pi,j = 1 and at most K nonzero entries per token). We use sparsemax

instead of softmax to promote sparsity. Thus, the expected load per expert is nj =
∑

i pi,j , and
perfect balance means nj ≈ n∗ for all j. We express the constrained problem via the Lagrangian:

L = L0({pi,j}) +
E∑

j=1

λj(nj − n∗) +

E∑
j=1

µj(nj − Cj),

where L0 is the primary loss (e.g. negative log-likelihood), λj are Lagrange multipliers enforcing
balance, and µj penalize capacity violations (active when nj > Cj). Intuitively, λj acts as an
expert-specific bias: if nj > n∗, a positive λj increases the cost, discouraging further assignments;
if nj < n∗, a negative λj incentivizes more routing. At optimality, the KKT conditions yield that
for any token i and experts j, k in its support,

∂L0

∂pi,j
+ λj + µj =

∂L0

∂pi,k
+ λk + µk.

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 2: Batch-wise expert load variance for (left) LossFreeBias and (right) DualAscentSoft meth-
ods. Lower variance implies more uniform token distribution across experts. The sign-based update
(LossFreeBias) exhibits higher and more erratic variance, while DualAscentSoft steadily drives vari-
ance down over training (batch index) and demonstrates stable convergent load balancing.

Differentiating the Lagrangian with respect to the dual variable (bias) λj

∂L
∂λj

= nj − n∗

This gradient reflects how far expert j’s load deviates from the target a natural update for λj is to
move in the direction of this gradient λj ← λj + η(nj − n∗). This update step iteratively reduces
load imbalance by increasing the bias for underloaded experts (encouraging more assignments) and
decreasing it for overloaded ones, thus driving the system toward the balance constraint nj ≈ n∗.

2.2 DUAL ASCENT BIAS UPDATE

This formulation motivates our proposed Dual Unified Ascent for Load-Balancing (DUAL) bias
update: we treat the biases as dual variables to iteratively drive each expert’s load toward n∗.

bi ← bi + η
(
(c̄− ci)− λ bi

)
.

where η is the step size and λ is a damping factor. This scales the correction with the actual load
difference (c̄ − ci), the −λ bi term prevents bias values from growing unbounded. The motivation
for a proportional update over a sign one as proposed in Dai et al. (2024) is that a sign update
ignores the magnitude of the imbalance. A slight deviation from average load receives the same
correction as a severe one, so biases can drift indefinitely and oscillate. If ci is barely below c̄, the
sign update causes the same bias increment to be applied as if ci were far below c̄. This can lead
to so-called chattering or thrashing around the equilibrium point. Since the step size is independent
of the error magnitude, biases can drift indefinitely without a diminishing force bringing bi back to
zero once |bi| grows large. From a constrained optimization perspective, sign updates are effectively
a subgradient for an L1-type penalty with discontinuous corrections and does not solve for a precise
load-balancing equilibrium. DUAL is a proportional update that behaves like a gradient step on an
L2-style objective which can produce a stable, smoothly adjusting solution converging to a well-
defined fixed point.

2.3 DIFFERENTIABLE ROUTING VIA SPARSEMAX

Routing decisions, as in Dai et al. (2024) are typically non-differentiable and use a straight-through
estimator or rely on the auxiliary loss to provide a continuous training signal to the gating network.
To allow direct end-to-end training of the gating network without auxiliary losses, we adopt the
sparsemax activation function for the router. Sparsemax (Martins & Astudillo (2016)) is a soft
alternative to softmax that produces sparse probability outputs. Given a vector of gating logits for

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) LossFreeBias (b) AuxLoss

(c) GatedAdaptiveK (d) DualAscentSoft

Figure 3: (a) LossFreeBias, (b) AuxLoss, (c) GatedAdaptiveK, (d) DualAscentSoft. Each histogram
visualizes the distribution of token counts assigned to an expert in a single batch aggregated over
training. Narrower and more centralized histograms indicate more uniform usage. DualAscentSoft
yields visibly tighter distributions, while other methods yield multiple batches fed to experts with 0
token counts, a symptom of severe underutilization.

a token i, zi = (zi,1, . . . , zi,E) (after adding the expert biases bj to the raw scores), the sparsemax
function is defined as:

sparsemax(zi) = arg min
pi∈∆E

∥pi − zi∥2,

where ∆E = {p ∈ RE
≥0 :

∑
j pj = 1} is the probability simplex. In our setup, for a token with

hidden representation h, let the gating network output be G(h). We compute the sparse, adjusted
routing probabilities as π(h) = sparsemax

(
G(h) + b

)
.

The result of sparsemax is that a token’s probability mass is concentrated on the top-scoring experts,
and lower-scoring experts receive exactly zero assignment. Sparsemax projects low-confidence ex-
perts to zero weight instead of assigning every expert a positive fraction (however small) as with
softmax.

3 EXPERIMENTS & RESULTS

3.1 SETUP

We use the Wikitext-2-v1 dataset (Merity et al. (2016)) as our primary corpus. Texts are tokenized
with the bert-base-uncased tokenizer, yielding a vocabulary of 30,522 tokens. For our large-
scale runs, we set the maximum sequence length to 1024 tokens, so that each training example is
either truncated or padded to 1024 tokens. We employ a Transformer-based language model in
which the feed-forward layers are replaced with MoE layers.

We evaluate a number of variants to compare the effectiveness of the proposed techniques, compar-
ing:

• LossFreeBias: This is our baseline sign update bias method as implemented in Dai et al.
(2024).

4

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

MoE Variant Validation Loss
LossFreeBias 1.2995
AuxLoss 1.3029
DualAscent 1.2975
DualAscentSoft 1.2709
GatedAdaptiveK 1.2894
Constrained 1.3070
JustSparsemax 1.2985

Table 1: DualAscentSoft method achieves a marginally better validation perplexity while also con-
siderably improving load-balancing on WikiText.

• AuxLoss: This is an MoE with a standard mean-squared auxiliary load-balancing loss.
• DualAscent: Here we implement Dual Ascent per-expert bias update.
• DualAscentSoft: This is the proposed DUAL technique: a DualAscent update combined

with the differentiable router.
• GatedAdaptiveK: Beyond static top-K routing, we implemented this variant that dynam-

ically adjusts the number of active experts per token. When the margin between the K th

and (K + 1)th logits is small, the router activates an extra expert.
• Constrained: We test a variant where we enforce explicit capacity constraints by hard-

capping the maximum number of tokens per expert such that no expert is overloaded be-
yond its capacity, i.e. dropping excess tokens so that nj never exceeds some Cj .

• JustSparsemax: To isolate the effect of routing sparsity, we also evaluate a variant that
uses sparsemax-based routing with fixed (zero) biases.

4 CONCLUSION

In this work, we presented a novel auxiliary-loss-free load balancing strategy for Mixture-of-Experts
(MoE) models termed Dual Unified Ascent for Load-Balancing (DUAL). We recast the expert load
balancing as a constrained optimization problem, updating learnable bias terms via a dual ascent rule
with damping and a differentiable sparsemax-based gating function. Our experiments on a 330M-
parameter MoE model trained on 10-100B tokens demonstrate that DUAL achieves slightly lower
validation perplexity while maintaining a near-ideal load distribution and reduced batch-wise load
variance.

5 LIMITATIONS

The dual ascent update relies on carefully tuned hyperparameters, and insufficient tuning can still
lead to oscillatory bias adjustments or cause slow convergence. While our results are promising, the
current experiments are performed at a moderate scale. Future work will extend this investigation to
larger models and diverse datasets, further validating the robustness and scalability of our approach
in distributed, expert-parallel settings. A wider suite of evaluations (such as testing on Humanity’s
Last Exam (Phan et al. (2025))) is a next step, and although the dual ascent soft updates reduce load
variance considerably, some residual imbalance can persist in highly heterogeneous data scenarios,
suggesting room for further refinement.

5

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

Damai Dai, Lean Wang, Huazuo Gao, Chenggang Zhao, and Xu Sun. Deepseekmoe: Auxiliary-
loss-free load balancing strategy for mixture-of-experts. In ICLR 2024 Conference, 2024. URL
https://arxiv.org/abs/2408.15664.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. In International Conference on Learning Representa-
tions (ICLR), 2021. URL https://arxiv.org/abs/2101.03961.

Dmytro Lepikhin et al. Gshard: Scaling giant models with conditional computation and automatic
sharding. In International Conference on Machine Learning (ICML), 2020. URL https://
arxiv.org/abs/2006.16668.

André FT Martins and Ramón Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In Proceedings of the 33rd International Conference on Machine
Learning, pp. 1614–1623. PMLR, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
..., Alan Zhou, Aidan Wu, Jason Luo, Anwith Telluri, Summer Yue, Alexandr Wang, and
Dan Hendrycks et al. Humanity’s last exam, 2025. URL https://arxiv.org/abs/2501.
14249.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey Hinton,
and Naveen Rao. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations (ICLR), 2017. URL https:
//arxiv.org/abs/1701.06538.

A APPENDIX: DUAL ASCENT SOFT BIAS UPDATE

Algorithm 1 summarizes our dual ascent soft update: This update ensures that experts that are over-
utilized receive a negative adjustment while under-utilized ones get a positive correction, all without
interfering with the main gradient flow.

A.1 CONSTRAINED OPTIMIZATION FORMULATION

Formulation as Constrained Optimization We formulate the token-to-expert assignment as an
optimization problem with the objective of minimizing the model’s negative log-likelihood subject
to the condition that each expert sees an equal share of tokens and does not exceed its capacity. For
a given batch of tokens, let nj be the number of tokens assigned to expert j. In an ideal balanced
routing, nj should be close to the target load n∗ = N ·K/E (with batch size N , and each token
selects K experts on average) or at least not exceed a capacity Cj (which may be set to Cj = ⌈n∗⌉
or n∗(1 + ϵ) for some tolerance ϵ). The routing decisions are discrete (each token either goes
to an expert or not), so directly enforcing these constraints is combinatorially hard. We relax the
problem by considering soft assignments pi,j ∈ [0, 1] indicating the fraction or probability of token
i’s assignment to expert j. Each token’s assignments must satisfy

∑
j pi,j = 1 (as each token is fully

allocated across experts) and at most K of the pi,j can be non-zero (sparsity). In a conventional
softmax gating, pi,j would be a dense probability distribution; we will instead use sparsemax to
ensure most pi,j are zero. The expected load of expert j is then summing over tokens in the batch
nj =

∑
i pi,j . Perfect balance means nj ≈ n∗ for all j.

We write the Lagrangian of the constrained routing for one batch as:

L = Lmain({pi,j}) +

E∑
j=1

λj

(
nj − n∗) +

E∑
j=1

µj

(
nj − Cj

)
,

6

https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

where Lmain is the primary training objective (e.g. negative log-likelihood of the batch given the
expert assignments), λj are Lagrange multipliers enforcing the balance constraints, and µj are La-
grange multipliers enforcing the capacity constraints. The µj terms only activate when nj > Cj

and can be seen as slack variables penalties. In practice, we handle capacity with a hard algorithmic
step, as described later, but we include µj here for completeness of the formulation.

Intuitively, λj can be interpreted as an expert-specific “cost” or bias: if expert j is over-assigned
(nj > n∗), then to satisfy the constraint the term λj(nj − n∗) will increase the Lagrangian (if
λj is positive), making it beneficial to reduce assignments to j. Conversely, if j is under-assigned
(nj < n∗), a properly adjusted λj would be negative, encouraging more assignments to that expert.
At optimum, the Karush–Kuhn–Tucker conditions would require that the gradient of L with respect
to the assignment probabilities pi,j is zero for interior solutions. This yields a condition on the
effective gating scores: for any token i and any two experts j and k that are both in the support of pi
(i.e. could be selected), we would have

∂Lmain

∂pi,j
+ λj + µj =

∂Lmain

∂pi,k
+ λk + µk.

A.2 MODEL ARCHITECTURE

Our backbone is a Transformer-based language model in which the standard feed-forward network
(FFN) is replaced by an MoE layer. The key architectural specifications for our big model configu-
ration are as follows:

• Embedding Layer:
– Vocabulary size: 30,522
– Embedding dimension: 2048

• MoE Layer:
– Hidden dimension: 4096
– Number of experts: 16 (we also experiment with variants such as 64 experts)
– Top-K selection: K = 2

– Load-balancing method: We compare several variants, including our baseline Loss-
FreeBias (sign update), AuxLoss, DualAscent, DualAscentSoft (our key contribution),
GatedAdaptiveK, Constrained, and JustSparsemax.

• Residual Projection and Output Layer:
– A residual projection is applied if the embedding and hidden dimensions differ.
– The output layer maps from the hidden dimension (4096) back to the vocabulary size.

A.3 TRAINING DETAILS

All models are trained on the Wikitext-2-v1 corpus. For our large-scale experiments we simulate
a setting with extended sequence lengths (1024 tokens) and use a training schedule designed for
efficiency:

• Number of Epochs: We train for 5 epochs.
• Batch Size: 64 sequences per batch.
• Learning Rate: 1× 10−3 with the Adam optimizer.
• Auxiliary Loss Coefficient (if used): 0.01.
• Bias Update Parameters: For methods employing external bias updates, we use an update

rate of 1 × 10−5 and a momentum factor of 0.9. For our dual ascent updates, we set the
dual ascent step size (η) to 1× 10−5 and the damping factor (λ) to 1× 10−2.

If multiple GPUs are available, we leverage PyTorch’s DataParallel to distribute computation.
All experiments are run on our cluster setup using 4 A100 NVIDIA GPUs.

A.4 ADDITIONAL RESULTS

7

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Worst-case expert–load ratio over training. (a) LossFreeBias: the maximum load ratio (blue) hovers
between 6–7× the mean while the minimum ratio (orange) collapses to ≈ 0, showing persistent routing collapse
and no sign of recovery. (b) DualAscentSoft: dual-ascent updates quickly damp the imbalance— the max ratio
decays from ≈ 1.7→1.35 and the min climbs from ≈ 0.5→0.85—yielding a 4× tighter spread and a smooth
convergence toward the ideal value 1.0.

8

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Trajectory of learned per-expert biases bj . (a) LossFreeBias: fixed-step, sign-only updates drive almost
perfectly linear bias drift with small amplitude (|bj | < 0.04); the rule cannot generate sufficient leverage to
correct the 6× load imbalance in figure. (b) DualAscentSoft: proportional dual-ascent updates move faster
when an expert is far from target and slow as equilibrium is approached, producing damped oscillations that
settle near bj≈0 within a bounded range (≈±0.2). The adaptive behaviour lets the router respond aggressively
to large errors while avoiding runaway bias growth.

9

	Introduction
	Methods
	Constrained Optimization Formulation
	Dual Ascent Bias Update
	Differentiable Routing via Sparsemax

	Experiments & Results
	Setup

	Conclusion
	Limitations
	Appendix: Dual Ascent Soft Bias Update
	Constrained Optimization Formulation
	Model Architecture
	Training Details
	Additional results

