SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

Elias Frantar ' Dan Alistarh ! 2

Abstract

We show for the first time that large-scale genera-
tive pretrained transformer (GPT) family mod-
els can be pruned to at least 50% sparsity in
one-shot, without any retraining, at minimal
loss of accuracy. This is achieved via a new
pruning method called SparseGPT, specifically
designed to work efficiently and accurately on
massive GPT-family models. We can execute
SparseGPT on the largest available open-source
models, OPT-175B and BLOOM-176B, in un-
der 4.5 hours, and can reach 60% unstructured
sparsity with negligible increase in perplexity: re-
markably, more than 100 billion weights from
these models can be ignored at inference time.
SparseGPT generalizes to semi-structured (2:4
and 4:8) patterns, and is compatible with weight
quantization approaches. The code is available
at: https://github.com/IST-DASLab/
sparsegpt.

1. Introduction

Large Language Models (LLMs) from the Generative Pre-
trained Transformer (GPT) family have shown remarkable
performance on a wide range of tasks, but are difficult to de-
ploy because of their massive size and computational costs.
For illustration, the top-performing GPT-175B models have
175 billion parameters, which total at least 320GB (count-
ing multiples of 1024) of storage in half-precision (FP16)
format, leading it to require at least five A100 GPUs with
80GB of memory each for inference. It is therefore natu-
ral that there has been significant interest in reducing these
costs via model compression. To date, virtually all existing
GPT compression approaches have focused on quantiza-
tion (Dettmers et al., 2022; Yao et al., 2022; Xiao et al.,
2022; Frantar et al., 2022a), that is, reducing the precision
of the model’s numerical representation.

"nstitute of Science and Technology Austria (ISTA)
’Neural Magic Inc. Correspondence to: Elias Frantar
<elias.frantar @ist.ac.at>.

Proceedings of the 40 International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

A complementary approach for compression is pruning,
which removes network elements, from individual weights
(unstructured pruning) to higher-granularity structures such
as rows/columns of the weight matrices (structured pruning).
Pruning has a long history (LeCun et al., 1989; Hassibi et al.,
1993), and has been applied successfully in the case of vision
and smaller-scale language models (Hoefler et al., 2021).
Yet, the best-performing pruning methods require extensive
retraining of the model to recover accuracy. In turn, this is
extremely expensive for GPT-scale models. While some ac-
curate one-shot pruning methods exist (Hubara et al., 2021a;
Frantar et al., 2022b), compressing the model without re-
training, unfortunately even they become very expensive
when applied to models with billions of parameters. Thus,
to date, there is essentially no work on accurate pruning of
billion-parameter models.

Overview. In this paper, we propose SparseGPT, the first
accurate one-shot pruning method which works efficiently
at the scale of models with 10-100+ billion parameters.
SparseGPT works by reducing the pruning problem to a
set of extremely large-scale instances of sparse regression. It
then solves these instances via a new approximate sparse re-
gression solver, which is efficient enough to execute in a few
hours on the largest openly-available GPT models (175B pa-
rameters), on a single GPU. At the same time, SparseGPT
is accurate enough to drop negligible accuracy post-pruning,
without any fine-tuning. For example, when executed on the
largest publicly-available generative language models (OPT-
175B and BLOOM-176B), SparseGPT induces 50-60%
sparsity in one-shot, with minor accuracy loss, measured
either in terms of perplexity or zero-shot accuracy.

Our experiments, from which we provide a snapshot in Fig-
ures 1 and 2, lead to the following observations. First, as
shown in Figure 1, SparseGPT can induce uniform layer-
wise sparsity of up to 60% in e.g. the 175-billion-parameter
variant of the OPT family (Zhang et al., 2022), with mi-
nor accuracy loss. By contrast, the only known one-shot
baseline which easily extends to this scale, Magnitude Prun-
ing (Hagiwara, 1994; Han et al., 2015), preserves accuracy
only until 10% sparsity, and completely collapses beyond
30% sparsity. Second, as shown in Figure 2, SparseGPT
can also accurately impose sparsity in the more stringent,
but hardware-friendly, 2:4 and 4:8 semi-structured sparsity
patterns (Mishra et al., 2021), although this comes at an ac-
curacy loss relative to the dense baseline for smaller models.

https://github.com/IST-DASLab/sparsegpt
https://github.com/IST-DASLab/sparsegpt

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

® Magnitude
SparseOPT

= = =
N S o
N L L

Perplexity on raw-WikiText2
=
o

co
L

00 01 02 03 04 05 06 07 08
Sparsity

60 1
~ e 24
x .
3 50 e 48
i3 50% Unstructured
2 Dense
2 40 1
c
5 301
Z | T
3 201
2
[
%10

10 10° 10! 102

#Params in Billions

Figure 1. Sparsity-vs-perplexity comparison of SparseGPT Figure 2. Perplexity vs. model and sparsity type when compressing

against magnitude pruning on OPT-175B, when pruning to different

uniform per-layer sparsities.

One key positive finding, illustrated in Figure 2, is that
larger models are more compressible: they drop signif-
icantly less accuracy at a fixed sparsity, relative to their
smaller counterparts. (For example, the largest models from
the OPT and BLOOM families can be sparsified to 50% with
almost no increase in perplexity.) In addition, our method
allows sparsity to be compounded with weight quantiza-
tion techniques (Frantar et al., 2022a): for instance, we can
induce 50% weight sparsity jointly with 4-bit weight quanti-
zation with negligible perplexity increase on OPT-175B.

One notable property of SparseGPT is that it is entirely
local, in the sense that it relies solely on weight updates
designed to preserve the input-output relationship for each
layer, which are computed without any global gradient in-
formation. As such, we find it remarkable that one can di-
rectly identify such sparse models in the “neighborhood” of
dense pretrained models, whose output correlates extremely
closely with that of the dense model.

2. Background

Post-Training Pruning is a practical scenario where we
are given a well-optimized model 6*, together with some
calibration data, and must obtain a compressed (e.g., sparse
and/or quantized) version of #*. Originally popularized in
the context of quantization (Hubara et al., 2021b; Nagel
et al., 2020; Li et al., 2021), this setting has also recently
been successfully extended to pruning (Hubara et al., 2021a;
Frantar et al., 2022b; Kwon et al., 2022).

Layer-Wise Pruning. Post-training compression is usually
done by splitting the full-model compression problem into
layer-wise subproblems, whose solution quality is measured
in terms of the /5-error between the output, for given inputs
Xy, of the uncompressed layer with weights W, and that
of the compressed one. Specifically, for pruning, (Hubara
et al., 2021a) posed this problem as that of finding, for each
layer /, a sparsity mask! M, with a certain target density,

!"Throughout the paper, by sparsity mask for a given tensor we

the entire OPT model family (135M, 350M, ..., 66B, 175B) to
different sparsity patterns using SparseGPT.

and possibly updated weights W@ such that

argmin WX, — (M, @ W)X,|2. (1)

mask M@,WZ

The overall compressed model is then obtained by “stitching
together” the individually compressed layers.

Mask Selection & Weight Reconstruction. A key aspect
of the layer-wise pruning problem in (1) is that both the
mask My as well as the remaining weights \/7\\74 are opti-
mized jointly, which makes this problem NP-hard (Blumen-
sath & Davies, 2008). Thus, exactly solving it for larger
layers is unrealistic, leading all existing methods to resort
to approximations.

A particularly popular approach is to separate the problem
into mask selection and weight reconstruction (He et al.,
2018; Kwon et al., 2022; Hubara et al., 2021a). Concretely,
this means to first choose a pruning mask M according to
some saliency criterion, like the weight magnitude (Zhu &
Gupta, 2017), and then optimize the remaining unpruned
weights while keeping the mask unchanged. Importantly,
once the mask is fixed, (1) turns into a linear squared error
problem that is easily optimized.

Existing Solvers. Early work (Kingdon, 1997) applied iter-
ated linear regression to small networks. More recently, the
AdaPrune approach (Hubara et al., 2021a) has shown good
results for this problem on modern models via magnitude-
based weight selection, followed by applying SGD steps
to reconstruct the remaining weights. Follow-up works
demonstrate that pruning accuracy can be further improved
by removing the strict separation between mask selection
and weight reconstruction. Iterative AdaPrune (Frantar &
Alistarh, 2022) performs pruning in gradual steps with re-
optimization in between and OBC (Frantar et al., 2022b)
introduces a greedy solver which removes weights one-at-a-
time, fully reconstructing the remaining weights after each
iteration, via efficient closed-form equations.

mean a binary tensor of the same dimensions, with O at the indices
of the sparsified entries, and 1 at the other indices.

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

(o)™
reconstrry Y. Hessian H
«— P —

select & invert

Figure 3. Illustration of the row-Hessian challenge: rows are spar-
sified independently, pruned weights are in white.

Difficulty of Scaling to 100+ Billion Parameters. Prior
post-training techniques have all been designed to accurately
compress models up to a few hundred million parameters
with several minutes to a few hours of compute. However,
our goal here is to sparsify models up to 1000x larger.

Even AdaPrune, the method optimized for an ideal
speed/accuracy trade-off, takes a few hours to sparsify mod-
els with just 1.3 billion parameters (see also Section 4),
scaling linearly to several hundred hours (a few weeks) for
175B Transformers. More accurate approaches are at least
several times more expensive (Frantar & Alistarh, 2022)
than AdaPrune or even exhibit worse than linear scaling
(Frantar et al., 2022b). This suggests that scaling up ex-
isting accurate post-training techniques to extremely large
models is a challenging endeavor. Hence, we propose a new
layer-wise solver SparseGPT, based on careful approxi-
mations to closed form equations, which easily scales to
giant models, both in terms of runtime as well as accuracy.

3. The SparseGPT Algorithm

3.1. Fast Approximate Reconstruction

Motivation. As outlined in Section 2, for a fixed pruning
mask M, the optimal values of all weights in the mask can
be calculated exactly by solving the sparse reconstruction
problem corresponding to each matrix row w'! via:

WiMi = (XMiXI—(/I;)ilxMi (WMiXMi)T’ 2

where Xy, denotes only the subset of input features whose
corresponding weights have not been pruned in row ¢, and
wM, represents their respective weights. However, this
requires inverting the Hessian matrix Hyg, = XMiX;\r/Ii
corresponding to the values preserved by the pruning mask
M; for row i, i.e. computing (Hyg,) ™!, separately for all
rows 1 < i < dyoy. One such inversion takes O(d2) time,
for a total computational complexity of O(dyoy - d,,) over
drow Tows. For a Transformer model, this means that the
overall runtime scales with the 4th power of the hidden
dimension dhjgqen; We need a speedup by at least a full factor

of dhigden to arrive at a practical algorithm.

Different Row-Hessian Challenge. The high computa-

tional complexity of optimally reconstrucing the unpruned
weights following Equation 2 mainly stems from the fact
that solving each row requires the individual inversion of a
O(deor X deop) matrix. This is because the row masks M;
are generally different and (Hyg,) ™! # (H™ 1)y, ice., the
inverse of a masked Hessian does not equal the masked ver-
sion of the full inverse. This is illustrated also in Figure 3.
If all row-masks were the same, then we would only need
to compute a single shared inverse, as H = XX T depends
just on the layer inputs which are the same for all rows.

Such a constraint could be enforced in the mask selection,
but this would have a major impact on the final model ac-
curacy, as sparsifying weights in big structures, like entire
columns, is known to be much more difficult than pruning
them individually?. The key towards designing an approxi-
mation algorithm that is both accurate and efficient lies in
enabling the reuse of Hessians between rows with distinct
pruning masks. We now propose an algorithm that achieves
this in a principled manner.

Equivalent Iterative Perspective. To motivate our algo-
rithm, we first have to look at the row-wise weight recon-
struction from a different iferative perspective, using the
classic OBS update (Hassibi et al., 1993; Singh & Alis-
tarh, 2020; Frantar et al., 2021). Assuming a quadratic
approximation of the loss, for which the current weights
w are optimal, the OBS update §,,, provides the optimal
adjustment of the remaining weights to compensate for the
removal of the weight at index m, incurring error €,,:

wQ

W —1 m
e, e = ey, 9
Since the loss function corresponding to the layer-wise prun-
ing of one row of W is a quadratic, the OBS formula is exact
in this case. Hence, w9, is the optimal weight reconstruc-
tion corresponding to mask {m}“. Further, given an opti-
mal sparse reconstruction w™) corresponding to mask M,
we can apply OBS again to find the optimal reconstruction
for mask M’ = M — {m}. Consequently, this means that
instead of solving for a full mask M = {my,...,m,}¢ di-
rectly, we could iteratively apply OBS to individually prune
the weights m up until m,, in order, one-at-a-time, reducing
an initially complete mask to M, and will ultimately arrive
at the same optimal solution as applying the closed-form
regression reconstruction with the full M directly.

Sm = —

Optimal Partial Updates. Applying the OBS update 9,,
potentially adjusts the values of all available parameters (in
the current mask M) in order to compensate for the removal
of w,,. However, what if we only update the weights in a
subset U C M among remaining unpruned weights? Thus,

2For example, structured (column-wise) pruning ResNet50 to
> 50% structured sparsity without accuracy loss is challenging,
even with extensive retraining (Liu et al., 2021), while unstructured
pruning to 90% sparsity is easily achievable with state-of-the-art
methods (Evci et al., 2020; Peste et al., 2021).

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

w p% sparse
update < —
Fl
g)) 1<
mask M H § o
a é‘ &) °
<. = <
PR 8
N = (Hy,)™
(Hy)' ——> (Hp,)™" — (Hy)! ——> (Hy)" (Hy,)™
elimination

Figure 4. [Left] Visualization of the SparseGPT reconstruction algorithm. Given a fixed pruning mask M, we incrementally prune
weights in each column of the weight matrix W, using a sequence of Hessian inverses (Hy;)~', and updating the remainder of the
weights in those rows, located to the “right” of the column being processed. Specifically, the weights to the “right” of a pruned weight
(dark blue) will be updated to compensate for the pruning error, whereas the unpruned weights do not generate updates (light blue).
[Right] [lustration of the adaptive mask selection via iterative blocking.

we could still benefit from error compensation, using only
weights in U, while reducing the cost of applying OBS.

Such a partial update can indeed be accomplished by simply
computing the OBS update using Hy, the Hessian corre-
sponding to U, rather than Hy;, and updating only wyj.
Importantly, the loss of our particular layer-wise problem
remains quadratic also for U and the OBS updates are still
optimal: the restriction to U does not incur any extra approx-
imation error by itself, only the error compensation might
not be as effective, as less weights are available for adjust-
ment. At the same time, if |U| < |M|, then inverting Hy
will be a lot faster than inverting Hys. We will now utilize
this mechanism to accomplish our goal of synchronizing the
masked Hessians across all rows of W.

Hessian Synchronization. In the following, assume a fixed
ordering of the input features j = 1, ..., d. Since those
are typically arranged randomly, we will just preserve the
given order for simplicity, but any permutation could in
principle be chosen. Next, we define a sequence of d
index subsets U recursively as:

Uj+1 = Uj — {]} with U; = {1, .. -7dcol}- “4)

In words, starting with U; being the set of all indices, each
subset U, 41 is created by removing the smallest index from
the previous subset U;. These subsets also impose a se-
quence of inverse Hessians (Hy,)™' = (XX T)y,)™!
which we are going to share across all rows of W. Cru-
cially, following (Frantar et al., 2022b), the updated inverse
(Hy,,,)~" can be calculated efficiently by removing the
first row and column, corresponding to j in the original
H, from B = (Hy,)"! in O(dZ)) time via one step of
Gaussian elimination:

1
-B. 1B, .
(B]11 ot 1")2:,2:7)

(HUJ'+1>_1 = (B -
with (Hy,)~! = H™L. Hence, the entire sequence of d

inverse Hessians can be calculated recursively in O(d3)

time, i.e. at similar cost to a single extra matrix inversion
on top of the initial one for H~!.

Once some weight wy, has been pruned, it should not be
updated anymore. Further, when we prune wy,, we want to
update as many unpruned weights as possible for maximum
error compensation. This leads to the following strategy:
iterate through the U; and their corresponding inverse Hes-
sians (Hy,) ™! in order and prune w; if j ¢ M;, for all rows
i. Importantly, each inverse Hessian (Hy,)~ is computed
only once and reused to remove weight j in all rows where it
is part of the pruning mask. A visualization of the algorithm
can be found in Figure 4.

Computational Complexity. The overall cost consists of
three parts: (a) the computation of the initial Hessian, which
takes time O(n - d%;) where n is the number of input sam-
ples used—we found that taking the number of samples
n to be a small multiple of d., is sufficient for good and
stable results, even on very large models (see Appendix A);
(b) iterating through the inverse Hessian sequence in time
O(d3,) and (c) the reconstruction/pruning itself. The latter
cost can be upper bounded by the time it takes to apply (3)
to all d;ow rows of W for all d., columns in turn, which is
O(dcordrowdcot)- In total, this sums up to O(d2,; + drowd>,)-
For Transformer models, this is simply O(dg. 4.,), and is
thus a full dp;qqen-factor more efficient than exact recon-
struction. This means that we have reached our initial goal,
as this complexity will be sufficient to make our scheme
practical, even for extremely large models.

Weight Freezing Interpretation. While we have motivated
the SparseGPT algorithm as an approximation to the ex-
act reconstruction using optimal partial updates, there is
also another interesting view of this scheme. Specifically,
consider an exact greedy framework which compresses a
weight matrix column by column, always optimally updat-
ing all not yet compressed weights in each step (Frantar
et al., 2022b;a). At first glance, SparseGPT does not seem
to fit into this framework as we only compress some of the

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

weights in each column and also only update a subset of
the uncompressed weights. Yet, mechanically, “compress-
ing” a weight ultimately means fixing it to some specific
value and ensuring that it is never “decompressed” again via
some future update, i.e. that it is frozen. Hence, by defining
column-wise compression as:

compress(wj)i =0if j € M; and wf otherwise, (6)

i.e. zeroing weights not in the mask and fixing the rest to
their current value, our algorithm can be interpreted as an
exact column-wise greedy scheme. This perspective will
allow us to cleanly merge sparsification and quantization
into a single compression pass.

3.2. Adaptive Mask Selection

So far, we have focused only on weight reconstruction, i.e.
assuming a fixed pruning mask M. One simple option
for deciding the mask, following AdaPrune (Hubara et al.,
2021a), would be via magnitude pruning (Zhu & Gupta,
2017). However, recent work (Frantar et al., 2022b) shows
that updates during pruning change weights significantly
due to correlations, and that taking this into account in the
mask selection yields better results. This insight can be
integrated into SparseGPT by adaptively choosing the
mask while running the reconstruction.

One obvious way of doing so would be picking the p% easi-
est weights to prune in each column ¢ when it is compressed,
leading to p% overall sparsity. The big disadvantage of this
approach is that sparsity cannot be distributed non-uniformly
across columns, imposing additional unnecessary structure.
This is particularly problematic for massive language mod-
els, which have a small number of highly-sensitive outlier
features (Dettmers et al., 2022; Xiao et al., 2022).

We remove this disadvantage via iterative blocking. More
precisely, we always select the pruning mask for B, = 128
columns at a time (see Appendix A), based on the OBS
reconstruction error £ from Equation (3), using the diagonal
values in our Hessian sequence. We then perform the next
B weight updates, before selecting the mask for the next
block, and so on. This procedure allows non-uniform selec-
tion per column, in particular also using the corresponding
Hessian information, while at the same time considering
also previous weight updates for selection. (For a single
column j, the selection criterion becomes the magnitude, as
[H™1],; is constant across rows.)

3.3. Extension to Semi-Structured Sparsity

SparseGPT is also easily adapted to semi-structured pat-
terns such as the popular n:m sparsity format (Zhou et al.,
2021; Hubara et al., 2021a) which delivers speedups in its
2:4 implementation on Ampere NVIDIA GPUs. Specifi-
cally, every consecutive m weights should contain exactly
n zeros. Hence, we can simply choose blocksize B, = m

and then enforce the zeros-constraint in the mask selection
for each row by picking the n weights which incur the low-
est error as per Equation (3). A similar strategy could also
be applied for other semi-structured pruning patterns. Fi-
nally, we note that a larger B, would not be useful in this
semi-structured scenario since zeros cannot be distributed
non-uniformly between different column-sets of size m.

3.4. Full Algorithm Pseudocode

Algorithm 1 The SparseGPT algorithm. We prune the
layer matrix W to p% unstructured sparsity given inverse
Hessian H™! = (XX T + AI)~!, lazy batch-update block-
size B and adaptive mask selection blocksize B;; each By
consecutive columns will be p% sparse.

M — 14, xd,y 7/ binary pruning mask
E < 04, xB // block quantization errors
H~' < Cholesky(H™")" // Hessian inverse information
fori=0,B,2B,... do
forj=4,...,1+ B —1do
if j mod Bs = 0 then
M. ;.j+B.,) « mask of (1 — p)% weights w. €
W.j.(j+B.) With largest w2 /[H™']2,
end if
E. i+ W.,;/[H];; /pruning error
E. i« (1—-—M.;) -E.;_; //freeze weights
W:,j:(iJrB) A W:,j:(i+B)*E:,j—i'H;;:(HB) // update

end for
-1
W. (i+B): < Wi iy — E- Hi:(iJrB),(iJrB): // update
end for

W < W .M //set pruned weights to 0

With the weight freezing interpretation discussed at the end
of Section 3.1, the SparseGPT reconstruction can be cast
in the column-wise greedy framework of the recent quanti-
zation algorithm GPTQ (Frantar et al., 2022a). This means
we can also inherit several algorithmic enhancements from
GPTQ, specifically: precomputing all the relevant inverse
Hessian sequence information via a Cholesky decompo-
sition to achieve numerical robustness and applying lazy
batched weight matrix updates to improve the compute-to-
memory ratio of the algorithm. Our adaptive mask selection,
as well as its extensions to semi-structured pruning, are
compatible with all of those extra techniques as well.

Algorithm 1 presents the the unstructured sparsity version
of the SparseGPT algorithm in its fully-developed form,
integrating all the relevant techniques from GPTQ.

3.5. Joint Sparsification & Quantization

Algorithm 1 operates in the column-wise greedy framework
of GPTQ, thus sharing the computationally heavy steps of
computing the Cholesky decomposition of H=! and con-
tinuously updating W. This makes it possible to merge
both algorithms into a single joint procedure. Specifically,
all weights that are frozen by SparseGPT are additionally

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

Table 1. OPT perplexity results on raw-WikiText2.

arsi ‘ . 3
TOPT-50% | 125M | 350M | 13B | | OPT | Sparsity | 2.7B | 6.7B | 13B | 30B | 66B | 175B |
| Dense | 0% | 1247 | 1086 | 10.13 | 9.56 | 9.34 | 835 |
| Dense | 27.66 | 22.00 | 14.62 |
: Magnitude 50% | 265. | 969. | 1.2e4 | 168. | 4.2¢3 | 4.3¢4
Magnitude 193. 1 97.80 | 1.7e4 SparseGPT | 50% | 13.48 | 11.55 | 11.17 | 9.79 | 9.32 | 8.21
AdaPrune 58.66 | 48.46 | 32.52 s GPT | 438 | 1498 | 12.56 | 11.77 | 10.30 | 9.65 | 8.45
parse : . . . § . .

SparseGPT | 3685 | 31.58 | 17.46 ‘ SparseGPT ‘ 2:4 ‘ 17.18 ‘ 14.20 ‘ 12.96 ‘ 10.90 ‘ 10.09 ‘ 8.74 ‘

quantized, leading to the following generalized errors to be
compensated in the subsequent update step:

E.j i+ (W.; —M.;-quant(W. ;) /[H '];;, (7)

where quant(w) rounds each weight in w to the nearest
value on the quantization grid. Crucially, in this scheme,
sparsification and pruning are performed jointly in a single
pass at essentially no extra cost over SparseGPT. More-
over, doing quantization and pruning jointly means that
later pruning decisions are influenced by earlier quantiza-
tion rounding, and vice-versa. This is in contrast to prior
joint techniques (Frantar et al., 2022b), which first sparsify
a layer and then simply quantize the remaining weights.

4. Experiments

Setup. We implement SparseGPT in PyTorch (Paszke
et al., 2019) and use the HuggingFace Transformers li-
brary (Wolf et al., 2019) for handling models and datasets.
All pruning experiments are conducted on a single NVIDIA
A100 GPU with 80GB of memory. In this setup,
SparseGPT can fully sparsify the 175-billion-parameter
models in approximately 4 hours. Similar to Yao et al.
(2022); Frantar et al. (2022a), we sparsify Transformer lay-
ers sequentially in order, which significantly reduces mem-
ory requirements. All our experiments are performed in one-
shot, without finetuning, in a similar setup to recent work
on post-training quantization of GPT-scale models (Fran-
tar et al., 2022a; Yao et al., 2022; Dettmers et al., 2022).
Additionally, in Appendix E we investigate the real-world
acceleration of our sparse models with existing tools.

For calibration data, we follow Frantar et al. (2022a) and use
128 2048-token segments, randomly chosen from the first
shard of the C4 (Raffel et al., 2020) dataset. This represents
generic text data crawled from the internet and makes sure
that our experiments remain actually zero-shot since no
task-specific data is seen during pruning.

Models, Datasets & Evaluation. We primarily work with
the OPT model family (Zhang et al., 2022), to study scaling
behavior, but also consider the 176 billion parameter version
of BLOOM (Scao et al., 2022). While our focus lies on the
very largest variants, we also show some results on smaller
models to provide a broader picture.

In terms of metrics, we mainly focus on perplexity, which

is known to be a challenging and stable metric that is well
suited for evaluating the accuracy of compression methods
(Yao et al., 2022; Frantar et al., 2022b; Dettmers & Zettle-
moyer, 2022). We consider the test sets of raw-WikiText2
(Merity et al., 2016) and PTB (Marcus et al., 1994) as well
as a subset of the C4 validation data, all popular benchmarks
in LLM compression literature (Yao et al., 2022; Park et al.,
2022a; Frantar et al., 2022a; Xiao et al., 2022). For addi-
tional interpretability, we also provide ZeroShot accuracy
results for Lambada (Paperno et al., 2016), ARC (Easy and
Challenge) (Boratko et al., 2018), PIQA (Tata & Patel, 2003)
and StoryCloze (Mostafazadeh et al., 2017).

We note that the main focus of our evaluation lies on the
accuracy of the sparse models, relative to the dense baseline
rather than on absolute numbers. Different preprocessing
may influence absolute accuracy, but has little impact on our
relative claims. The perplexity is calculated following pre-
cisely the procedure described by HuggingFace (Hugging-
Face, 2022), using full stride. Our ZeroShot evaluations are
performed with GPTQ’s (Frantar et al., 2022a) implementa-
tion, which is in turn based on the popular EleutherAl-eval-
harness (EleutherAl, 2022). Additional evaluation details
can be found in Appendix B. All dense and sparse results
were computed with exactly the same code, available as
supplementary material, to ensure a fair comparison.

Baselines. We compare against the standard magnitude
pruning baseline (Zhu & Gupta, 2017), applied layer-wise,
which scales to the very largest models. On models up to
1B parameters, we compare also against AdaPrune (Hubara
et al., 2021a), the most efficient among existing accurate
post-training pruning methods. For this, we use the memory-
optimized reimplementation of Frantar & Alistarh (2022)
and further tune the hyper-parameters provided by the
AdaPrune authors. We thus achieve a ~ 3 x speedup with-
out impact on solution quality, for our models of interest.

4.1. Results

Pruning vs. Model Size. We first study how the difficulty
of pruning LLMs changes with their size. We consider the
entire OPT model family and uniformly prune all linear
layers, excluding the embeddings and the head, as standard
(Sanh et al., 2020; Kurtic et al., 2022), to 50% unstructured
sparsity, full 4:8 or full 2:4 semi-structured sparsity (the
2:4 pattern is the most stringent). The raw-WikiText2 per-

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

formance numbers are given in Table 1 and visualized in
Figure 2. The corresponding results for PTB and C4 can be
found in Appendix C and show very similar trends overall.

One immediate finding is that the accuracy of magnitude-
pruned models collapses across all scales, with larger vari-
ants generally dropping faster than smaller ones. This is in
stark contrast to smaller vision models which can usually
be pruned via simple magnitude selection to 50% sparsity
or more at very little loss of accuracy (Singh & Alistarh,
2020; Frantar et al., 2022b). It highlights the importance of
accurate pruners for massive generative language models,
but also the fact that perplexity is a very sensitive metric.

For SparseGPT, the trend is very different: already at
2.7B parameters, the perplexity loss is ~ 1 point, at 66B,
there is essentially zero loss and at the very largest scale
there is even a slight accuracy improvement over the dense
baseline, which however seems to be dataset specific (see
also Appendix C). AdaPrune, as expected, also yields a big
improvement over magnitude pruning, but is significantly
less accurate than SparseGPT. Despite the efficiency of
AdaPrune, running it takes approximately ~ 1.3h on a
350M model and =~ 4.3h on a 1.3B one, while SparseGPT
can fully sparsify 66B and 175B models in roughly the same
time, executing on the same A100 GPU.

In general, there is a clear trend of larger models being easier
to sparsify, which we speculate is due to overparametriza-
tion. A detailed investigation of this phenomenon would
be a good direction for future work. For 4:8 and 2:4 spar-
sity, the behavior is similar, but accuracy drops are typically
higher due to the sparsity patterns being more constrained
(Hubara et al., 2021a). Nevertheless, at the largest scale, the
perplexity increases are only of 0.11 and 0.39 for 4:8 and
2:4 sparsity, respectively.

Sparsity Scaling for 100+ Billion Parameter Models.
Next, we take a closer look at the largest publicly-available
dense models, OPT-175B and BLOOM-176B, and investi-
gate how their performance scales with the degree of sparsity
induced by either SparseGPT or magnitude pruning. The
results are visualized in Figures 1 and 5.

For the OPT-175B model (Figure 1) magnitude pruning
can achieve at most 10% sparsity before significant accu-
racy loss occurs; meanwhile, SparseGPT enables up to
60% sparsity at a comparable perplexity increase. BLOOM-
176B (Figure 5) appears to be more favorable for mag-
nitude pruning, admitting up 30% sparsity without major
loss; still, SparseGPT can deliver 50% sparsity, a 1.66 x
improvement, at a similar level of perplexity degradation.
Even at 80% sparsity, models compressed by SparseGPT
still score reasonable perplexities, while magnitude pruning
leads to a complete collapse (>100 perplexity) already at
40/60% sparsity for OPT and BLOOM, respectively. Re-
markably, SparseGPT removes around /00 billion weights

from these models, with low impact on accuracy.

ZeroShot Experiments. To complement the perplexity
evaluations, we provide results on several ZeroShot tasks.
These evaluations are known to be relatively noisy (Dettmers
et al., 2022), but more interpretable. Please see Table 2.

Overall, a similar trend holds, with magnitude-pruned
models collapsing to close to random performance, while
SparseGPT models stay close to the original accuracy.
However, as expected, these numbers are more noisy: 2:4
pruning appears to achieve noticeably higher accuracy than
the dense model on Lambada, despite being the most con-
strained sparsity pattern. These effects ultimately average
out when considering many different tasks, which is consis-
tent to the literature (Yao et al., 2022; Dettmers et al., 2022;
Dettmers & Zettlemoyer, 2022).

Joint Sparsification & Quantization. Another interest-
ing research direction is the combination of sparsity and
quantization, which would allow combining computational
speedups from sparsity (Kurtz et al., 2020; Elsen et al.,
2020) with memory savings from quantization (Frantar
et al., 2022a; Dettmers et al., 2022; Dettmers & Zettle-
moyer, 2022). Specifically, if we compress a model to 50%
sparse + 4-bit weights, store only the non-zero weights and
use a bitmask to indicate their positions, then this has the
same overall memory consumption as 3-bit quantization.
Hence, in Figure 6 (right) we compare SparseGPT 50%
+ 4-bit with state-of-the-art GPTQ (Frantar et al., 2022a)
3-bit numbers. It can be seen that 50% + 4-bit models are
more accurate than their respective 3-bit versions for 2.7B+
parameter models, including 175B with 8.29 vs. 8.68 3-bit.
We also tested 2:4 and 4:8 in combination with 4-bit on OPT-
175B yielding 8.55 and 8.85 perplexities, suggesting that
4bit weight quantization only brings an ~ 0.1 perplexity
increase on top semi-structured sparsity.

Sensitivity & Partial N:M Sparsity. One important practi-
cal question concerning n:m pruning is what to do when the
fully sparsified model is not accurate enough? The overall
sparsity level cannot simply be lowered uniformly, instead
one must choose a subset of layers to n:m-sparsify com-
pletely. We now investigate what a good selection is in the
context of extremely large language models: we assume that
2/3 of the layers of OPT-175B/BLOOM-176B should be
pruned to 2:4 sparsity and consider skipping either all layers
of one type (attention, fully-connected-1, fully-connected-2)
or skipping one third of consecutive layers (front, middle,
back). The results are shown in Figure 7.

While the sensitivity of layer-types differs noticeably be-
tween models, there appears to be a clear trend when it
comes to model parts: later layers are more sensitive than
earlier ones; skipping the last third of the model gives the
best accuracy. This has a very practical consequence in
that, due to the sequential nature of SparseGPT, we can
generate a sequence of increasingly 2:4 sparsified models

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

~ o Magnitude s Table 2. ZeroShot results on several datasets for sparsified variants of OPT-175B.
5 225 ® SparseOPT
g200) Dense / | Method | Spars. | Lamb. | PIQA | ARC-e | ARC-c | Story. | Avg. |
gy | Dense | 0% | 7559 | 81.07 | 71.04 | 43.94 | 79.82 | 70.29 |
6 15.0
%12.5 \ Magnitude \ 50% \ 00.02 \ 54.73 \ 28.03 \ 25.60 \ 47.10 \ 31.10 \
§100 SparseGPT | 50% | 78.47 | 80.63 | 70.45 | 43.94 | 79.12 | 70.52

7.5 '(')0 o1 0‘;";’;"’;’;" SparseGPT 4:8 80.30 | 79.54 | 68.85 41.30 | 78.10 | 69.62

T T sparsity SparseGPT 2:4 80.92 | 79.54 | 68.77 39.25 | 77.08 | 69.11

Figure 5. Uniform pruning BLOOM-176B.

e 3bit GPTQ
50% + 4bit
® Dense

16

14+

12+

101

Perplexity on raw-WikiText2

10t
#Params in Billions

Figure 6. Comparing joint 50% sparsity + 4-bit quantization with
size-equivalent 3-bit on the OPT family for > 2.7B params.

Skip Layer Type Skip 1/3 of Layers

== Skip front 1/3

= Skip middle 1/3
== Skip back 1/3

10.0

10.0
m Skip Att
= Skip FC1
951 mmm Sskip FC2 9.5

Perplexity on raw-WikiText2
Perplexity on raw-WikiText2

OPT-175B

BLOOM-176B

OPT-175B

BLOOM-176B

Figure 7. Sensitivity results for partial 2:4 pruning.

(e.g. 1/2,2/3,3/4, ...) in a single pruning pass by com-
bining the first = layers from a SparseGPT run with the
last Mayers — @ Of the original model. The accuracy of such
model sequences are shown in Appendix D.

5. Related Work

Pruning Methods. To our knowledge, we are the first
to investigate pruning of massive GPT-scale models, e.g.
with more than 10 billion parameters. One justification for
this surprising gap is the fact that most existing pruning
methods, e.g. (Han et al., 2016; Gale et al., 2019; Kurtic &
Alistarh, 2022), require extensive retraining following the
pruning step in order to recover accuracy, while GPT-scale
models usually require massive amounts of computation and
parameter tuning both for training or finetuning (Zhang et al.,
2022). SparseGPT is a post-training method for GPT-
scale models, as it does not perform any finetuning. So far,

post-training pruning methods have only been investigated
at the scale of classic CNN or BERT-type models (Hubara
etal., 2021a; Frantar et al., 2022b; Kwon et al., 2022), which
have 100-1000x fewer weights than our models of interest.
We discussed the challenges of scaling these methods, and
their relationship to SparseGPT, in Section 2.

Post-Training Quantization. By contrast, there has been
significant work on post-training methods for quantizing
open GPT-scale models (Zhang et al., 2022; Scao et al.,
2022). Specifically, the ZeroQuant (Yao et al., 2022),
LLM.int8() (Dettmers et al., 2022) and nuQmm (Park et al.,
2022a) methods investigated the feasibility of round-to-
nearest quantization for billion-parameter models, showing
that 8-bit quantization for weights is feasible via this ap-
proach, but that activation quantization can be difficult due
to the existence of outlier features. Frantar et al. (2022a)
leverage approximate second-order information for accu-
rate quantization of weights down to 2—4 bits, for the very
largest models, and show generative batch-size 1 inference
speedups of 2-5x when coupled with efficient GPU ker-
nels. Follow-up work (Xiao et al., 2022) investigated joint
activation and weight quantization to 8 bits, proposing a
smoothing-based scheme which reduces the difficulty of ac-
tivation quantization and is complemented by efficient GPU
kernels. Park et al. (2022b) tackle the hardness of quan-
tizing activation outliers via quadapters, learnable parame-
ters whose goal is to scale activations channel-wise, while
keeping the other model parameters unchanged. Dettmers
& Zettlemoyer (2022) investigate scaling relationships be-
tween model size, quantization bits, and different notions
of accuracy for massive LLMs, observing high correlations
between perplexity scores and aggregated zero-shot accu-
racy across tasks. As we have shown in Section 3.5, the
SparseGPT algorithm can be applied in conjunction with
GPTQ, the current state-of-the-art algorithm for weight
quantization, and should be compatible with activation quan-
tization approaches (Xiao et al., 2022; Park et al., 2022b).

6. Discussion

We have provided a new post-training pruning method
called SparseGPT, specifically tailored to massive lan-
guage models from the GPT family. Our results show for the

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

first time that large-scale generative pretrained Transformer-
family models can be compressed to high sparsity via weight
pruning in one-shot, without any retraining, at low loss of
accuracy, when measured both in terms of perplexity and
zero-shot performance. Specifically, we have shown that
the largest open-source GPT-family models (e.g. OPT-175B
and BLOOM-176B) can reach 50-60% sparsity, dropping
more than 100B weights, with low accuracy fluctuations.

In terms of limitations, we focus primarily on uniform per-
layer sparsity but non-uniform distributions are a promising
topic for future work. Further, SparseGPT is currently not
quite as accurate on smaller and medium sized variants as
on the very largest ones. We think this may be addressable
through careful partial or full finetuning, which is starting
to become feasible at the scale of such models up to a few
billion parameters. Finally, while we study the sparsification
of pretrained foundation models in this work, we think in-
vestigating how additional post-pretraining techniques like
instruction tuning or reinforcement learning with human
feedback interact with compressibility will also be an im-
portant future research area.

Overall, our work shows that the high degree of parametriza-
tion of massive GPT models allows pruning to directly iden-
tify sparse accurate models in the “close neighborhood” of
the dense model, without gradient information. Remark-
ably, the output of such sparse models correlates extremely
closely with that of the dense model. We also show that
larger models are easier to sparsify: at a fixed sparsity level,
the relative accuracy drop for the larger sparse models nar-
rows as we increase model size, to the point where inducing
50% sparsity results in practically no accuracy decrease on
the largest models, which should be seen as very encourag-
ing for future work on compressing such massive models.

7. Acknowledgements

The authors gratefully acknowledge funding from the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 programme (grant agreement No. 805223
ScaleML), as well as experimental support from Eldar Kur-
tic, and from the IST Austria IT department, in particular
Stefano Elefante, Andrei Hornoiu, and Alois Schloegl.

References

Blumensath, T. and Davies, M. E. Iterative thresholding for
sparse approximations. Journal of Fourier Analysis and
Applications, 14(5-6):629-654, 2008.

Boratko, M., Padigela, H., Mikkilineni, D., Yuvraj, P., Das,
R., McCallum, A., Chang, M., Fokoue-Nkoutche, A., Ka-
panipathi, P., Mattei, N., et al. A systematic classification
of knowledge, reasoning, and context within the ARC
dataset. arXiv preprint arXiv:1806.00358, 2018.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. arXiv preprint
arXiv:2212.09720, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
LLM.int8(): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

EleutherAl. EleutherAI LM Evaluation Harness,
2022. URL https://github.com/EleutherAI/
lm-evaluation—harness.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning (ICML),
2020.

Frantar, E. and Alistarh, D. SPDY: Accurate pruning with
speedup guarantees. arXiv preprint arXiv:2201.13096,
2022.

Frantar, E., Kurtic, E., and Alistarh, D. M-FAC: Efficient
matrix-free approximations of second-order information.
In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate post-training compression for
generative pretrained transformers. arXiv preprint
arXiv:2210.17323, 2022a.

Frantar, E., Singh, S. P., and Alistarh, D. Optimal
Brain Compression: A framework for accurate post-
training quantization and pruning. arXiv preprint
arXiv:2208.11580, 2022b. Accepted to NeurIPS 2022, to
appear.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. In International Conference on
Machine Learning (ICML), 2019.

Hagiwara, M. A simple and effective method for removal
of hidden units and weights. Neurocomputing, 6(2):207 —
218, 1994. ISSN 0925-2312. Backpropagation, Part I'V.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks. In
Conference on Neural Information Processing Systems
(NeurlPS), 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. In International Con-
ference on Learning Representations (ICLR), 2016.

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain sur-
geon and general network pruning. In IEEE International
Conference on Neural Networks, 1993.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S.
AMC: AutoML for model compression and acceleration
on mobile devices. In European Conference on Computer
Vision (ECCV), 2018.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

Hubara, 1., Chmiel, B., Island, M., Banner, R., Naor, S.,
and Soudry, D. Accelerated sparse neural training: A
provable and efficient method to find N:M transposable

masks. In Conference on Neural Information Processing
Systems (NeurIPS), 2021a.

Hubara, 1., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small cal-
ibration sets. In International Conference on Machine
Learning (ICML), 2021b.

HuggingFace. HuggingFace Perplexity Calculation,
2022. URL https://huggingface.co/docs/
transformers/perplexity.

Kingdon, J. Hypothesising Neural Nets, pp. 81-106.
Springer London, London, 1997. ISBN 978-1-4471-0949-
5. doi: 10.1007/978-1-4471-0949-55.

Kaurtic, E. and Alistarh, D. Gmp*: Well-tuned global magni-
tude pruning can outperform most bert-pruning methods.
arXiv preprint arXiv:2210.06384, 2022.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz,
M., Fineran, B., Goin, M., and Alistarh, D. The Op-
timal BERT Surgeon: Scalable and accurate second-
order pruning for large language models. arXiv preprint
arXiv:2203.07259, 2022.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit,
N., and Alistarh, D. Inducing and exploiting activation
sparsity for fast inference on deep neural networks. In

International Conference on Machine Learning (ICML),
2020.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-

work for transformers. arXiv preprint arXiv:2204.09656,
2022.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Conference on Neural Information Processing
Systems (NeurIPS), 1989.

10

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P, Zhang, Q., Yu,
F., Wang, W., and Gu, S. BRECQ: Pushing the limit of
post-training quantization by block reconstruction. In

International Conference on Learning Representations
(ICLR), 2021.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H., Wang,
X., Chen, Y., Yang, W., Liao, Q., and Zhang, W. Group
fisher pruning for practical network compression. In

International Conference on Machine Learning (ICML),
2021.

Marcus, M., Kim, G., Marcinkiewicz, M. A., Maclntyre,
R., Bies, A., Ferguson, M., Katz, K., and Schasberger,
B. The penn treebank: Annotating predicate argument
structure. In Human Language Technology: Proceedings
of a Workshop held at Plainsboro, New Jersey, March
8-11, 1994, 1994.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic,
D., Venkatesh, G., Yu, C., and Micikevicius, P. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Mostafazadeh, N., Roth, M., Louis, A., Chambers, N., and
Allen, J. Lsdsem 2017 shared task: The story cloze test.
In Proceedings of the 2nd Workshop on Linking Models

of Lexical, Sentential and Discourse-level Semantics, pp.
46-51, 2017.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and
Blankevoort, T. Up or down? Adaptive rounding for
post-training quantization. In International Conference
on Machine Learning (ICML), 2020.

NeuralMagic. DeepSparse, 2022. URL https://
github.com/neuralmagic/deepsparse.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernandez, R. The LAMBADA dataset: Word predic-
tion requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Park, G., Park, B., Kwon, S. J., Kim, B., Lee, Y., and Lee,
D. nuQmm: Quantized matmul for efficient inference of
large-scale generative language models. arXiv preprint
arXiv:2206.09557, 2022a.

Park, M., You, J., Nagel, M., and Chang, S. Quadapter:
Adapter for gpt-2 quantization. arXiv preprint
arXiv:2211.16912, 2022b.

https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Conference on Neural Informa-
tion Processing Systems (NeurlPS), 2019.

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. AC/DC:
Alternating compressed/decompressed training of deep
neural networks. In Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21
(140):1-67, 2020.

Sanh, V., Wolf, T., and Rush, A. M. Movement prun-
ing: Adaptive sparsity by fine-tuning. arXiv preprint
arXiv:2005.07683, 2020.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ili¢, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F.,, Gallé, M.,
et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022.

Singh, S. P. and Alistarh, D. WoodFisher: Efficient second-
order approximation for neural network compression. In
Conference on Neural Information Processing Systems
(NeurlPS), 2020.

Tata, S. and Patel, J. M. PiQA: An algebra for querying pro-
tein data sets. In International Conference on Scientific
and Statistical Database Management, 2003.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X, Li, C., and
He, Y. ZeroQuant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V,, et al.
OPT: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhou, A.,Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun,
W., and Li, H. Learning N:M fine-grained structured
sparse neural networks from scratch. In International
Conference on Learning Representations (ICLR), 2021.

11

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

A. Ablation Studies

In this section, we conduct ablations studies with respect to several of the main parameters of SparseGPT. For a fast
iteration time and making it possible to also explore more compute and memory intensive settings, we focus on the OPT-2.7B
model here. Unless stated otherwise, we always prune uniformly to the default 50% sparsity. For brevity we only show
raw-WikiText2 results here, but would like to note that the behavior on other datasets is very similar.

20 20 20
19 S 19 < 194
£ g £
=z 18 z 18 = 181
2 2 2
217 $17 217
g g g
c 16 c 16 c 164
o (=} o
215 215 215
F H S
[[[
S 14 o114 8141 _j
2 & 2 ——

13 13 13

2 4 8 16 32 64 128 256 0.001 0.010 0.100 1.000 1 4 16 64 256 1024 4096
#calibration samples Hessian dampening Mask selection blocksize
Figure 8. Calibration samples ablation. Figure 9. Hessian dampening ablation. Figure 10. Mask select. blocksize ablation.

Amount of Calibration Data. First, we investigate how the accuracy of SparseGPT scales with the number calibration
data samples, which we vary in powers of two. The results are shown in Figure 8. Curiously, SparseGPT is already
able to achieve decent results even with just a few 2048-token segments; using more samples however yields significant
further improvements, but only up to a certain point as the curve flattens quite quickly. Thus, since using more samples also
increases compute and memory costs, we stick to 128 samples in all our experiments.

Hessian Dampening. Next, we study the impact of Hessian dampening by testing values varying as powers of ten (see
Figure 9) which are multiplied by the average diagonal value, following (Frantar et al., 2022a). Overall, this parameter
does not seem to be too sensitive, 0.001 to 0.1 appear to perform quite similar; only when the dampening is very high, the
solution quality decreases significantly. We choose 1% (i.e. 0.01) dampening to be on the safe side with respect to inverse
calculations also for the very largest models.

Mask Selection Blocksize. Another important component of our method is the adaptive mask selection as shown in
Figure 10 where we vary the corresponding blocksize parameter with powers of two. Both column-wise (blocksize 1) as
well as near full blocksize (4096 and 8192) perform significantly worse than reasonable blocking. Interestingly, a wide range
of block-sizes appear to work well, with ones around a few hundred being very slightly more accurate. We thus choose
blocksize 128 which lies in that range while also slightly simplifying the algorithm implementation as it matches the default
lazy weight update batchsize.

Sensitivity to Random Seeds. Finally, we determine how sensitive the results of our algorithm are with respect to
randomness; specifically, relative to the random sampling of the calibration data. We repeat a standard 50% pruning run 5
times with different random seeds for data sampling and get 13.52 + 0.075 (mean/std) suggesting that SparseGPT is quite
robust to the precise calibration data being used, which is in line with the observations in other post-training works (Nagel
et al., 2020; Hubara et al., 2021b; Frantar et al., 2022b).

A.1. Approximation Quality

In this section we investigate how much is lost by the partial-update approximation employed by SparseGPT, relative to
(much more expensive) exact reconstruction. We again consider the OPT-2.7B model at 50% sparsity and plot the layer-wise
squared error of SparseGPT relative to the error of exact reconstruction (with the same mask and Hessian) for the first
half of the model in Figure 11. Apart from some outliers in form of the early attention out-projection layers, the final
reconstruction errors of SparseGPT seem to be on average only around 20% worse than exact reconstruction; on the later
fully-connected-2 layers, the approximation error even gets close to only 10%, presumably because these layers have a very
large number of total inputs and thus losses by considering only correlations within subsets are less severe than on smaller
layers. Overall, these results suggest that, despite its dramatic speedup, SparseGPT also remains quite accurate.

B. Evaluation Details

Perplexity. As mentioned in the main text, our perplexity calculation is carried out in standard fashion, following exactly
the description of (HuggingFace, 2022). Concretely, that means we concatenate all samples in the test/validation dataset,

12

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

2.0

18

LI Y
a

out
fcl

1: ‘/\/\A\A\‘/\/\‘/\/\J\«/\/*\/\/‘/\/*"\/“'\/"\/“’\/*‘*\/M

40 60 80
Layer index

i

N

SparseGPT relative to exact reconstruction

Figure 11. Error of SparseGPT reconstruction relative to exact reconstruction for the first half of OPT-2.7B at 50% sparsity.

encode the result with the model’s matching tokenizer and then split it into non-overlapping segments of 2048 tokens (the
maximum history of the models we study). Those are run through the model to calculate the corresponding average language
modelling loss. The exponentiated number is the perplexity we report.

Datasets. In terms of datasets, we use the raw version of the WikiText2 test-set and concatenate samples, as recommended
by the HuggingFace description referenced above, with “\n\n” to produce properly formatted markdown. For PTB, we use
the test-set of HuggingFace’s “ptb_text_only” version and concatenate samples directly, without separators, as PTB is not
supposed to contain any punctuation. Our C4 subset consists of the starting (the dataset comes in random order) 256 times
2048 encoded tokens in the first shard of the directly concatenated validation set; this choice is made to keep evaluation

costs manageable.

C. Additional Results

Pruning Difficulty Scaling on PTB & C4. Tables 3 and 4 present the equivalent results to Table 1 in the main text, but
on PTB and our C4 subset, respectively. Overall, they follow very similar trends to those discussed in Section 4.1. The
main notable difference is that no slight perplexity decrease relative to the dense baseline is observed at 50% sparsity for the
largest models, hence we have labelled this as a dataset specific phenomenon.

Table 3. OPT perplexity results on PTB.

| OPT | Sparsity | 27B | 6.7B | 13B | 30B | 66B | 175B |
| OPT-50% | 125M | 350M | 1.3B |

| Dense | 0% | 17.97 | 1577 | 1452 | 14.04 | 13.36 | 12.01 |
| Dense | 38.99 | 31.07 | 20.29 | _

- Magnitude 50% 262. | 613. | 1.8e4 | 221. | 4.0e3 | 2.3e3
Magnitude 276. | 126. | 3.1e3 | | grar5eGPT | 50% | 20.45 | 17.44 | 1597 | 14.98 | 14.15 | 12.37
AdaPrune 92.14 | 64.64 | 41.60
SparseGPT | 55.06 | 43.80 | 25.80 | | SparseGPT | 48 | 23.02 | 18.84 | 17.23 | 1568 | 1468 | 12.78

SparseGPT | 2:4 | 26.88 | 21.57 | 18.71 | 16.62 | 15.41 | 13.24
Table 4. OPT perplexity results on a C4 subset.
OPT	Sparsity	2.7B	6.7B	13B	30B	66B	175B
OPT-50%	125M	350M	1.3B				
Dense	0%	1432	1271	12.06	11.45	10.99	10.13
Dense	26.56	22.59	16.07	.			

. Magnitude 50% | 63.43 | 334. | 1.1e4 | 98.49 | 2.9¢3 | 1.7¢3
Magnitude 1411 77.04 | 403. | | sporsecpT | 50% | 1578 | 13.73 | 12.97 | 11.97 | 11.41 | 10.36
AdaPrune 48.84 | 39.15 | 28.56
SparseGPT | 33.42 | 29.18 | 19.36 SparseGPT 4:8 17.21 | 1477 | 13.76 | 1248 | 11.77 | 10.61

SparseGPT | 24 | 1936 | 1640 | 14.85 | 13.17 | 12.25 | 10.92

50% Sparse + 3-bit. The main paper only presents near loss-less results for 50% + 4-bit joint sparsification and quantization,
corresponding to 3-bit quantization in terms of storage. For 50% + 3-bit (corresponding to 2.5-bit), OPT-175B achieves 8.60
PPL on raw-WikiText2, which is also more accurate than GPTQ’s (Frantar et al., 2022a) 8.94 state-of-the-art 2.5-bit result.
SparseGPT scores the same 8.93 for 4:8 + 3-bit. Based on these initial investigations, we believe that combining sparsity
+ quantization is a promising direction towards even more extreme compression of very large language models.

13

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

D. Partial 2:4 Results

Tables 5 and 6 show the performance of a sequence of partially 2:4 sparse models on three different language modelling
datasets. The first fraction of layers is fully sparsified while the remainder is kept dense. In this way, speedup and accuracy
can be traded off also from binary compression choices, such as n:m-pruning.

Table 5. Pruning different fractions (as consecutive segments from the beginning) of OPT-175B layers to the 2:4 pattern.

| OPT-175B-2:4 | dense | 1/2 | 2/3 | 34 | 4/5 | full |

raw-WikiText2 834 | 822 | 838 | 849 | 852 | 874
PTB 12.01 | 12.15 | 12.80 | 13.02 | 13.12 | 13.25
C4-subset 10.13 | 10.22 | 10.41 | 10.52 | 10.59 | 10.92

Table 6. Pruning different fractions (as consecutive segments from the beginning) of BLOOM-176B layers to the 2:4 pattern.

| BLOOM-176B-2:4 | dense | 12 | 2/3 | 3/4 | 4/5 | full |

raw-WikiText2 8.11 820 | 850 | 8.67 874 | 9.20
PTB 14.58 | 14.78 | 15.44 | 15.84 | 1596 | 16.42
C4-subset 11.71 | 11.81 | 12.06 | 12.23 | 12.32 | 12.67

E. Sparsity Acceleration

Lastly, we perform a preliminary study of how well sparse language models can already be accelerated in practice with
off-the-shelf tools, for both CPU and GPU inference. We think that these results can likely be improved significantly with
more model specific optimization, which we think is an important topic for future work.

CPU Speedups. First, we investigate acceleration of unstructured sparsity for CPU inference. For that we utilize the
state-of-the-art DeepSparse engine (NeuralMagic, 2022) and run end-to-end inference on OPT-2.7B (support for larger
variants appears to be still under development) for a single batch of 400 tokens, on an Intel(R) Core(TM) i9-7980XE CPU
@ 2.60GHz using 18 cores. Table 7 shows the end-to-end speedups of running sparse models over the dense one, executed
in the same engine/environment. (For reference, dense DeepSparse is 1.5x faster than the standard ONNXRuntime.) The
achieved speedups are close to the theoretical optimum, which suggests that unstructured sparsity acceleration for LLM
inference on CPUs is already quite practical.

‘Sparsity ‘ 40% ‘ 50% ‘ 60% ‘
| Speedup | 1.57x | 1.82x | 2.16x |

Table 7. Speedup over dense version when running sparsified OPT-2.7 models in DeepSparse.

GPU Speedups. 2:4 sparsity as supported by NVIDIA GPUs of generation Ampere and newer theoretically offers 2x
acceleration of matrix multiplications. We now evaluate how big those speedups are in practice for the matmul problem
sizes that occur in our specific models of interest. We use NVIDIA’s official CUTLASS library (selecting the optimal kernel
configuration returned by the corresponding profiler) and compare against the highly optimized dense cuBLAS numbers
(also used by PyTorch). We assume a batch-size of 2048 tokens and benchmark the three matrix shapes that occur in
OPT-175B; the results are shown in Table 8. We measure very respectable speedups through 2:4 sparsity between 54 — 79%,
for individual layers (end-to-end speedups will likely be slightly lower due to some extra overheads from e.g. attention).

\ Weight \ Q/K/V/Out \ FC1 \ FC2 \
Dense 2.84ms 10.26ms | 10.23ms
2:4 Sparse 1.59ms 6.15ms | 6.64ms

| Speedup | 1.79x | 1.67x | 1.54x |

Table 8. Runtime and speedup for the different layer shapes occuring in OPT-175B using 2048 tokens.

14

SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot

F. Column Sparsity

In Section 3.1 we discussed, in the context of the row-Hessian challenge, how pruning entire columns is significantly more
challenging than pruning individual weights, which we now demonstrate in a brief ablation study.

Concretely, we prune entire columns in all linear layers except for FC1 (as dropping a column in FC2 automatically removes
a row in FC1 as well). For column mask selection, we use a modified version of SparseGPT which sums across rows
(to also benefit from intermediate updates), followed by a complete reconstruction using all remaining columns, which is
feasible in this structured setting. Table 9 summarizes our raw-WikiText2 results for several OPT models.

|OPT | 27B | 6.7B | 13B |

25% cols | 19.62 | 18.28 | 15.56
50% cols | 70.12 | 72.90 | 57.55
50% unstr | 13.48 | 11.55 | 11.17

| 50%2:4 | 17.18 | 14.20 | 12.96 |

Table 9. Comparison of column sparsity (imposed via SparseGPT-like algorithm) and SparseGPT unstructured / 2:4; measuring
perplexity on raw-Wikitext2.

As can be seen, 50% (cols) models are far from being useful and even only 25% column pruning is still significantly

outperformed by full 2:4 pruning. Nevertheless, we think that one-shot structured pruning for such models is worth
investigating further, e.g., in low amounts combined with unstructured/semi-structured sparsity.

15

