
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VAR-MATH: PROBING TRUE MATHEMATICAL REA-
SONING IN LLMS VIA SYMBOLIC MULTI-INSTANCE
BENCHMARKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in reinforcement learning (RL) have led to substantial improve-
ments in the mathematical reasoning abilities of large language models (LLMs),
as measured by standard benchmarks. Yet these gains often persist even when
models are trained with flawed signals, such as random or inverted rewards. This
raises a fundamental question: do such improvements reflect genuine reasoning,
or are they merely artifacts of overfitting to benchmark-specific patterns? To an-
swer this question, we adopt an evaluation-centric perspective and highlight two
critical shortcomings in existing protocols. First, benchmark contamination arises
because test problems are publicly available, thereby increasing the risk of data
leakage. Second, evaluation fragility results from reliance on single-instance as-
sessments, which are sensitive to stochastic outputs and fail to capture reasoning
consistency. These limitations suggest the need for a new evaluation paradigm
that can probe reasoning ability beyond memorization and one-off success. As
response, we propose VAR-MATH, a symbolic evaluation framework that con-
verts fixed numerical problems into parameterized templates and requires models
to solve multiple instantiations of each. This design enforces consistency across
structurally equivalent variants, mitigates contamination, and enhances robustness
through bootstrapped metrics. We apply VAR-MATH to transform three popular
benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts,
VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show
substantial performance drops for RL-trained models on these variabilized bench-
marks, especially for smaller models, with average declines of 47.9% on AMC23,
58.8% on AIME24, and 72.9% on AIME25. These findings indicate that some
existing RL methods rely on superficial heuristics and fail to generalize beyond
specific numerical forms.

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to remarkable improvements in math-
ematical reasoning tasks. Models such as OpenAI-o1 (OpenAI, 2024), DeepSeek-R1 (Guo et al.,
2025), and Kimi-k1.5 (Team et al., 2025) have achieved state-of-the-art results across a range of
public benchmarks. A key contributor to this progress is the growing shift from conventional super-
vised fine-tuning (SFT) to reinforcement learning (RL), which has become a dominant strategy for
aligning model outputs with desired reasoning behaviors. The impressive performance of models
like DeepSeek-R1 has sparked a surge of research, which generally follows two directions. One
focuses on improving data quality through filtering, deduplication, and verification pipelines (Meng
et al., 2023; He et al., 2025b; Hu et al., 2025; Albalak et al., 2025). The other centers on refining RL
algorithms themselves, including optimizations to PPO (Yuan et al., 2025b;a), extensions to GRPO
variants (Yu et al., 2025; Liu et al., 2025; Zhang et al., 2025), entropy-regularized methods for ex-
ploration (Cui et al., 2025b; Yao et al., 2025; Wang et al., 2025), and alternative paradigms such as
REINFORCE++ (Hu, 2025).

However, alongside this progress, a growing body of evidence has raised concerns about what these
gains truly represent. Recent studies have shown that models trained with flawed or even adver-
sarial reward signals can still achieve surprisingly strong results on standard mathematical bench-
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marks (Shao et al., 2025). For example, rewards based purely on output format (e.g., the presence
of expressions) can lead to improved scores regardless of correctness, and even models trained
with random or inverted rewards have demonstrated non-trivial performance gains. These coun-
terintuitive findings converge on a fundamental question: Are RL-trained LLMs genuinely learning
to reason, or are they merely exploiting superficial patterns embedded in benchmark datasets? If
benchmark success can be achieved without correctness, then current evaluation protocols may not
be measuring true reasoning ability, which in turn calls into question the validity of benchmark-
driven progress and highlights the need to reconsider what existing metrics actually assess.

At the core of this issue lies a structural limitation in how benchmarks are constructed. Most math-
ematical reasoning benchmarks present each problem as a single, fixed numerical instance. While
this simplifies evaluation, it introduces two critical vulnerabilities. First, benchmark contamina-
tion is increasingly unavoidable. Many widely used datasets, such as AMC23 and AIME24&25,
are sourced from public math competitions. Given the breadth of pretraining corpora, it is highly
likely that some problems (or closely related variants) have appeared in training data, thereby con-
founding evaluations with memorization effects. Second, evaluation instability follows from the
reliance on single-instance assessments. Since many competition-style math problems yield simple
numeric answers (e.g., 0 or 1), models can often succeed through statistical priors, guesswork, or
shallow heuristics rather than genuine reasoning. As a result, it becomes difficult to distinguish true
problem-solving ability from superficial pattern exploitation.

To address these limitations, we propose VAR-MATH, a symbolic evaluation framework that probes
true reasoning ability through multi-instance verification. As illustrated in Figure 1, the central idea
is intuitive: If a model genuinely understands a problem, it should solve not just one instance, but
multiple variants that differ only in surface-level values while sharing the same underlying structure.
Concretely, VAR-MATH transforms fixed problems into symbolic templates by replacing constants
with constrained variables. For example, the original question

“Calculate the area defined by ||x| − 1|+ ||y| − 1| ≤ 1”

can be generalized into

“Calculate the area defined by ||x| − a|+ ||y| − a| ≤ a”,

where a is sampled from a feasible domain. This symbolic multi-instantiation strategy shifts eval-
uation from one-shot correctness to structural consistency, thereby mitigating contamination, sup-
pressing heuristic shortcuts, and enabling more faithful assessment of generalizable mathematical
reasoning.

To quantify performance, VAR-MATH reports two complementary metrics. A loose score computes
the average accuracy across sampled variants, while a strict score grants credit only if all variants of
a problem are solved correctly. In addition, a bootstrapping procedure further stabilizes evaluation
by reducing variance and yielding more reliable estimates.

Multi-Instance VerificationSingle-Instance Assessment

Calculating the area defined by ||x|-1|+||y|-1|≤1

Qwen

Deepseek

Models

Let us think step 
by steps ...The 
answer is 8.

Structural Limitation

Calculating the area defined by ||x|-a|+||y|-a|≤a

Advantage

Data: a=1,2,5...

Sample
Feasible domain0

0 2

2

-2
-2

...The answer is 8.
The answer is 32...
The answer is 200.

0

0 2a
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-2a
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AIME24
AIME25
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Pretraining

Evaluation
Memorization

Instability

Priors

Guesswork

Heuristics
Complementary metrics Stable evaluation

Strict score 

Loose score
All-or-

nothing

Average Bootstrapping
Variance

Estimates

Counter contamination & instability

Single-Instance Multi-InstanceDoes RL-based improvement in LLMs reflect true reasoning or merely overfitting?

Figure 1: Multi-Instance Verification (VAR-MATH) vs. Single-Instance Assessment
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Building on this protocol, we apply VAR-MATH to three widely used mathematical benchmarks,
AMC23 (MAA, 2023), AIME24, and AIME25 (MAA), generating their symbolic counterparts
VAR-AMC23, VAR-AIME24, and VAR-AIME25. When RL-finetuned models are re-evaluated on
these transformed benchmarks, their performance drops sharply. For instance, several 7B-parameter
models that previously achieved scores ranging from 36.9 to 78.6 on AMC23 drop to a range of 2.0
to 57.0 on VAR-AMC23, with similar declines on VAR-AIME24 and VAR-AIME25.

To summarize, our contributions are:

1. We propose VAR-MATH, a symbolic evaluation framework that systematically variabilizes
three widely used benchmarks (AMC23, AIME24, and AIME25), enabling contamination-
robust and consistency-based assessment of mathematical reasoning.

2. We establish a principled evaluation protocol that combines loose and strict consistency
metrics with a bootstrapping procedure, ensuring statistically reliable comparison across
models.

3. We conduct an extensive empirical study on VAR-AMC23, VAR-AIME24, and VAR-
AIME25, revealing substantial performance declines in RL-finetuned models and exposing
the limitations of current RL strategies in cultivating genuine reasoning.

2 RELATED WORK

A wide range of benchmarks has been developed to evaluate the mathematical reasoning capabilities
of LLMs, spanning diverse difficulty levels, problem formats, and contamination risks. Existing
efforts can be broadly categorized into static and dynamic benchmarks.

Static Benchmarks The GSM8K dataset (Cobbe et al., 2021) contains 8.5K grade-school math
word problems (7.5K train, 1K test) targeting multi-step arithmetic reasoning. While founda-
tional, its limited numerical complexity reduces its utility for diagnosing advanced reasoning.
MATH500 (Hendrycks et al., 2021) offers 500 high-school–level problems covering algebra and
calculus. OlympiadBench (He et al., 2024) includes 8476 Olympiad-level problems from sources
such as the International Mathematical Olympiad and China’s Gaokao, featuring multimodal inputs
(e.g., diagrams) and step-by-step expert solutions for fine-grained evaluation in bilingual settings.
AMC23 (MAA, 2023) collects problems from the 2023 American Mathematics Competition, em-
phasizing functional equations and complex analysis; each requires an integer answer between 0
and 999. Because of its small size and public availability, repeated sampling is necessary to re-
duce variance, while contamination remains a concern. The AIME series (MAA) is drawn from
the American Invitational Mathematics Examination, with AIME24 containing 2024 contest prob-
lems and AIME25 adding novel problems curated in 2025. These increasingly challenging tasks
demand deeper combinatorial and geometric reasoning, yet their public accessibility leaves them
highly vulnerable to contamination as LLMs approach benchmark saturation.

Dynamic Benchmarks To mitigate contamination risks, recent work has shifted toward dynamic
evaluation (Chen et al., 2025). For instance, Srivastava et al. (2024) alleviates contamination by
creating functional variations of the MATH dataset, where new problems are generated by modi-
fying numeric parameters to yield distinct solutions. Similarly, Mirzadeh et al. (2024) introduces
an enhanced benchmark that generates diverse variants of GSM8K, while Gulati et al. (2024) alters
variables, constants, and phrasing in Putnam competition problems. There are also several success-
ful works that use symbolic variants (Xu et al., 2025; Li et al., 2024; Gao et al., 2022; Shi et al.,
2023). LiveBench (White et al., 2024) further advances this direction by sourcing fresh problems
monthly from arXiv papers, news, and contests, with rigorous contamination controls. However,
maintaining such a benchmark requires ongoing human curation, limiting scalability and introduc-
ing subjectivity.

Overall, these studies represent important progress and highlight the value of functional variation
in constructing dynamic benchmarks. Nevertheless, most existing efforts either concentrate on ele-
mentary problems (e.g., GSM8K, MATH) or remain restricted to Olympiad-style datasets. In con-
trast, our work focuses on advanced reasoning benchmarks that are widely adopted in RL-finetuning
evaluations, including AMC23, AIME24, and AIME25. Building on this foundation, we introduce
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VAR-MATH, a symbolic evaluation framework that not only variabilizes these benchmarks but also
incorporates consistency-based metrics and bootstrapped stability analysis. This enables a more rig-
orous and reliable assessment of model reasoning robustness while further reducing susceptibility
to data contamination.

3 VAR-MATH

As shown in Figure 2, VAR-MATH consists of three core components: its design principles, the data
transformation process, and the evaluation protocol. We introduce each in turn below.

Parametric Solution

Ans=8×1^2 8×VAR_X^2Conversion:

Constant 

Fixed set

Expression a+bVAR_X

a

{a, b, c}

1+2VAR_X

{1, 3, 9}

2018

Feasible Set Definition

SP: ||x|-VAR_X|+||y|-VAR_X|≤VAR_X

VAR_X ~ range(1, 100)

[a, b, c] {a, b, ..., c}
[1, 8, 2] {2, 3, ..., 9} {3, 7, 9} 1+2VAR_X

{a, b, c} a+bVAR_X
Sampling ranges Random & Fixed

Symbolic Parameterization

Calculating the area: ||x|-1|+||y|-1|≤1

SP: ||x|-VAR_X|+||y|-VAR_X|≤VAR_X

Variable Fixed:          Set Expression

Random:         Linespace Set

VAR-MATH benchmark

Evaluation Pipeline

Variable instantiation: VAR_X=2, 7, ...
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 VAR-answer: Ans=8×VAR_X^2  

Multi-instance generation: f(VAR_X=2...)

Solution calculation:  Ans=32, Ans=392...

 VAR-round, VAR_answer_round

Strict 

Loose

Bootstrapping
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A11

A51

Evaluation

...

Evaluation
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Acc

EvaOriginal
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EvaOriginal
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69.8

Model: Qwen3-235B-A22B

Acc

EvaOriginal

100.0 98.6 93.6

Results

Example: AMC23 +
7B, 32B, 235B
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SMLM

Figure 2: Overview of the VAR-MATH pipeline. The process consists of two stages: preprocess-
ing, where original problems are symbolically abstracted by replacing constants with variables and
defining feasible sampling ranges, and evaluation, where problems are instantiated into multiple
concrete variants and assessed using loose (LM) and strict (SM) consistency metrics.

3.1 DESIGN PRINCIPLE

The core motivation behind VAR-MATH is to address two long-standing limitations in the evalu-
ation of mathematical reasoning: benchmark contamination and evaluation fragility. Traditional
benchmarks typically present problems as static numerical instances with fixed values, making them
vulnerable to memorization and shallow pattern exploitation. In such settings, models may succeed
by retrieving known solutions or leveraging statistical priors rather than performing genuine rea-
soning. These issues call for an evaluation paradigm that can separate true reasoning ability from
superficial success.

VAR-MATH introduces such a paradigm through a process we call symbolic variabilization, which
decouples problem structure from fixed numeric content. Instead of hardcoding specific constants,
problems are restructured into symbolic templates, where concrete values are dynamically instan-
tiated during evaluation. This abstraction allows models to be tested not on isolated instances, but
across families of structurally equivalent problems.

The key assumption is that a model that truly understands a mathematical problem should demon-
strate reasoning consistency, i.e., the ability to solve multiple variants of the same logical structure
regardless of specific numerical values. By systematically sampling from constrained parameter
spaces, VAR-MATH preserves the original semantics of each problem while introducing controlled
variation. This results in a more robust and contamination-resistant evaluation protocol, which is-
capable of distinguishing genuine understanding from surface-level heuristics.
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3.2 DATA PROCESSING

Building on the principle of symbolic variabilization, the data transformation pipeline systematically
converts problems from established mathematical benchmarks into variabilized form. We focus on
AMC23 and AIME24&25, which represent two distinct tiers of competition-level difficulty. Each
selected problem undergoes symbolic abstraction through a structured four-step methodology:

• Structural analysis. Each problem is first solved independently by a mathematics expert.
The expert works through the full reasoning process and cross-checks it against the official
golden solution. This step identifies the algebraic structure of the problem, determines
which quantities are essential constants, and isolates the core symbolic variables that drive
the solution. We deliberately preserve the ratios or relationships that appear in the original
derivation to maintain semantic fidelity.

• Symbolic parameterization. Key numerical constants are then replaced with symbolic
variables. Feasible domains for each variable are chosen to stay close to the scale of the
original values (e.g., an original value x = 5 may become a variable ranging from 2 to 8),
while ensuring that the mathematical meaning of the problem remains valid. In construct-
ing these domains, we apply domain restrictions from the derivation (such as positivity,
non-vanishing denominators, or geometric constraints). Both continuous ranges and dis-
crete sets are supported, as summarized in Table 1.

• Parametric solution formulation and verification. The final answer is expressed as a
symbolic function of the newly defined variables. This symbolic formula is derived manu-
ally by the expert and then verified in two stages: (i) human verification: another annotator
solves each instantiated variant directly from the rewritten prompt to ensure correctness;
and (ii) model verification: we run all variants through a frontier model (DeepSeek) as
an additional sanity check. A problem is accepted only if all of its variants are correctly
solved during this step; otherwise, it will go through a second round of verification by
another expert.

• Variant sampling and evaluation protocol. For each symbolic template, we uniformly
sample values from the predefined feasible domains to generate a fixed set of up to K = 5
concrete variants (with K = 2 ∼ 4 for a few problems to preserve difficulty alignment). All
models are evaluated on exactly the same variants for a given problem, ensuring strict com-
parability across models. For each sampled variant, the ground-truth answer is computed
directly from the parametric solution, and all instantiated variants are evaluated using a
standardized prompting strategy consistent with prior mathematical reasoning benchmarks.
This results in approximately 430 instantiated questions across the entire benchmark. An
example is provided in Appendix G.

• Precision specification. To ensure numerical stability, we apply consistent rounding rules
and significant-digit constraints to both the instantiated variables and the computed an-
swers.

In certain cases, special constants integral to the mathematical identity of a problem (e.g., π, e,
or fixed geometric parameters) are preserved without modification to maintain fidelity. The output
of this pipeline is a set of variabilized benchmarks, namely VAR-AMC23, VAR-AIME24, and
VAR-AIME25. Each problem is encoded as a structured object containing a symbolic expression,
variable definitions with feasible sets, parametric answers, and metadata specifying its origin and
difficulty. This unified representation enables efficient multi-instance instantiation and facilitates
future benchmark extension and automation. Other details are provided in the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate model performance on six benchmarks: the original AMC23, AIME24, and AIME25
datasets, together with their variabilized counterparts VAR-AMC23, VAR-AIME24, and VAR-
AIME25 generated by the VAR-MATH framework.
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Table 1: Variable and Answer Expression Formats
Variable Type (VAR X) Description
Random linespace [a, b, c] Sampled from a linear space between a and b with c intervals
Random Set {a, b, . . . , c} Sampled uniformly from the given discrete set
Fixed Set {a, b, c} Must take one of the fixed values in the set
Expression a · VAR Y+ b Defined algebraically based on other variables

Answer Type Description
Constant a Answer is a constant value independent of input
Fixed Set {a, b, c} Answer selected based on a fixed variable-to-output mapping
Expression a · VAR Y+ b Answer computed as a function of variable(s)

7B-parameter and 32B-parameter models. We benchmark a collection of open-source 7B
models, including the base Qwen2.5-MATH-7B (Yang et al., 2024), and several RL-enhanced
variants: Eurus-2-7B-PRIME (Cui et al., 2025a), Skywork-OR1-Math-7B (He et al.,
2025a), SimpleRL-Zoo-7B (Zeng et al., 2025), Light-R1-7B-DS (Wen et al., 2025), and
Oat-Zero-7B (Liu et al., 2025). These models cover a range of RL training pipelines
and policy optimization techniques. We further evaluate three 32B-scale models: the base
Qwen2.5-32B (Team, 2024), and two RL-finetuned variants, DAPO-Qwen-32B (Yu et al., 2025)
and SRPO-Qwen-32B (Zhang et al., 2025), both trained with large-scale reinforcement learning
systems. Our evaluation pipeline is based on the open-source Qwen2.5-MATH repository1, and
employs vLLM (Kwon et al., 2023) for efficient decoding. All models are tested under consistent
hardware and inference configurations on NVIDIA A6000 GPUs with bfloat16 precision. Gen-
eration parameters are fixed at temperature = 0.6 and top-p = 1.0, while batch sizes are adjusted for
each model to maximize throughput without affecting reproducibility.

High-Capacity Models We further include several high-capacity state-of-the-art models, includ-
ing DeepSeek-R1 (Guo et al., 2025), SEED-THINK (Seed et al., 2025), Qwen3-235B-A22B
(Yang et al., 2025), and OpenAI-o4-mini-high (OpenAI, 2024). Evaluation for these models
is conducted using a single inference pass per problem with default sampling configurations.

4.2 EVALUATION METRICS

We evaluate model performance using two complementary metrics: loose and strict. For each sym-
bolic problem, up to five instantiated variants are generated by sampling values from the feasible
domains of its parameters. Each variant is queried M times, producing M independent responses.
The loose metric measures average correctness across all variants of a symbolic problem, while the
strict metric enforces reasoning consistency: a problem is marked correct only if all of its variants are
solved correctly. This all-or-nothing criterion emphasizes consistency across structurally equivalent
problems rather than success on isolated instances.

To reduce variance and obtain statistically reliable estimates, we apply a bootstrap procedure with
N resampling rounds. For a given symbolic problem Q with K variants {Q1, . . . , QK}, and corre-
sponding responses {Akj} for variant Qk under sample index j = 1, . . . ,M , the dataset is

D = {(Qk, Akj) | k = 1, . . . ,K, j = 1, . . . ,M}.

In each bootstrap round i = 1, . . . , N , one response Âki is drawn uniformly from {Akj}Mj=1 for
every variant Qk. The set {Âki}Kk=1 is then used to compute both loose and strict scores:

scoreloose =
1

N

N∑
i=1

(
1

K

K∑
k=1

1[Âki = gtk]

)
, (1)

scorestrict =
1

N

N∑
i=1

(
K∏

k=1

1[Âki = gtk]

)
, (2)

1https://github.com/QwenLM/Qwen2.5-Math
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where gtk denotes the ground-truth answer of Qk. Final performance is reported as the mean of
these bootstrap estimates, with standard deviations serving as a measure of statistical stability. An
illustration of this procedure is provided in Appendix A.

4.3 MAIN RESULTS

Table 2: Evaluation Results on AMC23 and VAR-AMC23.

Model AMC23 (strict) VAR-
AMC23 Drop (loose) VAR-

AMC23 Drop

Qwen2.5-MATH-7B 36.9 (6.3) 2.0 (2.0) -94.5% 22.7 (2.6) -38.5%

Eurus-2-7B-PRIME 58.3 (4.3) 28.9 (3.7) -50.4% 49.9 (2.5) -14.3%

Skywork-OR1-Math-7B 73.9 (5.4) 57.0 (3.6) -22.9% 72.0 (2.3) -2.6%

SimpleRL-Zoo-7B 61.4 (4.8) 33.6 (4.0) -45.3% 52.2 (2.3) -15.0%

Light-R1-7B-DS 78.6 (6.3) 54.9 (4.6) -30.2% 75.8 (2.3) -3.5%

Oat-Zero-7B 65.6 (3.1) 36.8 (3.3) -43.9% 54.4 (2.4) -17.0%

Qwen2.5-32B 33.4 (4.5) 3.1 (2.5) -90.6% 27.4 (2.8) -18.2%

DAPO-Qwen-32B 92.3 (2.9) 69.8 (3.1) -24.4% 85.7 (1.4) -7.2%

SRPO-Qwen-32B 86.7 (3.7) 51.5 (4.5) -40.6% 73.9 (2.6) -14.8%

DeepSeek-R1-0528 100.0 (0.0) 96.4 (2.5) -3.6% 99.2 (0.5) -0.8%

Qwen3-235B-A22B 100.0 (0.0) 93.6 (3.1) -6.4% 98.6 (0.7) -1.4%

SEED-THINK-v1.6 100.0 (0.0) 98.8 (1.5) -1.2% 99.8 (0.3) -0.2%

OpenAI-o4-mini-high 100.0 (0.0) 93.4 (2.3) -6.6% 98.2 (0.7) -1.8%

4.3.1 RESULTS ANALYSIS ON THE STRICT METRIC

In this section, we focus on the strict metric, which emphasizes reasoning consistency across struc-
turally equivalent problem variants, and we recommend it as the primary evaluation measure.

RL-tuned 7B models show fragile generalization. Across all benchmarks, RL-optimized
7B models experience sharp drops in accuracy once problems are variabilized. For example,
Light-R1-7B-DS falls from 78.6 to 54.9 on AMC23, from 40.8 to 23.8 on AIME24, and from
32.7 to 17.1 on AIME25. Similar declines occur for Eurus-2-7B-PRIME and Oat-Zero-7B.
These results point to two issues: overfitting to specific numeric templates, possibly amplified by
contamination from public problem sets, and a lack of symbolic consistency, where solving one in-
stance does not transfer reliably to others with altered values. Such weaknesses remain hidden under
conventional single-instance benchmarks but are revealed by VAR-MATH.

Scaling to 32B improves accuracy but inconsistency persists. Larger 32B models achieve higher
raw accuracy, e.g., DAPO-Qwen-32B and SRPO-Qwen-32B exceed 85 on AMC23. Nevertheless,
they still suffer relative drops of more than 40% across the variabilized datasets, showing that scaling
enhances memorization and structural recognition but does not fully resolve the problem of symbolic
consistency.

Frontier models are more robust yet still challenged by symbolic variation. State-of-the-art
models such as DeepSeek-R1 and SEED-THINK maintain strong performance on AMC23, with
drops below 5%. This robustness likely stems from high-quality training data and sophisticated
alignment pipelines that mitigate shortcut learning. However, even these frontier systems experi-
ence notable degradation on the more difficult AIME24 and AIME25 variants, with relative drops
up to 28.1%. These findings indicate that symbolic variation remains a fundamental challenge, un-
derscoring the importance of evaluation protocols that move beyond surface-level accuracy toward
consistency-based reasoning assessment.
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The score drop mentioned above primarily results from data contamination and evaluation fragility.
In the following text, we provide an in-depth analysis of data contamination and demonstrate how
VAR-Math enhances assessment stability.

Table 3: Evaluation Results on AIME24 and VAR-AIME24.

Model AIME24 (strict) VAR-
AIME24 Drop (loose) VAR-

AIME24 Drop

Qwen2.5-MATH-7B 10.8 (4.5) 3.2 (2.7) -70.0% 7.9 (2.9) -27.1%

Eurus-2-7B-PRIME 15.8 (4.8) 4.3 (2.9) -72.5% 13.4 (2.7) -15.5%

Skywork-OR1-Math-7B 41.5 (4.2) 23.9 (4.3) -42.3% 39.0 (3.4) -6.0%

SimpleRL-Zoo-7B 23.8 (5.9) 8.5 (3.7) -64.1% 20.4 (3.5) -14.1%

Light-R1-7B-DS 40.8 (5.1) 23.8 (4.8) -41.7% 40.6 (3.3) -0.6%

Oat-Zero-7B 34.0 (2.1) 12.8 (3.6) -62.3% 22.3 (2.5) -34.3%

Qwen2.5-32B 8.8 (4.4) 2.3 (2.3) -73.5% 7.9 (2.6) -9.6%

DAPO-Qwen-32B 51.7 (6.6) 29.8 (4.6) -42.4% 50.9 (2.8) -1.5%

SRPO-Qwen-32B 55.6 (5.0) 29.2 (4.2) -47.6% 46.9 (2.9) -15.7%

DeepSeek-R1-0528 86.8 (3.3) 73.7 (3.8) -15.1% 82.3 (2.6) -5.1%

Qwen3-235B-A22B 84.1 (3.2) 69.5 (3.4) -17.4% 80.1 (1.9) -4.9%

SEED-THINK-v1.6 87.5 (3.3) 73.4 (3.5) -16.1% 82.7 (2.4) -5.5%

OpenAI-o4-mini-high 91.8 (2.9) 78.1 (3.7) -14.9% 89.0 (1.9) -2.7%

4.3.2 DECOUPLING THE IMPACT OF DATA CONTAMINATION

To better diagnose the sources of performance degradation, we analyze results under the loose met-
ric. Unlike the strict all-or-nothing criterion, this softer metric grants partial credit for solving sub-
sets of variants, thereby helping disentangle contamination-driven memorization from instability in
symbolic reasoning.

Results on AMC23 suggest that contamination exerts a substantial influence, especially on the
base models. For example, the base model Qwen2.5-MATH-7B shows a 38.5% decline, con-
sistent with heavy reliance on memorized patterns rather than generalizable reasoning. By contrast,
Skywork-OR1-Math-7B and DAPO-Qwen-32B record much smaller drops (2.6% and 7.2%,
respectively), indicating greater resistance to contamination and stronger abstraction of underlying
structures.

On the more challenging AIME24 and AIME25 benchmarks, degradation is more heterogeneous.
Models such as SRPO-Qwen-32B exhibit relatively mild drops (e.g., 4.6% on AIME25), sug-
gesting improved robustness across symbolic variants. Others, including Qwen2.5-32B and
DAPO-Qwen-32B, suffer sharp declines (21.2% and 13.5% on AIME25), reflecting persistent
fragility when faced with minor symbolic perturbations.

Together with the strict-metric results in Section 4.3.1, these findings point to two intertwined fac-
tors underlying symbolic degradation: benchmark-specific overfitting amplified by contamination,
and instability in applying reasoning consistently across variants. While RL can improve scores on
conventional benchmarks, it also risks reinforcing memorization and narrow heuristics. This under-
scores the necessity of evaluation frameworks that are both contamination-resistant and sensitive to
reasoning stability.

4.3.3 ENHANCING EVALUATION STABILITY VIA VAR-MATH

In Appendix B, Figure 4 reports the distribution of standard deviations of the scores for 7B and
32B models on both the original and variabilized benchmarks. The result shows that VAR-MATH

8
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Table 4: Evaluation Results on AIME25 and VAR-AIME25.

Model AIME25 (strict) VAR-
AIME25 Drop (loose) VAR-

AIME25 Drop

Qwen2.5-MATH-7B 4.8 (3.1) 0.0 (0.0) -100.0% 3.2 (1.3) -34.2%

Eurus-2-7B-PRIME 10.0 (3.1) 1.2 (1.7) -87.8% 7.4 (1.4) -26.0%

Skywork-OR1-Math-7B 24.0 (3.8) 15.0 (2.5) -37.3% 23.4 (1.6) -2.4%

SimpleRL-Zoo-7B 12.5 (3.4) 2.9 (2.4) -76.9% 11.5 (1.6) -7.9%

Light-R1-7B-DS 32.7 (3.8) 17.1 (3.2) -47.7% 30.3 (1.8) -7.3%

Oat-Zero-7B 9.2 (3.2) 1.2 (1.8) -87.4% 8.4 (1.4) -7.9%

Qwen2.5-32B 3.5 (3.4) 0.0 (0.0) -100.0% 2.8 (1.2) -21.2%

DAPO-Qwen-32B 37.3 (5.3) 21.2 (2.4) -43.2% 32.2 (2.3) -13.5%

SRPO-Qwen-32B 26.5 (5.2) 14.5 (3.0) -45.2% 25.2 (1.7) -4.6%

DeepSeek-R1-0528 81.5 (3.3) 61.3 (4.4) -24.8% 75.2 (2.5) -7.9%

Qwen3-235B-A22B 82.6 (3.1) 61.6 (4.6) -25.4% 75.7 (2.0) -8.1%

SEED-THINK-v1.6 81.7 (3.0) 58.8 (4.0) -28.1% 75.3 (2.6) -7.7%

OpenAI-o4-mini-high 93.4 (2.4) 76.7 (3.5) -17.8% 87.0 (1.9) -6.8%

consistently reduces output variance, with the effect most evident on the more challenging AIME25
benchmark, where conventional single-instance evaluation is highly susceptible to sampling noise.

This improvement derives from VAR-MATH’s core design. By instantiating each symbolic prob-
lem multiple times and aggregating performance across variants, the framework dampens stochastic
artifacts and outlier completions. Such ensemble-style averaging yields a more faithful estimate
of reasoning ability and, with the incorporation of bootstrap methods to further stabilize estimates,
provides a stable, interpretable signal of a model’s true mathematical competence.

5 CONCLUSION

We introduced VAR-MATH, a systematic framework for evaluating mathematical reasoning in large
language models. Targeting widely used benchmarks (AMC23, AIME24, and AIME25), VAR-
MATH converts fixed problems into parameterized, multi-instance variants, enabling evaluation that
is both contamination-resistant and consistency-based. To measure performance, we proposed com-
plementary loose and strict metrics together with a bootstrap resampling procedure for stable statis-
tical estimation.

Empirical results demonstrate that many RL-finetuned models, despite strong performance on con-
ventional benchmarks, exhibit substantial degradation under VAR-MATH, exposing their reliance
on dataset-specific artifacts and their limited generalization ability. These findings underscore the
importance of principled dataset design and evaluation methodology in assessing reasoning compe-
tence. By enforcing consistency across variants and stabilizing measurement, VAR-MATH provides
a more reliable indicator of genuine reasoning.

While our study centers on AMC23 and AIME24&25, the core methodology of VAR-MATH is
broadly applicable. Future work includes extending this framework to richer mathematical domains
and other reasoning-intensive tasks, such as program synthesis, formal logic, and decision-making.
Such extensions hold promise for establishing more rigorous and generalizable evaluation standards.
Another direction is to include strong SFT-only baselines (e.g., OpenThinker-3 Guha et al. (2025))
side-by-side to better quantify how much of the observed drop is due to RL-specific behavior versus
general SFT math-tuning.
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A BOOTSTRAP METHOD

𝑄! 𝑄" 𝑄# 𝑄$ 𝑄%

𝐴!! 𝐴"! 𝐴#! 𝐴$! 𝐴%!

𝐴!" 𝐴"" 𝐴#" 𝐴$" 𝐴%"
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… … … … …
M samples for 
each variant 
question

#𝐴!' #𝐴"' #𝐴#' #𝐴$' #𝐴%'

Bootstrap Sampling

𝒊𝒕𝒉 sample
𝒊 = 𝟏,… ,𝑵

Evaluation e.g. all or nothing metric

Variant Questions

Figure 3: Illustration of the bootstrap procedure with K = 5 variants.

B ADDITIONAL EXPERIMENTAL RESULTS

Figure 4 reports the distribution of standard deviations in scores for 7B and 32B models, compar-
ing the original benchmarks with their variabilized counterparts in the VAR-MATH suite. Across
datasets, VAR-MATH consistently reduces variance, yielding more stable performance estimates.
This effect is most pronounced on AIME25, where conventional single-instance evaluation is highly
sensitive to sampling-induced fluctuations.

C DETAILS OF VAR-MATH CONSTRUCTION

Each problem in the VAR-MATH benchmark is represented as a structured object with the following
fields:

1. ori question: Original problem statement from the source dataset.

2. ori answer: Corresponding reference (golden) answer.

3. VAR question: Symbolic version of the problem, where numeric constants are abstracted
into symbolic variables.

4. VAR info: Definition of feasible sampling ranges for each symbolic variable.

5. VAR round: Rounding precision (in significant digits) for computing numeric answers,
implemented via np.round in Python.

6. VAR answer: Symbolic expression of the answer as a function of abstract variables.

7. VAR answer round: Rounding precision applied to the final numerical output.

Representative examples are illustrated in Figure 5. We further show case studies for AMC23,
AIME24, and AIME25 in Figures 6, 7, and 8, respectively.

D BENCHMARK STATISTICS

We summarize the detailed statistics of the VAR-MATH benchmark in Table 5.
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Figure 4: Standard deviation of model scores. VAR-MATH significantly reduces output variance
across AMC23, AIME24, and AIME25.

Table 5: Statistics of the original and variabilized benchmark datasets.
Dataset Original Questions Symbolizable Questions Variant Questions

VAR-AMC23 40 37 183
VAR-AIME24 30 24 126
VAR-AIME25 30 25 130

E EVALUATION DETAILS

E.1 DATASETS AND TESTING ENVIRONMENT

We evaluate model performance on six mathematical reasoning benchmarks: the original AMC23,
AIME24, and AIME25, together with their variabilized counterparts VAR-AMC23, VAR-
AIME24, and VAR-AIME25, constructed using the symbolic multi-instantiation pipeline described
in Section 3. The original AMC232, AIME243, and AIME254 datasets are sourced from Hugging
Face.

The evaluation framework is based on the open-source Qwen2.5-MATH repository5, and uses Py-
Torch (v2.3.0), Transformers (v4.51.3), and vLLM (v0.5.1) for efficient decoding. All experiments
are conducted on NVIDIA RTX A6000 GPUs with bfloat16 precision.

2https://huggingface.co/datasets/zwhe99/amc23
3https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
4https://huggingface.co/datasets/math-ai/aime25
5https://github.com/QwenLM/Qwen2.5-Math
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Figure 5: Illustrative examples of symbolic abstraction and metadata in VAR-MATH.

Symbolic Question: Consider the set of complex numbers 𝑧 satisfying |1 + 𝑧 + 𝑧!| = 𝑉𝐴𝑅_𝑋. The maximum value of the imaginary part of 𝑧
can be written in the form "

#
, where 𝑚 and 𝑛 are relatively prime positive integers. What is 𝑚+ 𝑛?

Feasible Set: VAR_X ~ {2,3,4,5, … }

Answer: 5 + 𝑉𝐴𝑅_𝑋 ∗ 4

Question: Consider the set of complex numbers 𝑧 satisfying |1 + 𝑧 + 𝑧!| = 4. The maximum value of the imaginary part of 𝑧 can be written in 
the form "

#
, where 𝑚 and 𝑛 are relatively prime positive integers. What is 𝑚+ 𝑛?

Answer: 21

Figure 6: Example of original and symbolic variants from AMC23 and VAR-AMC23.

Symbolic Question: Jen enters a lottery by picking 4 distinct numbers from 𝑆 = {1,2,3,⋯ , 9, 𝑉𝐴𝑅_𝑋}. 4 numbers are randomly chosen from 
𝑆. She wins a prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins the grand prize if all four of her numbers 

were the randomly chosen numbers. The probability of her winning the grand prize given that she won a prize is !
"

, where 𝑚 and 𝑛 are 
relatively prime positive integers. Find 𝑚+ 𝑛.

Feasible Set: 𝑉𝐴𝑅_𝑋 ~ {10,11,… , 20}

Answer: (3 ∗ 𝑉𝐴𝑅_𝑋 − 11) ∗ (𝑉𝐴𝑅_𝑋 − 4) + 2

Question: Jen enters a lottery by picking 4 distinct numbers from 𝑆 = {1,2,3,⋯ , 9,10}. 4 numbers are randomly chosen from 𝑆. She wins a 
prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins the grand prize if all four of her numbers were the 

randomly chosen numbers. The probability of her winning the grand prize given that she won a prize is !
" , where 𝑚 and 𝑛 are relatively prime 

positive integers. Find 𝑚+ 𝑛.

Answer: 116

Figure 7: Example of original and symbolic variants from AIME24 and VAR-AIME24.
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Symbolic Question: Six points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 lie in a straight line in that order. Suppose that 𝐺 is a point not on the line and that 𝐴𝐶 =
𝑉𝐴𝑅_𝑌, 𝐵𝐷 = 𝑉𝐴𝑅_𝑍, 𝐶𝐸 = 31, 𝐷𝐹 = 33, 𝐴𝐹 = 𝑉𝐴𝑅_𝑈, 𝐶𝐺 = 40, and 𝐷𝐺 = 30. Find the area of ∆𝐵𝐺𝐸$.

Feasible Set: 
𝑉𝐴𝑅_𝑋~{4,5, … , 12}
𝑉𝐴𝑅_𝑌 = 𝑉𝐴𝑅_𝑋 + 18
𝑉𝐴𝑅_𝑍 = 𝑉𝐴𝑅_𝑋 + 14
𝑉𝐴𝑅_𝑈 = 𝑉𝐴𝑅_𝑋 + 65

Answer:12*(VAR_X+31)

Question: Six points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 lie in a straight line in that order. Suppose that 𝐺 is a point not on the line and that 𝐴𝐶 = 26, 𝐵𝐷 = 22, 
𝐶𝐸 = 31, 𝐷𝐹 = 33, 𝐴𝐹 = 73, 𝐶𝐺 = 40, and 𝐷𝐺 = 30. Find the area of ∆𝐵𝐺𝐸$.

Answer: 468

Figure 8: Example of original and symbolic variants from AIME25 and VAR-AIME25.

E.2 GENERATION CONFIGURATION

For 7B and 32B models, we adopt the system prompts and decoding configurations from their of-
ficial implementations. The decoding hyperparameters are summarized in Table 6. High-capacity
models are accessed via official APIs and evaluated using their default generation settings, without
modification or additional prompts.

Table 6: Decoding and runtime configurations for model evaluation.
Hyperparameter Value
General settings

Temperature 0.6
Number of generations 16
Top-p 1.0
Use vLLM True
GPU NVIDIA RTX A6000

7B-parameter models
Max tokens per call 8192
GPUs used per model 2
M 16
N 1000

32B-parameter models
Max tokens per call 32768
GPUs used per model 4
M 16
N 1000

Frontier models
M 4
N 1000

F MORE DISCUSSION

F.1 STRICT DROP APPLES-TO-ORANGES METRIC

A natural concern is that the performance drop between the original AMC/AIME datasets and their
variabilized counterparts may partially arise from a mismatch in evaluation granularity: original
scores are computed using pass@1, whereas strict VAR-AMC/AIME uses a consistency require-
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ment across K variants. This raises the question of whether the observed decline is an artifact of
comparing pass@1 to a “K/K strict” metric.

To address this, we introduce a strict-AMC/AIME metric that mirrors strict VAR-AMC/AIME. For
each original problem, we perform K independent inference runs and count the item as correct
only if all K runs are correct, using the same K, sampling strategy, and bootstrap procedure as
in the variabilized evaluation. As shown in Tables 7–9, strict-AMC/AIME results remain close to
the original pass@1 scores, whereas the drop from strict-AMC/AIME to strict-VAR-AMC/AIME
remains large and consistent across models (23%/18%/31% on AMC, AIME24, and AIME25,
respectively). This demonstrates that the strict consistency requirement itself does not account for
the degradation.

Table 7: Strict-Metric Performance on AMC23 and VAR-AMC23. (Avg. Drop −23.25%)
Model (strict) AMC23 (strict) VAR-AMC23 Drop

Qwen2.5-MATH-7B 12.2 (4.0) 2.0 (2.0) -83.6%

Eurus-2-7B-PRIME 40.8 (3.6) 28.9 (3.7) -29.2%

Skywork-OR1-Math-7B 63.4 (3.2) 57.0 (3.6) -10.1%

SimpleRL-Zoo-7B 42.1 (4.3) 33.6 (4.0) -20.2%

Light-R1-7B-DS 59.9 (4.2) 54.9 (4.6) -8.3%

Oat-Zero-7B 55.0 (3.1) 36.8 (3.3) -33.1%

Qwen2.5-32B 6.5 (3.5) 3.1 (2.5) -52.3%

DAPO-Qwen-32B 85.9 (3.4) 69.8 (3.1) -18.7%

SRPO-Qwen-32B 72.4 (4.1) 51.5 (4.5) -28.9%

DeepSeek-R1-0528 100.0 (0.0) 96.4 (2.5) -3.6%

Qwen3-235B-A22B 100.0 (0.0) 93.6 (3.1) -6.4%

SEED-THINK-v1.6 100.0 (0.0) 98.8 (1.5) -1.2%

OpenAI-o4-mini-high 100.0 (0.0) 93.4 (2.3) -6.6%

Table 8: Strict-Metric Performance on AIME24 and VAR-AIME24. (Avg. Drop −17.87%)
Model (strict) AIME24 (strict) VAR-AIME24 Drop

Qwen2.5-MATH-7B 3.4 (2.8) 3.2 (2.7) -5.9%

Eurus-2-7B-PRIME 6.7 (2.6) 4.3 (2.9) -35.8%

Skywork-OR1-Math-7B 27.1 (3.7) 23.9 (4.3) -11.8%

SimpleRL-Zoo-7B 11.3 (4.1) 8.5 (3.7) -24.8%

Light-R1-7B-DS 24.0 (4.7) 23.8 (4.8) -0.8%

Oat-Zero-7B 25.1 (3.2) 12.8 (3.6) -49.0%

Qwen2.5-32B 2.7 (2.4) 2.3 (2.3) -14.8%

DAPO-Qwen-32B 36.0 (4.1) 29.8 (4.6) -17.2%

SRPO-Qwen-32B 39.0 (4.5) 29.2 (4.2) -25.1%

DeepSeek-R1-0528 81.8 (2.8) 73.7 (3.8) -9.9%

Qwen3-235B-A22B 80.8 (2.6) 69.5 (3.4) -14.0%

SEED-THINK-v1.6 82.8 (2.3) 73.4 (3.5) -11.4%

OpenAI-o4-mini-high 88.5 (1.9) 78.1 (3.7) -11.8%
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Table 9: Strict-Metric Performance on AIME25 and VAR-AIME25. (Avg. Drop −31.12%)
Model (strict) AIME25 (strict) VAR-AIME25 Drop

Qwen2.5-MATH-7B 0.1 (0.5) 0.0 (0.0) -100.0%

Eurus-2-7B-PRIME 1.9 (2.3) 1.2 (1.7) -36.8%

Skywork-OR1-Math-7B 18.5 (1.9) 15.0 (2.5) -18.9%

SimpleRL-Zoo-7B 3.8 (2.4) 2.9 (2.4) -23.7%

Light-R1-7B-DS 22.1 (3.3) 17.1 (3.2) -22.6%

Oat-Zero-7B 3.6 (2.3) 1.2 (1.8) -66.7%

Qwen2.5-32B 0.0 (0.2) 0.0 (0.0) N/A

DAPO-Qwen-32B 23.2 (3.6) 21.2 (2.4) -8.6%

SRPO-Qwen-32B 17.0 (2.4) 14.5 (3.0) -14.7%

DeepSeek-R1-0528 76.6 (2.6) 61.3 (4.4) -20.0%

Qwen3-235B-A22B 77.7 (1.6) 61.6 (4.6) -20.7%

SEED-THINK-v1.6 79.2 (2.5) 58.8 (4.0) -25.8%

OpenAI-o4-mini-high 90.2 (0.8) 76.7 (3.5) -15.0%

F.2 STATISTICAL SIGNIFICANCE CHECK

To ensure that the observed differences are statistically reliable, we perform a one-sided t-test on the
M = 16 independent inference runs for each open-weight model. For each model–benchmark pair,
we test the null hypothesis

H0 : µloose = µorig,

i.e., the loose VAR-AMC/AIME score is equal to the original score, against the alternative hypoth-
esis

H1 : µloose < µorig.

This directly evaluates whether the variabilized versions lead to a statistically significant decline in
performance under matched sampling conditions.

As shown in Tables 10–12, 18/27 model–benchmark pairs yield p < 0.05, allowing us to reject
H0 with at least 95% confidence. This confirms that, for the majority of settings, loose scores are
significantly lower than original scores. For the remaining cases with p ≥ 0.05, most correspond
to models whose original accuracy is already very low (approximately 3.5 ∼ 33), leaving limited
room for further decline and therefore a weaker statistical signal.
Remark. We chose not to run the t-test directly on the bootstrap replicates because these are re-
samples from the empirical distribution induced by the original M = 16 runs. Applying a t-test on
the bootstrap draws would effectively compare two empirical distributions generated from the same
finite sample, which in our experiments leads to uniformly tiny p-values (often < 0.01) and reflects
the resampling procedure more than the underlying inference variability. To avoid overstating sig-
nificance, we therefore conduct the t-test on the original M independent runs, and use the bootstrap
only to stabilize point estimates and confidence intervals.
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Table 10: Significance Check on AMC23 v.s. (loose) VAR-AMC23.
Model AMC23 (loose) VAR-AMC23 Drop p-value

Qwen2.5-MATH-7B 36.9 (6.3) 22.7 (2.6) -38.5% < 0.01**

Eurus-2-7B-PRIME 58.3 (4.3) 49.9 (2.5) -14.3% < 0.01**

Skywork-OR1-Math-7B 73.9 (5.4) 72.0 (2.3) -2.6% 0.12

SimpleRL-Zoo-7B 61.4 (4.8) 52.2 (2.3) -15.0% < 0.01**

Light-R1-7B-DS 78.6 (6.3) 75.8 (2.3) -3.5% 0.05*

Oat-Zero-7B 65.6 (3.1) 54.4 (2.4) -17.0% < 0.01**

Qwen2.5-32B 33.4 (4.5) 27.4 (2.8) -18.2% < 0.01**

DAPO-Qwen-32B 92.3 (2.9) 85.7 (1.4) -7.2% < 0.01**

SRPO-Qwen-32B 86.7 (3.7) 73.9 (2.6) -14.8% < 0.01**

Table 11: Significance Check on AIME24 v.s. (loose) VAR-AIME24.
Model AIME24 (loose) VAR-AIME24 Drop p-value

Qwen2.5-MATH-7B 10.8 (4.5) 7.9 (2.9) -27.1% 0.02*

Eurus-2-7B-PRIME 15.8 (4.8) 13.4 (2.7) -15.5% 0.04*

Skywork-OR1-Math-7B 41.5 (4.2) 39.0 (3.4) -6.0% 0.03*

SimpleRL-Zoo-7B 23.8 (5.9) 20.4 (3.5) -14.1% < 0.01**

Light-R1-7B-DS 40.8 (5.1) 40.6 (3.3) -0.6% 0.41

Oat-Zero-7B 34.0 (2.1) 22.3 (2.5) -34.3% < 0.01**

Qwen2.5-32B 8.8 (4.4) 7.9 (2.6) -9.6% 0.27

DAPO-Qwen-32B 51.7 (6.6) 50.9 (2.8) -1.5% 0.34

SRPO-Qwen-32B 55.6 (5.0) 46.9 (2.9) -15.7% < 0.01**

Table 12: Significance Check on AIME25 v.s. (loose) VAR-AIME25.
Model AIME25 (loose) VAR-AIME25 Drop p-value

Qwen2.5-MATH-7B 4.8 (3.1) 3.2 (1.3) -34.2% 0.04*

Eurus-2-7B-PRIME 10.0 (3.1) 7.4 (1.4) -26.0% < 0.01**

Skywork-OR1-Math-7B 24.0 (3.8) 23.4 (1.6) -2.4% 0.31

SimpleRL-Zoo-7B 12.5 (3.4) 11.5 (1.6) -7.9% 0.16

Light-R1-7B-DS 32.7 (3.8) 30.3 (1.8) -7.3% 0.02*

Oat-Zero-7B 9.2 (3.2) 8.4 (1.4) -7.9% 0.24

Qwen2.5-32B 3.5 (3.4) 2.8 (1.2) -21.2% 0.25

DAPO-Qwen-32B 37.3 (5.3) 32.2 (2.3) -13.5% < 0.01**

SRPO-Qwen-32B 26.5 (5.2) 25.2 (1.7) -4.6% 0.18
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G DETAILED EXAMPLE IN CONSTRUCTING THE PROBLEM

In this section, we provide two detailed examples (one easy and one hard) to illustrate the full
construction pipeline.

Example Conversion Pipeline (AMC 2023, Problem 11)

Original Problem. What is the degree measure of the acute angle formed by lines with slopes
2 and 1

3?

1. Structural Analysis. A mathematics expert solves the problem and identifies the key struc-
ture:

tan(θ) =

∣∣∣∣ m1 −m2

1 +m1m2

∣∣∣∣ .
Essential constants are m1 = 2 and m2 = 1

3 , yielding θ = 45◦. This determines which
quantities can be symbolized while preserving semantic fidelity.

2. Symbolic Parameterization. Key constants are replaced with variables:

m1 = VAR Y, m2 = VAR X.

Feasible domains:

VAR X ∈
{

1
3 ,

1
2 ,

3
5

}
, VAR Y =

1 + VAR X
1− VAR X

,

chosen to stay close to the original scale while ensuring validity (nonzero denominator, positive
slopes) and similar difficulty (share the final solution step arctan 1 = 45◦).

3. Parametric Solution Formulation.

tan(θ) =

∣∣∣∣ VAR Y − VAR X
1 + VAR Y · VAR X

∣∣∣∣ = 1 ⇒ θ = 45◦.

Thus the symbolic answer is:
Answer = 45◦.

4. Verification.

• Human verification: another annotator solves each instantiated variant to confirm
correctness and comparable difficulty.

• Model verification: all variants are run through a frontier model (DeepSeek). Any
inconsistency triggers re-checking by an expert. Geometry problems are additionally
validated using drawing tools.

5. Variant Sampling and Evaluation. Variants are instantiated by sampling from the feasible
domains:

• Variant 1: VAR X = 1
3 , VAR Y = 2. Slopes: 2 and 1

3 . Ground truth: 45◦.

• Variant 2: VAR X = 1
2 , VAR Y = 3. Slopes: 3 and 1

2 . Ground truth: 45◦.

• Variant 3: VAR X = 3
5 , VAR Y = 4 (invalid). Slopes: 4 and 3

5 . Ground truth: 45◦.

Valid variants (typically K = 3 for this problem) are fixed and shared by all models.
Loose/strict scores are computed using standardized prompting.
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Example Conversion Pipeline (AIME 2025 II, Problem 1)

Original Problem. Six points A,B,C,D,E, F lie on a line in that order. A point G is not on
the line, and the distances satisfy

AC = 26, BD = 22, CE = 31, DF = 33, AF = 73, CG = 40, DG = 30.

Find the area of △BGE.

1. Structural Analysis. Following the official solution, set

AB = a, BC = b, CD = c, DE = d, EF = e.

Then
a+ b+ c+ d+ e = AF = 73,

a+ b = AC = 26,

b+ c = BD = 22,

c+ d = CE = 31,

d+ e = DF = 33.

From these equations we deduce

c = 14, a+ e = 34, b+ c+ d = 39.

Using Heron’s formula on △CGD with side lengths CG = 40, DG = 30, and CD = c = 14
gives

[CGD] =
√
42 · 2 · 12 · 28 = 168.

Since BE = b + c + d = 39 and CD = c = 14 lie on the same line with the same altitude
from G,

[BGE]

[CGD]
=

BE

CD
=

39

14
,

so
[BGE] = 168 · 39

14
= 468.

This structure (solving for c and b+ c+ d, then scaling areas by base ratio) is what we preserve
in the symbolic version.

2. Symbolic Parameterization. We vary the lengths AC, BD, and AF while keeping the
configuration valid. Introduce a shift parameter

VAR X ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12},
and define

AC = VAR Y = VAR X + 18,

BD = VAR Z = VAR X + 14,

AF = VAR U = VAR X + 65,

while keeping
CE = 31, DF = 33, CG = 40, DG = 30

unchanged. The points remain ordered A,B,C,D,E, F on the line and G stays off the line.

3. Parametric Solution Formulation. With the same notation AB = a, BC = b, CD = c,
DE = d, EF = e, the constraints become

a+ b+ c+ d+ e = AF = VAR X + 65,

a+ b = AC = VAR X + 18,

b+ c = BD = VAR X + 14,

c+ d = CE = 31,

d+ e = DF = 33.
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From these equations we obtain, exactly as in the original case,

c = 14, d = 17, b = VAR X, b+ c+ d = VAR X + 31.

Thus CD remains 14, so △CGD still has side lengths 40, 30, and 14, and its area is always

[CGD] = 168.

Meanwhile, the base of △BGE is

BE = b+ c+ d = VAR X + 31,

so with the same altitude from G,

[BGE]

[CGD]
=

BE

CD
=

VAR X + 31

14
,

which yields the parametric area

[BGE] = 168 · VAR X + 31

14
= 12(VAR X + 31).

Hence the symbolic answer is

Answer = 12(VAR X + 31).

4. Verification.

• Human verification: Another expert re-solves several instantiated variants using this
symbolic derivation

• Model verification: All variants are also checked by a frontier model (DeepSeek) as
a sanity check; any discrepancy triggers a second expert review to confirm correctness
and comparable difficulty.

5. Variant Sampling and Evaluation. We sample VAR X from its feasible set, for example:

• VAR X = 4: area = 12(4 + 31) = 420.
• VAR X = 7: area = 12(7 + 31) = 456.
• VAR X = 11: area = 12(11 + 31) = 504.
• ...

These variants are fixed and shared across all models. Loose/strict scores are computed using
standardized prompting.

H THE USE OF LLMS

The authors utilized LLMs to assist with writing tasks such as text polishing and language refine-
ment. All substantive intellectual content, research findings, and technical contributions are original
to the authors. The LLM served only as a writing assistance tool under human supervision, and all
output was critically evaluated and modified by the authors.
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