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Abstract
Steerable Convolutional Neural Networks are a popular and efficient class of
equivariant models. For some specific groups, representations, and choice of
coordinates, the most common point-wise activations, such as ReLU, are not
equivariant. Hence they cannot be employed in designing equivariant neural
networks. In this paper, we present a simple yet effective generalization of such
results for equivariant networks. First, we prove that for groups such point-wise
activations can be employed in disentangled layers only when a simple group-
theoretic condition is satisfied, namely when the linear representations underlying
their feature spaces are trivial representations. Second, we show analogous
results for connected compact groups, where the only admitted equivariant neural
networks with point-wise activations are the invariant ones.
These results demonstrate the necessity of further research for the design of
suitable activation functions beyond point-wise ones.

1 Introduction
Equivariance, the property of maintaining relationships between data points through transformations,
is crucial for tasks where data exhibit symmetries. Equivariant neural networks [1, 2] have shown
improved generalization capabilities across various research areas, including computer vision [3–5],
computer graphics [6–11], and graph learning [12–17]. Among types of equivariant neural networks,
steerable Convolutional Neural Networks (CNNs) [18] have gained particular attention because of
their generality. In particular, their disentangled version guarantees granular modularity of design
and precise control over the number of parameters. While traditional point-wise activation functions
like ReLU are commonly employed in CNNs, they lack equivariance for certain settings [6, 18].
Consequently, their application in equivariant models is restricted. In this paper, we prove that those
limitations are present for a wide class of point-wise activation functions, which were introduced by
Shawe-Taylor [1], and that we call reasonable activations (see Definition 2 for a precise definition),
encompassing those commonly used in practical applications. More precisely, we show that point-
wise activations can only be employed in disentangled steerable CNNs if the linear representations
underlying their feature spaces are direct sum of trivial representations.

In brief, our contributions are summarized as follows: (i) we provide a complete characterization
of disentangled steerable CNNs with equivariant point-wise activations, (ii) we show a stronger
characterization for equivariance with respect to connected compact groups, and (iii) we discuss
their impact on the most relevant cases such as Invariant Graph Networks (IGN) [12] and rotation-
equivariant CNNs [19].

The paper is organized as follows: Section 2 provides an overview of related work on equivariant
models and existing limitations concerning point-wise activations. Section 3 provides preliminaries
for our work. In Section 4, we present the characterizations of steerable CNNs with point-wise
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activations and explore significant examples of equivariance with respect to the symmetric group,
and the rotation group. Finally, Section 5 summarizes our findings and discusses future research
directions.

2 Related Work

In recent years, equivariant neural networks have improved performance of standard neural networks
by exploiting symmetries of the training data and have risen to an entirely new branch of machine
learning known as geometric deep learning [20–22]. Early CNNs [23, 24] revolutionized computer
vision, and by employing translation-equivariant features, they improved parameter sharing and
scaling to larger datasets. Early explicit integration of representation theory, harmonic analysis, and
linear invariants into machine learning can be dated to Kakarala [25] and Kondor [26]. Wood and
Shawe-Taylor [1] are the first to bring equivariance into deep learning with a general approach. They
define equivariant neural networks and give a classification of those models for the case of point-
wise activations. In more recent years, Cohen and Welling [2, 18, 27] presented the foundational
work of group equivariant convolutional networks. Precisely, they have introduced the general
model of steerable CNNs [18], a popular and efficient class of equivariant models. In the following
years many equivariant models with respect to symmetries up to particular transformations and
different application domains appeared in the literature: rotation-invariance for galaxy morphology
prediction [28], permutation invariance for set processing [7, 8], permutation invariance for graph and
relational structure learning [12, 16, 29], roto-translation invariance and permutation-invariance for
3D point-cloud processing [30, 31], and roto-translation invariance for medical image analysis [32].

On the other hand, different research directions focused on theoretical aspects of equivariant models,
including the creation of new frameworks [33], expressivity and universality [14, 15, 34–37], gen-
eralization bounds [33, 38–41], and characterizations [1, 22, 42]. In particular, Cohen and Welling
[18] note that the equivariance of activations depends on the coordinates chosen on the representation
spaces. They present some sets of admissible equivariant activations with respect to disentangled
bases. Here, we prove that those sets are the only admissible ones. However, it should be noted that
other activations beyond point-wise ones exist and are employed in practice. A good reference on
this topic is Weiler and Cesa [43], and some of the presented activations are norm nonlinearities [3],
squashing nonlinearities [44], tensor product nonlinearities [45], and gated nonlinearities [6].

3 Preliminaries

3.1 Representation Theory

We would like to define functions which are invariant with respect to a certain set of transformations.
Interesting classes of transformations are groups [46]. A group G is a set of elements which can be
composed together, can be inverted and s.t. there exist an element neutral with respect to composition.
For further details we refer to Definition 3 and Example 1.

Representation theory [46] studies how abstract groups can be translated to sets of matrices which
are group themselves. Given a group G, a vector space V on the field R of real numbers, and the set
GL(V ) of linear invertible functions from V to itself, a representation is a function ρ : G −→ GL(V )
compatible with the group structures. When possible we will indicate such a representation by using
simply V (Definition 5).

For our purposes some particular representations will play an important role. Given an action of
G on a finite set X , and setting V = RX , a permutation representation is a representation such
that g(ei) = egi for each g ∈ G and i ∈ X , and a signed permutation representation is such that
g(ei) = ±egi (Definition 7).

In what follows we will write Hom(V,W ) for the set of all linear maps from V to W . If V and W
are vector spaces underlying representations ρV and ρW of a same group G, we define HomG(V,W )
as the set of G-equivariant linear functions from V to W , i.e., the functions f compatible with
representations in the sense that f ◦ ρV = ρW ◦ f . For the interests of this work, we have to consider
affine maps between V and W , a composition between a linear map Hom(V,W ) and a translation on
W . We denote as Aff(V,W ) those maps and as AffG(V,W ) the set of equivariant affine functions,
i.e., affine maps f such that f ◦ ρV = ρW ◦ f , see also Appendix A.3.
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3.2 Steerable CNNs and Disentanglement

We follow the general framework proposed in [18] which proves the universality of the discussed
model and [38] which computes generalization bounds for them. Given a group G, a G-Steerable
CNN is the composition

Φ = ϕm ◦ σm−1 ◦ ϕm−1 ◦ · · · ◦ σ1 ◦ ϕ0 (1)
where the Vi’s are arbitrary G-representations, σi : Vi −→ Vi are non-affine G-equivariant functions,
and ϕi is an affine G-equivariant map, namely ϕi ∈ AffG(Vi, Vi+1) in our notation.

An activation σ:Vi −→ Vi is point-wise if there exists a basis Bi = {v1, . . . , vm} of Vi and a function
σ′ : R −→ R such that

σ(a1v1 + · · ·+ amvm) = σ′(a1)v1 + · · ·+ σ′(am)vm

for each a1, . . . , am ∈ R.

An irreducible representation of a G-representation Vi is a minimal non-trivial G-invariant subspace
and each representation Vi can be decomposed into a direct sum of irreducible spaces (Definition 9
and Theorem 3). In addition, irreducible representations are necessary for the following definition of
disentanglement which we state in the manner of Cohen and Welling [18].
Definition 1. A steerable CNN with point-wise activations is disentangled if the Bi’s only contain
vectors belonging to factors of a irreducible decomposition of Vi defined by a fixed basis.

4 Characterization and its Implications
To clearly state the main result of the paper, we need to recall the notion of reasonable activation [1].
Definition 2. A point-wise activation σ : V −→ V is called reasonable if it is induced by a function
σ′ : R → R with the following property: There exists unique values a+, a− ∈ R such that the graph
of x 7→ σ′(x)− σ′(0) intersects the graph of x 7→ a−x in an infinite number of points x < 0, and it
intersects the graph of x 7→ a+x in an infinite number of points x > 0.

We are now able to present the main statement of this paper.
Theorem 1. For an activation function σ : V −→ V induced by non-odd reasonable functions, the
network is disentangled if and only if the representation V is the direct sum of trivial representations.

The proof on this theorem heavily leans on a fundamental result first appearing as Theorem 2.4 in the
pioneering work of Wood and Shawe-Taylor [1]. Here, we present and prove a stronger version of it
(Appendix A.5).
Theorem 2. Let G be a compact group, σ : V −→ V be a reasonable and equivariant activation
function on a continuous G-representation V defined on the basis B. We have the following cases.

• If σ is induced by an odd function then V is a signed-permutation representation.

• If σ is induced by a semilinear function, i.e., linear on both the positive and negative part of R,
then V is a permutation representation with respect to a positive scaling of vectors in B.

• Otherwise, V is a permutation representation of G with respect to B.

We are now able to prove Theorem 1.

Proof. Proving the equivariance of the activation in the case V is the direct sum of trivial repre-
sentations is straightforward. For the other case, thanks to Theorem 2, we can consider V to be
a permutation representation. By disentanglement, we can suppose V to be irreducible and with
basis B = {v1, . . . , vm} defining σ. Given v ∈ V , the subspace ⟨

∑
g∈G gv⟩ is one-dimensional and

G-invariant. Hence, V = ⟨
∑

g∈G gv⟩ which is trivial.

We have presented our theoretical findings on the role of equivariance in deep learning, specifically
focusing on steerable CNNs and the conditions under which point-wise activations can be effectively
employed. Now we study how this characterization affects and limits the design choices of networks
in common practical cases such as IGNs [12] and rotation-equivariant CNNs [19]. In what follows,
we only consider non-odd, reasonable and equivariant activation functions which include all the
commonly used activations.
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4.1 Rotation-Equivarinat Networks and Equivariance for Connected Compact Groups

We now discuss how Theorem 1 affects the design of rotation equivariant networks. The group
of rotations around the origin of Rn is denoted as SO(3), it can be described as the group of real
orthogonal 3 × 3 matrices with positive determinant (Example 1). As SO(3) is a compact and
simply connected group [46], we will study the general case of equivariance with respect to groups
presenting these two properties. We saw that each admissible continuous representation of G is the
composition of an homomorphism G −→ Sk for a certain k and the defining representation of Sk.
As G is connected, its image in Sk is the identity element, hence the only admissible continuous
G-representation is the trivial one. From now on, we will consider all the representations of compact
groups to be continuous. Note that a simple input representation for rotation-equivariant networks is
a vector in R3 which is an irreducible representation of SO(3) with respect to left multiplication. But,
as discussed above, the only admitted output representation is the trivial one. By Schur’s Lemma
(Lemma 1) an equivariant map between two distinct irreducible representations is trivial. Hence, an
equivariant linear layer between such spaces would collapse the entire input on zero. This means that
rotation-equivariant neural network with point-wise activations for common practical scenarios have
no trainable parameters and, even worse, they map all possible inputs to a single value.

4.2 On Invariant Graph Networks and Geometric Graphs

A particular class of neural networks equivariant with respect to the symmetric group are IGNs
introduced by Maron et al [12] and are intimately related to graph neural networks [13, 15]. Unordered
data such as sets, graphs and hypergraphs, are encoded as tensor spaces or symmetric tensor spaces
which contain higher-order irreducible components. The dimension of this other components is
O(nk) with k assuming all values between 0 and the order of the relation structure [48]. In the case
of graphs we have p = 2, then there are components of dimension O(n2) which retains the widest
part the input information. Because of Schur’s Lemma (Lemma 1), linear layers between standard
input spaces and layer representations, which are trivial by Theorem 1, destroy the majority of the
input information, in the same way as described in the previous paragraph. As a simple example,
in the case of sets we can consider a domain in Rn, whose irreducible components are the trivial
representation and its complement of dimension n− 1. Due to Schur’s Lemma the complement maps
to zero hence almost all the information in the input is destroyed.

Let us study the case in which two compact groups H and F act at the same time and their actions
commute with each other, i.e. G = H × F . We know that the irreducible representations of G
are the tensor products of irreducible representations of H and F (see Appendix A.4). Hence, as
1 = dimV ⊗ W = dimV · dimW if and only if dimV = dimW = 1, the only admissible
disentangled components for H × F are a tensor product of admissible disentangled components
for both H and F . In practice, point-clouds of k points are encoded as elements of R3 ⊗ Rk with
SO(3) × Sk acting on it [47]. Therefore, the only admissible disentangled components for point-
cloud processing are the tensor products of trivial and sign representations of Sk and the trivial
representation of SO(3). More in general, geometric graphs or geometric p-order structures on k
nodes can be encoded in R3 ⊗ (Rk)⊗p where Sk acts as the tensor representation of p copies of the
standard permutation representation Rk of Sk [12].

5 Conclusions and Future Directions
In conclusion, we have provided a complete characterization of disentangled steerable CNNs featuring
point-wise equivariant activations. Our analysis investigates relevant examples, including IGNs and
rotation-equivariant CNNs. On one hand, subsequent work will focus on analyzing the case of non-
connected compact groups such as O(3), the group of origin-preserving isometries of R3. On the other
hand, we will focus on better classifying corner cases such as odd activations and signed permutation
representations, or generalizing to continuous activations possibly leading to the discovery and
testing of new equivariant models. Relevant future directions are the study for equivalent results for
non-compact groups [6], such as isometries of the Euclidean space, and non-point-wise activations,
such as norm activations [3], squashing activations [44], tensor product activations [45], and gated
activations [6], as the first two activation types present slow convergence in training, the third may
present high computational complexity scaling with the representation tensor power, the last is an
amalgamation of the previous solutions, alleviating convergence time but not the computational
burden.
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A Appendix
A.1 Group Theory

We now introduce the basic concepts of group theory, which is fundamental to formalize the concept
of symmetry.
Definition 3. A group is a pair (G, ·) where G is a set and · : G×G −→ G is a function satisfying
the following axioms.

• Associativity: for each g, h, k ∈ G we have(g · h) · k = g · (h · k).

• Identity: there exists an element e ∈ G such that g · e = e · g = g for each g ∈ G.

• Inverse Element: for each element g ∈ G, there exists an element g−1 ∈ G such that g · g−1 =
g−1 · g = e.

A group is finite if it contains a finite number of elements. A group is abelian or commutative if
gh = hg for each g, h ∈ G.
Example 1. Here we present some fundamental examples of groups.

• The set of integers with addition.

• The set S1 = {ρα} of rotations of angle α centered in the origin of the 2D Cartesian plane with
composition.

• The set GL(V ) of bijective linear maps of a vector space V into itself with composition. Then,
the set GLn(R) of n×n real invertible matrices form a group where the operation is row-column
multiplication.

• Let SOn(R), or simply SO(n), be the group of orthogonal matrices with positive determinant.
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• Fix [n] = {1, . . . , n}. The set

Sn = {f : [n] −→ [n] | f is bijective}

with the composition operation form the symmetric group or the permutation group.

• Given two groups G and H , the direct product G×H of them is still a group. The set of the
elements is the cartesian product of G and H while the sum is defined as

(g1, h1) ◦G×H (g2, h2) = (g1 ◦G g2, h1 ◦H h2).

Now, we introduce notion of group homomorphism, a transformation between groups which preserves
the operation.
Definition 4. A group homomorphism is a map

ϕ : G −→ H

between G and H groups such that, for each g, h ∈ G

ϕ(g · h) = ϕ(g) · ϕ(h).

Example 2. The map Φ : S1 −→ GL2(R) defined by

ρα 7→
[
cos(α) sin(α)
− sin(α) cos(α)

]
(2)

is an homomorphism between the group of rotations of angle α and the 2× 2 invertible matrices.

A.2 Representation Theory

Definition 5. A representation of a group G in a vector space V is a group homomorphism

ρ : G −→ GL(V ).

Definition 6. Consider G = Sn.

• dimV = 1 and ρ(g) = id for each g ∈ Sn. This is called the trivial representation of Sn.

• dimV = 1 and ρ(g) = sgn(g)id. This is called the sign representation of Sn.
Definition 7. A representation ρ : G −→ GLn(R) is

• Non-negative if all the elements of each ρ(g) are non-negative.

• Monomial if each row and column of each ρ(g) has exactly one non-zero element.

• A permutation representation if it is monomial and each non-zero element is 1.

• A signed permutation representation if it is monomial and each non-zero element is ±1.
Definition 8. A linear map Φ : V −→ W is G-equivariant with respect to the representations
ρ1 : G −→ GL(V ) and ρ2 : G −→ GL(W ) if

ρ2 ◦ Φ = Φ ◦ ρ1.

We will denote the space of all G-equivariant maps between ρ1 and ρ2 by HomG(ρ1, ρ2) or
HomG(V,W ) when ρ1 and ρ2 will be clear from the context.
Definition 9. A representation ρ : G −→ GL(V ) is irreducible if there exists no non-trivial subspace
W of V such that ρ(g)(W ) ⊆ W for each g ∈ G.

An important result in representation theory of finite groups states that there is always a decomposition
into irreducible representations.
Theorem 3. For each representation ρ : G −→ GL(V ), there exists a decomposition

V = V1 ⊕ · · · ⊕ Vm

where each Vi is irreducible for ρ. This decomposition is unique up to isomorphism and permutation
of the factors.
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Another tool coming from Representation Theory is Schur’s Lemma which will be fundamental to
understand our results.
Lemma 1. Let V and W be non-isomorphic irreducible representations, there is only one G-
equivariant linear map between them and it is the trivial one.
Definition 10. The fixed set for a representation ρ : G −→ GL(V ) is V G = {v : gv = v}. Note
that V G is a representation for G and the action is trivial.
Theorem 4. The following properties are true for representations of a finite group G.

• dimV G is the multiplicity of the trivial representation in V ,

• dimHomG(V,W ) = dim(V ⊗W )G.

A.3 Affine maps

Definition 11. Let V and W be two K-vector spaces and define the translation of a vector w in W
as a non-linear bijective map τw : v 7→ v + w. Define the space of affine maps from V to W as

Aff(V,W ) = {τw ◦ f |w ∈ W and f ∈ Hom(V,W )}.

Note that is a more general definition with respect to the standard one, where f is an isomorphism of
a vector space V .
Theorem 5. The decomposition of an affine map ϕ ∈ Aff(V,W ) in translational part τw and f
linear part is unique.

Proof.
τw1

◦ f1 = ϕ = τw2
◦ f2,

evaluating in 0 leads to
w1 = ϕ(0) = w2.

Write w = w1 = w2, and note that
τw ◦ f1 = τw ◦ f2,

by the bijectivity of translations,
f1 = f2.

Let V and W be G-representation. An affine map ϕ ∈ Aff(V,W ) is G-equivariant if ϕ ◦ g = g ◦ ϕ
for each g ∈ G, write the set of G-equivariant affine maps from V to W as AffG(V,W ).
Theorem 6. ϕ = τw ◦ f ∈ AffG(V,W ) if and if f ∈ HomG(V,W ) and v is invariant.

Proof. Note that for each g ∈ G,

g ◦ τw ◦ f = τgw ◦ (g ◦ f).

Observe that
ϕ ◦ g = g ◦ ϕ,

if and only if
τw ◦ f ◦ g = g ◦ τw ◦ f = τgw ◦ (g ◦ f)

if and only if, by the previous proposition,

w = gw

and
f ◦ g = g ◦ f

for each g ∈ G.
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A.4 Representations of Group Products

Remark 1. Let V ⊗ W be a finite-dimensional G × H-representations and Vi’s a complete list
of irreducible G-representations and Wj’s a complete list of irreducible H-representations, then
Vi ⊗Wj ’s is a complete list of irreducible (G ×H)-representations (See [48] for proofs in case
G and H are finite). If mi is the multiplicity of Vi in V and nj is the multiplicity of Wj in W then
the multiplicity of Vi ⊗Wj in V ⊗W is minj . This can be easily seen by writing the irreducible
decompositions of V and W and use the distributive property of tensor products and direct sums.
Note that the same is true if G and H are compact groups and the representations are continuous.
If S is an G-isotypic component of V ×W of type ρ then it is H-invariant and each h ∈ H acts
as G-equivariant endomorphism of S. By Lemma 1, S = ρ⊗ σ, which is

⊕
i ρ⊗ σi, where σi are

irreducible H-representations. Iterating the decomposition if necessary and by the finite dimension
of V and W , we conclude.

A.5 Characterization Theorem

The characterization theorem presented by Wood and Shawe-Taylor [1] differs from the statement
of Theorem 2 which is actually stronger. The original statement by Wood and Shawe-Taylor for
reasonable non-affine activations can be stated as follows:
Theorem 7. Let σ : V −→ V be reasonable and equivariant activation function on a representation
V defined on the base B of a G-representation of a finite group G. We have the following cases.

• If σ is induced by an odd function then V is a signed-permutation representation.

• If σ is induced by a non-odd semilinear function, i.e., linear on both the positive and negative
part of R, then V is a non-negative monomial representation with respect to B.

• Otherwise, V is a permutation representation of G with respect to B.

We now present the proof of Theorem 2 using Theorem 7.

Proof. Looking at the proof of Theorem 7, we see that it works seamlessly for the general case of
continuous representations of compact groups. Additionally, note that an odd semilinear function is
linear, as activations are non-affine, we can just consider semilinear functions in the second element
of the bullet list. Finally, leveraging the work by Flor [49] on groups of non-negative matrices,
non-negative monomial representations are isomorphic to permutation representations through a
positive scaling of basis. In this way, the second element in the bullet list of Theorem 7 reduces to the
second element of Theorem 2.
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